Tusnady's lemma, 24 years later
Annales de l'I.H.P. Probabilités et statistiques, Volume 38 (2002) no. 6, p. 991-1007
@article{AIHPB_2002__38_6_991_0,
     author = {Massart, Pascal},
     title = {Tusnady's lemma, 24 years later},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Elsevier},
     volume = {38},
     number = {6},
     year = {2002},
     pages = {991-1007},
     zbl = {1016.60037},
     mrnumber = {1955348},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2002__38_6_991_0}
}
Tusnady's lemma, 24 years later. Annales de l'I.H.P. Probabilités et statistiques, Volume 38 (2002) no. 6, pp. 991-1007. http://www.numdam.org/item/AIHPB_2002__38_6_991_0/

[1] J. Bretagnolle, P. Massart, Hungarian constructions from the nonasymptotic view point, Ann. Probab. 17 (1) (1989) 239-256. | MR 972783 | Zbl 0667.60042

[2] M. Csörgő, P. Révész, Strong Approximations in Probability and Statistics, Academic Press, New York, 1981. | MR 666546 | Zbl 0539.60029

[3] A. Carter, D. Pollard, Tusnády's inequality revisited, Preprint, 2000.

[4] K. Ito, H.P. Mac Kean, Diffusion Processes and Their Sample Paths, Springer, Berlin, 1965.

[5] J. Komlós, P. Major, G. Tusnády, An approximation of partial sums of independent rv-s, and the sample df. I, Z. Warscheinlichkeitstheorie Verwandte Geb. 32 (1975) 111-131. | MR 375412 | Zbl 0308.60029

[6] D. Mason, W. Van Zwet, A refinement of the KMT inequality for the uniform empirical process, Ann. Probab. 15 (1987) 871-884. | MR 893903 | Zbl 0638.60040

[7] M. Nussbaum, Asymptotic equivalence of density estimation and Gaussian white noise, Ann. Statist. 24 (1996) 2399-2430. | MR 1425959 | Zbl 0867.62035

[8] G.R. Shorack, J.A. Wellner, Empirical Processes with Applications to Statistics, Wiley, New York, 1986. | MR 838963 | Zbl 1170.62365

[9] G. Tusnády, A study of statistical hypotheses, PhD Thesis, Hungarian Academy of Sciences, Budapest, 1977 (In Hungarian).