@article{AIHPB_2003__39_3_385_0,
author = {Liverani, Carlangelo and Maume-Deschamps, V\'eronique},
title = {Lasota-Yorke maps with holes : conditionally invariant probability measures and invariant probability measures on the survivor set},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {385--412},
year = {2003},
publisher = {Elsevier},
volume = {39},
number = {3},
doi = {10.1016/S0246-0203(02)00005-5},
zbl = {1021.37002},
language = {en},
url = {https://www.numdam.org/articles/10.1016/S0246-0203(02)00005-5/}
}
TY - JOUR AU - Liverani, Carlangelo AU - Maume-Deschamps, Véronique TI - Lasota-Yorke maps with holes : conditionally invariant probability measures and invariant probability measures on the survivor set JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2003 SP - 385 EP - 412 VL - 39 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S0246-0203(02)00005-5/ DO - 10.1016/S0246-0203(02)00005-5 LA - en ID - AIHPB_2003__39_3_385_0 ER -
%0 Journal Article %A Liverani, Carlangelo %A Maume-Deschamps, Véronique %T Lasota-Yorke maps with holes : conditionally invariant probability measures and invariant probability measures on the survivor set %J Annales de l'I.H.P. Probabilités et statistiques %D 2003 %P 385-412 %V 39 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/S0246-0203(02)00005-5/ %R 10.1016/S0246-0203(02)00005-5 %G en %F AIHPB_2003__39_3_385_0
Liverani, Carlangelo; Maume-Deschamps, Véronique. Lasota-Yorke maps with holes : conditionally invariant probability measures and invariant probability measures on the survivor set. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 3, pp. 385-412. doi: 10.1016/S0246-0203(02)00005-5
[1] H. van den Bedem, N. Chernov, Expanding maps of an interval with holes, Preprint. | MR | Zbl
[2] , Lattice Theory, A.M.S. Colloq. Publ., Providence, 1967. | Zbl | MR
[3] , , Zeta functions and transfer operator for piecewise monotone transformations, Comm. Math. Phys. 127 (1990) 459-477. | Zbl | MR
[4] , , , Conditionally invariant measures for Anosov maps with small holes, Ergodic Theory Dynam. Systems 18 (5) (1998) 1049-1073. | Zbl | MR
[5] , Ergodic properties of maps of the interval, in: , , (Eds.), Dynamical Systems, Hermann, 1996. | Zbl | MR
[6] , , , The Pianigiani-Yorke measure for topological Markov chains, Israel J. Math. 97 (1997) 61-70. | Zbl | MR
[7] , , , The Pianigiani-Yorke measure and the asymptotic law on the limit Cantor set of expanding systems, Nonlinearity 7 (1994) 1437-1443. | Zbl | MR
[8] , , , Quasi-stationary distribution and Gibbs measure of expanding systems, Instabilities and Non-Equilibrium Structures (1996) 205-219. | Zbl | MR
[9] , , , On the existence of conditionally invariant measures in dynamical systems, Nonlinearity 13 (2000) 1263-1274. | Zbl | MR
[10] , , , , Existence of quasi-stationary distributions. A renewal dynamical approach, Ann. Probab. 23 (1995) 501-521. | Zbl | MR
[11] , , Ruelle's Perron-Frobenius theorem and projective metrics, Coll. Math. Soc. J. Bollyai 27 (1979).
[12] , Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems, Trans. Amer. Math. Soc. 314 (2) (1989) 433-497. | Zbl | MR
[13] , , Stability of the Spectral Gap for transfer operators, Annali della Scuola Normale di Pisa, Classe di Scienze (4) XXVIII (1999) 141-152. | Zbl | MR | Numdam
[14] , Decay of correlations, Ann. of Math. 142 (2) (1995) 239-301. | Zbl | MR
[15] , Decay of correlations for piecewise expanding maps, J. Statist. Phys. 78 (3-4) (1995) 1111-1129. | Zbl
[16] , , , Conformal measure and decay of correlations for covering weighted systems, Ergodic Theory Dynam. Systems 18 (6) (1998) 1399-1420. | Zbl | MR
[17] , , Expanding maps on sets which are almost invariant: decay and chaos, Trans. Amer. Math. Soc. 252 (1989) 433-497. | Zbl | MR
[18] , Bounded variation and invariant measures, Studia Math. 71 (1982) 69-80. | Zbl | MR
[19] , Geometric ergodicity in denumerable Markov chains, Quart. J. Math. 13 (2) (1962) 7-28. | Zbl | MR
[20] M. Viana, Stochastic dynamics of deterministic systems, Brazillian Math. Colloquium, IMPA, 1997.
[21] , Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems 2 (1982) 109-124. | Zbl | MR
Cité par Sources :






