Mutually catalytic branching in the plane : uniqueness
Annales de l'I.H.P. Probabilités et statistiques, Volume 39 (2003) no. 1, pp. 135-191.
@article{AIHPB_2003__39_1_135_0,
     author = {Dawson, Donald A. and Fleischmann, Klaus and Mytnik, Leonid and Perkins, Edwin A. and Xiong, Jie},
     title = {Mutually catalytic branching in the plane : uniqueness},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {135--191},
     publisher = {Elsevier},
     volume = {39},
     number = {1},
     year = {2003},
     mrnumber = {1959845},
     zbl = {1016.60091},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2003__39_1_135_0/}
}
TY  - JOUR
AU  - Dawson, Donald A.
AU  - Fleischmann, Klaus
AU  - Mytnik, Leonid
AU  - Perkins, Edwin A.
AU  - Xiong, Jie
TI  - Mutually catalytic branching in the plane : uniqueness
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2003
SP  - 135
EP  - 191
VL  - 39
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/item/AIHPB_2003__39_1_135_0/
LA  - en
ID  - AIHPB_2003__39_1_135_0
ER  - 
%0 Journal Article
%A Dawson, Donald A.
%A Fleischmann, Klaus
%A Mytnik, Leonid
%A Perkins, Edwin A.
%A Xiong, Jie
%T Mutually catalytic branching in the plane : uniqueness
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2003
%P 135-191
%V 39
%N 1
%I Elsevier
%U http://www.numdam.org/item/AIHPB_2003__39_1_135_0/
%G en
%F AIHPB_2003__39_1_135_0
Dawson, Donald A.; Fleischmann, Klaus; Mytnik, Leonid; Perkins, Edwin A.; Xiong, Jie. Mutually catalytic branching in the plane : uniqueness. Annales de l'I.H.P. Probabilités et statistiques, Volume 39 (2003) no. 1, pp. 135-191. http://www.numdam.org/item/AIHPB_2003__39_1_135_0/

[1] M. Barlow, S. Evans, E. Perkins, Collision local times and measure-valued processes, Can. J. Math. 43 (5) (1991) 897-938. | MR | Zbl

[2] D. Dawson, Measure-valued Markov Processes, École d'été de Probabilités de Saint Flour, 1991. | Zbl

[3] D. Dawson, A. Etheridge, K. Fleischmann, L. Mytnik, E. Perkins, J. Xiong, Mutually catalytic branching in the plane: Finite measure states, Ann. Probab. 30 (4) (2002) 1681-1762. | MR | Zbl

[4] D. Dawson, A. Etheridge, K. Fleischmann, L. Mytnik, E. Perkins, J. Xiong, Mutually catalytic branching in the plane: infinite measure states, Electron. J. Probab. 7 (15) (2002). | MR | Zbl

[5] D. Dawson, E. Perkins, Long time behaviour and co-existence in a mutually catalytic branching model, Ann. Probab. 26 (3) (1998) 1088-1138. | MR | Zbl

[6] P. Donnelly, T. Kurtz, Particle representations for measure-valued population models, Ann. Probab. 27 (1999) 166-205. | MR | Zbl

[7] S.N. Ethier, T.G. Kurtz, Markov Process: Characterization and Convergence, John Wiley and Sons, New York, 1986. | MR | Zbl

[8] S. Evans, E. Perkins, Collision local times, historical stochastic calculus, and competing superprocesses, Electron. J. Probab. 3 (5) (1998). | MR | Zbl

[9] N. Konno, T. Shiga, Stochastic differential equations for some measure-valued diffusions, Probab. Theory Related Fields 79 (1988) 201-225. | MR | Zbl

[10] P. Meyer, Un cours sur les intégrales stochastiques, in: Meyer P. (Ed.), Séminaire de Probabilités, X, Lecture Notes in Mathematics, 511, Springer, Berlin, 1976, pp. 245-400. | Numdam | MR | Zbl

[11] L. Mytnik, Superprocesses in random environments, Ann. Probab. 24 (1996) 1953-1978. | MR | Zbl

[12] L. Mytnik, Uniqueness for a mutually catalytic branching model, Probab. Theory Related Fields 112 (2) (1998) 245-253. | MR | Zbl

[13] E. Perkins, Measure-valued branching diffusions with spatial interactions, Probab. Theory Related Fields 94 (1992) 189-245. | MR | Zbl

[14] E. Perkins, On the martingale problem for interactive measure-valued branching diffusions, Mem. Amer. Math. Soc. 549 (1995). | MR | Zbl

[15] M. Reimers, One-dimensional stochastic partial differential equations and the branching measure diffusion, Probab. Theory Related Fields 81 (1989) 319-340. | MR | Zbl

[16] J. Walsh, An introduction to stochastic partial differential equations, Lecture Notes in Mathematics 1180 (1986) 265-439. | MR | Zbl