Couplings, attractiveness and hydrodynamics for conservative particle systems
Annales de l'I.H.P. Probabilités et statistiques, Volume 46 (2010) no. 4, p. 1132-1177

Attractiveness is a fundamental tool to study interacting particle systems and the basic coupling construction is a usual route to prove this property, as for instance in simple exclusion. The derived markovian coupled process (ξt, ζt)t≥0 satisfies: (A) if ξ0≤ζ0 (coordinate-wise), then for all t≥0, ξtζt a.s. In this paper, we consider generalized misanthrope models which are conservative particle systems on ℤd such that, in each transition, k particles may jump from a site x to another site y, with k≥1. These models include simple exclusion for which k=1, but, beyond that value, the basic coupling construction is not possible and a more refined one is required. We give necessary and sufficient conditions on the rates to insure attractiveness; we construct a markovian coupled process which both satisfies (A) and makes discrepancies between its two marginals non-increasing. We determine the extremal invariant and translation invariant probability measures under general irreducibility conditions. We apply our results to examples including a two-species asymmetric exclusion process with charge conservation (for which k≤2) which arises from a solid-on-solid interface dynamics, and a stick process (for which k is unbounded) in correspondence with a generalized discrete Hammersley-Aldous-Diaconis model. We derive the hydrodynamic limit of these two one-dimensional models.

L'attractivité est un outil fondamental d'étude des systèmes à une infinité de particules en interaction; la construction du couplage de base est la méthode habituelle pour démontrer cette propriété (par exemple pour l'exclusion simple). Le processus couplé markovien (ξt, ζt)t≥0 obtenu vérifie: (A) si ξ0≤ζ0 (coordonnée par coordonnée), alors pour tout t≥0, ξtζt p.s. Nous considérons dans cet article des systèmes de particules conservatifs sur ℤd qui généralisent le processus des misanthropes en ce que, à chaque transition, k particules peuvent sauter d'un site x vers un autre site y, avec k≥1. Ces modèles incluent l'exclusion simple, où k=1, mais, au-delà de cette valeur, le couplage de base n'est plus valide et il faut une autre construction. Nous obtenons des conditions nécessaires et suffisantes pour l'attractivité sur les taux de transition; nous construisons un processus couplé markovien qui à la fois satisfait (A), et fait décroitre les discrépances entre ses deux marginales. Nous déterminons les probabilités invariantes et invariantes par translation extrémales sous des conditions générales d'irréductibilité. Nous appliquons nos résultats à des exemples incluant un modèle d'exclusion asymétrique à deux espèces avec conservation de la charge (où k≤2) issu d'une dynamique d'interfaces ‘solid-on-solid', et un modèle de batons (où k n'est pas borné) en correspondance avec un processus de Hammersley-Aldous-Diaconis discret généralisé. Nous obtenons la limite hydrodynamique de ces deux modèles unidimensionnels.

DOI : https://doi.org/10.1214/09-AIHP347
Classification:  60K35,  82C22
Keywords: conservative particle systems, attractiveness, couplings, discrepancies, macroscopic stability, hydrodynamic limit, misanthrope process, discrete Hammersley-Aldous-Diaconis process, Stick process, solid-on-solid interface dynamics, two-species exclusion model
@article{AIHPB_2010__46_4_1132_0,
     author = {Gobron, Thierry and Saada, Ellen},
     title = {Couplings, attractiveness and hydrodynamics for conservative particle systems},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {46},
     number = {4},
     year = {2010},
     pages = {1132-1177},
     doi = {10.1214/09-AIHP347},
     zbl = {1252.60093},
     mrnumber = {2744889},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2010__46_4_1132_0}
}
Gobron, Thierry; Saada, Ellen. Couplings, attractiveness and hydrodynamics for conservative particle systems. Annales de l'I.H.P. Probabilités et statistiques, Volume 46 (2010) no. 4, pp. 1132-1177. doi : 10.1214/09-AIHP347. http://www.numdam.org/item/AIHPB_2010__46_4_1132_0/

[1] E. D. Andjel. Invariant measures for the zero range process. Ann. Probab. 10 (1982) 525-547. | MR 659526 | Zbl 0492.60096

[2] C. Bahadoran, H. Guiol, K. Ravishankar and E. Saada. A constructive approach to Euler hydrodynamics for attractive processes. Application to k-step exclusion. Stochastic Process. Appl. 99 (2002) 1-30. | MR 1894249 | Zbl 1058.60084

[3] C. Bahadoran, H. Guiol, K. Ravishankar and E. Saada. Euler hydrodynamics of one-dimensional attractive particle systems. Ann. Probab. 34 (2006) 1339-1369. | MR 2257649 | Zbl 1101.60075

[4] C. Bahadoran, H. Guiol, K. Ravishankar and E. Saada. Strong hydrodynamic limit for attractive particle systems on ℤ. Electron. J. Probab. 15 (2010) 1-43. | MR 2578381 | Zbl 1193.60113

[5] M. Balázs. Growth fluctuations in a class of deposition models. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003) 639-685. | Numdam | MR 1983174 | Zbl 1029.60075

[6] M. Balázs, F. Rassoul-Agha, T. Seppäläinen and S. Sethuraman. Existence of the zero range process and a deposition model with superlinear growth rates. Ann. Probab. 35 (2007) 1201-1249. | MR 2330972 | Zbl 1138.60340

[7] M. Bramson and T. Mountford. Stationary blocking measures for one-dimensional nonzero mean exclusion processes. Ann. Probab. 30 (2002) 1082-1130. | MR 1920102 | Zbl 1042.60062

[8] C. Cocozza-Thivent. Processus des misanthropes. Z. Wahrsch. Verv. Gebiete 70 (1985) 509-523. | MR 807334 | Zbl 0554.60097

[9] P. Collet, F. Dunlop, D. Foster and T. Gobron. Product measures and dynamics for solid-on-solid interfaces. J. Stat. Phys. 89 (1997) 509-536. | MR 1484053 | Zbl 0939.82035

[10] P. A. Ferrari and J. B. Martin. Multi-class processes, dual points and M/M/1 queues. Markov Process. Related Fields 12 (2006) 175-201. | MR 2249628 | Zbl 1155.60043

[11] J. Fritz and K. Nagy. On uniqueness of the Euler limit of one-component lattice gas models. Alea 1 (2006) 367-392. | MR 2285732 | Zbl 1126.60084

[12] J. Fritz and B. Tóth. Derivation of the Leroux system as the hydrodynamic limit of a two-component lattice gas. Comm. Math. Phys. 249 (2004) 1-27. | MR 2077251 | Zbl 1126.82015

[13] B. M. Kirstein. Monotonicity and comparability of time-homogeneous Markov processes with discrete state space. Math. Oper. Stat. 7 (1976) 151-168. | MR 426184 | Zbl 0332.60051

[14] T. Kamae and U. Krengel. Stochastic partial ordering. Ann. Probab. 6 (1978) 1044-1049. | MR 512419 | Zbl 0392.60012

[15] T. Kamae, U. Krengel and G. L. O'Brien. Stochastic inequalities on partially ordered spaces. Ann. Probab. 5 (1977) 899-912. | MR 494447 | Zbl 0371.60013

[16] C. Kipnis and C. Landim. Scaling Limits for Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 320. Springer, Berlin, 1999. | MR 1707314 | Zbl 0927.60002

[17] T. M. Liggett. Coupling the simple exclusion process. Ann. Probab. 4 (1976) 339-356. | MR 418291 | Zbl 0339.60091

[18] T. M. Liggett. Interacting Particle Systems. Springer, New York, 2005. | MR 2108619 | Zbl 1103.82016

[19] A. W. Massey. Stochastic orderings for Markov processes on partially ordered spaces. Math. Oper. Res. 12 (1987) 350-367. | MR 888982 | Zbl 0622.60098

[20] T. Seppäläinen. A microscopic model for the Burgers equation and longest increasing subsequences. Electron. J. Probab. 1 (1996), approx. 51 pp. (electronic). | MR 1386297 | Zbl 0891.60093

[21] D. Stoyan. Comparison Methods for Queues and Other Stochastic Models. Wiley, New York, 1983. | MR 754339 | Zbl 0536.60085

[22] F. Tabatabaei and G. M. Schütz. Shocks in the asymmetric simple exclusion process with internal degree of freedom. Phys. Rev. E 74 (2006) 051108. | MR 2293722

[23] F. Tabatabaei and G. M. Schütz. Nonequilibrium field-induced phase separation in single-file diffusion. Diffusion Fundamentals 4 (2006) 5.1-5.38.

[24] S. R. S. Varadhan. Lectures on hydrodynamic scaling. In Hydrodynamic Limits and Related Topics (Toronto, ON, 1998). Fields Inst. Commun. 27 3-40. Amer. Math. Soc., Providence, RI, 2000. | MR 1798641 | Zbl 1060.82514