Mutually catalytic branching in the plane : uniqueness
Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 1, pp. 135-191.
@article{AIHPB_2003__39_1_135_0,
     author = {Dawson, Donald A. and Fleischmann, Klaus and Mytnik, Leonid and Perkins, Edwin and Xiong, Jie},
     title = {Mutually catalytic branching in the plane : uniqueness},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {135--191},
     publisher = {Elsevier},
     volume = {39},
     number = {1},
     year = {2003},
     zbl = {1016.60091},
     mrnumber = {1959845},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2003__39_1_135_0/}
}
Dawson, Donald A.; Fleischmann, Klaus; Mytnik, Leonid; Perkins, Edwin A.; Xiong, Jie. Mutually catalytic branching in the plane : uniqueness. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 1, pp. 135-191. http://www.numdam.org/item/AIHPB_2003__39_1_135_0/

[1] M. Barlow, S. Evans, E. Perkins, Collision local times and measure-valued processes, Can. J. Math. 43 (5) (1991) 897-938. | MR 1138572 | Zbl 0765.60044

[2] D. Dawson, Measure-valued Markov Processes, École d'été de Probabilités de Saint Flour, 1991. | Zbl 0799.60080

[3] D. Dawson, A. Etheridge, K. Fleischmann, L. Mytnik, E. Perkins, J. Xiong, Mutually catalytic branching in the plane: Finite measure states, Ann. Probab. 30 (4) (2002) 1681-1762. | MR 1944004 | Zbl 1017.60098

[4] D. Dawson, A. Etheridge, K. Fleischmann, L. Mytnik, E. Perkins, J. Xiong, Mutually catalytic branching in the plane: infinite measure states, Electron. J. Probab. 7 (15) (2002). | MR 1921744 | Zbl 1016.60075

[5] D. Dawson, E. Perkins, Long time behaviour and co-existence in a mutually catalytic branching model, Ann. Probab. 26 (3) (1998) 1088-1138. | MR 1634416 | Zbl 0938.60042

[6] P. Donnelly, T. Kurtz, Particle representations for measure-valued population models, Ann. Probab. 27 (1999) 166-205. | MR 1681126 | Zbl 0956.60081

[7] S.N. Ethier, T.G. Kurtz, Markov Process: Characterization and Convergence, John Wiley and Sons, New York, 1986. | MR 838085 | Zbl 0592.60049

[8] S. Evans, E. Perkins, Collision local times, historical stochastic calculus, and competing superprocesses, Electron. J. Probab. 3 (5) (1998). | MR 1615329 | Zbl 0899.60081

[9] N. Konno, T. Shiga, Stochastic differential equations for some measure-valued diffusions, Probab. Theory Related Fields 79 (1988) 201-225. | MR 958288 | Zbl 0631.60058

[10] P. Meyer, Un cours sur les intégrales stochastiques, in: Meyer P. (Ed.), Séminaire de Probabilités, X, Lecture Notes in Mathematics, 511, Springer, Berlin, 1976, pp. 245-400. | Numdam | MR 501332 | Zbl 0374.60070

[11] L. Mytnik, Superprocesses in random environments, Ann. Probab. 24 (1996) 1953-1978. | MR 1415235 | Zbl 0874.60041

[12] L. Mytnik, Uniqueness for a mutually catalytic branching model, Probab. Theory Related Fields 112 (2) (1998) 245-253. | MR 1653845 | Zbl 0912.60076

[13] E. Perkins, Measure-valued branching diffusions with spatial interactions, Probab. Theory Related Fields 94 (1992) 189-245. | MR 1191108 | Zbl 0767.60044

[14] E. Perkins, On the martingale problem for interactive measure-valued branching diffusions, Mem. Amer. Math. Soc. 549 (1995). | MR 1249422 | Zbl 0823.60071

[15] M. Reimers, One-dimensional stochastic partial differential equations and the branching measure diffusion, Probab. Theory Related Fields 81 (1989) 319-340. | MR 983088 | Zbl 0651.60069

[16] J. Walsh, An introduction to stochastic partial differential equations, Lecture Notes in Mathematics 1180 (1986) 265-439. | MR 876085 | Zbl 0608.60060