Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn-Hilliard equation
Annales de l'I.H.P. Probabilités et statistiques, Volume 40 (2004) no. 1, p. 73-88
@article{AIHPB_2004__40_1_73_0,
     author = {Da Prato, Giuseppe and Debussche, Arnaud and Tubaro, Luciano},
     title = {Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn-Hilliard equation},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Elsevier},
     volume = {40},
     number = {1},
     year = {2004},
     pages = {73-88},
     doi = {10.1016/j.anihpb.2003.06.003},
     zbl = {1038.60055},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2004__40_1_73_0}
}
Da Prato, Giuseppe; Debussche, Arnaud; Tubaro, Luciano. Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn-Hilliard equation. Annales de l'I.H.P. Probabilités et statistiques, Volume 40 (2004) no. 1, pp. 73-88. doi : 10.1016/j.anihpb.2003.06.003. http://www.numdam.org/item/AIHPB_2004__40_1_73_0/

[1] S. Albeverio, R. Høegh-Krohn, Dirichlet forms and diffusion processes on rigged Hilbert spaces, Z. Wahrsch. Geb. 40 (1977) 1-57. | MR 455133 | Zbl 0342.60057

[2] S. Albeverio, V. Kondratiev, M. Röckner, Dirichlet operators via stochastic analysis, J. Funct. Anal. 128 (1) (1995) 102-138. | MR 1317712 | Zbl 0820.60042

[3] D. Bakry, L'hypercontractivité et son utilisation en théorie des semi-groupes, Lectures on Probability Theory, Lecture Notes in Math., vol. 1581, Springer, 1994. | MR 1307413 | Zbl 0856.47026

[4] D. Blömker, S. Majer-Paape, T. Wanner, Spinodal decomposition for the Cahn-Hilliard-Cook equation, Comm. Math. Phys. 223 (2001) 553-582. | Zbl 0993.60061

[5] A. Chojnowska-Michalik, B. Goldys, On regularity properties of nonsymmetric Ornstein-Uhlenbeck semigroup in Lp spaces, Stoch. Stoch. Reports 59 (1996) 183-209. | Zbl 0876.60039

[6] C. Cardon-Weber, Cahn-Hilliard stochastic equations: strict positivity of the density, Stochastic and Stochastic Reports 72 (2002) 191-277. | Zbl 1002.60050

[7] G. Da Prato, A. Debussche, Stochastic Cahn-Hilliard equation, Nonlinear Anal. 26 (2) (1996) 241-263. | Zbl 0838.60056

[8] G. Da Prato, A. Debussche, B. Goldys, Some properties of invariant measures of nonsymmetric dissipative stochastic systems, Probab. Theory Related Fields 123 (3) (2002) 355-380. | MR 1918538 | Zbl 1087.60049

[9] G. Da Prato, L. Tubaro, Some results about dissipativity of Kolmogorov operators, Czechoslovak Math. J. 51 (4) (2001) 685-699. | MR 1864036 | Zbl 0996.47028

[10] G. Da Prato, L. Tubaro, On a class of gradient systems with irregular potentials, in: Infinite Dimensional Analysis, Quantum Probability and Related Topics, vol. 4, 2001, pp. 183-194. | MR 1841617 | Zbl 1055.60064

[11] G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Notes, vol. 229, Cambridge University Press, 1996. | MR 1417491 | Zbl 0849.60052

[12] G. Da Prato, J. Zabczyk, Second Order Partial Differential Equations in Hilbert Spaces, London Mathematical Society Lecture Notes, vol. 293, Cambridge University Press, 2002. | MR 1985790 | Zbl 1012.35001

[13] A. Eberle, Uniqueness and Non-Uniqueness of Singular Diffusion Operators, Lecture Notes in Mathematics, vol. 1718, Springer-Verlag, 1999. | MR 1734956 | Zbl 0957.60002

[14] V. Liskevich, M. Röckner, Strong uniqueness for a class of infinite dimensional Dirichlet operators and application to stochastic quantization, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27 (1999) 69-91. | Numdam | MR 1658889 | Zbl 0953.60056

[15] G. Lumer, R.S. Phillips, Dissipative operators in a Banach space, Pacific J. Math. 11 (1961) 679-698. | MR 132403 | Zbl 0101.09503