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in two and three dimensions
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Ann. Inst. Henri Poincaré,
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ABSTRACT. - A new approach for the analysis of Vortex Methods is
described. This analysis which is based on the notion of weak solution
for the convection deformation vorticity form of the Euler equations leads
to convergence results in the case of Vortex In Cell methods as well as
for three dimensional Vortex Methods.

Key words : Vortex methods, error estimates, linear first order hyperbolic equations, weak
solutions.

RESUME. - On ecrit une nouvelle approche permettant une analyse
simplifiée des méthodes de vortex. Cette analyse utilise la notion de
solution faible des equations de convection deformation du tourbillon et
aboutit a des resultats de convergence en particulier dans le cas des

Classification A.M.S. : 65 M 15, 65 M 25, 65 M 60, 35 L 45.
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228 G.-H. COTTET

methodes de Vortex In Cell ainsi que pour des methodes de vortex

tridimensionnelles.

I. INTRODUCTION

This paper is devoted to a new mathematical analysis of Vortex

Methods. In fact these methods, which are commonly implemented for
the simulation of incompressible flows at high Reynolds numbers, have
been given a large amount of theoretical work, since the first work of
O. Hald [11]. The most recent contributions deal with some important
extensions of these methods in two and three dimensions, such as Filament
Vortex Methods ([9], [17]), Vortex In Cell Methods [6], viscous flows ([7],
[8], [14]) among many others (see also [1]).
The main purpose of this paper is to provide a very simple understanding

of the convergence of these methods with a wide range of applications.
Let us briefly describe the idea on which this work is based. Consider

for instance the three-dimensional Euler equations in velocity-vorticity
formulation:

at infinity.

A very simple way to define a particle approximation of this problem
is to consider an approximation of the initial condition (Do by a linear
combination of Dirac measures and then to define the

evolution of the positions and the weights of the particles in a way that is
consistent with ( E . 1). Beale and Majda [4] first suggested modifying the

weights by methods using finite-difference approximations of the stretching
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229ANALYSIS OF VORTEX METHODS

term Later Greengard [9] improved this method by observing
that only derivatives of the velocity along the vorticity are needed and

proposed an analysis of a Filament Vortex type method.
In fact it is possible to define a way to compute the functions 

by using directly the interactions of particles. Such methods have been

implemented since 1977 by Rehbach. The mathematical basis of this

approach is that, given a differentiable velocity field, there exists an explicit
measure solution of (E. 1) when Oo is a Dirac mass; it seems that this

property was clearly written for the first time in [16].
Starting from this remark, since the method is based on the explicit

solution of the equation satisfied by the vorticity, it seems natural to look
for estimates of the vorticity rather than the velocity. Therefore we have
to work in distribution spaces whose choice is made to:

1. give back a satisfactory control of the velocity in order to ensure

stability in the nonlinear terms;
2. express properties of optimal accuracy for the approximation of

continuous functions by Dirac measures.
These properties are actually easily proved to be shared by type

spaces; in particular the first property is then related to the Calderon’s
theorem, while the second one is related to quadrature estimates. Further-
more it turns out that this analysis is largely independant of the precise
way the velocity is computed from the vorticity. This means that, for
instance, from this point of view Vortex In Cell methods are naturally
connected to methods which use calculation of the velocity based on

integral methods.

Finally we emphasize that, since the essential tool that is required for
the analysis is that the approximate vorticity must be an explicit solution
of the original equation, methods like Contour Dynamics Methods and
Filament Vortex Methods are obviously good candidates for this analysis.
Let us point out that this analysis seems also promising when dealing with
boundary terms or time discretization.
An outline of this paper is as follows. In section 2 we give some very

simple preliminary results concerning distributions and stability properties
of advection equations in distribution spaces. In section 3, we analyze the
standard two-dimensional Vortex Method and in section 4 we give a proof
of the convergence of Vortex In Cell methods that is largely independent
of the author’s previous work [6]. Finally in section 5 we focus on the
three-dimensional grid free point Vortex method. For a different analysis
of this method we refer to [2].

Vol. 5, n° 3-1988.



230 G.-H. COTTET

II. PRELIMINARY RESULTS

In all this section n = 2 or 3. We introduce, for and p E [l, +00],
the Sobolev spaces

and, for p E ]1, + oo [, the dual of p* with 1 /p + 1 /p* =1.
We denote 11m, p and the corresponding norms, and by j. 1m, p
the usual semi-norm of VVm° p 

In addition 3m,p will be the space of all distributions 
such that there exists a constant C independent of cp in p* satis-

f ying:

For such T we also set

Observe that if T E 

Let us prove the following result:

LEMMA 2 . l. - Let r, m be two integers with let be a family
of integers whose conjugates are denoted by Assume that the distribution

T satisfies:

for all cp with compact support.
Then we can write:

Annales de l’Institut Henri Poincaré - Analyse non linéaire



231ANALYSIS OF VORTEX METHODS

with

Proof - For the sake of simplicity we only give the proof corresponding
to the case the general case follows with minor modifications. We
classically begin by viewing T as a linear continuous form on the subspace
H c (LP* made by the n-uples

We then provide (LP* with the following norm:

By (2.1), we know that the norm of T is less than 1 on H. So that we
may extend T on the whole space (LP*)N, with a norm __ 1. Let T the
resulting linear functional and such that

We first get classically

Since ~T~~1 our choice of the norm in (LP(lRn))N leads to:

for all ( fa) E (LP* ( I~8"))N. This proves that ( Ca’
The above result proves in particular that the elements of 

precisely the distributions T which can be written

In this case, observe also that if in the above proof we choose the following
norm in (LP 

Vol. 5, n° 3-1988.
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we easily obtain

which is the analogue in 9~m, p of the classical result

In both cases we shall call a canonical decomposition of T, in 
or in ~m, p, depending on wether T belongs to P ( f~") or 9~m, p, a (non
unique) decomposition of T which realizes the above minima.
The following lemma deals with stability properties in for

the linear hyperbolic equations of 1 st order. To begin with we recall some
standard properties about classical solutions of the following problem:

We define the characteristics X (sl; x, s2) related to v as the solutions of
the system

and we denote by J the jacobian determinant of the transformation X:

If 8 and ~o are smooth enough the unique classical solution of (2. 2) is
given by

It is easily seen from (2. 3) and (2. 4) that if

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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then

We also recall the following property which is a straigthforward conse-
quence of ( 2 . 3) :

We state now the

LEMMA 2 . 2. - Let p E ] 1, + oo [, and i > 0. Let v be a vector

valued function in L°° (0, i; (W"‘° °° (~n))n); given ~o in W -m~ and 9

in L1 (0, i; the problem (2. 2) has a unique solution ~ in

L°° (0, i; W -"‘~ p and there exists a constant C only depending on i and
v such that

Moreover, if ~o and 8 (., t) lie in 9~m, p for all time, so does ~ (., t), and the
above estimate remains valid by changing II [ ] _m, p.

Proof. - To begin with, let us recall in what sense we speak of weak
solutions; we denote by L the differential operator such that:

and L* its formal adjoint:

A distribution § will be called a weak solution in (0, i; p(~")) of
( 2 . 2) if

Vol. 5, n° 3-1988.
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for all function cp such that

Let us now prove the uniqueness of such a weak solution of (2.2). If
03BE1 and 03BE2 are two solutions of (2. 6), then 03BE1-03BE2=03BE is solution of the

homogeneous problem, i. e. (2. 6) with 8 = 0 and ~o = o. Given gs in

L1 (0, i; Wm° p’ let cp be the classical solution of

Using the characteristics defined in (2. 3), the solution of (2. 8) can be
written in the form:

from where it is easily seen that cp fullfils the requirements (2. 7). Hence
we get from (2 . 6) with 9=0 and 

Taking in particular (., t) =03BB (t) 03C8, 03BB E L1 (0, i), 03C8~ W’n’ p* gives

and therefore § * 0.
In order to prove (2. 3) it will be convenient to use a canonical decompo-

sition of e and ç in 

Using the fact that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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it is an easy matter to check that the distribution § defined by

is a weak solution of ( 2 . 2) in the sense of ( 2 . 6), ( 2 . 7) .
Now, by the smoothness of X, which is a consequence of the smoothness

of v, (2. 9) leads to

Therefore we get on the one hand:

which is the desired result (2. 4).
On the other hand if ~o and 8 are in 9~m, p, then for a canonical

decomposition of ~o and 8 in 3m,p we have ~o, o = 80 = o. Therefore by
( 2 .10) we get

which implies that ç ( . , t) E 3m, p and

We shall end this section with a result concerning quadrature formulas
in ~n.

Vol. 5, n° 3-1988.
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LEMMA 2. 3. - Let h > 0 and let xj be the points in Rn defined by

then we have for any g in ( ~") with m >_ n

The proof of this result can be easily deduced from the arguments given
in [16], theorem 3.1, and from the property that Wm° 1 ( ~n) is imbedded

in the space of continuous functions as soon 

III. VORTEX METHODS WITH EXPLICIT KERNELS IN TWO

DIMENSIONS

In the two-dimensional case the Euler equations may be written in the
form:

with x = (xl, x2) E f~2, t > o.

We denote by G the elementary solution of ( 3 . 3) and we set

so that if Bj/ is the solution of (3. 3) we have

Now let us introduce a particle approximation Wo of G)o:

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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with

We shall denote by B~ the square

Let uh be an approximate velocity field; the weak solution of

is the measure

where is obtained through the ordinary differential system

In order to couple Uh and oB we first need to regularize K; thus let ç be
a function in L 00 ( (f~2) n L~ ( f~2) and

We set

and

The approximation is finally defined by (3. 5), (3. 7).
Let us state our convergence result:

THEOREM 3. 1. - Assume that ~o is smooth enough. Assume also that
the following conditions hold

Vol. 5, n° 3-1988.
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Then there exists a constant C such that for hand E small enough

In fact it will be a consequence of the foregoing proof that convergence
holds in a more general situation i. e. when ç E Wm~ °° ( ~2) n wm, 1 ( ~2), m
finite. This would lead to error estimates of the kind of those found in

[16], for instance, but with stability conditions more restrictive than (3.10)
for small values of m.

Our arguments will use the following steps:
1. use (3.1), (3.2), (3.5) in order to derive estimates in some

W ~ m° p ( ~2) spaces;
2. then go back to the velocity by using the properties of the regularized

kernel.

More precisely the needed properties of the regularized kernel are

summarized in the following lemma:

LEMMA 3 . 2. - (i) Let T be in ( I~2) (~ L1 ( (~2); then

(ii) Let ç be in L°° ( l~2) (~ L1 ( (~2) and T be in Lq ( (~2), q  2; then

K£ * T is in for any p such that 1 /q -1 /2 and

(iii) Let ~ be in Wm° °° ( f ~2) (~ Wm° 1 ( ~2) and T in 9~m, p, m >_ 1, 1  p  + oo;

then

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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(iv) Under the assumption (3. 9) we get

1poo.

Proof - The proof of (3.12) is a classical matter and can be omitted
here. To check ( 3 .13) let us consider p  2 and q > 2; we write

and hence

On the one hand we have by the Sobolev inequalities (see [5])

On the other hand an easy calculation shows that

Therefore ( 3 . 16) gives

Let us now prove (3.14). If T E ~m, p, m >_ 1, 1 p  + oo, we write a
canonical decomposition of T in 9~m, p:

with

thus

Vol. 5, n° 3-1988.
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Since, by Calderon’s theorem, the convolution operators f -~ aK * fare
continuous from LP into LP for 1 p  + oo (see again [5]), we have:

Finally the last assertion results from easy calculations for which we
refer to [ 16] for instance..
We now come to the proof of the theorem itself. Since all the velocity

fields introduced in this section are clearly divergence free, we shall equiva-
lently use either conservative or non conservative forms of the nonlinear
terms [such as We shall consider separately the part of
the error coming from the particle discretization and the one coming from
the regularization of the kernel; we begin with the regularization error
and for this purpose we introduce the following intermediate problem:

Let us estimate 

LEMMA 3.3. - Assume that (3.9) holds and that
°° ( ~2) (~ ( ~2) with m >__ d. Then we have for some positive

constant C and for all t E [0, r]:

Proof. - We omit the proof of (3. 18). In fact it is easily seen that it is

enough to obtain the bound for E = o, which is precisely a well-known

regularity result for the two-dimensional Euler equation (see [3] for

instance). Let us focus on ( 3 . 19) .

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Using ( 3 .17) on the one hand and ( 3 .1 ), ( 3 . 2) on the other hand, we
get: 

’

Since u and uE are divergence free, the above system can be rewritten as
follows

whereas (3.4) and (3.17) give

Let us denote by Xg the characteristic curves associated with the flow
u£. Writing the solution of (3.20) as in (2.4) gives, since in the present
caseJ=l

and therefore

Next, by ( 3 . 15)

which gives by ( 3 . 18)

Then ( 3 . 12) yields

Vol. 5, n° 3-1988.
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Combining ( 3 . 21), (3.23), ( 3 . 24) and setting

we obtain the inequality:

It remains now to insert the above estimate in (3.22) to get

from which we obtain by Gronwall’s lemma

This gives the desired estimate for and p = oo. Finally let us

consider the case p finite. By (3.13) we can write

Then we observe that, since we have also

Next, by (3.15) we get

Combining (3. 21) and the above estimates gives the desired result..
Using (3.6), (3.7), and (3.17), we can derive the following system:

Then we write

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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where 03BBh and h are respectively solutions of:

Let us first derive estimates of which will prove the consistency of
the method:

LEMMA 3. 4. - Let m >_ 2. Assume coo E Wm° °° ( f~2) n wm, 1 (1R2); then we
get:

Moreover we can write for any p, q E ) 1, + oo [

where the distributions ~,’~ E Lq ( f~2) and E 9~m, p satisfy

Proof. - Let cp be some test function Coo with compact support; we
have

By lemma 2. 3 we have therefore

which can be rewritten as

By lemma 2 . 1 with po = p f or k ~ 0, this implies that we can write

Vol. 5, n° 3-1988.
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where ~o, o E Lq (1R2) and ~o, a E ~~ a ~? p and

Next consider the solution of (3. 25) with initial condition 03BE0, 03B1. By
lemma 2. 2 we have

Since clearly writing ~.h = ~o and ~a gives ( 3 . 28)
a 

and ( 3 . 29) ..
We now turn to ?~h. We set

To begin with, we observe that is solution of the following system:

Therefore we can write

where This means that if cp is some test function C °°

with compact support

where

Annales de l’Institut Henri Poincaré - Analyse non fineaire



245ANALYSIS OF VORTEX METHODS

and

Let us evaluate pl, pi.
LEMMA 3. 5. - Assume that ~o E Wm’ 

°° ( (~2) n yV"‘,1 ( ~2), with m >_ 1.
We get:

( i) P i ( ~ ~ t) E ~’ ~ , p and

(it) p§ e 03B83,p and the following decomposition holds ph = £ p§ , k, with
I $ k $ 3

ph , ~ ( . , t)) e 8~, ~ and

Proof. - Using the change of variables whose jacobian
determinant is one because uE is divergence free, we get from (3. 30) :

which implies that p~ E 1, p and gives immediately ( 3 . 32) .
Next, using lemma 2. 3 we obtain the following estimate

Since roo E W2, °° ( ~2) n W~- ~ (R~) we have by lemma 3.3

Therefore

Thus we obtain

Vol. 5, n° 3-1988.
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Therefore, following lemma 2.1, we can write the desired decomposition
of p~ and (3.33). N
Denote now by ~, i, ~i ~ k, 1 ~ k _ 3, the solutions of ( 3 . 26) with right

hand sides p~, respectively. Then we have

Let M a constant to be defined below. We define:

Using lemma 2. 2 and 3. 5 we obtain immediately the following result:

and there exists a constant C depending only on M and t such that for
t E [0, ’GM]: 

.

We are now able to present the

Proof of theorem 3. 1. - Let us fix some p in ]2, + oo [ we set:

By (3.4) and ( 3 . 3 S) we have, for 0 ~ t  1):

Next we write

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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From ( 3 .13), ( 3 .14) and lemma 3 . 4 with q such that 1 /q =1 /p -1 /2 we
get

It is also possible to derive estimates of the derivatives of Ai, in the
following way: we write and if r is an integer ~ 1,

By lemma 3. 2 this yields

Using the same argument combined with the fact that ~,’’ lies in 33, p’ we
obtain

Combining ( 3 . 36), ( 3 . 37), ( 3 . 38) and ( 3 . 39) we conclude:

Since by ( 3 .10) h/E is bounded, this yields

By Gronwall’s lemma we conclude:

Using ( 3 . 37) to ( 3 . 40) we then obtain

Vol. 5, n° 3-1988.
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To prove the estimate announced in the theorem with finite p we observe
that, due to (3.10) we can choose m such that Ed; thus ( 3 . 41 )
with r = 0 and (3.18) gives

For p = + oo we use the following interpolation inequality

which combined with ( 3 . 39), r=0, 1, p large enough, gives the desired
result.

Finally we have to prove that, for a suitable choice of the constant M,
For that we start from ( 3 . 39) with r = 3 and 4 we use the above

interpolation argument and (3.18); we obtain that for E and h small

enough:

which is the desired result if, using (3.18), we choose

This ends the proof of the theorem.

IV. VORTEX IN CELL METHODS IN TWO DIMENSIONS

In this section we plan to show that the approach developped in the
previous section provides a good tool for the analysis of the convergence
of Vortex In Cell methods. For a previous analysis based on different
techniques we refer to [6].

In short, VIC methods consist in the following steps
1. Solve the system:
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