Regularity of formation of dust in self-similar fragmentations
Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 4, p. 411-438
@article{AIHPB_2004__40_4_411_0,
     author = {Haas, B\'en\'edicte},
     title = {Regularity of formation of dust in self-similar fragmentations},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Elsevier},
     volume = {40},
     number = {4},
     year = {2004},
     pages = {411-438},
     doi = {10.1016/j.anihpb.2003.11.002},
     zbl = {1041.60058},
     mrnumber = {2070333},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2004__40_4_411_0}
}
Haas, Bénédicte. Regularity of formation of dust in self-similar fragmentations. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 4, pp. 411-438. doi : 10.1016/j.anihpb.2003.11.002. http://www.numdam.org/item/AIHPB_2004__40_4_411_0/

[1] D.J Aldous, Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists, Bernoulli 5 (1999) 3-48. | MR 1673235 | Zbl 0930.60096

[2] E Artin, The Gamma Function, Holt, Rinehart, and Winston, New York, 1964. | MR 165148 | Zbl 0144.06802

[3] J Berestycki, Ranked fragmentations, ESAIM P&S 6 (2002) 157-176. | Numdam | MR 1943145 | Zbl 1001.60078

[4] J Bertoin, Subordinators: Examples and applications, in: Bernard P (Ed.), Lectures on Probability Theory and Statistics, Ecole d'été de probabilités de St-Flour XXVII, Lect. Notes in Maths., vol. 1717, Springer, Berlin, 1999, pp. 1-91. | MR 1746300 | Zbl 0955.60046

[5] J Bertoin, Homogeneous fragmentation processes, Probab. Theory Related Fields 121 (3) (2001) 301-318. | MR 1867425 | Zbl 0992.60076

[6] J Bertoin, Self-similar fragmentations, Ann. Inst. Henri Poincaré 38 (2002) 319-340. | Numdam | MR 1899456 | Zbl 1002.60072

[7] J Bertoin, The asymptotic behavior of fragmentation processes, J. Eur. Math. Soc. 5 (2003) 395-416. | MR 2017852 | Zbl 1042.60042

[8] J Bertoin, On small masses in self-similar fragmentations, Stochastic Process. Applic. 109 (2004) 13-22. | MR 2024841 | Zbl 1075.60092

[9] J Bertoin, M Yor, On subordinators, self-similar Markov processes and factorization of the exponential variable, Elect. Comm. Probab. 6 (10) (2001) 95-106. | MR 1871698 | Zbl 1024.60030

[10] Beysens D, Campi X, Pefferkorn E (Eds.), Proceedings of the Workshop: Fragmentation Phenomena, Les Houches Series, World Scientific, 1995.

[11] N.H Bingham, C.M Goldie, J.L Teugels, Regular Variation, Cambridge University Press, 1987. | MR 898871 | Zbl 0617.26001

[12] S Bochner, K Chandrasekharan, Fourier Transforms, Princeton University Press, 1949. | MR 31582 | Zbl 0065.34101

[13] P Carmona, F Petit, M Yor, On the distribution and asymptotic results for exponential functionals of Lévy processes, in: Yor M (Ed.), Exponential Functionals and Principal Values Related to Brownian Motion, Biblioteca de la Revista Matematica IberoAmericana, 1997, pp. 73-121. | MR 1648657 | Zbl 0905.60056

[14] K Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1986. | MR 867284 | Zbl 0587.28004

[15] A.F Filippov, On the distribution of the sizes of particles which undergo splitting, Theory Probab. Appl. 6 (1961) 275-294. | Zbl 0242.60050

[16] N Fournier, J.S Giet, On small particles in coagulation-fragmentation equations, J. Statist. Phys. 111 (5) (2003) 1299-1329. | MR 1975930 | Zbl 1018.60061

[17] B Haas, Loss of mass in deterministic and random fragmentations, Stochastic Process. Appl. 106 (2) (2003) 245-277. | MR 1989629 | Zbl 1075.60553

[18] B. Haas, G. Miermont, The genealogy of self-similar fragmentations with negative index as a continuum random tree, Electron. J. Probab., submitted for publication. | MR 2041829 | Zbl 1064.60076

[19] I Jeon, Stochastic fragmentation and some sufficient conditions for shattering transitions, J. Korean Math. Soc. 39 (4) (2002) 543-558. | MR 1898911 | Zbl 1002.60097

[20] J.F.C Kingman, The coalescent, Stochastic Process. Appl. 13 (1982) 235-248. | MR 671034 | Zbl 0491.60076

[21] G Miermont, Self-similar fragmentations derived from the stable tree I: splitting at heights, Probab. Theory Related Fields 127 (2003) 423-454. | MR 2018924 | Zbl 1042.60043

[22] D Revuz, M Yor, Continuous Martingales and Brownian Motion, Springer, 1998. | Zbl 0731.60002

[23] K.-I Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999. | MR 1739520 | Zbl 0973.60001

[24] E.M Stein, Singular Integrals and Differentiability Properties of Functionals, Princeton University Press, 1970. | MR 290095 | Zbl 0207.13501