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Solutions in the large 
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Vol. 2, n° 3, 1985, p. 213 -235. Analyse non linéaire

ABSTRACT. - We prove the global existence of smooth solutions for
certain systems of the form ui = Duxx. Here u and f are vectors
and D is a constant, positive matrix. We assume that the Cauchy data uo
satisfies )) uo - u  r, where u is a fixed vector and f is defined in
an r-ball about u, and that !! uo - u is sufficiently small. We show
how our results apply to the equations of (nonisentropic) gas dynamics,
and we include a result which shows that for the Navier-Stokes equations
of compressible flow, smoothing of initial discontinuities must occur for
the velocity and energy, but cannot occur for the density.

RESUME. - Nous démontrons l’existence globale de solutions régulières
pour certains systèmes de la forme Ut = et.f sont des
vecteurs et D une matrice constante définie positive. Nous supposons que
la donnee initiale uo vérifie ~ uo - u 1100  r est fixé, f défini dans la
boule de centre u et de rayon r, et [ uo - u [ [ 2 est suffisamment petit. Nous
montrons ensuite comment nos résultats s’appliquent aux equations de
la dynamique des gaz (cas non isentropique), et nous prouvons, en parti-
culier, que pour les equations de Navier-Stokes pour les fluides compres-
sibles, la regularisation des discontinuités initiales doit apparaitre pour
la vitesse et l’énergie, mais ne peut pas se produire pour la densité.
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214 D. HOFF AND J. SMOLLER

§ 1 . INTRODUCTION

In this paper we prove the global existence of solutions of certain para-
bolic systems

with initial data

Here u = (ul, ..., Mj, f is a smooth vector function, and D is a constant,
diagonalizable matrix with positive eigenvalues. We assume that f is
defined in a ball of radius r centered at a fixed vector u, and we first obtain
the existence of a local solution when uo - M E with II uo -  r.

These local solutions are then extended globally under the assumption
that there is a suitable entropy-entropy flux pair for (1.1) (to be defined
below), and that uo - u E L2(~) with )[ uo - u sufficiently small.
These existence theorems are presented in section 2.

In section 3 we apply our results to the equations of gas dynamics, that is,
the laws of conservation of mass, momentum, and energy, with diffusion
terms Duxx included as in (1.1). We construct explicity the required entropy-
entropy flux pair for the simplest formulation of these equations, and we
prove a general result which shows how the pair then carries over to equi-
valent formulations. In this way we establish the global existence of smooth
solutions of the gas dynamics equations (with diffusion terms added as
above) in the energy as well as entropy formulation, and in either Lagran-
gean or Eulerian coordinates. A broad class of diffusion matrices D is

allowed, and no assumptions are made about the smoothness of uo .
Finally, in section 4, we present a result concerning the smoothing

of initial discontinuities for the same equations of gas dynamics in which
more realistic diffusion terms are included. Specifically, diffusion is added
to the momentum and energy equations, but not to the mass equation;
(the compressible Navier-Stokes equations are included here). We show
that, for suitable weak solutions of the resulting systems, smoothing of
initial discontinuities must occur for the velocity and energy, but cannot
occur for the density. Thus initial discontinuities in the density must
persist for all time. This result stands in marked contrast to expectations
based upon physical reasoning, which suggests that the effects of viscosity
and heat conduction, together with the coupling in the equations, would
serve to smooth out all initial discontinuities. See for example the remarks
in [3 ], p. 135.

Local solutions of (1.1) can easily be obtained by applying the contrac-
tion mapping principle to an integral representation for solutions of (1.1).
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215SOLUTIONS IN THE LARGE

In order that a local solution may be extended globally, it is necessary
that the values of u remain in a set in which the flux f (u) is defined. Now,
in some cases of interest, there is an invariant region for (1.1) which serves
to control the term f (u). Global existence of solutions can then be obtained
as in [5 ] or [14 ]. (Such results usually require that D be a multiple of the
identity, however.) In the present paper, however, we control the sup-norm
of u by obtaining a priori bounds for ~ u(., and ~ ux( . , t ) which
are independent of time, and then applying a standard Sobolev inequality.
To derive these a priori bounds, we first show that when Uo - U E L2,
there is enough smoothing so that ux( . , t ) E L2(f~) for small t > 0. Then,
by exploiting the existence of an entropy-entropy flux pair, we are able
to avoid a Gronwall-type inequality in the standard energy estimates,
thereby obtaining bounds for ~ u( . , t ) - u~L2(R) and ( ux( . , t ) which
are independent of t for t >- to > 0. This technique seems to have been
applied first by Kanel, [7].
We shall now give a brief survey of the literature. The isentropic gas

dynamics equations with D = kI have been studied by Kanel’ [7], in
the case that uo E C1 and uo has small Hi norm. In [5 ] and [14], these
equations have been studied again with D = kI but the data was only
of class b. v., while in [16 ], D = kI, the data was smooth, but not necessarily
small. In all of these papers, the restriction D = kI was made in order
that invariant regions could be found. The isentropic gas dynamics equa-
tions, with the « physical » viscosity was studied in [8 ] ; here the data was
smooth, with small H 1 norm. In the works [9 ] [10 and [13 ], the full gas
dynamics equations are studied, with the restriction that the data is smooth
and has small HS norm, s > 1. In [6], these equations are considered for
a particular equation of state, and the data is not required to be in L2.

§ 2. GLOBAL EXISTENCE OF SOLUTIONS

In this section we prove our main result, which is the global existence
of solutions for the problem ( 1.1 )-(1. 2) under suitable restrictions on uo,
f, and D. First we derive a local existence result for the case in which D > 0
is diagonal, D = diag (dl, ..., dn), di > 0, 1  i  n :

Let t ) be the fundamental solution associated with the operator
5 ~2

~~ - 
D 

~x2 . 
That is, K(x, t ) is an n-vector whose jth component is
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216 D. HOFF AND J. SMOLLER

The solution of (2.1)-(2.2) then satisfies the representation

where * denotes convolution in space, taken componentwise. We shall
make repeated use of the following bounds for K and its derivatives:

(Of course, C(0) = 1). 
_

We assume that f is defined and is of class C3 in a closed ball Br(u) of
radius r about a point u, and thatf(u) = 0. Finally, we denote by C a generic
positive constant which may depend on K and on the properties of f in

To begin, define the set of functions %T by

and the operator J~f on ~T by

Our local existence result will follow from the properties of =~ given in
the following lemma:

LEMMA 2.1. Assume that u0 - u ~ L~ ~ L2 and 
Then if T > 0 is sufficiently small (depending on s), the following hold:

a) F maps GT into itself.
b) ~f is a contraction in the L°° topology on ~T.
c) There is a constant Co depending only on K and f such that, whenever

satisfies

then also satisfies (2.5).
d ) There is a constant Ci depending only on K and f such that, whenever

u E ~T satisfies

for p = 2 or p = oo, then also satisfies (2 . 6).

Annales de l’Institut Henri Poincaré - Analyse non linéaire



217SOLUTIONS IN THE LARGE

e) Given to E (0, T), there is a constant C2 depending only on K, f, and to,
such that, whenever satisfies (2. 6) and

then 2(u) also satisfies (2. 7).
f ) Given tl E (to, T), there is a constant C3 depending only on K, F, to,

and t 1, such that, whenever satisfies (2.6), (2. 7) and

then 2(u) also satisfies (2.8).

Proof - Without loss of generality, we take u = 0. If u E (2. 3)
and (2.4) show that

rt

IT r 2014 5

provided that  3" - S This proves (a). To prove (b) we let u, v E GT
and compute 

~

rt

c) is proved much like (a) : if u ~ GT satisfies (2 . 5), then from (2 . 3) and (2 . 4),

if Co > 1 and T is small.

Vol. 2, n° 3-1985.



218 D. HOFF AND J. SMOLLER

The prove (d ) we differentiate in (2 . 4) and apply (2 . 3) to obtain

if C 1 is large and T is small.
To prove (e) we let v = 2(u). Then the semigroup property of K implies

that, for t > to _

However, for s > to,

by our hypotheses (2.6) and (2 . 7). Here N = ~ ~ uo ~ ~ 2 + I uo and C

may depend on to. Applying (d) to the term )( vx(to) !b. . we thus obtain
from (2.9) that

if C2 is large and T is small.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



219SOLUTIONS IN THE LARGE

The proof of ( f ) is nearly identical to that of (e) and so will be omitted.
N

We can now obtain the local existence of solutions of (2.1)-(2.2).

THEOREM 2 . 2. ~ Assume that uo - M E n L2 and !! uo - = s  r.

Then there is a unique solution u of (2 .1)-(2 . 2) defined in a strip [0, T ] x f~.
where T depends only on K, f and s. Moreover, ut, ux, and uxx are Holder
continuous in t > to > 0; Ut(t), ux(t), uxx(t), and uxxx(t) are in 
for t > 0 ; and the following bounds hold :

Here Co and Ci are as defined in Lemma 2.1.

Proof - Without loss of generality, we take u = 0. Let u° = 0 and
un = ~f(~" ~). Then by induction the estimates (2.5)-(2.8) hold for each M".
Thus by Lemma 2.1 (a)-(b), un converges to a function u in ~’°°( [o, T] x L~),
for some small time T. We shall apply Lemma 2.1 (c)-( f ) to deduce the
regularity properties of u in a strip (t2, T) x R, where 0  to  t2  T,
and to and t 1 are as in Lemma 2.1. Throughout this proof, C will denote
a positive constant which depends on K, ~; to, and ti .

First, Lemma 2 .1 (e) shows that )]  C for t > t2, so that
the functions ux( . , t ) are uniformly Lipschitz continuous in x. Next if

t  t’  t"  T then 
.

if E = 0(t" - t’)2~3. Here we have used the equation

together with Lemma 2.1 (e)-( f) to bound uxt = Duxxx - in L2.
We have thus shown that the functions { are uniformly Holder conti-
nuous in [t2, T x f~. It then follows from standard results (see [11 ], p. 320)
applied to (2.12) that the functions un and uxx are uniformly Holder conti-
nuous in [t2, T ] x R. Since t2 > 0 is arbitrary, we then have by the Ascoli-

Vol. 2, n° 3-1985.



220 D. HOFF AND J. SMOLLER

Arzela theorem that ut and uXx converge uniformly on compact sets in
(0,T] x ~ to ut and uxx, which are therefore also Holder continuous.
The bounds (2.10) and (2.11) then follow directly from Lemma 2.1.
Finally, since the are uniformly bounded in for fixed t > 0,
they converge weakly in L2{~) : --~ v(t) E L2((~). But v(t) must
coincide with the distribution derivative which is therefore in L2((~).
It then follows from the equation ut = DUxx - f(u)x that E LZ((~).

N
In order to extend these solutions globally, that is, to all of t > 0, we

shall make use of so-called entropy-entropy flux pairs; these are defined
as follows.

DEFINITION 2.3. - The functions a, ~3: Br(u) -~ f~ are said to be an
entropy-entropy flux pair for f in Blu) if the relation

holds in Br(u). The entropy a will always be assumed to satisfy

for some positive constant 6. Finally, a is said to be consistent with the
diagonal matrix D if there is an ~ > 0 such that

for all and 
The existence of such a pair (a, f3) will enable us to derive certain a priori

bounds for solutions of (2 . .1). These bounds will be crucial for extending
our local solutions to global ones.

LEMMA 2.4. - Assume that there is an entropy-entropy flux pair as
described in Def. 2. 3, satisfying (2.13), (2.14), and (2.15). Then there are
positive constants C4 and Cs such that, whenever u is a smooth solution
of (2.1) in (to, ti) x IF~ (in the sense that u(t ) - u, and uxx(t ) are conti-
nuous and in L 2(lR) for t > 0, and u(t) - u(to) --~ 0 in as t ~, to), then

If in addition, and are in L2((~) for t > to, then

provided that ux(to) E L 2(lR).
Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



221SOLUTIONS IN THE LARGE

Proof Since (2.1) holds for t1)’ we may multiply 2.1 on the
left by ~03B1t and use (2.13) and (2.15) to obtain

Integrating over we find

so that

This together with (2.14) gives (2.16).
To prove (2.17), we differentiate (2.1), multiply by tux, and integrate

over [to, t ] x R. The result is

where d = min di. However

so that

This together with (2.19) yields (2.17). ®
We can now state our global existence result.

THEOREM 2.5. - Assume that there is an entropy-entropy flux pair
as described in Def. 2.3, satisfying (2.13), (2.14), and (2.15). Let
uo - n L2 with !! uo - u ~ ~ ~ = s  r, and let Co - Cs and T be
as defined in Lemmas 2.1 and 2.4. Then the problem (2.1)-(2.2) has a
global solution provided that

Here Cs = max (Cs , 1).

Vol. 2, n° 3-1985.



222 D. HOFF AND J. SMOLLER

P~oo, f. Again we may take u = 0. Let

Our hypothesis is then that

By Theorem 2.2 there is a solution u defined up to time T, and from
Lemma 2 .1 (a) and (d ), together with (2.16), we see that u satisfies

and

Now suppose that u has been defined up to time kT for some 
and that -

so that, by Theorem 2.1, u can be extended up to time (k + 1)T with
I I u(t ) ~ ~ ~ _ r and u(t) E L2(f~) for t  (k + 1)T. But then Lemma 2.4

applies to show that

and

by (2.19). Thus (2.20), (2.21), and (2.22) hold up to time (k + 1)T. Pro-
ceeding inductively, we thus establish the existence of the solution u in all
of t > O. II

Finally, we can dispense with the requirement that D be a diagonal
matrix by making a simple change of variable.

COROLLARY 2.6. - Assume that there is an entropy-entropy flux

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



223SOLUTIONS IN THE LARGE

pair (a, 03B2) for f in Br(u) satisfying (2.13) and (2.14). Let D be a diagona-
lizable matrix with positive eigenvalues, say

Suppose that for each u E 

Then the problem ( 1.1 )-( 1. 2) has a global solution provided that the
data Uo - u has suitably restricted L2 and L°° norms; i. e., P-1(uo - u)
satisfies the hypotheses of the last theorem.

Remark. When D is symmetric, we may take P to be an orthogonal
matrix, and the condition (2.23) simplifies to the requirement that Dcx"
be positive throughout 

Proof of Corollary 2. 6. Let v = P- lu. Then v satisfies

where g(v) = P-1 f (Pv). An easy computation shows that A(v) = a(Pv)
and B(v) = satisfy (2.13) and (2.14) for g, and

is positive by assumption. The corollary now follows from Theorem 2.4.
N

§ 3. APPLICATIONS TO THE EQUATIONS
OF GAS DYNAMICS

In this section we apply the global existence result, Corollary 2.6,
to the equations of one-dimensional gas dynamics. We refer the reader
to [3 ] for a complete description and derivation of these equations.

First consider the equations of isentropic gas dynamics in Lagrangean
coordinates :

Here v, u, and p are scalars which represent, respectively, the specific
volume (== 1/density), velocity, and pressure. We assume that p is defined
in { v > 0 } and that p’(v)  0. Now, in the simplest case that the diffusion

Vol. 2, n° 3-1985.



224 D. HOFF AND J. SMOLLER

matrix D is a multiple of the identity, there is an invariant region in v - u
space (see [2 ] or [4 ]), which serves to control the nonlinear function p(v).
Global existence of solutions then follows from the results of Nishida-
Smoller [14 ] and Hoff-Smoller [5 ]. For more general D we shall construct
an entropy-entropy flux pair and appeal to Corollary 2 . 6. To this end, define

and

where v > 0. We now check that the requirements of Def. 2.3 are satisfied.
First

r 2014,

and (2.14) is thus satisfied in compact sets in { v > 0 }. Finally, we work
a b

out the compatibility condition (2.15) for the special case that D = b c

is symmetric. By the remark after Corollary 2 . 6, the requirement is that the
matrix

be positive throughout Br(v, u). One easily checks that this condition is
satisfied if and only if

The application of Corollary 2. 6 to this problem may then be formulated
as follows : Assume that v > v - r > 0 and that the symmetric matrix D
satisfies (3 . 2). Then the system {3 .1 ) with initial data (vo, uo) has a global
smooth solution provided that (vo(x), uo(x)) E ~c) for some s  r, and

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



225SOLUTIONS IN THE LARGE

that the of (vo - v, uo - uj is suitably restricted (in the sense of
Corollary 2 . 6).

observe that (3.2) is satisfied when D is any positive diagonal matrix.
In addition, since (2 .15) is an open condition in D, the above global existence
result remains valid when the matrix D is sufficiently close to a sym-
metric matrix satisfying (3.2). Finally, we note that in the important case
p(v) = v-Y(y > 1), condition (3.2) forces D to be nearly diagonal when
Br(v, u) includes states of either very high or very low density.

Next we turn to the equations of nonisentropic gas dynamics. It is well-
known that these equations can be formulated in a number of ways, all
of which are essentially equivalent for the application of Corollary 2.6.
We shall therefore construct the entropy-entropy flux pair for the formu-
lation in which the computations are simplest, and then prove a general
result which shows how the entropy-entropy flux pair carries over for
the equivalent systems.
Thus consider first the entropy formulation of these equations in Lagran-

gean coordinates, and assume for simplicity that D is a diagonal matrix:

Here v, u, and p are the same as in (3 .1), and S is the specific entropy. We
assume that p is defined for v > 0 and all S, and that pv  0. Now define

and

We shall show that, when the constant K is sufficiently large, the require-
ments (2.13), (2.14), and (2.15) of Def. 2 . 3 are satisfied in a ball u, S)
(where, as before, v > v - r > 0). First, if p = S),

so that (2.13) is satisfied. To establish (2.14), we first expand the term

Vol. 2, n° 3-1985.
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about (v, S). Since g, gu, and gs vanish at (v, S), we have that

Thus for K sufficiently large,

as required. (The other inequality in (2.14) is trivial.) Last, we check that D
is compatible with a. We have that

dl o
which is positive definite if 

~ ~3_ 
A is positive definite, where

However, since - pv > 0 and ps and p~s are bounded in u, S), it is

easy to see that [d1 0 0 d3] A is p ositive definite when K is sufficiently large.
Therefore every positive diagonal matrix is compatible with a. We have
now checked that the requirements of Def. 2. 3 are satisfied, so that Corol-
lary 2. 6 applies. We state our conclusion formally as follows : Assume
that v > v - r > 0 and that D is a positive diagonal matrix. Then the
system (3 . 3) with initial data (vo, uo, So) has a global smooth solution provided
that {vo(x), uo(x), So(x)) E u, S) a. e. for some s  r, and that the L2-norm

of (vo - v, uo - ~c, So - S) is suitably restricted (in the sense of Corollary 2 . 6).
Again, since (2.15) is an open condition in D, the same global existence
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result holds when D is sufficiently close to a positive diagonal matrix.
(We emphasize, however, that we took D to be diagonal, or nearly diagonal,
only as a matter of convenience. Certainly the compatibility condition (2.15)
is satisfied by a much broader class of diffusion matrices.)

Next, we consider the alternative formulations of the laws of conservation
of mass, momentum, and energy. These systems, without diffusion, are
the following :

In these systems, v, u, p, and S are the same as in (3 . 3), p = 1/v is the den-
sity, and E = e + u2/2 is the total energy, where e is the internal energy.
These systems become closed when taken together with a fundamental
relation, which gives e in terms of v and S, or S in terms of v and e. The
pressure p is then defined by

We can then formally derive the third equation (3. 5) from (3.4) and the
definition of E as follows :

Systems (3.6) and (3.7) are derived formally from (3.4) and (3.5) by
making the change of dependent variable p = 1/v and a particular change
of independent variables (x, t ) -~ (~, t ). Here the Eulerian coordinates ç
and i denote real space and time, and are related to the Lagrangean coor-
dinates x and t by e~__ w B
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