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ABSTRACT. - We study Hopf bifurcation for some fully nonlinear
evolution equations in Banach spaces.
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RESUME. - Nous etudions la bifurcation de Hopf pour des equations
totalement non lineaires dans les espaces de Banach.

INTRODUCTION

Hopf bifurcation has been widely studied in the last years; see for instance
the monographs [1 ] [S ] [6] ] [11 ] [13 ]. The infinite dimensional case has
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316 G. DA PRATO AND A. LUNARDI

been studied in [1 ] [2] [4] ] [~] ] [7] ] [~] ] [9] [72] for semilinear equations.
In this paper we study periodic solutions of the problem

where f : ] - 1, 1 [ x D - X, (~,, x) - is a smooth function,
D and X are Banach spaces with D c X, the operator A = fx(o, 0) generates
an analytic semigroup in X and satisfies the usual spectral properties
(see ( 1. 7), (1.8) later). Then, as an application, we may study quasilinear
or fully nonlinear equations, such as

Our main tool is a maximal regularity property for the linear problem

We prove that if f is y-Holder continuous and periodic and v is any solution
of (0.3), then v’ and Av are y-Holder continuous (see section 1).

Using this result we may treat problem (0.1) by means of classical
arguments (see section 2). Our proof follows closely the one of Crandall
and Rabinowitz [2 ], the main difference being the use of maximal regularity
which enables us to get strict instead of mild solutions.

1 THE LINEAR CASE

Let X, D be two Banach spaces with D continuously embedded in X.
We denote by X (resp. D) the complexification of X (resp. D):
X = {x + iy ; x, y ~ X}; D = { x + iy ; x, y ~ D }.

If AeL(D,X), set A : D ~ X, A(x + iy) = Ax + iAy.
We assume that :

From (1.1) it follows that A generates an analytic semigroup elA (not
necessarily strongly continuous at 0), defined by means of the usual Dunford
integral

Annales de l’Institut Henri Poincaré - Analyse non linéaire



317HOPF BIFURCATION

where C is a suitable path joining and ooei8. It may be shown that

etA(X) c X, so that the restriction of etA to X is an analitic semigroup etA
in X. Moreover, denoting by D the closure of D in X, eiA is strongly conti-
nuous in D and c D (see [14]).
For 0  y  1, the interpolation space DA(y, ao ) is given by

and it is endowed with the norm

It is easy to see that, in the case cv = 0, our definition of oo) is equi-
valent to the one given in [70] ] and [14].
We shall consider the linear problem

with f E C~(X) (0  y  1), where denotes the space of all y-Holder
continuous 2n-periodic functions II~ -~ X, endowed with the usual norm

We shall look for solutions of (1.2) belonging to 
is the space of the differentiable functions qJ : f~ -~ X such that

~p and qJ’ belong to C~(X). is endowed with the norm

We shall use the following inclusion property, whose proof will be given
in the appendix. ,

LEMMA 1.1. Let 0  y  1, a  b and let v~Cy( [a, b ] ; D)~C1,y( [a, b ] ; X).
Then v’et) E for each t E [a, b ], and there exists K > 0 such that

Now we are able to study problem ( 1. 2). First we consider the non
resonance case 1 E 

THEOREM 1. ?. Assufne ( l . 1) and let 1 belong to the resolvent set of
Then for each f E Cy#(X)problem ( 1.2) has a unique solution u given bv

Vol. 3, n° 4-1986.



318 G. DA PRATO AND A. LUNARDI

Moreover, u E n C #’’(X) and there exists H > ~ such that

In other words, the mapping

is an isomorphism.

Proof - For xED, consider the initial value problem

whose unique solution is

u is 2n-periodic if and only if

In this case u is given by (1.4), and u(0) = x e D. To prove the regularity
properties of u, we set u = ul + u2, where U1 and u2 are respectively the
periodic solutions of the equations

By (1.4) we get

thus

In particular, by the arbitrariness of f(0) in X, we find that 0 E p(A) and
= - A - I , f (o). Since (1.1) implies that the graph norm of A is equiva-

lent to the norm of D, we get u 1 E C~(D) n 
Using once again (1.4), we obtain

where

is the solution of the problem

Annales de I’Institut Henri Poincaré - Analyse non linéaire



319HOPF BIFURCATION

and belongs to C~(D) n Moreover there exists Hi > 0 such that

(see [3] ] [14]).
From lemma 1.1, ~p’(2~) = belongs to DA(y, CX)), so that

A(1 - e2~A) -1 ~(2~) belongs to DA(y, 00). This implies

(1.5) follows now easily..
Now we consider a resonance case. We assume:

a) i is a simple isolated eigenvalue of A

(1.7) ’ b) 1 is a semi-simple isolated eigenvalue of e21tA with algebraic
multiplicity 2.

We remark that conditions (1.7) are satisfied if

a) (03BE - A)-1 is a compact operator for 03BE E S

(1.8) b) i is a simple eigenvalue of A

c) ni E p(A), n = 0, 2, 3, ...

Hypotheses (1. 8) coincide with assumptions HL iii), iv), v) in [2]. By
(1. 7)-(a) there exist xo, Yo ED such that

that is

Moreover

and then

Let Xo be the subspace of X spanned by xo and yo and let

Xo = ~ x + iy ; x, y e Xo ~. Then a projection on Xo is given by

where y( ± i, E) is the curve { z ( z + i = £ ~, oriented counterclock-
wise, and E is sufficiently small.

Vol. 3, n° 4-1986.



320 G. DA PRATO AND A. LUNARDI

We have

so that, as (~ - A) -1 (~ - A_ ) -1 (X) c X we get Q(X) c X.
Moreover, Xo is the kernel of (1 - e2"A), and, setting

the restriction of etA to Xi 1 is given by

.r . ,..., v,

There exist r~o belonging to the dual space X* of X such that

and then

We are able now to state an existence result for problem (1.2).

THEOREM 1. 3. - Assume (1.1 ) and (1. 7~ and let Then

problem (1.2) has a solution if and only if

In this case all solutions are given by

with ci, C2 E (~. Moreover u E n C #’’(X).
Proof - Setting u o = Qu, ~~ 1 = (1 - Q)u, f o = Q f, f 1 = (1 - Q) f,

Ao = QA, problem (1. 2) splits into the following problems:

Annales de l’Institut Henri Poincaré - Analyse non linéaire



321HOPF BIFURCATION

Due to (1.7), problem ( 1 .18) has a unique solution lit 1 given by

Moreover, if tr~ is a solution of ( I . 17), then

so that, for t = 2n

which coincides with (1.15). If (1.21) holds, then (1.20) with

uo(0) = c1x0 + c2y0 gives all solutions of (1.17). Now (1.16) follows

adding ( 1.19) and (1.20).
Finally, the regularity of u 1 follows arguing as in the proof of theorem 1. 2,

and the regularity of uo follows easily from ( 1.12). /

2. MAIN RESULTS

We are here concerned with periodic solutions of the nonlinear equation

where

Since the linear problem u’(z) = Au(’r) has 2n-periodic solutions (see
section 1), we look for solutions to (2.1) with period 2np, p close to 1.

Setting t = T/p our problem becomes

As usual, to solve problem (2.3) we need some transversality condition
on the eigenvalues of the operator

To this aim, we state the following lemma.

Vol. 3, n° 4-1986.



322 G. DA PRATO AND A. LUNARDI

LEMMA 2 .1. - If (2.2) holds, there exist 03BB ~ J 0, 1 [ and

~j ~ E Cxt J - ~~ ~. [ ~ ~)~ X~ .Y E Cx~ J - %~ [ ~ D) such that

Proof. 2014 Setting A(~,) : D --~ X, + + the

function ~, ~ A(a~) belongs to C°°( ] - 1, 1 [ ; L(D, X)) and there exists

~,o e ]0,1 [ such that for ~, ~  ~.o the operator

is well defined and the function ~. ~ P(~,) belongs to C°°( ] - ~,o, ~.o [ ; L(X)).
Setting

we have U E C°°( ] - ~.o, Ao [ ; L(X)), c D and U(~,)P(o) = P(~,)U(~,),
so that, as U(0) = 1, there exists ~.1 E ]0~o] ] such that is invertible
for - À1  À  À1 and

~~ ~~

Recalling that P(0)(X) is the subspace of X spanned by Wo and using (2.7),
~ ~~

it is easy to see that P(~)(X) is spanned by w(~) = As A(/L) maps
P(03BB)(X) into itself, there exists z(03BB) e C such that A(03BB)w(03BB) = z(03BB)w(03BB), and
we have, for /L sufficiently small

so that z E C°°( ] - ~,, ~, [ ; ~) for some  E ] o,1 [.
Now it is sufficient to set, for | 03BB  03BB,

with x(~,), E X and a(~.), E ~. /
We are able now to state the main result of this paper.

THEOREM 2.2. Let (2.2) hold and assume a’{o) ~ 0, where a is given
by lemma 2 . l. Let y E ] o, 1 be fixed.

Then there exist ao > 0 and C x , functions ~. : ] - ~o, ao [ - R ;
~ ~ P : ] - ~o~ ~’o [ ~ ~~ 6 ~ u : ] - a’o, 60 [ ~ n 

6 -~ u(~){ - ) such that .

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and, setting u(t, ~-) = we have

Moreover there exists Eo > 0 such that if 03BB E R, p E R and u E C # (D) n C 
verify

r -.... - .. ~ ~ -~ . ~ ~ . ~,~"

then there exist 8 E (0, 2n [, 6 E ] - such that

Proo f - Set

Then F is of class Coo and

In particular

By theorem 1. 3 we have

Let V c C~(D) n be such that

Following [2], we set now

Then G is continuously differentiable and 0, 1, 0) = 0.
In order to find (by the Implicit Function Theorem) ~~ = ~? (~), p = 

v = v(a) such that p(cr), t;(r)) = 0, it is sufficient to show that the
mapping

Vol. 3, n° 4-1986.
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is an isomorphism. By (2.12) and (2.4) we have, for ~, ~  ~,

Let us show that $ is one to one: if v) = 0, then

Applying qJo and recalling (1.13) and (2.13) we get

On the other hand, from (1.14) and from the equalities

(which follow from (2.5)) we get

hence (2.14) implies 1 = 0 and then p = 0, v = 0.
Let us prove now that $ is onto : it is sufficient to show that C~(X) is

spanned by Range Fu(o, l, 0) and by the functions

03C81 and are independent : in fact, if c103C81 + = 0, then

and applying qJo we get = 0, so that = 0 and t/12 are
independent. Since 03C81 and 03C82 do not belong to Range Fu(o, 1, 0) and
codim Range Fu(o, 1, 0) = 2 (see (2 .13)), ~ is an isomorphism.
By the Implicit Function Theorem there exist 03C30 ~ ]0,1 [, ro > 0, and

i! : ] - c-o. 60 [ -~ ] - [ --~ ] - [ --~ V such that

if and only if ~~ = 4a), p = ~(r), v = v(6).
For each 6 E ] - 03C30, 03C30 [ set

Then is a solution of (2. 3) for ~, = ~,(~), p = p(6). .

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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It remains to prove uniqueness. Also here we follow [2], choosing
~’ - P;(X), where Pv is defined by

Let i~ E u E C~(D) n verify (2.10) with ao to choose below.
There exist 03C31 and a 2 such that

Choose 8 E [0, 203C0 [ such that u(t + 8) = 03C3etAx0 + v(t + 8) for some 03C3 E R,
and set u(t) = u(t + 8), v(t) = v(t + 8) so that

As easily checked, by (2.18) v E V.

We have now to show that if Eo is sufficiently small, then

where ro is defined in (2.16). Once (2.19) is proved, it follows 2 = 

P = = 

To find such an Eo we first remark that, since

is an isomorphism of (~2 x V onto there exists a constant k > 0
such that

Now. by the equalities

Vol. 3, n° 4-1986.
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and

it follows that there exists k 1 > 0 such that

and then, taking into account (2.20), there exists k2 > 0 such that

Let now Eo  ro be such that

Then we have !! ~ )!v Pv !! ~o? and, from (2.22), ~ c-!  ao. From (2.23)
it follows

and now (? . ?4) implies

and the proof is finished..

Remark. The degenerate case «’(o) = 0 has been treated in [8 ] [9 ]
for semilinear equations in Hilbert space.

EXAMPLE 2.3. - Let us consider the equation

where the function (i, p) -~ ~p(i~~, p) belongs to ] - 1, 1 [ x (~3 ; (J~). We
set

Thus the function ,f’(~, u) = u, u’, u") belongs to ] - 1, 1 [ x D ; X).

Annales de I’Institut Henri Poincuré- Analyse non linéaire
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We assume :

for some k E 7L.

By (2.26) it follows that equation (2.25) is parabolic for ~, and u small.
Using the notations of section 2 we have:

so that the eigenvalues of A(~,) are given by

It can be seen easily that (2 . 26) implies that A = fu(o, 0) satisfies ( 1.1 ).
Moreover, by assumption (2 . 27), A verifies (1. 8) ; finally, the transversality
condition (X’(0) 5~ 0 is satisfied thanks to (2.28). Thus we can apply theo-
rem 2.2..

Vol. 3, n° 4-1986.
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APPENDIX

Proof of lemma 1. l. - Let B : D -~ X, Bx = Ax - and let M o, M 1 > 0 be such
that (see [14 ))

We have, for any s > 0 and t, t + h E [a, b ] :

For s >- (b - cr)~ ?, from (A. 2) it follows

and for s  (b - a)/2, setting in (A. 2) ~ h ~ = s, we find

For each r > 0 we have (see [14]):

and then, from (A. 3) and (A. 4), it follows is bounded independently
of r and t. Recalling that the conclusion follows easily..
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