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ABSTRACT. – The optimal coupling between a variable with the Bin(n,1/2) distribution and
a normal random variable lies at the heart of the proof of the KMT Theorem for the empirical
distribution function. Tusnády’s Lemma (published in 1977 in his dissertation and in Hungarian)
provides an inequality with explicit absolute constants which says that for this coupling, the
distance between the random variables remains bounded in probability. In the appendix of a
joint work with Jean Bretagnolle (1989), we have proposed a proof of Tusnády’s Lemma which
though elementary is highly technical and considered as rather obscure, at least this is what we
have understood from several conversations with motivated readers. The purpose of this paper
is to provide an alternative proof which is still based on elementary computations but which we
hope to be simpler and more illuminating. This new proof also leads to a slight improvement on
the original result in terms of constants.
 2002 Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – Le couplage optimal d’une variable binomiale Bin(n,1/2) et d’une variable
gaussienne est au coeur de la preuve du Théorème de Komlós, Major et Tusnády pour la fonction
de répartition empirique. Le Lemme de Tusnády (publié en 1977 dans sa thèse et en Hongrois)
fournit une inégalité comportant des constantes absolues explicites, exprimant que l’écart entre
ces variables convenablement couplées reste borné en probabilité. En appendice d’un article
écrit en collaboration avec Jean Bretagnolle (1989), nous avons proposé une preuve du Lemme
de Tusnády qui pour être élémentaire n’en est pas moins très technique et considérée comme
plutôt obscure, c’est du moins ce que nous avons compris des quelques conversations que nous
avons eues avec des lecteurs motivés. Le but de cet article est de proposer une nouvelle preuve,
fondée elle aussi sur des calculs élémentaires mais que nous espérons plus simple et plus limpide.
Cette preuve possède également le mérite de conduire à une amélioration (modeste) du résultat
original au niveau des constantes.
 2002 Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

One of the most striking results on the empirical distribution function is the strong
approximation by a Brownian bridge at an optimal rate due to Komlós, Major and
Tusnády (see [5]). This celebrated result is now referred to as the KMT Theorem and the
dyadic coupling scheme that Komlós, Major and Tusnády have introduced is often called
the “Hungarian construction”. The KMT Theorem is a very powerful tool which has been
used in several papers devoted to the asymptotic behavior of nonparametric estimators
(see for instance [8]). Quite recently, Nussbaum’s works on strong approximation of
experiments in Le Cam’s sense in a nonparametric context (see especially [7]) have also
stressed on the importance of the Hungarian construction by itself. As explained in the
book by Csörg̋o and Révész [2] a crucial argument in the Hungarian construction is the
coupling of a symmetric Binomial random variable with a normally distributed random
variable with the same mean and variance. The proof of this step in the original paper by
Komlós, Major and Tusnády is only a sketch but can be detailed as shown by Mason and
van Zwet in [6]. An alternative proof of the Hungarian construction is proposed in [2].
It relies on a coupling inequality due to Tusnády. Since Tusnády’s proof was not easily
accessible because it only appeared in his Thesis [9] which is written in Hungarian,
we have presented an alternative complete proof of it in the Appendix of a joint paper
with Jean Bretagnolle (see [1]). It turns out that this proof, though elementary is rather
intricate as noted by Carter and Pollard [3] in their recent attempt to produce a result
which has the same flavor but which is not strictly comparable to Tusnády’s inequality
since it provides asymptotically a better estimate but with less precise absolute constants.
Our aim in this paper is to propose a new proof of Tusnády’s inequality. This new proof
is built in the same spirit as the one that we originally provided in our joint paper with
Bretagnolle but the line is (at least we hope!) simpler and it also leads to a (slightly) better
result concerning the absolute constants. Before stating our result, let us recall that ifY

has a continuous distribution function� and ifF is a distribution function, denoting by
F−1 the generalized inverse of the monotone functionF , thequantile transformF−1◦�
allows to define fromY a random variableX = F−1 ◦�(Y ) with distribution function
F . Our main result can be stated as follows.

THEOREM 1.1. – Let Y be some standard normal random variable,n be some
positive integer andBn be the random variable with the symmetric Binomial distribution
Bin(n,1/2), defined fromY via the quantile transform. Then the following inequality
holds ∣∣∣∣Bn − n

2
−

√
n

2
Y

∣∣∣∣� 3

4
+ Y 2

8
. (1.1)

Note that the constant 3/4 in the right hand side of (1.1) improves on the constant
1 appearing in Tusnády’s original inequality. The proof of Theorem 1.1 easily derives
from the following Gaussian comparisons for the Binomial tails. First we state an upper
bound.

LEMMA 1.2. – Let n be any positive integer. LetBn and Y be respectively some
Bin(n,1/2) and standard normal random variables. Then, for every integerj such that
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0� j � n andn+ j is even, one has

P

[
Bn � (n+ j)

2

]
� P

[√
n

2
Y � j

2
− 3

4

]
. (1.2)

Secondly, here is a lower bound.

LEMMA 1.3. –LetBn andY be as in Lemma1.2above. For every integerj such that
0� j � n andn+ j is even, the following inequality holds

P

[
Bn � (n+ j)

2

]
� P

[√
n

2
Y � n

(
1−

√
1− j

n
+ 1

2n

)]
. (1.3)

Note that the gain with respect to Tusnády’s original constant 1 (which becomes 3/4
in our statement) will be obtained not only because 3/4 appears in (1.2) instead of 1 but
also with the help of the extra term 1/2n in (1.3). Our main task will be to prove these
bounds for the Binomial tails. Let us see right now how they imply Theorem 1.1.

Proof of Theorem 1.1. –We denote by�, the distribution function of the standard
normal distribution and consider some nonnegative integerj such thatn+ j is even and
j � n. We derive from (1.2) that

P

[
Bn <

(n+ j)
2

]
��

((
j − 3

2

)/√
n

)
. (1.4)

But using the well known inequality
√

1+ u� 1+ u/2, u > 0, we have

2
(

−1+
√

1+ j

n
− 3

2n

)
� j

n
− 3

2n

and therefore for anyj ∈ N such thatn + j is even and 0� j � n, the following
inequality holds

P

[
Bn <

(n+ j)
2

]
��

((
−2

√
n+ 2

√
n+ j − 3

2

))
. (1.5)

On the other hand, one derives by symmetry from (1.3) that for any integerj such that
n+ j is even and 0< j < n (note thatj becomesj − 2 when using 1.3)

P

[
Bn <

(n− j)
2

]
= P

[
Bn >

(n+ j)
2

]
��

((
−2

√
n+ 2

√
n− j − 3

2

))
. (1.6)

Now (1.5) and (1.6) imply (since the d.f. ofBn is piecewise constant) that, for every
t ∈ R such thatn+ 2t − 3/2� 0, one has

P

[
Bn � n

2
+ t
]

��
((

−2
√
n+ 2

√
n+ 2t − 3

2

))
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or equivalently, for anyy ∈ R

�(y)� P

[
Bn � n

2
+

√
n

2
y + 3

4
+ y2

8

]
.

This clearly implies by definition of the quantile transform that

Bn − n

2
�

√
n

2
Y + 3

4
+ Y 2

8
,

which leads to Theorem 1.1 by symmetry.✷
One could wonder whether the constant 3/4 appearing in (1.2) can be improved.

Obviously if (1.2) holds for some constantC instead of 3/4, thenC must be not smaller
than 1/2 (just look at the casej = 1 whenn is odd). Inspecting a table of the standard
normal distribution, it is also clear thatC = 1/2 does not work but also that the “truth”
is closer to 1/2 than to 3/4. Hence there is still some room to improve on our result.
In our opinion this should be done in the spirit of Carter and Pollard [3] by takingC

not as an absolute constant but rather asC = (1/2)+ (θ/
√
n) and find some adequate

value for θ . This could be obtained by refining our technics but since we do not see
how to get the corresponding improvement for the lower bound (1.3) we have decided
not to present it here by sake of simplicity. Our approach for proving Lemma 1.2
and Lemma 1.3 will consist in summing up local comparisons between Binomial and
Gaussian probabilities. The intuition coming from the usual Gaussian approximation
of the Binomial with a correction of continuity, should be to compare the Binomial
probabilitypn(k)= P[2Bn = n+ k] with P[k − 1 � √

nY � k + 1]. The most delicate
part of the game that we shall play below will be to design proper intervalsIn(k)’s
on which it is relevant to compute the Gaussian probabilityP[√nY ∈ In(k)] in order
to get an easy comparison withP[2Bn = n + k]. The definition ofIn(k) will change
according to wether we aim at getting a lower or an upper bound forpn(k). The easiest
transformation that we shall use is a shift with length 1/2 from the “intuitive choice”
[k − 1, k + 1] but we shall also use slightly more sophisticated transformations. This is
what we shall study in the following section.

2. Nonasymptotic local expansions for binomials

Let us fix some notations that we shall use all along the paper.

DEFINITION 2.1. – For any integerk, letpn(k)= 0 if n+ k is odd and

pn(k)=
(

n

(n+ k)/2
)

2−n,

if n+ k is even. Moreover, for anyt ∈ (−1,1), one defines

h(t)= (1+ t) log(1+ t)+ (1− t) log(1− t),
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fn(t)=
√
n

2π

1√
1− t2 exp

[−nh(t)/2]
and

gn(t)=
√
n

2π

1√
1− t exp

[−2n
(
1− √

1− t )2].
The functionsfn andgn that we have just introduced will play the role of densities.

This is clear forgn for which one has for everyx ∈ [0,1]

P

[
0 �

√
n

2
Y � n

(
1− √

1− x )]=
x∫

0

gn(t)dt, (2.1)

where we recall thatY denotes a standard normal random variable. The relationship
betweenfn and Binomial probabilities comes from Stirling’s formula. Indeed, let us
first recall the classical nonasymptotic inequalities associated with Stirling’s formula

1+ 1

12m
� m!
(m/e)m

√
2πm

� exp
(

1

12m

)
, m� 1.

Then, using these inequalities, one easily derives that for any integerk � n− 2 such that
n+ k is even, one can write

pn(k)= 2

n
fn(k/n)Cn(k/n), (2.2)

where the correction factorCn due to the use of Stirling’s formula obeys the following
inequalities

logCn(x)� log
(

1+ 1

12n

)
− 1

3n(1− x2)

and

logCn(x)�
1

12n
− log

(
1+ 1

6n(1− x)
)

− log
(

1+ 1

6n(1+ x)
)

for any x ∈ (0,1). Now, taking into account the monotonicity oft → (1/t) log(1 + t),
settingγ = 12 log(13/12), one has for anyt ∈ (0,1/12), log(1 + t) � γ t . Hence the
above inequalities on the correctionCn become

γ

12n
− 1

3n(1− x2)
� logCn(x)�

1

12n
− γ

3n(1− x2)
, ∀x ∈

[
0,1− 2

n

]
, (2.3)

where the absolute constantγ satisfiesγ > 0.96051. In view of (2.2), it is tempting to
comparepn(k) with the integral offn on the interval[(k − 1)/n, (k + 1)/n]. This is
essentially what is done below.
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LEMMA 2.1. – Letn� 2 andpn, fn be as in Definition2.1. For any integerk � n−2
such thatn+ k is even, the following inequalities are valid

pn(k)�
(k+1)/n∫
(k−1)/n

fn(t)exp
(

1

12n
− 0.1479

n(1− t2)
)

dt. (2.4)

If one moreover assumes thatk2(1− k2/n2)� 2n/3, one also has

pn(k)�
(k+1)/n∫
(k−1)/n

exp
(
γ

12n

)√
1− t2fn(t)dt, (2.5)

whereγ = 12 log(13/12) > 0.96.

Proof. –We use Lemma A.1 that we shall prove in Appendix A below. The proof of
(2.5) is immediate from (2.2), (2.3) and (A.2). In order to prove (2.4), we notice that,
givenθ ∈ [0,1/2] the logarithmφ of the function

t → 1√
1− t2 exp

(
− θ

n(1− t2)
)

is convex on[−1 + 1/n,1 − 1/n]. Then, we apply Jensen’s inequality (twice!), using
first the convexity of the exponential and then the convexity ofφ. Hence, settingx = k/n
andδ = 1/n, a lower bound for

n

2

(k+1)/n∫
(k−1)/n

fn(t)exp
(

− θ

n(1− t2)
)

dt =
√
n

2π
× 1

2δ

x+δ∫
x−δ

exp
(
φ(t)− n

2
h(t)

)
dt

is

√
n

2π
exp

(
φ(x)− n

2
× 1

2δ

x+δ∫
x−δ

h(t)dt

)
,

which via (A.1) is bounded from below by

√
n

2π
exp
(
φ(x)− n

2
h(x)− 31

180n(1− x2)

)

and therefore

n

2

(k+1)/n∫
(k−1)/n

fn(t)exp
(

− θ

n(1− t2)
)

dt � fn(x)exp
[
− 1

n(1− x2)

(
θ + 31

180

)]
.
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Combining this lower bound with (2.2) and (2.3), yields by noticing thatγ /3 >
0.96051/3> θ + (31/180) holds true when choosingθ = 0.1479

(k+1)/n∫
(k−1)/n

fn(t)exp
(

− θ

n(1− t2)
)

dt � pn(k)exp
(

− 1

12n

)
.

Hence (2.4) is proven. ✷
We are in position to prove the Gaussian estimates on the Binomial probabilities which

will lead to the Gaussian comparisons for the Binomial tails stated in Section 1. Now that
the link between the binomial probabilities andfn has been established and since (2.1)
provides the link betweengn and the Gaussian probability involved in Lemma 1.3, we
would like to provide a guideline for the proof of Lemma 1.3 which is the most delicate
result to be proven below. Proving Lemma 1.3 essentially amounts (neglecting at this
stage some remainder terms) to prove that for everyx ∈ [0,1]

x∫
0

fn(t)dt �
x∫

0

gn(t)dt. (2.6)

This inequality holds true forx = 0 and one can hope that it holds true forx = 1 because∫ x
0 fn(t)dt  ∫ x

0 gn(t)dt  1/2. Hence, by monotonicity, (2.6) will hold true if one is
able to show that for some pointtn, fn(t) � gn(t) whenevert � tn andfn(t) > gn(t)
otherwise. This is by essence the meaning of Proposition 2.4 below and we shall use a
discrete version of the above argument to derive Lemma 1.3 from Proposition 2.4. This
also explains why somehow surprisingly at first glance, a local upper bound for binomial
probabilities such as Lemma 2.2 below will turn to be useful not only to prove the upper
bound on the Binomial tail (1.2) but also to prove the lower bound (1.3) as well.

LEMMA 2.2. –Let n � 2 andpn be as in Definition2.1. The following inequalities
hold for every integerk such thatn+ k is even andk � n− 2

pn(k)�
√
n

2π

(k+1)/n∫
(k−1)/n

exp
(

−(n− 1)t2

2

)
dt. (2.7)

Proof. –In order to prove (2.7), we use Lemma A.2 (see Appendix A) and more
precisely (A.4) which ensures that for everyt ∈ (−1,1) one has

−1

2

[
nh(t)+ log

(
1− t2)− (n− 1)t2

]
� t2n

4n(1− t2) .

Now, for |t| � 1− 1/n, we havet2n � e−2 which implies (2.7) via (2.4) and (A.4) since
e−2/4� 0.1479− (1/12). ✷

As a first consequence of this result, we derive the local estimate for the Binomial
probabilities which will imply Lemma 1.2. Note that the calibration of the shift in the
Gaussian probabilities below directly derives from (2.9).
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PROPOSITION 2.3. –Letn� 4,pn be as in Definition2.1andY be a standard normal
random variable. Then, for any integerk such thatn+ k is even and2 � k � n− 2

pn(k)� P

[
k − 3

2
�

√
nY �

(
k+ 1

2

)]
. (2.8)

Proof. –In order to bound the binomial probabilitiespn(k), for 2� k � n− 2, we use
(2.7). We note that sincet → −t2 + t − (1/4n) is concave and positive at pointst = 1/n
and t = 1 − (1/n), it is positive on the whole interval[1/n,1 − (1/n)], which means
that for everyt belonging to this interval one has

(n− 1)t2 � n
(
t − 1

2n

)2

. (2.9)

Hence we derive from (2.7) that for 2� k � n− 2 (andn+ k even) an upper bound for√
2π/n pn(k) is given by

(k+1)/n∫
(k−1)/n

exp
(

−n
(
t − 1

2n

)2

/2
)

dt �
(k+(1/2))/n∫
(k−(3/2))/n

exp
(−nu2/2

)
du

and the result follows. ✷
We turn now to the local comparisons from which we shall derive Lemma 1.3.

PROPOSITION 2.4. –Letn� 4 andpn, gn be as in Definition2.1

pn(k)�
(k+1)/n∫
(k−1)/n

gn(t)dt, if
1

n
� k

n
� 1√

n
− 1

n
, (2.10)

pn(k)� 2

1/n∫
0

gn(t)dt, if k = 0 (2.11)

and ifn� 5

pn(k)�
(k+(3/2))/n∫
(k−(1/2))/n

gn(t)dt, whenever
1√
n

+ 1

2n
� k

n
� 1− 2

n
. (2.12)

Proof. –In view of (2.7), in order to prove (2.10) and (2.11), it is enough to prove that
for every nonnegativet � 1/

√
n one has

exp
(

−(n− 1)t2

2

)
� 1√

1− t exp
(−2n

(
1− √

1− t)2).
By (A.5) this will a fortiori hold if

t2

2
− nt2

2
� −1

2
log(1− t)− nt2

(
1

2
− t

4
− 1

2
log(1− t)

)
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or equivalently

t2

2
� −1

2
log(1− t)(1− nt2)+ nt3

4
. (2.13)

Now nt2 � 1 and− log(1− t)� t hence

−1

2
log(1− t)(1− nt2)+ nt3

4
� t

2
− nt3

4
− t2

2
� t

4
− t2

2

which is nonnegative becauset � 1/
√
n � 1/2. This shows that (2.13) is true and

therefore (2.10) and (2.11) hold.
Let us turn to the proof of (2.12). We derive from (2.5) that

pn(k)�
√
n

2π

(k+(3/2))/n∫
(k−(1/2))/n

exp
(
γ

12n

)
exp
(

−nh(t −
1
2n)

2

)
dt.

Now since the second derivative ofh is nondecreasing on(0,1), Taylor’s formula implies
that

h

(
t − 1

2n

)
− h(t)� − 1

2n
h′(t)+ 1

8n2
h′′(t)

� − 1

2n

[
log(1+ t)− log(1− t)]+ 1

4n2(1− t2)
and therefore a lower bound forpn(k) is given by

√
n

2π

(k+(3/2))/n∫
(k−(1/2))/n

exp
[
γ

12n
+ 1

4

(
log(1+ t)− log(1− t))− n

2
h(t)

]
dt.

Hence, (2.12) will hold if we can check that the following inequality holds true for every
t such that 1/

√
n� t � 1− (1/2n)

1

4
log
(
1− t2)+ γ

12n
− 1

8n(1− t2) + n
[
2
(
1− √

1− t )2 − h(t)

2

]
� 0.

Using (A.6) which is proved in Appendix A (and multiplying by 4), we see that the
above inequality derives from

A(n, t)= log
(
1− t2)+ γ

3n
− 1

2n(1− t2) + nt3 + 7nt4

24
� 0 (2.14)

and therefore it remains to show that (2.14) holds. Expanding− log(1 − t2) in power
series one easily gets

− log
(
1− t2)� t2

2
+ t2

2(1− t2) ,
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which yields

A(n, t)� − t
2

2
− t2

2(1− t2) + γ

3n
− 1

2n(1− t2) + nt3 + 7nt4

24
.

But −t2(1/2)+ (γ /3n)+ t4(7n/24)� 0 for all t (because the discriminant is negative),
hence

A(n, t)� − t2

2(1− t2) − 1

2n(1− t2) + nt3

and sincent2(1− t2)� 3/4 (just use 1/
√
n� t � 1− (1/2n) andn� 5), one also has

(
1− t2)A(n, t)� 3t

4
− t2

4
− 1

2n
.

To check the positivity of the right hand side of this inequality, we notice that it is
concave and that its values at the end pointst = 1/

√
n and t = 1 − (1/2n) are easily

seen to be positive becausen � 5. HenceA(n, t) is positive for everyt such that
1/

√
n� t � 1− (1/2n) and the result follows. ✷

We now pass from the above evaluations of the Binomial probabilities to Gaussian
comparisons and establish the main results of this paper.

3. Upper bound for the Binomial tail

We can first easily derive from Proposition 2.3, the comparison between the Binomial
tail and the corresponding Gaussian at a point which is shifted from a quantity which is
slightly greater than the correction of continuity.

Proof of Lemma 1.2. –The result being trivial forn= 1, we suppose thatn � 2. We
shall check (1.2) for the extremal values ofj and then, ifn � 4, bound each Binomial
probability P[2Bn = n + k] = pn(k) by the corresponding Gaussian probability that√
nY belongs to the interval[k − (3/2), k+ (1/2)] for everyk such that 2� k � n− 2.

Note here that these intervals do not overlap whenk varies because of the constraint:
n+ k is even. In order to check (1.2) whenj = n, we use the classical lower bound for
the standard Gaussian tail (see for instance [4], p. 17)

P[Y � λ] � 1√
2π

× 1√
λ2 + 2

exp
(−λ2/2

)

at pointλ= √
n(1− (3/2n)). Noticing thatλ2 � n− 2, this gives

P

[
Y �

√
n

(
1− 3

2n

)]
� 1√

2πn
exp
(

−n
2

+ 1
)

� 1√
n

exp
(

−n
2

)

which easily leads to
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P

[
Y �

√
n

(
1− 3

2n

)]
� 2−n

and therefore (1.2) whenj = n. Assuming first thatn � 4 and 2� j � n − 2, (1.2)
follows by summing up (2.8) “from the tail” that is for those indicesk lying betweenj
andn− 2, using that (1.2) holds true at the end pointj = n. It remains now to deal with
the smallest value ofj . Whenn is odd andj = 1, (1.2) is trivial (since the right hand
side is larger than 1/2). Whenn is even andj = 0, checking (1.2) amounts to verify that

pn(0)/2� P

[
0 � Y � 3

2
√
n

]
. (3.1)

Now on the one hand, it comes from (2.2) and (2.3) that

pn(0)/2� 1√
2πn

exp
(

−(4γ − 1)

12n

)

and on the other hand by Jensen’s inequality

δ∫
0

exp
(

−x
2

2

)
dx � δ exp

(
−1

δ

δ∫
0

x2

2
dx

)
= δ exp

(
−δ

2

6

)
,

which leads forδ = (3/2√
n) to

P

[
0 � Y � 3

2
√
n

]
� 3

2
√
n

× 1√
2π

exp
(

− 3

8n

)
.

Hence,

2P

[
0� Y � 3

2
√
n

]
� pn(0)

[
3

2
exp
(

−1

n

(
− 1

12
− 3

8
+ γ

3

))]
� pn(0)

which means that (3.1) holds. This completes the proof whenn � 4. Forn � 3, there
is nothing more to do than checking the inequality at the two extreme values forj and
therefore (1.2) also holds in this case.✷

4. Lower bound for the Binomial tail

The proof of Lemma 1.3 is a bit more delicate than that of Lemma 1.2 but is
still quite easily obtainable from our local nonasymptotic expansions for the Binomial
probabilities.

Proof of Lemma 1.3. –Assume first that (1.3) holds true for the extreme valuesj = n
andj = 0 or j = 1 according to the parity ofn. Then, for the other values ofj , (1.3)
follows from Proposition 2.4 either by summing up (2.12) “from the tail”, i.e. over
indicesk such thatj � k � n− 2 if 1√

n
+ 1

2n � j

n
and then use the identity
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P

[√
n

2
Y � n

(
1−

√
1− j

n
+ 1

2n

)]

= P
[
Y � 2

√
n
(
1−√1/2n

)]+
1−(1/2n)∫

(j−(1/2))/n
gn(t)dt

or else by summing up (2.10) (using also (2.11) ifn is even) “from the beginning”, i.e.
over indicesk � j and then use the identities

pn(0)

2
+ ∑

1�k<j
pn(k)= 1

2
− P

[
Bn � (n+ j)

2

]

and by (2.1)

(j−(1/2))/n∫
0

gn(t)dt = 1

2
− P

[√
n

2
Y � n

(
1−

√
1− j

n
+ 1

2n

)]
.

It remains therefore to check (1.3) at the end points.We begin by checking that (1.3) holds
at pointj = n. To do this we use the classical upper bound for the standard Gaussian tail

P[Y � λ] � 1

2
exp
(

−λ
2

2

)

for λ= 2
√
n(1− √

1/2n). This gives

logP[Y � λ] � − log(2)− 2n+ 2
√

2n− 1

and therefore

−n log(2)− logP[Y � λ] � n
(
2− log(2)

)− 2
√

2n+ 1+ log(2).

But the discriminant of the polynomialX2(1− log(2)/2)− 2X+ 1+ log(2) is negative,
hence this polynomial is positive for every value ofX and in particular forX = √

2n
which implies the positivity of−n log(2) − logP[Y � λ]. HenceP[Y � 2

√
n(1 −√

1/2n)] � 2−n, which means that (1.3) holds forj = n. If j = 0, we have to prove
that

pn(0)/2� P

[
0 � Y � 2

√
n

(√
1+ 1

2n
− 1

)]
. (4.1)

But

pn(0)/2� exp
(

− 1

3n

)
1√
2πn

� 1

2
√

2πn
� P

[
0 � Y � 1

2
√
n

]
,

which implies (4.1) since
√

1+ 1/2n−1� 1/4n. The casej = 1 being trivial, the proof
is now complete. ✷



P. MASSART / Ann. I. H. Poincaré – PR 38 (2002) 991–1007 1003

Acknowledgement

The author gratefully thanks an anonymous referee for his care and helpful sugges-
tions.

Appendix A

We record here several elementary inequalities which have been used throughout
the paper. Although each of these results can be checked quite easily by using
adequate manipulations on Taylor expansions, we have chosen to present complete and
detailed proofs to make the verifications easier to the motivated reader. Most of these
results concern the functionh of Definition 2.1. We begin with nonasymptotic bounds
associated with the approximation of the meanvalue of a function on some interval by its
value at the midpoint. These bounds are established first for the functionh itself. Since it
is convex on(−1,1), the meanvalue ofh on every subsegment[x − δ, x + δ] of (−1,1)
is larger thanh(x) and the purpose of the following Lemma is to propose an upper bound
on the error that one makes when approximating the mean value ofh on [x−δ, x+δ] by
h(x). In the same spirit, some corrective factor for the approximation of the mean value
of exp(−h/2δ) by exp(−h(x)/2δ) is also provided, at least whenx is large enough as
compared toδ.

LEMMA A.1. – For every positive numberδ � 1/2, one has for anyx such that
0� x � 1− 2δ

1

2δ

x+δ∫
x−δ

h(t)dt � h(x)+ 31

90

δ2

1− x2
. (A.1)

If moreoverx2(1− x2)� 2δ/3, one also has

1

2δ

x+δ∫
x−δ

exp
[
−h(t)

2δ

]
dt � 1√

1− x2
exp
[
−h(x)

2δ
− δ

3(1− x2)

]
. (A.2)

Proof. –Expanding in power series, we get

1

2δ

x+δ∫
x−δ

h(t)dt = h(x)+
∞∑
k=1

h(2k)(x)

(2k+ 1)!δ
2k

= h(x)+
∞∑
k=1

(2k− 2)!
(2k+ 1)!

[
1

(1− x)2k−1
+ 1

(1+ x)2k−1

]
δ2k

= h(x)+ 1

3

δ2

(1− x2)
+R

where the remainder termR is given by

R =
∞∑
k=2

(2k − 2)!
(2k + 1)!

[
1

(1− x)2k−1
+ 1

(1+ x)2k−1

]
δ2k.
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Now, on the one hand for any integerk � 2, (2k − 2)!/(2k + 1)! � 2!/5! = 1/60 and on
the other hand, for anyθ ∈ [0,1/2] one has

∞∑
k=2

θ2k−1 = θ3

1− θ2
� θ

3
.

Hence, recalling thatδ/(1− x)� 1/2,

R� δ

60

∞∑
k=2

δ2k−1

(1− x)2k−1
+ δ2k−1

(1+ x)2k−1
� δ2

180

[
1

1− x + 1

1+ x
]

� δ2

90(1− x2)

and (A.1) follows. We now turn to the proof of (A.2). We first notice that setting

I = 1

2δ

x+δ∫
x−δ

exp
(

−h(t)
2δ

)
dt,

one has

I = 1

2δ

δ∫
0

[
exp
(

−h(x + u)
2δ

)
+ exp

(
−h(x − u)

2δ

)]
du. (A.3)

The Taylor expansion ofh at pointx can be written as

h(x + t)= h(x)+∑
j�1

h(j)(x)

j ! tj ,

with h′(x)= log(1+ x)− log(1− x) and for any integerj � 2

h(j)(x)= (j − 2)![(−1)j (1+ x)−j+1 + (1− x)−j+1].
Of course the derivatives of the functionh of any orderj are nonnegative at every
nonnegative pointx. Hence whent is nonnegative, one has

h(x + t)� h(x)+ th′(x)+ t2

2
h′′(x)� h(x)+ th′(x)+ t2

1− x2
.

Getting a lower bound forh(x + t) when t = −u with u ∈ [0, δ] is slightly more
complicated because we have to handle nonpositive terms in the Taylor expansion ofh

corresponding to the derivatives of odd orders. We therefore have to group consecutive
even and odd terms. More precisely for any integerk, we note thath(2k+1)(x)/h(2k)(x)�
(2k− 1)/(1− x) which leads to

h(2k)(x)

(2k)! u
2k − h(2k+1)(x)

(2k + 1)! u
2k+1 � h(2k)(x)

(2k)! u
2k
[
1− (2k− 1)u

(2k + 1)(1− x)
]
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which in turn implies sinceu� (1− x)/2
h(2k)(x)

(2k)! u
2k − h(2k+1)(x)

(2k + 1)! u
2k+1 � h(2k)(x)

(2k)! u
2k
[
1− (2k − 1)

2(2k + 1)

]
� 0.

Hence

h(x − u)� h(x)− uh′(x)+ 5u2

12
h′′(x)� h(x)+ th′(x)+ 5u2

6(1− x2)

and therefore whatever|t| � δ, the following lower bound is a fortiori valid

h(x + t)� h(x)+ th′(x)+ 2t2

3(1− x2)
.

Plugging this lower bound in (A.3), we derive that

I exp
(
h(x)

2δ

)
� 1

δ

δ∫
0

cosh
(
uh′(x)

2δ

)
exp
(

− u2

3δ(1− x2)

)
du

which, since cosh(h′(x)/2) = (1 − x2)−1/2, will imply (A.2) if we can prove that the
function

ψ :u→ log
[
cosh

(
uh′(x)

2δ

)]
− u2

3δ(1− x2)

is nondecreasing on[0, δ]. To prove this we compute the derivative ofψ

ψ ′(u)= h′(x)
2δ

tanh
(
uh′(x)

2δ

)
− 2u

3δ(1− x2)
.

Now, tanh(s)/s is nonincreasing onR+ so the nonnegativity ofψ ′ on [0, δ] has to be
checked only at pointδ. But tanh(h′(x)/2)= x andh′(x)/2 � x, so

ψ ′(δ)= xh′(x)
2δ

− 2

3(1− x2)
� x2

δ
− 2

3(1− x2)

which ensures thatψ ′(δ) is nonnegative because of the assumption thatx2(1 − x2) �
2δ/3. ✷

The following inequalities make easy the comparison ofh with various quantities
related to Gaussian log-probabilities.

LEMMA A.2. –For every integern � 1 and every t ∈ (−1,1), the following
inequality holds

−1

2

[
nh(t)+ log

(
1− t2)− (n− 1)t2

]
� t2n

4n(1− t2) . (A.4)
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Moreover, for everyt ∈ (0,1), the following inequalities are valid

2

t2

(
1− √

1− t )2 � 1

2
− t

4
− 1

2
log(1− t) (A.5)

and

1

t2

[
2
(
1− √

1− t )2 − h(t)

2

]
� t

4
+ 7t2

96
. (A.6)

Proof. –Let us expand the left hand sideL(t) of (A.4) in power series. One has
L(t)=L1(t)+L2(t), where

L1(t)= −1

2

[
n−1∑
j=2

n

j (2j − 1)
t2j −

n−1∑
j=2

1

j
t2j

]

(if n < 3, one takesL1 = 0) and

L2(t)= −1

2

[∑
j�n

n

j (2j − 1)
t2j −∑

j�n

1

j
t2j
]
.

Then, changingj into n+ 1 − j for those summation indicesj which are larger than
(n+ 1)/2, we get

L′′
1(t)= −

n−1∑
j=2

t2j−2(n+ 1− 2j)= − ∑
2�j�(n+1)/2

(n+ 1− 2j)
(
t2j−2 − t2n−2j)� 0

and therefore, sinceL1 and its derivative are null at point 0, we conclude thatL1 is
nonpositive. Finally

L2(t)= 1

2

[∑
j�n

1

j

(
1− n

(2j − 1)

)
t2j
]

� 1

4n

∑
j�n

t2j

and (A.4) follows. The power series expansion of the left hand side of (A.5) writes

1

2
+ t

4
+ 5t2

32
+∑
j�3

3× · · · × (2j + 1)

(j + 2)!2j tj (A.7)

as for the right hand side, one has

1

2
+ t

4
+ t2

4
+∑
j�3

1

2j
tj . (A.8)

For every integerj � 3, let us consider the ratiorj between the term of degreej in (A.7)
and the corresponding term in (A.8). Then

rj+1

rj
= (2j + 3)(j + 1)

2(j + 3)j
= 2j2 + 5j + 3

2j2 + 6j
� 1, for everyj � 3,
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which means that the sequence(rj )j�3 is nonincreasing and thereforerj � r3 < 1.
Hence, each term of the expansion (A.7) is not larger than the term with the same
degree in (A.8) which proves (A.5). To prove (A.6), we simply substract term by term to
expansion (A.7) the power series expansion ofh(t)/(2t2) which is

h(t)

2t2
= 1

2
+ t2

12
+∑
k�2

1

(2k + 2)(2k + 1)
t2k

and conclude since

3× · · · × (2j + 1)

(j + 2)!2j = 3× · · · × (2j + 1)

2× · · · × 2j
× 1

(j + 1)(j + 2)
� 1

(j + 1)(j + 2)

for every even integerj larger than 3. ✷
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