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G-convergence of monotone operators

Valeria CHIADO’ PIAT, Gianni DAL MASO and Anneliese DEFRANCESCHI

SISSA, Strada Costiera 11, 34014 Trieste, Italy

Ann. Inst. Henri Poincaré,

Vol. 7, n° 3, 1990, p. 123-160. Analyse non linéaire

ABSTRACT. - A general notion of G-convergence for sequences of
maximal monotone operators of the form Du)) is intro-
duced in terms of the asymptotic behavior, as h -> + oo, of the solutions
u~, to the equations and of their momenta ah (x, DUh). The main
results of the paper are the local character of the G-convergence and the
G-compactness of some classes of nonlinear monotone operators.

Key words : G-convergence, monotone operators, nonlinear elliptic equations.

RESUME. - On présente une notion générale de G-convergence pour
des operateurs maximaux monotones sous forme divergence. On démontre
le caractere local de la G-convergence et de la G-compacite pour certaines
classes d’operateurs de ce type.
Mots clés : G-convergence, operateurs monotones, equations elliptiques non lineaires.

INTRODUCTION

The aim of this paper is to study a general notion of G-convergence
for nonlinear monotone operators d : H5’ P (S2) -~ H -1 ~ q (Q) of the form
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124 V. CHIADO’ PIAT, G. DAL MASO AND A. DEFRANCESCHI

where Q is a bounded open subset of Rn, 1 p  + oo, and 1 /p + 1 /q =1.
We assume that the (possibly multivalued) map a: Q x Rn -4 Rn which
occurs in (0.1) is measurable on Qx Rn, is maximal monotone on R" for
almost every x E SZ, and satisfies suitable coerciveness and boundedness
conditions (see Section 2). The class of all these maps will be denoted by
Mn (Rn).
The main examples of maps of the class Mn (Rn) have the form

where ~03BE denotes the subdifferential with respect to ç and
Q x R" -~ [0, + oo[ is measurable in (x, ~), convex in §, and satisfies the

inequalities

for suitable constants 0  c 1 _ c2 . In this case the operator (0.1) is the
subdifferential of the functional

and the notion of G-convergence of the operators (0.1) can be studied in
connection with the notion of r-convergence of the corresponding
functionals (0.3) (see [1], [17], [3]).

Let us return to the general case of maps of the class M~ (R") for which
the representation (0.2) is not always possible. Let (ah) be a sequence in
Mn and let a E M~ (R"). To introduce the notion of G-convergence in
Mn we begin with the simpler case where ah and a are single-valued
and strictly monotone on R". We then say that (ah) G-converges to a if,
for and for every sequence ( f h) converging to f strongly
in H -1 ~ q (S~), the solutions u,~ of the equations

satisfy the following conditions:

where u is the solution of the equation

If we drop the hypothesis that ah and a are single-valued and strictly
monotone, then the definition of G-convergence is more delicate, due to
the non-uniqueness of the solutions of the equations (0.4) and (o . 5).
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125G-CONVERGENCE OF MONOTONE OPERATORS

In the general case we say that (ah) G-convergences to a if for every
increasing sequence of integers 1; (h), for for every
sequence ( fn) converging to f strongly in H -1 ° q (SZ), for every sequence

of solutions of the equations

and for every sequence (gh) in (Lq (S2))n with

there exists an increasing sequence of integers « (h) such that

and

where u is a solution of the equation

and

Let us emphasize that the notion of G-convergence in Mn (R") is inde-
pendent of the particular boundary condition chosen in the definition, in
the sense that, given we can replace by c~ + P (S2)
in (0 . 4), (0. 5), (0. 6), (0. 7) without changing the G-convergent sequences
and their limits.
The main result of this paper is the compactness of the class Mn (R") with

respect to G-convergence. Moreover we prove the following localization
property: if (ah) G-converges to a, (bh) G-converges to b, and

ah (x, . ) = bh (x, . ) for almost every x in an open subset Q’ of Q, then
a (x, . ) = b (x, . ) for almost every xeQB

Finally we determine some subsets of Mn (R") which are closed under
G-convergence. This allows us to prove in a unified way the compactness,
with respect to G-convergence, of all general classes of linear or nonlinear
operators of the form (0 .1 ) which have been considered in the literature.
The notion of G-convergence for second order linear elliptic operators

was studied by E. De Giorgi and S. Spagnolo in the symmetric case (see
[24], [25], [26], [12]), and then extended to the non-symmetric case by
F. Murat and L. Tartar under the name of H-convergence (see [27], [28],
and [18]). We refer to [5] and [23] for the related problem of the homoge-
nization of elliptic equations and to [30] for the extension of the notion
of G-convergence to higher order linear elliptic operators.

Vol. 7, n° 3-1990.
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The properties of the G-convergence for quasilinear elliptic operators
were studied by L. Boccardo, Th. Gallouet, and F. Murat in [7], [8],
and [6].
The first results in the nonlinear case (0 .1 ), with p = 2, are due to

F. Murat and L. Tartar, who studied (in [20]) the properties of the

G-convergence in a suitable class of monotone operators of the form
(0.1), assuming that the maps a are uniformly Lipschitz continuous and
uniformly strictly monotone on Rn. The corresponding homogenization
results were studied by L. Tartar in [27] and H. Attouch in [2].
A similar theory of G-convergence for more general classes of uniformly

equicontinuous strictly monotone operators was developed by
U. E. Raitum in the case 2 _ p ~ +00 (see [22]). For the corresponding
homogenization results we refer to [13] and [14].
We remark that, in order to include the case (0.2), we do not assume

the maps of our class Mn (R") to be continuous or strictly monotone on
Rn, and this requires a deep change in the proof of the compactness of
Mn under G-convergence. While all proofs in the quoted papers are
based essentially on a density argument, which is made possible by the
continuity of the operators j~ or of the inverse operators ~ -1, our
proof relies on a theorem by F. Hiai and H. Umegaki concerning the
representation of every closed decomposable subset of LP as the set of all
measurable selections of a suitable multivalued map (see [15]).

1. MULTIVALUED FUNCTIONS

In this section we fix the notation and recall some results concerning
multivalued functions and their measurability. Furthermore, we summarize
the main theorems for multivalued monotone operators on Banach spaces
which will be applied in this paper.

If x, y are elements of a set X, by [x, y] we denote the ordered pair
formed by x and y, whereas (x, y) denotes the scalar product of x and y,
provided X is a Hilbert space.

MULTIVALUED FUNCTIONS. - Let X and Y be two sets. A multivalued

function F from X to Y is a map that associates with any x E X a subset
F x of Y. The subsets F x are called the images or values of F. The sets

are called the domain of F and the graph of F, respectively. The range of
F is, by definition, the set

Annales de l’Institut Henri Poincaré - Analyse non linéaire



127G-CONVERGENCE OF MONOTONE OPERATORS

If for every XEX the set F x contains exactly one element of Y, we say
that F is single-valued.

In general, we shall identify every multivalued function F with its graph
in X x Y. The inverse F -1 of the multivalued map F from X to Y is the
multivalued function from Y to X defined by if and only if

y E F x; in other words, F - i is the multivalued function, whose graph is
symmetric to the graph of F.

MEASURABLE MULTIVALUED FUNCTIONS. - Let (X, ~% ) be a measurable
space, and let F : X -~ R" be a multivalued function from the space X to
the family of non-empty subsets of the space Rn. For every BRn the
inverse image of B under F is denoted by

We shall consider the following measurability conditions:
(1.1) for each Borel set B c Rn, F -1 
( 1. 2) for each closed set C c Rn, F -1 (C) 
( 1. 3) for each open set De Rn, F -1 (U) 
(1.4) there exists a sequence (ah) of measurable selections such that

for each x (a selection of F is a map a:XRn
such that a (x) E F x for every x);
(1 . 5) G (F) (R"), where ~ (Rn) is the a-field of all Borel subsets
of Rn.

We say that a multivalued function F : X -4 R" is measurable [with
respect to J and B (R")] if ( 1. 2) is verified. Let us state a theorem which
links this definition of measurability of a multivalued function F to the
other conditions on F listed above.

THEOREM 1.1. - Let (X, ~% ) be a measurable space. Let F : X --~ R" be a
multivalued function with non-empty closed values. Then the following condi-
tions hold:

(i) ( 1.1 ) ~ ( 1. 2) ~ ( 1. 3) ~ ( 1. 4) ~ ( 1. 5);
(ii) If there exists a complete 03C3-finite measure  defined on J, then all

conditions ( 1. 1 )-( 1. 5) are equivalent.
The proof of the above theorem can be found in [ 11 ], Chapter III,

Section 2. A useful tool for problems of this type is given by the projection
theorem below (see [ 11 ], Theorem III . 23).

THEOREM 1.2. - Let (X, ~% , ~,) be a measurable space, where ~ is a

complete 03C3-finite measure defined on J. If G belongs to (Rn), then
the projection prx G belongs to ~% .

The next theorem states the equivalence between conditions ( 1. 2) and
( 1. 5) for certain multivalued functions even if the measure space is not
complete.

Vol. 7, n° 3-1990.
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THEOREM 1.3. - Let (X, ~ , ~,) be a measurable space, where ~, is a

complete 03C3-finite measure defined on J Let F : X ~ Rn x Rm be a multiva-
lued function with non-empty closed values. Let H : X x R" --~ Rm be the
multivalued function defined by

Then the following conditions are equivalent:
(i) F is measurable with respect to J and B(Rn)~B (R"‘);
(ii) G (F) E (R") Q ~ (R"‘);
(iii) H is measurable with respect to and r ‘ (Rm);
(iv) 

Proof. - By Theorem 1.1 (ii) we have that (i) ~ (ii). Moreover,
Theorem 1.1 (i) guarantees that (iii) ~ (iv). Since G (F) = G (H), we obtain
easily that (ii)=>(iv). To conclude the proof of the theorem we shall
show that (ii) ~ (iii). To this aim it is enough to prove that (ii) yields

for every compact subset C of R"‘. Let us fix a

compact set CRm. By taking (1.6) into account we have that

Let B denote the set of all XEX such that is non-empty.
By (ii) and the projection Theorem 1.2 it follows that If 03A6 is the
multivalued function from X to R" x R"‘ defined by 03A6 x = F x n (R" x C),
then D (~) = B and (1 . 7) becomes

Since G (c~) = G (F) n (~ x Rn x C) (Rn) Q ~ (Rm), by Theorem 1.1
there exists a sequence gJ of measurable functions from B to Rn x Rm
such that

for every XE B. By taking (1. 9) into account let us define the set

We shall prove that M = H -1 (C). The inclusion H-1(C)M follows
easily from (1.8), (1.9), and (1.10). To prove that M ~ H ~ 1 (C), let us

fix [x, ~] E M. By definition there exists a subsequence ~h~) of (cph) such
that (cp~ ~h~ (x)) converges to ç. Moreover, the corresponding sequence
(ga (h) (x)) belongs to the compact set C. Hence, by passing, if necessary,
to a subsequence we may assume that (gJ ~h~ (x)) converges to some r~ E Rm.
By (1 . 9) we have [~, hence [x, ~] E H -1 (C), which concludes the
nroof of the eaualitv M = H -1 fC). Since

Annales de l’Institut Henri Poincaré - Analyse non linéaire



129G-CONVERGENCE OF MONOTONE OPERATORS

we have that and the proof of the theorem is

accomplished..

Finally, let us give a more general theorem for the existence of a
measurable selection of a multivalued function due to Aumann and von
Neumann (see [II], Theorem III.22).

THEOREM 1.4. - Let (X, ~ ) be a measurable space and let F be a
multivalued function from X to Rn with non-empty values. If the graph G (F)
belongs to and there exists a complete 03C3-finite measure defined
on ~ , then F has a measurable selection.

MAXIMAL MONOTONE OPERATORS. - Our present aim is to remind the
definition and some basic properties of multivalued maximal monotone
operators in Banach spaces.

Let X be a Banach space and let X* be its topological dual. By (,) we
denote the duality pairing between X* and X.

DEFINITION 1.5. - A subset A ~ X x X* is called monotone (resp. strictly
monotone) if

for any [x2, y2] E A.

DEFINITION 1.6. - A monotone subset A  X x X* is called maximal
monotone if it is not properly contained in any other monotone subset of
X x X*, i. e. for every [x, y] eX x X* such that

it follows that [x, y] EA.
We say that a multivalued operator F : X -~ X* is monotone (resp.

maximal monotone) if its graph is a monotone (resp. maximal monotone)
subset of X x X*.

REMARK 1.7. - Since the monotonicity is invariant under transposition
of the domain and the range of a map, F is (maximal) monotone if and
only if F -1 has this property.

Let us note that if F is a (multivalued) maximal monotone operator on
X, then for any x E D (F) the image F x is a closed convex subset of X*
(see, for example, [21], Chapter III.2).

Before giving the statement of the next theorem, which will be heavily
applied in Sections 2 and 5, we recall the definition of the concept of
upper-semicontinuous multivalued operator.

DEFINITION 1.8. - Let S 1 and S2 be two topological spaces, and let F
be a multivalued function of Sl into S2. Then F is said to be upper-
semicontinuous if for every so E S 1 and for every open neighborhood V of

Vol. 7, n° 3-1990.
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F so in S2 there exists a neighborhood U of so in Si 1 such that F for

every s E U.

The following result provides a useful criterion for maximal monotoni-
city (see [10], Theorem (3.18)).

THEOREM 1.9. - Let X be a Banach space and let X * be its dual. Let F
be a multivalued monotone operator of X into X *. Suppose that for each x
in X, F x is a non-empty weak* closed convex subset of X * and that for
each line segment in X, F is an upper-semicontinuous multivalued operator
from the line segment to X *, with X * given its weak* topology. Then F is
maximal monotone.

Finally, we state a surjectivity result for a class of multivalued monotone
operators which is of crucial importance in the proof of our theorems in
Sections 2 and 4.

THEOREM 1.10. - Let X be a reflexive Banach space and let X * be its
dual. Let F be a multivalued maximal monotone operator from X to X *. If
F is coercive, then R (F) = X*.

We remind that the (multivalued) operator F : X -~ X* is called coercive
if

The proof of Theorem 1.10 can be found in [21], Chapter III,
Theorem 2.10.

2. MULTIVALUED MONOTONE OPERATORS
IN SOBOLEV SPACES

In this section we study a class of multivalued monotone operators on
Sobolev spaces of the type - div (a (x, Du)).
Throughout the paper we denote by p a fixed real number, 1 p  + oo,

and by q its dual exponent, Moreover we fix a bounded

open subset Q of Rn, two non-negative functions ml, m2 (Q) and two
constants c 1 > 0, c2 > 0. By L (SZ) we denote the a-field of all Lebesgue
measurable subsets of Q, and by B (R") the o-field of all Borel subsets of
Rn. The Euclidean norm and the scalar product in R" are denoted by ] . ]
and ( . , . .), respectively.

DEFINITION 2.1. - By Mn (Rn) we denote the class of all multivalued
functions a : Q x R" -~ Rn with closed values which satisfy the following

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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conditions:

(i) for a. e. x E n the multivalued function a (x, . ) : Rn --~ Rn is maximal
monotone;

(ii) a is measurable with respect to ~ (SZ) Q ~ (Rn) and PJ (Rn), i. e.

for every closed set 

(iii) the estimates

hold for a. e. for every 03BE~Rn, and 03BE).

REMARK 2.2. - Conditions (2.1) and (2.2) imply that there exist two
functions m.~ E Lq (Q), ma (Q) and two constants c~ > 0, c~ > 0 such that

for a. e. xeQ, for every 03BE~Rn, and 03BE). Conversely, if a satisfies
(2.3) and (2.4), then (2.1) and (2.2) hold for suitable ml, m2, cl, c2.

REMARK 2.3. - For a. e. x~03A9 and for every 03BE~Rn the set a (x, ç) is
closed and convex in Rn by (i) (see, for instance, [21], Section III.2.3).
Moreover, (ii) and Theorem 1.1 (i) imply that the graph of a belongs to
~ (Rn). By (2.3), for a. e. x E SZ the maximal monotone

operator a (x, . ) is locally bounded, hence a-1 (x, . ) is surjective
(see [21], III.4.2). This implies that a (x, ~) ~ QS for and for every
ç E Rn.

Given a E Mn (Rn), and we consider the
Dirichlet boundary value problem

where 
’

To study the solutions of (2. 5), and in particular their dependence on
f and a, we shall give some equivalent formulations of this problem which
are used in the sequel.

DEFINITION 2.4. - Let By [resp. M(H1,P)] we
denote the class of all multivalued operators A : H~ ~ p (SZ) -~ 
[resp. A : (SZ) ~ (Lq (SZ))"] satisfying the following conditions:

(i) [resp. H1,p(03A9)] and gi~Aui, i =1, 2, then

Vol. 7, n° 3-1990.
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(ii) the estimates

hold for every [resp. uEH1,P(Q)] and g E A u.
[resp. ~ (H 1 ~ p)] we denote the class of all multivalued

operators ~ : H~ ~ p (S2) -~ H -1 ~ q (SZ) [resp. ~ : H 1 ~ p (SZ) -~ H -1 ~ q (S2)] of the
form

with [resp. 

REMARK 2.5. - In the case (p=0 the operators of the class ~~ P)
are monotone according to Definition 1.5 in consequence of (i). If
~ E ~ P) is maximal monotone, then D (~) = Ho~ P (S2). Indeed ~ is
locally bounded by (2 . 6), hence ~-1 is surjective (see [21], III.4.2).

DEFINITION 2.6. - Let To every aEMn(Rn) we associate
the operators defined by

Their restrictions to H~ P (SZ) belong to M (H~ P) and ~~ (H~ ~ P) and will
be denoted by A~ and respectively.
By taking these definitions into account, problem (2.5) becomes then

equivalent to the following one: find such
that

or equivalently, find and such that

Let us denote by I the (single-valued) monotone operator from LP (Q)
to Lq (SZ) defined by I u = u ~p- 2 u. The next theorem is more than needed
for solving problem (2. 9) in the case cp = 0, but it is used in its generality
in Section 6.

THEOREM 2 . 7. - Let ~° be the operator in ~~ P) associated to a
function a E M~ (Rn) in the case cp = 0 (Definition 2. 6). Then

(i) ~° is maximal monotone ;
(it) every ~, ->_ o.
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Proof - Let us start with the proof of (i). To this aim we show that
the operator ~° satisfies the assumptions of Theorem 1. 9.

(a) For every we have To prove this assertion
let us fix u E Ho~ P (Q). By Remark 2 . 3 the set a (x, Du (x)) is non-empty, .
closed, and convex in R" for a. e. Therefore, by taking Theorem 1.1
into account we conclude that there exists a measurable R"
such that g(x) ea(x, Du (x)) for a. è. x~03A9. Finally, the estimate (2.3) .

yields g E (Lq (Q))", which concludes the proof of (a). _

(b) For every is a convex subset of H -1 ~ q (S~). This
follows easily from the fact that a (x, Du (x)) is a convex subset of R" for
a. e. x E n (Remark 2. 3).

(c) For every is a weakly closed subset of 
and the multivalued operator ~° is upper-semicontinuous from the strong
topology of Ho~ P (S~) to the weak topology of H -1 ~ q (S2). By the bounded-
ness condition (2. 3), to prove this assertion it is enough to show that, if

converges to u strongly in Ho~ P (SZ), ( fh) converges to f weakly in
H -1 ~ q (SZ), and for every h E N, then Under these
assumptions on f;,, f, uh, u, the boundedness condition (2. 3) guarantees
the existence of a sequence of functions gh E (L9 (SZ))" and of a function
g E (Lq (SZ))" such that (up to a subsequence) (gh) converges to g weakly in
(L~ (Q))", gh (x) E a (x, Duh (x)) for a. e. x e Q, - div gh = f~, and - div g = f
Therefore, it remains to verify that g (x) E a (x, Du (x)) for a. e. If
we show that the set

has Lebesgue measure zero, then the maximal monotonicity of a yields
g(x)Ea(x, Du(x)) a. e. on Q, which concludes the proof of (c). To prove
that I M = 0, let us write where

By Remark 2. 3 the graph of G belongs to J~ (Q) (R") (1t"), thus
by the projection Theorem 1. 2. By the Aumann-von Neumann

Theorem 1.4 there exists a measurable selection [~, r~] of G defined on
M. Therefore and

Ior every x E M. un the other hand, the monotonicity assumption on a
implies that

tor every hEN. If I M > o, there exists a measurable subset M’ of M with
( M’ ~ > 0 such that [~ (x), ~ (x)] is bounded on M’. By integrating (2 . 12)

Vol. 7, n° 3-1990.
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on M’ and by passing to the limit as h - + oo, we obtain

which contradicts (2 .11 ) being Therefore we have to conclude

that I M = 0. This proves (c) and completes the proof of (i).
Proof of (ii). By (i) we have that ~° is maximal monotone. Since

D (~°) = D (I) = Ho~ P (SZ), and I is maximal monotone on Ho° P (SZ), the
operator ~° + ~, I is maximal monotone for every ~, >__ 0 (see [21], III. 3. 6).
By (2 . 2) it is also coercive and therefore by
Theorem 1.10.

REMARK 2. 8. - Problem (2. 9) has a solution for every 
Indeed, let us define the multivalued function a~ (x, ~) = a (x, ~ + Dcp (x))
which still belongs to the class Mn (Rn). If ~~ denotes the operator in
J( (H5’ P) associated to the function a~ by Definition 2. 6, it follows easily
that for every Since by Theorem 2 . 7 (ii)
we have that R (~~) = H -1 ~ q (SZ), our assertion follows immediately.

Finally, the following result is a useful tool to check the maximality of
certain monotone operators on H5’ P (Q).
LEMMA 2.9. - Let .91 be a (multivalued) monotone operator from

into H -1 ~ q (SZ), let ~, > 0, and let I be the (single-valued) function
from LP (Q) to Lq(n) defined by 
then maximal monotone.

Proo. f : - Let ~ : Ho° p (SZ) -~ H -1 ° q (S2) be a (multivalued) monotone
operator such that j~ ~= ~. The proof will be accomplished if we show
that B d. Let f~B u. It is clear that

On the other hand, since there exists 
such that f+ Then the assumption ~ ~ ~ implies

By taking (2.13) and (2.14) into account, the strict monotonicity of the
operator B+03BBI yields v = u a. e. on Q. Thus, or

equivalently, fEd u, which concludes the proof of the lemma.

3. G-CONVERGENCE OF MONOTONE OPERATORS

In this section we introduce a notion of convergence in the class of
multivalued functions Mn (R") which permits a satisfactory analysis of the
perturbations of Dirichlet problems of the form (2. 5).
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