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ABSTRACT. — The optimal coupling between a variable with the @irll/2) distribution and

a normal random variable lies at the heart of the proof of the KMT Theorem for the empirical
distribution function. Tusnady’s Lemma (published in 1977 in his dissertation and in Hungarian)
provides an inequality with explicit absolute constants which says that for this coupling, the
distance between the random variables remains bounded in probability. In the appendix of
joint work with Jean Bretagnolle (1989), we have proposed a proof of Tusnady’s Lemma which
though elementary is highly technical and considered as rather obscure, at least this is what w
have understood from several conversations with motivated readers. The purpose of this pap
is to provide an alternative proof which is still based on elementary computations but which we
hope to be simpler and more illuminating. This new proof also leads to a slight improvement on
the original result in terms of constants.
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RESUME. — Le couplage optimal d’'une variable binomiale Binl/2) et d’'une variable
gaussienne est au coeur de la preuve du Théoréme de Komlds, Major et Tusnady pour la fonctic
de répartition empirique. Le Lemme de Tusnady (publié en 1977 dans sa thése et en Hongroi
fournit une inégalité comportant des constantes absolues explicites, exprimant que I'écart ent
ces variables convenablement couplées reste borné en probabilité. En appendice d'un artic
écrit en collaboration avec Jean Bretagnolle (1989), nous avons proposé une preuve du Lemn
de Tusnédy qui pour étre élémentaire n'en est pas moins trés technique et considérée comr
plutdt obscure, c’est du moins ce que nous avons compris des quelques conversations que nc
avons eues avec des lecteurs motivés. Le but de cet article est de proposer une nouvelle preu
fondée elle aussi sur des calculs élémentaires mais que nous espérons plus simple et plus limpi
Cette preuve posséde également le mérite de conduire a une amélioration (modeste) du résul
original au niveau des constantes.

0 2002 Editions scientifiques et médicales Elsevier SAS

E-mail addressPascal.Massart@math.u-psud.fr (P. Massart).



992 P. MASSART / Ann. I. H. Poincaré — PR 38 (2002) 991-1007
1. Introduction

One of the most striking results on the empirical distribution function is the strong
approximation by a Brownian bridge at an optimal rate due to Komlés, Major and
Tusnéady (see [5]). This celebrated result is now referred to as the KMT Theorem and th
dyadic coupling scheme that Komlés, Major and Tusnady have introduced is often callec
the “Hungarian construction”. The KMT Theorem is a very powerful tool which has been
used in several papers devoted to the asymptotic behavior of nonparametric estimato
(see for instance [8]). Quite recently, Nussbaum’s works on strong approximation of
experiments in Le Cam’s sense in a nonparametric context (see especially [7]) have als
stressed on the importance of the Hungarian construction by itself. As explained in the
book by Csor§ and Révész [2] a crucial argument in the Hungarian construction is the
coupling of a symmetric Binomial random variable with a normally distributed random
variable with the same mean and variance. The proof of this step in the original paper b
Komlés, Major and Tusnady is only a sketch but can be detailed as shown by Mason an
van Zwet in [6]. An alternative proof of the Hungarian construction is proposed in [2].
It relies on a coupling inequality due to Tusnady. Since Tusnady's proof was not easily
accessible because it only appeared in his Thesis [9] which is written in Hungarian
we have presented an alternative complete proof of it in the Appendix of a joint paper
with Jean Bretagnolle (see [1]). It turns out that this proof, though elementary is rather
intricate as noted by Carter and Pollard [3] in their recent attempt to produce a resul
which has the same flavor but which is not strictly comparable to Tusnady’s inequality
since it provides asymptotically a better estimate but with less precise absolute constant
Our aim in this paper is to propose a new proof of Tusnady’s inequality. This new proof
is built in the same spirit as the one that we originally provided in our joint paper with
Bretagnolle but the line is (at least we hope!) simpler and it also leads to a (slightly) bettel
result concerning the absolute constants. Before stating our result, let us recallrthat if
has a continuous distribution functi@mand if F is a distribution function, denoting by
F~1the generalized inverse of the monotone functigrthequantile transformF—1o @
allows to define fromy a random variabl&X = F~1 o & (Y) with distribution function
F. Our main result can be stated as follows.

THEOREM 1.1.— Let Y be some standard normal random variable,be some
positive integer and, be the random variable with the symmetric Binomial distribution
Bin(n, 1/2), defined fromY via the quantile transform. Then the following inequality
holds

2
B _L_vryl 3.V
2 2 4 8

Note that the constant/3 in the right hand side of (1.1) improves on the constant
1 appearing in Tusnady’s original inequality. The proof of Theorem 1.1 easily derives
from the following Gaussian comparisons for the Binomial tails. First we state an upper
bound.

(1.1)

LEMMA 1.2.— Letn be any positive integer. LeB, and Y be respectively some
Bin(n, 1/2) and standard normal random variables. Then, for every intggeuch that
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0< j<nandn+ jiseven, one has

(n+j) vno o j 3
SPRRCE) PR | ”

Secondly, here is a lower bound.

LEMMA 1.3.-LetB, andY be as in Lemma.2above. For every integef such that
0< j <nandn+ j is even, the following inequality holds

P{B@(”Zj)]>P{§Y>n<1—,/1—£+%ﬂ. (1.3)

Note that the gain with respect to Tusnady'’s original constant 1 (which becofdes 3
in our statement) will be obtained not only becaugé &ppears in (1.2) instead of 1 but
also with the help of the extra termy2n in (1.3). Our main task will be to prove these
bounds for the Binomial tails. Let us see right now how they imply Theorem 1.1.

Proof of Theorem 1.1. We denote byd, the distribution function of the standard
normal distribution and consider some nonnegative intggerch that: + j is even and
j < n.We derive from (1.2) that

faco32oo((-Y/a) e

But using the well known inequality/1 + u <14 u/2,u > 0, we have

/ j 3 j 3
21 -1 1+=-—— | <> ——
( + +n 2n> n 2n

and therefore for any € N such thatz 4 j is even and (X j < n, the following
inequality holds

P[Bn<(”erj)]>q><<—2\/ﬁ+2,/n+j—g>>. (15)

On the other hand, one derives by symmetry from (1.3) that for any injegech that
n+ jis even and G j < n (note thatj becomesi — 2 when using 1.3)

P{Bn < @] =IP>{B,1> (”erj)] >¢<<—2\/ﬁ+2\/n—j—:—;>>. (1.6)

Now (1.5) and (1.6) imply (since the d.f. &, is piecewise constant) that, for every
t € R such that: + 2t — 3/2> 0, one has

P{Bnggw} >¢<<—2ﬁ+2,/n+2¢—g)>




994 P. MASSART / Ann. I. H. Poincaré — PR 38 (2002) 991-1007

or equivalently, for any € R

n 3 2
3

n
) 2T 27 478

This clearly implies by definition of the quantile transform that

3 v?
<Yy 3,

B n
272 4 8’

which leads to Theorem 1.1 by symmetry

One could wonder whether the constand 3appearing in (1.2) can be improved.
Obviously if (1.2) holds for some constafitinstead of 34, thenC must be not smaller
than /2 (just look at the cas¢ = 1 whenn is odd). Inspecting a table of the standard
normal distribution, it is also clear that= 1/2 does not work but also that the “truth”
is closer to 12 than to 34. Hence there is still some room to improve on our result.
In our opinion this should be done in the spirit of Carter and Pollard [3] by taking
not as an absolute constant but ratheCas (1/2) + (6/./n) and find some adequate
value for6. This could be obtained by refining our technics but since we do not see
how to get the corresponding improvement for the lower bound (1.3) we have decidec
not to present it here by sake of simplicity. Our approach for proving Lemma 1.2
and Lemma 1.3 will consist in summing up local comparisons between Binomial and
Gaussian probabilities. The intuition coming from the usual Gaussian approximation
of the Binomial with a correction of continuity, should be to compare the Binomial
probability p, (k) = P[2B, = n + k] with P[k — 1 < \/nY < k + 1]. The most delicate
part of the game that we shall play below will be to design proper interials’s
on which it is relevant to compute the Gaussian probabifity/nY < I, (k)] in order
to get an easy comparison witt{2B, = n + k]. The definition ofI, (k) will change
according to wether we aim at getting a lower or an upper boung,f@r). The easiest
transformation that we shall use is a shift with leng#2 from the “intuitive choice”

[k — 1, k + 1] but we shall also use slightly more sophisticated transformations. This is
what we shall study in the following section.

2. Nonasymptotic local expansions for binomials

Let us fix some notations that we shall use all along the paper.

DEFINITION 2.1.— For any integerk, let p,(k) =0if n + k is odd and

n —n
pu(k) = ((n+k)/2>2 :

if n + k is even. Moreover, for anye (—1, 1), one defines

h(@t)=A+1log(l+1) + (1A —1)log(dl—1),
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n 1
I =\ = XPLnh(0)/2]

and

gn(1) = \/g\/% exp[—2n(1—v1—1)7.

The functionsf, andg, that we have just introduced will play the role of densities.
This is clear forg, for which one has for every € [0, 1]

P[Og %an(l—m)] zo/xgn(t)dt, (2.1)

where we recall that denotes a standard normal random variable. The relationship
betweenf, and Binomial probabilities comes from Stirling’s formula. Indeed, let us
first recall the classical nonasymptotic inequalities associated with Stirling’s formula

1 m!
1+ <
12m = (m/e)"/2mm

1
<exp<ﬁ>, m > 1.

Then, using these inequalities, one easily derives that for any integer— 2 such that
n + k is even, one can write

2
Puk) = = £ (k/m)Ca(k/m). 2.2)

where the correction factaf, due to the use of Stirling’s formula obeys the following
inequalities

1 1
I n > 14+ — ) - ———
09Ca(x) 09( + 12}1) 31— 2

and

lo C()<i—lo <1+;>—Io (1.,.#)
9En S 15, 7199 6n(1—x) g 6n(1+ x)

for any x € (0, 1). Now, taking into account the monotonicity of~ (1/r)log(1 + 1),
settingy = 12 log(13/12), one has for any € (0,1/12), log(1 + ¢) > yt. Hence the
above inequalities on the correctiah) become

L—7<|09Cn(x)< i—#,
120 3n(1—x?) 120 3n(l—x?)

2
Vx € {O, 1- —], (2.3)
n
where the absolute constaptsatisfiesy > 0.96051. In view of (2.2), it is tempting to
comparep, (k) with the integral of f,, on the interval[(k — 1)/n, (k + 1)/n]. This is
essentially what is done below.
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LEMMA 2.1.—Letn > 2andp,, f, be as in Definitior2.1 For any integetk <n —2
such that: + « is even, the following inequalities are valid

(k+1)/n

1 0.1479
n k < n T A Lo\ 24
o< [ nmes( s - (1_t2)) (2.4)
(k=1)/n
If one moreover assumes that(1 — k2/n?) > 2n/3, one also has
(k+1)/n
mo > | exp(ﬁ)ﬂ—ﬂfn(t) dr. (2.5)
(k=1)/n

wherey = 121og(13/12) > 0.96.

Proof. -We use Lemma A.1 that we shall prove in Appendix A below. The proof of
(2.5) is immediate from (2.2), (2.3) and (A.2). In order to prove (2.4), we notice that,
givend € [0, 1/2] the logarithm¢ of the function

t—

1 0
Ji-r2 exlo<_n(1— t2)>

is convex on[—1+ 1/n,1 — 1/n]. Then, we apply Jensen’s inequality (twice!), using
first the convexity of the exponential and then the convexity.dfience, setting = k/n
ands = 1/n, a lower bound for

(k+1)/n x+8
n
> / fn(t)exp( 12)) ,/ /exp( (t)——h(t))
(k=1)/n

x+5
1/2 exp<¢>(x)— - X — /h(t)dt)

which via (A.1) is bounded from below by

iex<() LT i)
V 2 PO = SR = e i =)

and therefore

(k+1)/n
n

0 1 31
5 [ pwes(— g ) o> heen| - (04 1g) |

(k=1)/n
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Combining this lower bound with (2.2) and (2.3), yields by noticing thd8 >
0.9605Y/3 > 6 + (31/180 holds true when choosingj= 0.1479

(k+1)/n

fa(®) exp(

(k=1)/n

) dr > p, (k) exp(—i)

v
n(l—t2?) 12n

Hence (2.4) is proven. O

We are in position to prove the Gaussian estimates on the Binomial probabilities whict
will lead to the Gaussian comparisons for the Binomial tails stated in Section 1. Now that
the link between the binomial probabilities ayighas been established and since (2.1)
provides the link betweep, and the Gaussian probability involved in Lemma 1.3, we
would like to provide a guideline for the proof of Lemma 1.3 which is the most delicate
result to be proven below. Proving Lemma 1.3 essentially amounts (neglecting at thi:
stage some remainder terms) to prove that for evesy[0, 1]

X

[ roa< [gnd. 2.6)
0

0

This inequality holds true far = 0 and one can hope that it holds true foe 1 because

Jo fu()dt > [ g, (1) dr ~ 1/2. Hence, by monotonicity, (2.6) will hold true if one is
able to show that for some point, f,(¢) < g.(t) whenever: <t, and f,(¢t) > g,(t)
otherwise. This is by essence the meaning of Proposition 2.4 below and we shall use
discrete version of the above argument to derive Lemma 1.3 from Proposition 2.4. Thit
also explains why somehow surprisingly at first glance, a local upper bound for binomial
probabilities such as Lemma 2.2 below will turn to be useful not only to prove the upper
bound on the Binomial tail (1.2) but also to prove the lower bound (1.3) as well.

LEMMA 2.2.—Letn > 2 and p, be as in Definition2.1 The following inequalities
hold for every integek such that: + k is even andk <n — 2

(k+1)/n ( 1)[2
| n n—
(k=1)/n

Proof. —In order to prove (2.7), we use Lemma A.2 (see Appendix A) and more
precisely (A.4) which ensures that for everg (—1, 1) one has

2n

1 2 2
—5 [0 +10g(1 = 1) — (1 = Dr?] < .

Now, for |t] < 1— 1/n, we haver?” < e~2? which implies (2.7) via (2.4) and (A.4) since
€2/4<0.1479— (1/12. O
As a first consequence of this result, we derive the local estimate for the Binomial

probabilities which will imply Lemma 1.2. Note that the calibration of the shift in the
Gaussian probabilities below directly derives from (2.9).
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PROPOSITION 2.3. —Letn > 4, p, be as in Definitior2.1andY be a standard normal
random variable. Then, for any integersuch that: + k isevenan®@ <k <n —2

pu(k) <P k—ggﬁyg</«+}>} (2.8)

2
Proof. —In order to bound the binomial probabilities (), for 2< k <n — 2, we use
(2.7). We note that since— —t?+t — (1/4n) is concave and positive at points= 1/n
andt =1 — (1/n), it is positive on the whole intervdll/n, 1 — (1/n)], which means
that for everyr belonging to this interval one has

2

(n—1>> n(t — %) . (2.9)

Hence we derive from (2.7) that fork < n — 2 (andn + k even) an upper bound for
2 /n p,(k)is given by

(k+1)/n 1 2 (k+(1/2))/n
exp<—n <t — Z) /2) dr < / exp(—nu?/2) du
(k=1)/n (k—=(3/2))/n

and the result follows. O
We turn now to the local comparisons from which we shall derive Lemma 1.3.
PROPOSITION 2.4. —Letn >4 and p,, g, be as in Definitior2.1

(k+1)/n 1 k 1 1
R L e (2.10)
n n Jn n
k=D)/n
1/n
pu (k) <2/g,1(t) dr, ifk=0 (2.11)
0
andifn >5
k+(3/2))/n
*k+(3/2)/ 11 & )
pn(k) > / g.(t)dt, whenever—+ — < —-<1——. (2.12)
Jnoo2n T n n
(k—(1/2))/n

Proof. —In view of (2.7), in order to prove (2.10) and (2.11), it is enough to prove that
for every nonnegative < 1/./n one has

n— 112
eXp<_%>g\/%exp(—Zn(l—vl—t)z).

By (A.5) this will a fortiori hold if

> nt? 1 1 ¢ 1
o = N —nP o _Z _
2 > S5 log(1—1t) —nt < log(1 t))
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or equivalently

12 1 nts
— < —-Zlogl—1)(1—n®) + —. 2.1
> 5 og(l—1)(1—n®) + 2 (2.13)

Now nt? < 1 and—log(1l — ¢) > t hence

1 S 2 ¢ 2
—élog(l—t)(l—nt2)+n72—————>__—

which is nonnegative because< 1/./n < 1/2. This shows that (2.13) is true and
therefore (2.10) and (2.11) hold.
Let us turn to the proof of (2.12). We derive from (2.5) that

(k+(3/2))/n h(— 1
- _1
(k) > ,/2— / exp<ﬁ> exp(—%) dr.
T
(k=(1/2))/n

Now since the second derivative/ofs nondecreasing ai®, 1), Taylor’s formula implies
that

h(t - i) —h(t) < —ih/(t) + ih”(t)
2n I 8n2

1 1
< ——llog(1 —log(1— —_—
5 109(L+1) —log(1— )] + WA=
and therefore a lower bound fey, (k) is given by
(k+(3/2))/n 1
n y n
o / exp{lzn + 4(Iog(l—i— 1) —log(1—1)) — Zh(t)} dr.
(k—(1/2))/n

Hence, (2.12) will hold if we can check that the following inequality holds true for every
tsuchthat 1/n <t <1-—(1/2n)

1 1
21Iog(l— )+ L

2
S PYC Y e RGN Y
12 e A ) 2}

Using (A.6) which is proved in Appendix A (and multiplying by 4), we see that the
above inequality derives from

y 1 Tnt*
A =log(l—2) + 2 - — = 431+ 50 2.14
(nn=log(l—r)+ 3 =5 Tt +t 5y (2.14)

and therefore it remains to show that (2.14) holds. Expanditag(l — #2) in power
series one easily gets
12

t2
—log(1—-3) < — 4+ —
(L=< 5+ 500
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which yields

12 12 1 nt*
Y 4 T

An -1 4 Y = .
) 2= a— Y T ma—n 24

But —2(1/2) + (y/3n) +t*(7Tn/24) > 0 for all t (because the discriminant is negative),
hence

t2
21—12) 2n(1—12)
and sincert?(1 — t?) > 3/4 (just use 1/n <t <1— (1/2n) andn > 5), one also has

An,t) > — +nt®

3F 2 1
1-1%)A > — — — — —.
A=r)Amn=Z-7-3
To check the positivity of the right hand side of this inequality, we notice that it is
concave and that its values at the end points1/./n andr = 1 — (1/2n) are easily
seen to be positive becaugse> 5. HenceA(n, t) is positive for everyr such that
1//n <t <1-(1/2n) and the result follows. O

We now pass from the above evaluations of the Binomial probabilities to Gaussian
comparisons and establish the main results of this paper.

3. Upper bound for the Binomial tail

We can first easily derive from Proposition 2.3, the comparison between the Binomial
tail and the corresponding Gaussian at a point which is shifted from a quantity which is
slightly greater than the correction of continuity.

Proof of Lemma 1.2. Fhe result being trivial fon = 1, we suppose that > 2. We
shall check (1.2) for the extremal values joand then, if= > 4, bound each Binomial
probability P[2B, = n + k] = p,(k) by the corresponding Gaussian probability that
/nY belongs to the intervdk — (3/2), k + (1/2)] for everyk such that 2 k <n — 2.
Note here that these intervals do not overlap wheraries because of the constraint:
n + k is even. In order to check (1.2) whegn=n, we use the classical lower bound for
the standard Gaussian tail (see for instance [4], p. 17)

PlY > 21> exp(—12/2)

1 1
X
Vo A2+ 2
at pointi = /n(1— (3/2n)). Noticing thatA? > n — 2, this gives

3 1 n 1 n
> _ 2 ) = _Z > _Z
P{Y/ﬁO 2n>}/ 27Tnexp( 2+1>/ﬁEXp( 2)

which easily leads to
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P[Y}ﬁ(l—%)] >2"

and therefore (1.2) whep = n. Assuming first thatz > 4 and 2< j <n — 2, (1.2)
follows by summing up (2.8) “from the tail” that is for those indidetying between;
andn — 2, using that (1.2) holds true at the end pajint ». It remains now to deal with
the smallest value of. Whenn is odd andj = 1, (1.2) is trivial (since the right hand
side is larger than /2). Whenn is even andi = 0, checking (1.2) amounts to verify that

pn(O)/2<1P>[o< Y < (3.1)

ol
S2un
Now on the one hand, it comes from (2.2) and (2.3) that

ox p<_ (4y — 1))

rn(0)/2< o

1
N 2tn
and on the other hand by Jensen’s inequality

) §
x? 1 [ x? 82
_ > _Z | = —_
0/exp( 2>dx/8exp< SO/de> 6exp< 6)’

which leads fo = (3/2,/n) to

3 3 1 3
PIOSY < > expl —— |.
{ Zﬁ] 2/n % 2 xp( 8n>

Hence,

3
PIOSY < 5—F—|2pa
[ 2\/5} b
which means that (3.1) holds. This completes the proof whend. Forn < 3, there

is nothing more to do than checking the inequality at the two extreme valugsdiod
therefore (1.2) also holds in this casex

1 1 3
(0>[ exp( ;(—1—2—5%))}%,(0)

4, Lower bound for the Binomial tail

The proof of Lemma 1.3 is a bit more delicate than that of Lemma 1.2 but is
still quite easily obtainable from our local nonasymptotic expansions for the Binomial
probabilities.

Proof of Lemma 1.3. Assume first that (1.3) holds true for the extreme valjiesn
andj =0 or j = 1 according to the parity of. Then, for the other values gf, (1.3)
follows from Proposition 2.4 either by summlng up (2.12) “from the tail”, i.e. over
indicesk such thatj <k <n—2if + N 1< f and then use the identity
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P{%Y >n<1— 1- % + %)]
1-(1/2n)
=Py >2vanl-VIE)+ [ a0
(—/2)/n
or else by summing up (2.10) (using also (2.11) ik even) “from the beginning”, i.e.
over indicesk < j and then use the identities

P (0) 1 (n+j)
+ 3 pto=5-p|5,> "L
2 1$he 2 2
and by (2.1)
(j=(1/2)/n
1 N j 1

=P X y> —j1-L4+ =)
g, (1) dt > P[ZY/n<l 1 n+2n>]

It remains therefore to check (1.3) at the end points.We begin by checking that (1.3) hold:
at pointj = n. To do this we use the classical upper bound for the standard Gaussian tai

IP’[Y>A]<}ex< A—2>
ZHS 8P T

for A = 2/n(1 — 4/1/2n). This gives
logP[Y > A< —log(2) —2n+2v2n — 1
and therefore
—nlog(2) —logP[Y > 1] > n(2—10g(2)) — 2v/2n + 1+ log(2).
But the discriminant of the polynomi&?2(1 —log(2)/2) — 2X + 1+ log(2) is negative,
hence this polynomial is positive for every value Xfand in particular forX = /2n

which implies the positivity of—nlog(2) — logP[Y > A]. HenceP[Y > 2/n(1 —
J/1/2n)] < 27", which means that (1.3) holds fgr=n. If j = 0, we have to prove

that
pn(O)/2>IP’[O<Y<2«/ﬁ<\/1+%—l>]. (4.1)
But
(0)/2>ex< l) ! > ! >}P’[O<Y< 1}
pn = p 3n \/ﬁ/z\/ﬁ/ ~X \Zﬁ )

which implies (4.1) since/1+ 1/2n — 1 < 1/4n. The casg = 1 being trivial, the proof
is now complete. O
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Appendix A

We record here several elementary inequalities which have been used throughot
the paper. Although each of these results can be checked quite easily by usin
adequate manipulations on Taylor expansions, we have chosen to present complete a
detailed proofs to make the verifications easier to the motivated reader. Most of thes
results concern the functiain of Definition 2.1. We begin with nonasymptotic bounds
associated with the approximation of the meanvalue of a function on some interval by it:
value at the midpoint. These bounds are established first for the furiciiself. Since it
is convex on(—1, 1), the meanvalue df on every subsegmeft — 8, x + 8] of (—1, 1)
is larger thark (x) and the purpose of the following Lemma is to propose an upper bound
on the error that one makes when approximating the mean valuerofx — §, x + 8] by
h(x). In the same spirit, some corrective factor for the approximation of the mean value
of exp(—h/25) by exp(—h(x)/28) is also provided, at least whenis large enough as
compared t@.

LEMMA A.1.— For every positive numbes < 1/2, one has for any such that
0<x<1-2

v
o /h(z)dt <h(x) + gélfz (A1)
If moreoverx?(1 — x?) > 28/3, one also has
1 h(t) 1 h(x) 5
% / exp[—z—a] dr < T exp[— % 302" (A.2)

Proof. —Expanding in power series, we get
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where the remainder teri is given by

R_kz:;(Zk-i-l)' |:(1_x)2k—l + (1+X)2k_1:|8 .
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Now, on the one hand for any integee> 2, (2k — 2)!/(2k + 1)! < 2!/5! =1/60 and on
the other hand, for ang < [0, 1/2] one has
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Z 73
Hence, recalling that/(1 — x) < 1/2,
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and (A.1) follows. We now turn to the proof of (A.2). We first notice that setting

=5 o)

one has
§
1 h(x + u) h(x —u)
_ = - . A.

5 /{ ( )+exp( 2 )]du (A.3)

The Taylor expansion of at pointx can be written as
h(])(x)
h(x+1)=hx)+Y :
j=>1 ‘]

with ’(x) =log(1+ x) — log(1 — x) and for any integey > 2
D (x) = (j — 2![(=1)/ A4 x) 7+ 1 —x) 7Y,

Of course the derivatives of the functidgnof any orderj are nonnegative at every
nonnegative point. Hence when is honnegative, one has

2
h(x +1) = h(x) +th'(x) + %h”(x) > h(x) +th'(x) + 12
Getting a lower bound fok(x + ) whent = —u with u € [0, §] is slightly more
complicated because we have to handle nonpositive terms in the Taylor expanagion of
corresponding to the derivatives of odd orders. We therefore have to group consecutiv
even and odd terms. More precisely for any intégewe note that %+ (x)/ 1 (x) <
(2k — 1)/(1 — x) which leads to

h<2’<)(x)u2k B h(2k+l)(x)u2k+l N h<2’<>(x)u2k 1 (@k=Du
(2k)! (2k + 1)! T @! (Zk+D(A-x)
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which in turn implies since < (1—x)/2

h(zk)(x)MZk B h(2k+l)(x)u2k+l S h(Zk)(x) 2 {1_ 2k —1) } >
(2Kk)! (2k + 1)! (2k)! 2(2k + 1)

Hence

) 5142 B , Su
B =) 2 h(x) = uh'(0)+ 700 > h) +1h' () + g

and therefore whateveér| < 8, the following lower bound is a fortiori valid

2

h(x +1) > h(x) +th'(x) + m

Plugging this lower bound in (A.3), we derive that

h(x) uh'(x) u®
ren( %) < / W) oo~z )

which, since costh’(x)/2) = (1 — x?)~Y/2, will imply (A.2) if we can prove that the

function
_ uh'(x) u?
¥ u — log {cosk( 2 )} — BA_12)

is nondecreasing o, §]. To prove this we compute the derivativeyf

W (1) = h/z(;‘) tanh(

uh’(x)) B 2u
25 3B(1—x2)

Now, tanh(s)/s is nonincreasing ok, so the nonnegativity ofy’ on [0, §] has to be
checked only at point. But tanih'(x)/2) = x andh/(x)/2 > x, SO

w2 2
v = 28 31—x2)7 8§  3(1-—x2?

which ensures thay’(8) is nonnegative because of the assumption Hat — x?) >
25/3. O

The following inequalities make easy the comparisomafiith various quantities
related to Gaussian log-probabilities.

LEMMA A.2. —For every integern > 1 and everyt € (—1,1), the following
inequality holds

2n

S (A.4)

—%[nh(t) +log(l—1%) — (n — 1)t?] <



1006 P. MASSART / Ann. I. H. Poincaré — PR 38 (2002) 991-1007

Moreover, for every € (0, 1), the following inequalities are valid

2 1 1

S1-vI=1) <5- 5 - 5logd-1 (A5)
and

1 h(t t Tt

t—z{z(l—«/l—t)z (2)} >+ 5% (A.6)

Proof. —Let us expand the left hand side(r) of (A.4) in power series. One has
L(t) = L1(t) + Lo(t), where

Ll(t):—} SLIZJ._SEIZJ
2 J2j=1 —J

j=2
(if n < 3, one taked.; = 0) and
1

) o N _z}
L0 =3[ g™ - X5

j>n jznt

Then, changing into n + 1 — j for those summation indices which are larger than
(n+1)/2, we get
n—1
L/l/(t):_ZIZj_2(n+1_2j):_ Z (n+1—2j)(l2j_2—t2n_2j) <0
j=2 2<j<(n+1)/2
and therefore, sincé, and its derivative are null at point 0, we conclude tliatis
nonpositive. Finally

1

_ = 1/, n 2j 1 2j
Lw=3|35( (21—1>)”}<4n§”

jznt

and (A.4) follows. The power series expansion of the left hand side of (A.5) writes

1 t 5 3x---x2j+1 .
—+-+ =+ E - : / (A.7)
2 4 32 = (J+2)'2
as for the right hand side, one has
1 t t2
— -+ — — . A.
2 4 + E t (A.8)

For every integeyj > 3, let us consider the ratig between the term of degrgen (A.7)
and the corresponding term in (A.8). Then

rin j+30G+1  2j°+5j+3

= = <1, foreveryj >3,
r; 2(j +3); 2j2+6) v/
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which means that the sequen¢g);>3 is nonincreasing and therefore < r3 < 1.
Hence, each term of the expansion (A.7) is not larger than the term with the same
degree in (A.8) which proves (A.5). To prove (A.6), we simply substract term by term to
expansion (A.7) the power series expansioh @§/(2:%) which is

h(t) 1 (%
22 = 12+k§<2k+2><2k+1>
and conclude since
3x---x(2j+1) 3x---x(2j+1 1 S 1
- = X = N .
(J+2)!2 2x X 2j G+DG+2 " (G+DG+2

for every even integey larger than 3. O
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