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ABSTRACT. — We give two simple inequalities on likelihood ratios. A first application is
the consistency of the maximum-penalized marginal-likelihood estimator of the number of
populations in a mixture with Markov regime. The second application is the derivation of
the asymptotic power of the likelihood ratio test under loss of identifiability for contiguous
alternatives. Finally, we propose self-normalized score tests that have exponentially decreasir
level and asymptotic power 1.
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RESUME. — Nous donnons deux inégalités pour les rapports de vraisemblance. Une premier
application est la consistance de I'estimateur de vraisemblance marginale pénalisée du nomt
de composants dans un mélange de populations a régime markovien. Une deuxiéme applicati
est le calcul de la puissance asymptotique du test de rapport de vraisemblance dans les c
de non identifiabilité des parametres sous I'hypothese nulle, et pour des alternatives contigie
Enfin, nous proposons un test du score auto-normalisé dont I'erreur de premiére espéce décr
exponentiellement vite et la puissance asymptotique est égale a 1.
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1. Introduction

Let (X;);en be a strictly stationary sequence of random variables with distribition
on a polish spacX . Let G be a set of densities with respect to some positive measure
v, such that the marginal densiyy of all X;’s is an element ofj; f will thus be fixed
throughout the paper. For agyin G, set

,(8) =) _logg(X;). 1)
i=1

When the variablegX;) are independently distributed,, is the likelihood of the
observations. Otherwise, call it marginal-likelihood. In this paper, we mainly investigate
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the use of¢, as an inference tool for the number of populations in various mixtures of
populations.

The testing problem of the number of populations in a mixture is a typical example
of testing problems exhibiting a lack of identifiability of the alternative under the null
hypothesis. This lack of identifiability leads to the degeneracy of the Fisher information
of the model, so that the classical chi-square theory does not apply. In two recent paper
D. Dacunha-Castelle and E. Gassiat [2,3] proposed a theory of reparametrization to solv
such problems, that they called “locally conic parametrization”. Roughly speaking, the
idea is to approach the null hypothesis using directional submodels in which the Fishe
information is normalized to be uniformly equal to one. This theory provides a guideline
to solve general testing problems in which non identifiability occurs, even using other
statistics than likelihood ratios, or handling non identically distributed or dependent
observations (see [3] for an application to ARMA models). The theory was developed in
[2] and [3] to obtain the asymptotic level of the likelihood ratio test (LRT) for the number
of populations in a mixture with independent observations. Recently, Liu and Shao [7]
proposed an alternative proof to derive this asymptotic distribution. The idea is to give ar
expansion of the likelihood ratio using a “generalized differentiable in quadratic mean
condition”, and to handle simultaneously Hellinger distances and Pearson distances.

In this paper, we prove two general simple inequalities on likelihood ratios (or
marginal-likelihood ratios) that allow to derive, in a very simple way, upper bounds
for the LRT statistic. We then apply it to several mixtures of populations. Fogany,
define

s=f g _1
fo __f

S 15 =1
1L 1% =10

Sg =

()

where|| - |2 is the norm inL?( fdv). Let us now state the first inequality.
INEQUALITY 1.1.-—

< 2sup >i—15¢(Xi)

Su —_—
y , S ST 2 (X

8€G: n(g)—Ln(f)=0

g—f
f

with (s,)—(x) = min{0, s,(x)}.
The second inequality is the following.
INEQUALITY 1.2.—

1 (Ciiise(X)?
£,(8) — Ly <sSUpS——5——-
?ggp( © = 6D <3 oct S (5)2 (X,)

Inequalities 1.1 and 1.2 are proved in Section 5. Inequality 1.2 allows to prove the
tightness of the LRT (or marginal LRT) statistic under simple assumptions. It is used in
Section 2 to prove the consistency of the estimator of the number of populations witt
Markov regime using penalized marginal-likelihood. This estimator has been used fol
instance by Leroux and Puterman [6], but was only known not to underestimate the
number of populations with asymptotic probability 1, see [5,9]. Inequality 1.1 allows to
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prove that the Pearson distance of the maximum likelihood estimator of the margina
density to the true density ig/n-consistent under simple assumptions. We use it to
derive the asymptotic expansion of the LRT statistic under contiguous alternatives fol
testing problems exhibiting a lack of identifiability of the alternative under the null
hypothesis. The result applies in particular to the LRT for the number of populations with
independent observations, so that it is possible to find the asymptotic power of the tes
under contiguous alternatives. We also propose self-normalized score tests which hay
asymptotic level 0 and power 1 by a use of recent results on self-normalized empirica
processes obtained by Bercu, Gassiat and Rio [1].

2. Maximum-penalized marginal-likelihood estimation of the number of
populationsin a mixturewith Markov regime

LetP = {py, 6 € ©} be a set of densities with respectitp® being a compact finite
dimensional set. Let als@Z;);cn be a sequence of stationary random variables taking
values in a finite subset a® such that, conditionally tqZ;), the variablesX; are
independent, with densities;,. Then, the marginal density of; is a finite mixture
of populations, that is

p
0
f= E :771' Pe?
i=1

whered?, ..., 67 are the possible values for thg’s, andn? = P(Zy = 67). If (Z;);en is

a Markov chain, the sequence is said to be a finite mixture of populations with Markov
regime, and the number of populations is the number of different states of the Markov
chain having positive probability. Define for any integer

p p
g,,:{zmpg[: 6h,...,0,) €O, (m,...,m,) €[0,1]7, Zn,:l}.
i=1

i=1

In this section, the sa¥ of possible densities for the marginal distribution of tkigs
will be set to

p
Gg= U G,=0p.
p=1
For anyg in G, define the number of populations agg) = min{p € {1,..., P}: g €
G,}, and letpo = p(f). DefineS as the set of functions, (see (2)) forg in Gp.
We now define the maximum-penalized marginal-likelihood estimatopgfthe
number of populations, as a maximizgof

Tn(p) = max{gn(g): 8 € gp} - an(p)

over{l,..., P}.
Let us introduce some assumptions.
(Al) a,(-)isincreasinga,(p1) — a,(p2) tends to infinity as tends to infinity for any
p1> p2, anda, (p)/n tends to 0 ag tends to infinity for anyp.



900 E. GASSIAT / Ann. I. H. Poincaré — PR 38 (2002) 897—906

(A2) The parametrizatio® — py(x) is continuous for allx, and one can find a
functionm in L1(fdv) such that for ang € G, |logg| < m.

(A3) (Z;)isanirreducible Markov chain such thatgifis its mixing rate function, and
Hpg(u) is the entropy with bracketing & with respect to the normi - |2 4 (see
[4] for definitions), then

1
/\/Hﬁ(u) du < +o0.
0

In[4] itis proved that]| - |25 > || - l|2, so that under (A3)5 admits an envelope function

F such that[ F2fdv < +o00. Assumption (A3) also ensures the uniform tightness of

>y s(X;))/+/n) for s € S. Indeed, it is proved by Doukhan, Massart and Rio [4] that

under this assumptioriy_"_; s(X;))//n)ses Satisfies a uniform central limit theorem.
We now have:

THEOREM 2.1. — Under (Al), (A2) and (A3), p converges in probability to the
number of populations py.

Proof. —

1

P(p > po) <
P

M= 11

P(sup(£.(8) — £.(f)) — sup (€.(g) — €,(f)) = an(p) — ax(po))

po+1l  8€9p 8€9pg

p
' n 2
(Qiz1s(Xi)
< IP’(SU ,ll—>an( )_an( ))
p:%o:ﬂ—l seSp E,-:1SE(X1-) P po
by applying Inequality 1.2 and since sgggpo(z,,(g) — £,(f)) > 0. Now, using
Theorem 1 of [4], under (A3)

2

1 n
sup= (Zs(x,o) =Op(1), 3)

seS n i=1

and since the usual norm i&?(fdv) is upper bounded by - |2 5, S? is P-Glivenko—
Cantelli (see [8]), so that in probability

ATk 250 (K0 =10 -1 “

But under the assumptions,
inf [ls—l2> 0. ©)

Indeed, if (5) does not hold, there exists a sequeticef functions inS such that
l(s™)_|l> converges to 0. This implies that")_ converges to 0 inL1(f dv) and v-
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a.s. for a subsequence. Blts")_ dv = — [(s")+ dv, with s, (x) = max0, s(x)}, since
all functionss in S verify [sfdv = 0. Thus(s"), converges also to 0 inl(f dv),
andv-a.s. for a subsequence. But under (AS)admits a square integrable envelope
function F, so that along a subsequenceconverges-a.s. to 0, and irL(f dv). This
contradicts the fact that all functiorsn S verify [ s fdv = 1. Applying (3), (4), (5),

(X0, 5(X0)?
S

andP(p > po) tends to 0 a& tends to infinity using (Al). Also,

po—1 _ —
p < po Z P( g Z (g) ngn(f) > an(p) an(p0)>.
8€Yp

=Op(D)

_ n
Under (A2), the seflog(g/f), g € G,} is Glivenko—Cantelli inf v-probability, so that
Sup,cg, (¢n(g) — €,(f))/n converges in probability to

—inf / flogL,
8€9p 8

which is negative using (A2) and the fact that< pg. Finally, p converges tapg in

probability. O

3. Asymptotic power of the LRT test under loss of identifiability

In this section, we assume that tiie's are independent, ar@ s the set of possible
densities of theX;’s, not necessarily mixtures of populations. Define the extended set of
scoresS as the set of functions, (see (2)) forg in G. Define Hy; »(u) as the entropy
with bracketing ofS with respect to the normji - ||, in L?(f dv). Let us introduce the
assumption (B):

1
/\/H[]’z(u) du < +o0.
0

Under (B), the sef is Donsker.
Define now the set of scoré@® as the set of functiong in L2( f dv) such that one can
find a sequence, in G satisfying||M||2 — 0 and||d —s,,ll2— 0.

With such a(g,,), define, for alls € [0 1], g = g», Wheren < % < n+1. We thus have
that, for anyd € D, there exists a parametric pai$))o< <« such that for any < [0, «],
g €G,t— ||gf |, is continuous, tends to 0 agends to 0, andd — Sg ll2 — 0 ast
tends to 0.

We first prove that all densities iry {/n-neighborhoods of" leading to a scord on
a parametric path define contiguous probabiliffgsfor the sequenc&,, ..., X,. We
refer the reader to [10] for the definition of contiguity and general results on likelihood
ratios for contiguous measures.
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Using the reparametrizatiom%nz =u, for anyd e D, there exists a parametric

path (gu)Oguga such that
2
JE5L ) vt

Now,

2

/( 8u 1—§d>2fdv=/<%_1_”d_(\/%_1)3 fdv

f 2 2

<%/<gu; _ud> fdv+2/<\/g >4fdv

su—f2, —F
<0(u2)+u2/< ! ) ( sulf l) fdv.
u Veulf+1
Applying the dominated convergence theorem to the second term proves that the upp
bound is @u?) so that the parametric patty,)o<.<. iS differentiable in quadratic
mean, with score functiod. As a consequence, agy, 5, along such a path defines
aP, = (g.,=v)®" mutually contiguous ta fv)®". Fix such ag,, s, and letdy be the
associated score. We now have the theorem:

THEOREM 3.1. — Under (B),

2

1 1 <
squ(En(g) — () =5 SUD<maX{ NG > d(Xo); 0}) + op, (1).
ge i=1

2deD

Proof. — Following the proof of Theorem 2.1, one can see that (3) and (4) hold again.
Since f € G, one may apply inequality 1.1 to obtain

g—f
f

sup
geg: en(g)_en(f)>o

=Op(n~Y?). (6)

2

Taylor expansion gives that 104+ u) = u — § +u?R(u), with lim,_.o R(u) = 0. Thus
foranyg,

2 n

tug) - en(f>—H H Zg(X>— Hg f sg(xo)2

2 n
([

By (B), S admits a square integrable envelope functiorand

Hg f

sg(Xi)>~

X0 =00 ).
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Moreover, under (B)} E;’:l(sg(Xl-))2 = Op(1). These facts, together with (6) lead to

2 n

TS oore([ 5
2i=1

f

sup
2€G: n(8)—Ln(f)=0

sg(Xi)) =0p(D),

so that

S0

2i=1

g€g

SUELL, (6) ~ () = sup{” = f Z(sg(x,o)z} +0n(D),
l:l

which implies that

2suf?,(g) — £, (f)) < sup - + op(1).
geg gt La(®)—Ea(£) >0 > Nx(X )

n

But under (B),S? is Glivenko—Cantelli in probability so that

su

g€g n

n 2 .
J=E g o),

and

2

1 n
2 £.(g) — ¢, < — X;);0 + op(D).
UL, (&) — 61 (f) sup (max{ T 2% X0 }) 0x(1)

8 ln(8)—n(f)20

LetG, ={g€G: ||%||2 < n~Y4}. Using (6), we obtain that

2

1 n
23up(z (&) — €.(f)) < sup(max{ nzsg(xi);o}> + op(1).
i=1

g€Gn

Now, supg, lls¢ — Dll2 tends to 0 as: tends to infinity so that for a sequeneg
decreasing to 0, and with

Ay={sq—d: g€G,, deD, |lsg —dlla <un},

we obtain that

deD éeA,l

25up,(8) = £a(f)) < (max{sup - Zd(X>+sup 28(X> 0}> + 08 (D).
ge

But using (B), the definition ofA,, and the maximal inequality p. 286 of [10],

Sup 7 2 ZS(X )= 0p(D),

SEA,
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so that

2

1
2sup(L,(g) — £,(f)) < Sup<max{ Zd(X) o}) + 0p(1). (7)
geg \/_

Moreover, using the differentiability in quadratic mean along the parametric paths, one
obtains that for a sequence of finite subgetancreasing tdD, one has for any

2

1 n
2 £, — ¢, — d(X;);0 + 1).
sup( (&) — €.(f)) = sup(max{ ﬁ; (X;) }) op(1)

Dy

Therefore, equality holds in (7). Sindg'v)®" and P, are mutually continguous, all
op(l) are @, (1). O

Define (W(d))4ep the centered gaussian process with covariance the scalar produc
in L?(f dv). One has:

COROLLARY 3.1. —Assume that (B) holds. Under P,, sup,.g(€.(g) — €,(f)) con-
vergesin distribution to

2

1
> sup(max{W(d) +c/dd0fdv; O}) .

deD

The corollary follows from Theorem 3.1 by an application of Le Cam’s third Lemma
in metric spaces, see [11].
The result may be applied to mixtures of populations.

4. Self-normalized score tests

We still assume that the variabl&s’s are independent with common unknown density
f. Let us now consider the testing problemHf: “¢g = f” againstHi: “g # f, g€ G"
for some particular density’. To investigate the asymptotic level and the asymptotic
power of a test, one has to know about the (large or moderate) deviations of the testin
statistic.

Let S be as in Section 3y(n) some sequence tending {#eco, and define the test
function¢, by ¢, = 1 if and only if

(3, 5(X0)2
T e

andg¢, = 0 otherwise. Lety, be the level of the test and-18,(g) its power function.
Introduce the assumption (CP is fv-Donsker, and for any positivg, there exists
a finite covering(B;);c; of S such that, for any € I, one can find functionsgl;, u;)
satisfying for any € B;, 12 < s <u?, su; > 0,sl; >0, and [ (u; — 1;)>f dv < 8.
One has:

= v(n),
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THEOREM 4.1. — Assume(C). Let v(n) — +oo withv(n) = o(n). Thenforany g € G
such that g # f, one has

lim lIo = 1and Iim 1-8,(g)=1
n—+00 y(n) 9o = 2 n——+00 n(8) =<

Proof. —Under (C), the self normalized ratio sug >-"_; s(X;)/1/>_1_1 5°(X;) obeys
a moderate deviations principle by Theorem 3.1 of [1], and the resuit, dollows.
The result omB, (g) is a consequence of (C) and the fact that) — +oco. O

Remark. — Assumption (C) holds in particular wha is the set of mixtures of
gaussian densities with different means and same variance.

5. Proof of Inequalities 1.1 and 1.2

We have

sg(Xi))
2

1
_ 2 n
% G2 (X,
i=1

1

: llg—f
X)) — || 2=
2;sg( ) ZH f

since for any real number, log(1+ u) <u — %u%. As soon a¥,(g) — £,(f) =0,

2 n

Hﬂ 3 (s)% (X))
S 2i=1

- lg—-f
x)>z 8L
2;sg( . ZH f

and Inequality 1.1 follows.
Now, for anyg € G,

(8 — ()< sup D log(1+ psg(X)))

0<p<IEFL Iz i=1

n 2 n
Py s (X)) = 5D (502 (X))
i=1

i=1

< sup
0<p<IEHL Iz

n 2 n
<sup p > sy (X0) = -3 (502 (X)
p20 1 i=1

1L s (X))
T2 (502 (X))

and Inequality 1.2 follows.
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