Journals
Seminars
Books
Lecture notes
Theses
Authors
OFF
Journals
Seminars
Books
Lecture notes
Theses
Authors
All
All
Author
Title
References
Keywords
Full text
Search
NOT
Between
and
Author
All
Author
Title
Date
References
Keywords
Full text
Annales de l'I.H.P. Probabilités et statistiques
Volume 51 (2015)
no. 2
Table of contents
Percolations on random maps I: Half-plane models
Angel, Omer
;
Curien, Nicolas
p. 405-431
Scaling limit of random planar quadrangulations with a boundary
Bettinelli, Jérémie
p. 432-477
The cut-tree of large recursive trees
Bertoin, Jean
p. 478-488
Limit theorems for conditioned non-generic Galton–Watson trees
Kortchemski, Igor
p. 489-511
Scaling limits of Markov branching trees and Galton–Watson trees conditioned on the number of vertices with out-degree in a given set
Rizzolo, Douglas
p. 512-532
A class of special subordinators with nested ranges
Marchal, P.
p. 533-544
Weak convergence to stable Lévy processes for nonuniformly hyperbolic dynamical systems
Melbourne, Ian
;
Zweimüller, Roland
p. 545-556
An ergodic theorem for the extremal process of branching brownian motion
Arguin, Louis-Pierre
;
Bovier, Anton
;
Kistler, Nicola
p. 557-569
The spatial Lambda-Fleming–Viot process: An event-based construction and a lookdown representation
Véber, A.
;
Wakolbinger, A.
p. 570-598
A generalised Gangolli–Lévy–Khintchine formula for infinitely divisible measures and Lévy processes on semi-simple Lie groups and symmetric spaces
Applebaum, David
;
Dooley, Anthony
p. 599-619
On fluctuations of eigenvalues of random permutation matrices
Ben Arous, Gérard
;
Dang, Kim
p. 620-647
Fourier coefficients of invariant random fields on homogeneous spaces of compact Lie groups
Baldi, P.
;
Trapani, S.
p. 648-671
On the rate of convergence for critical crossing probabilities
Binder, I.
;
Chayes, L.
;
Lei, H. K.
p. 672-715
Asymptotic direction of random walks in Dirichlet environment
Tournier, Laurent
p. 716-726
Random walks on discrete point processes
Berger, Noam
;
Rosenthal, Ron
p. 727-755
Phase transition for the vacant set left by random walk on the giant component of a random graph
Wassmer, Tobias
p. 756-780
Parametric first-order Edgeworth expansion for Markov additive functionals. Application to
M
-estimations
Ferré, D.
p. 781-808