Limits of determinantal processes near a tacnode
Annales de l'I.H.P. Probabilités et statistiques, Volume 47 (2011) no. 1, p. 243-258

We study a Markov process on a system of interlacing particles. At large times the particles fill a domain that depends on a parameter ε > 0. The domain has two cusps, one pointing up and one pointing down. In the limit ε ↓ 0 the cusps touch, thus forming a tacnode. The main result of the paper is a derivation of the local correlation kernel around the tacnode in the transition regime ε ↓ 0. We also prove that the local process interpolates between the Pearcey process and the GUE minor process.

Nous étudions un processus de Markov sur un système de particules entrelacées. Lorsque le temps t est grand, les particules remplissent un domaine dépendant d'un paramètre ε > 0. Ce domaine possède deux points de rebroussement, dont l'un pointe vers le haut et l'autre vers le bas. À la limite ε ↓ 0, les deux points de rebroussement sont tangents, formant ainsi un tacnode. Le résultat principal de cet article est un calcul du noyau de corrélation locale autour du point tacnodal pendant le régime de transition ε ↓ 0. Nous démontrons aussi que le processus local interpole entre le processus de Pearcey et le processus des mineurs du GUE.

DOI : https://doi.org/10.1214/10-AIHP373
Classification:  82C22,  60K35,  60G55
Keywords: determinantal point processes, random growth, GUE minor process, pearcey process
@article{AIHPB_2011__47_1_243_0,
     author = {Borodin, Alexei and Duits, Maurice},
     title = {Limits of determinantal processes near a tacnode},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {47},
     number = {1},
     year = {2011},
     pages = {243-258},
     doi = {10.1214/10-AIHP373},
     zbl = {1208.82039},
     mrnumber = {2779404},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2011__47_1_243_0}
}
Borodin, Alexei; Duits, Maurice. Limits of determinantal processes near a tacnode. Annales de l'I.H.P. Probabilités et statistiques, Volume 47 (2011) no. 1, pp. 243-258. doi : 10.1214/10-AIHP373. http://www.numdam.org/item/AIHPB_2011__47_1_243_0/

[1] M. Adler, P. Ferrari and P. V. Moerbeke. Airy processes with wanderers and new universality classes. Available at arXiv:0811.1863. | Zbl 1200.60069

[2] A. Aptekarev, P. Bleher and A. Kuijlaars. Large n limit of Gaussian random matrices with external source, part II. Comm. Math. Phys. 259 (2005) 367-389. | MR 2172687 | Zbl 1129.82014

[3] A. Borodin. Periodic Schur process and cylindric partitions. Duke Math. J. 10 (2007) 1119-1178. | MR 2362241 | Zbl 1131.22003

[4] A. Borodin. Determinantal point processes. Available at arXiv:0911.1153. | Zbl 1238.60055

[5] A. Borodin and P. Ferrari. Anisotropic growth of random surfaces in 2+1 dimensions. Available at arXiv:0804.3035. | Zbl 1303.82015

[6] A. Borodin and G. Olshanski. Asymptotics of Plancherel-type random partitions. J. Algebra 313 (2007) 40-60. | MR 2326137 | Zbl 1117.60051

[7] A. Borodin, G. Olshanski and A. Okounkov. Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13 (2000) 481-515. | MR 1758751 | Zbl 0938.05061

[8] E. Brezin and S. Hikami. Universal singularity at the closure of a gap in a random matrix theory. Phys. Rev. E (3) 57 (1998) 7176-7185. | MR 1618958

[9] E. Brezin and S. Hikami. Level spacing of random matrices in an external source. Phys. Rev. E (3) 58 (1998) 4140-4149. | MR 1662382

[10] P. Ferrari. The universal Airy1 and Airy2 processes in the totally asymmetric simple exclusion process. In Integrable Systems and Random Matrices 321-332. Contemp. Math. 458. Amer. Math. Soc., Providence, RI, 2008. | MR 2411915 | Zbl 1145.82332

[11] J. B. Hough, M. Krishnapur, Y. Peres and B. Virág. Determinantal processes and independence. Probab. Surv. 3 (2006) 206-229. | MR 2216966 | Zbl 1189.60101

[12] K. Johansson. Random matrices and determinantal processes. Available at arXiv:math-ph/0510038. | MR 2581882

[13] K. Johansson and E. Nordenstam. Eigenvalues of GUE minors. Electron. J. Probab. 11 (2006) 1342-1371. | MR 2268547 | Zbl 1127.60047

[14] W. König. Orthogonal polynomial ensembles in probability theory. Probab. Surv. 2 (2005) 385-447. | MR 2203677 | Zbl 1189.60024

[15] R. Lyons. Determinantal probability measures. Publ. Math. Inst. Hautes Etudes Sci. 98 (2003) 167-212. | Numdam | MR 2031202 | Zbl 1055.60003

[16] A. Okounkov. Symmetric functions and random partitions. In Symmetric Functions 2001: Surveys of Developments and Perspectives 223-252. NATO Sci. Ser. II Math. Phys. Chem. 74. Kluwer Academic, Dordrecht, 2002. | MR 2059364 | Zbl 1017.05103

[17] A. Okounkov and N. Reshetikhin. The birth of a random matrix. Moscow Math. J. 6 (2006) 553-566. | MR 2274865 | Zbl 1130.15014

[18] A. Okounkov and N. Reshetikhin. Random skew plane partitions and the Pearcey process. Comm. Math. Phys. 269 (2007) 571-609. | MR 2276355 | Zbl 1115.60011

[19] M. Prähofer and H. Spohn. Scale invariance of the PNG Droplet and the Airy Process. J. Stat. Phys. 108 (2002) 1071-1106. | MR 1933446 | Zbl 1025.82010

[20] A. Soshnikov. Determinantal random point fields. Uspekhi Mat. Nauk 55 (2000) 107-160; translation in: Russian Math. Surveys 55 (2000) 923-975. | MR 1799012 | Zbl 0991.60038

[21] A. Soshnikov. Determinantal random point fields. In Encyclopedia of Mathematical Physics 2 47-53. J. P. Françoise, G. L. Naber and T. S. Tsun (Eds.). Elsevier, Oxford, 2006. | Zbl 0991.60038

[22] C. Tracy and H. Widom. The Pearcey process. Comm. Math. Phys 263 (2006) 381-400. | MR 2207649 | Zbl 1129.82031