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ABSTRACT. – We give two simple inequalities on likelihood ratios. A first application is
the consistency of the maximum-penalized marginal-likelihood estimator of the number of
populations in a mixture with Markov regime. The second application is the derivation of
the asymptotic power of the likelihood ratio test under loss of identifiability for contiguous
alternatives. Finally, we propose self-normalized score tests that have exponentially decreasing
level and asymptotic power 1.
 2002 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Nous donnons deux inégalités pour les rapports de vraisemblance. Une première
application est la consistance de l’estimateur de vraisemblance marginale pénalisée du nombre
de composants dans un mélange de populations à régime markovien. Une deuxième application
est le calcul de la puissance asymptotique du test de rapport de vraisemblance dans les cas
de non identifiabilité des paramètres sous l’hypothèse nulle, et pour des alternatives contigües.
Enfin, nous proposons un test du score auto-normalisé dont l’erreur de première espèce décroit
exponentiellement vite et la puissance asymptotique est égale à 1.
 2002 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Let (Xi)i∈N be a strictly stationary sequence of random variables with distributionP

on a polish spaceX . LetG be a set of densitiesg with respect to some positive measure
ν, such that the marginal densityf of all Xi ’s is an element ofG; f will thus be fixed
throughout the paper. For anyg in G, set

�n(g) =
n∑

i=1

logg(Xi). (1)

When the variables(Xi) are independently distributed,�n is the likelihood of the
observations. Otherwise, call it marginal-likelihood. In this paper, we mainly investigate
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the use of�n as an inference tool for the number of populations in various mixtures of
populations.

The testing problem of the number of populations in a mixture is a typical example
of testing problems exhibiting a lack of identifiability of the alternative under the null
hypothesis. This lack of identifiability leads to the degeneracy of the Fisher information
of the model, so that the classical chi-square theory does not apply. In two recent papers,
D. Dacunha-Castelle and E. Gassiat [2,3] proposed a theory of reparametrization to solve
such problems, that they called “locally conic parametrization”. Roughly speaking, the
idea is to approach the null hypothesis using directional submodels in which the Fisher
information is normalized to be uniformly equal to one. This theory provides a guideline
to solve general testing problems in which non identifiability occurs, even using other
statistics than likelihood ratios, or handling non identically distributed or dependent
observations (see [3] for an application to ARMA models). The theory was developed in
[2] and [3] to obtain the asymptotic level of the likelihood ratio test (LRT) for the number
of populations in a mixture with independent observations. Recently, Liu and Shao [7]
proposed an alternative proof to derive this asymptotic distribution. The idea is to give an
expansion of the likelihood ratio using a “generalized differentiable in quadratic mean
condition”, and to handle simultaneously Hellinger distances and Pearson distances.

In this paper, we prove two general simple inequalities on likelihood ratios (or
marginal-likelihood ratios) that allow to derive, in a very simple way, upper bounds
for the LRT statistic. We then apply it to several mixtures of populations. For anyg ∈ G,
define

sg =
g−f

f

‖g−f

f
‖2

=
g

f
− 1

‖ g

f
− 1‖2

, (2)

where‖ · ‖2 is the norm inL2(f dν). Let us now state the first inequality.

INEQUALITY 1.1. –

sup
g∈G: �n(g)−�n(f )�0

∥∥∥∥g − f

f

∥∥∥∥
2
� 2sup

g∈G

∑n
i=1 sg(Xi)∑n

i=1(sg)2−(Xi)
,

with (sg)−(x) = min{0, sg(x)}.
The second inequality is the following.

INEQUALITY 1.2. –

sup
g∈G

(
�n(g) − �n(f )

)
� 1

2
sup
g∈G

(
∑n

i=1 sg(Xi))
2∑n

i=1(sg)2−(Xi)
.

Inequalities 1.1 and 1.2 are proved in Section 5. Inequality 1.2 allows to prove the
tightness of the LRT (or marginal LRT) statistic under simple assumptions. It is used in
Section 2 to prove the consistency of the estimator of the number of populations with
Markov regime using penalized marginal-likelihood. This estimator has been used for
instance by Leroux and Puterman [6], but was only known not to underestimate the
number of populations with asymptotic probability 1, see [5,9]. Inequality 1.1 allows to
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prove that the Pearson distance of the maximum likelihood estimator of the marginal
density to the true density is

√
n-consistent under simple assumptions. We use it to

derive the asymptotic expansion of the LRT statistic under contiguous alternatives for
testing problems exhibiting a lack of identifiability of the alternative under the null
hypothesis. The result applies in particular to the LRT for the number of populations with
independent observations, so that it is possible to find the asymptotic power of the test
under contiguous alternatives. We also propose self-normalized score tests which have
asymptotic level 0 and power 1 by a use of recent results on self-normalized empirical
processes obtained by Bercu, Gassiat and Rio [1].

2. Maximum-penalized marginal-likelihood estimation of the number of
populations in a mixture with Markov regime

Let P = {pθ, θ ∈ �} be a set of densities with respect toν, � being a compact finite
dimensional set. Let also(Zi)i∈N be a sequence of stationary random variables taking
values in a finite subset of� such that, conditionally to(Zi), the variablesXi are
independent, with densitiespZi

. Then, the marginal density ofX1 is a finite mixture
of populations, that is

f =
p∑

i=1

π0
i pθ0

i

whereθ0
1 , . . . , θ0

p are the possible values for theZi ’s, andπ0
i = P(Z1 = θ0

i ). If (Zi)i∈N is
a Markov chain, the sequence is said to be a finite mixture of populations with Markov
regime, and the number of populations is the number of different states of the Markov
chain having positive probability. Define for any integerp

Gp =
{

p∑
i=1

πipθi
: (θ1, . . . , θp) ∈ �p, (π1, . . . , πp) ∈ [0, 1]p,

p∑
i=1

πi = 1

}
.

In this section, the setG of possible densities for the marginal distribution of theXi ’s
will be set to

G =
P⋃

p=1

Gp = GP .

For anyg in G, define the number of populations asp(g) = min{p ∈ {1, . . . , P }: g ∈
Gp}, and letp0 = p(f ). DefineS as the set of functionssg (see (2)) forg in GP .

We now define the maximum-penalized marginal-likelihood estimator ofp0, the
number of populations, as a maximizerp̂ of

Tn(p) = max{�n(g): g ∈ Gp} − an(p)

over{1, . . . , P }.
Let us introduce some assumptions.

(A1) an(·) is increasing,an(p1) − an(p2) tends to infinity asn tends to infinity for any
p1 > p2, andan(p)/n tends to 0 asn tends to infinity for anyp.
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(A2) The parametrizationθ → pθ(x) is continuous for allx, and one can find a
functionm in L1(f dν) such that for anyg ∈ GP , | logg| � m.

(A3) (Zi) is an irreducible Markov chain such that, ifβ is its mixing rate function, and
Hβ(u) is the entropy with bracketing ofS with respect to the norm‖ · ‖2,β (see
[4] for definitions), then

1∫
0

√
Hβ(u) du < +∞.

In [4] it is proved that‖ · ‖2,β � ‖ · ‖2, so that under (A3),S admits an envelope function
F such that

∫
F 2f dν < +∞. Assumption (A3) also ensures the uniform tightness of

(
∑n

i=1 s(Xi))/
√

n) for s ∈ S . Indeed, it is proved by Doukhan, Massart and Rio [4] that
under this assumption,(

∑n
i=1 s(Xi))/

√
n)s∈S satisfies a uniform central limit theorem.

We now have:

THEOREM 2.1. – Under (A1), (A2) and (A3), p̂ converges in probability to the
number of populations p0.

Proof. –

P
(
p̂ > p0

)
�

P∑
p=p0+1

P
(
Tn(p) � Tn(p0)

)

=
P∑

p=p0+1

P
(

sup
g∈Gp

(
�n(g) − �n(f )

)− sup
g∈Gp0

(
�n(g) − �n(f )

)
� an(p) − an(p0)

)

�
P∑

p=p0+1

P

(
sup
s∈S

(
∑n

i=1 s(Xi))
2∑n

i=1 s2−(Xi)
� an(p) − an(p0)

)

by applying Inequality 1.2 and since supg∈Gp0
(�n(g) − �n(f )) � 0. Now, using

Theorem 1 of [4], under (A3)

sup
s∈S

1

n

(
n∑

i=1

s(Xi)

)2

= OP(1), (3)

and since the usual norm inL2(f dν) is upper bounded by‖ · ‖2,β , S2 is P-Glivenko–
Cantelli (see [8]), so that in probability

lim
n→+∞ inf

s∈S
1

n

n∑
i=1

s2
−(Xi) = inf

s∈S
‖s−‖2

2. (4)

But under the assumptions,

inf
s∈S

‖s−‖2 > 0. (5)

Indeed, if (5) does not hold, there exists a sequencesn of functions inS such that
‖(sn)−‖2 converges to 0. This implies that(sn)− converges to 0 inL1(f dν) and ν-
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a.s. for a subsequence. But
∫

(sn)− dν = − ∫ (sn)+ dν, with s+(x) = max{0, s(x)}, since
all functionss in S verify

∫
sf dν = 0. Thus(sn)+ converges also to 0 inL1(f dν),

and ν-a.s. for a subsequence. But under (A3),S admits a square integrable envelope
functionF , so that along a subsequencesn convergesν-a.s. to 0, and inL2(f dν). This
contradicts the fact that all functionss in S verify

∫
s2f dν = 1. Applying (3), (4), (5),

sup
s∈S

(
∑n

i=1 s(Xi))
2∑n

i=1 s2−(Xi)
= OP(1)

andP(p̂ > p0) tends to 0 asn tends to infinity using (A1). Also,

P
(
p̂ < p0

)
�

p0−1∑
p=1

P

(
sup
g∈Gp

�n(g) − �n(f )

n
� an(p) − an(p0)

n

)
.

Under (A2), the set{log(g/f ), g ∈ Gp} is Glivenko–Cantelli inf ν-probability, so that
supg∈Gp

(�n(g) − �n(f ))/n converges in probability to

− inf
g∈Gp

∫
f log

f

g
,

which is negative using (A2) and the fact thatp < p0. Finally, p̂ converges top0 in
probability. ✷

3. Asymptotic power of the LRT test under loss of identifiability

In this section, we assume that theXi ’s are independent, andG is the set of possible
densities of theXi ’s, not necessarily mixtures of populations. Define the extended set of
scoresS as the set of functionssg (see (2)) forg in G. DefineH[],2(u) as the entropy
with bracketing ofS with respect to the norm‖ · ‖2 in L2(f dν). Let us introduce the
assumption (B):

1∫
0

√
H[],2(u) du < +∞.

Under (B), the setS is Donsker.
Define now the set of scoresD as the set of functionsd in L2(f dν) such that one can

find a sequencegn in G satisfying‖gn−f

f
‖2 → 0 and‖d − sgn

‖2 → 0.

With such a(gn), define, for allt ∈ [0, 1], gt = gn, wheren � 1
t

< n+1. We thus have
that, for anyd ∈ D, there exists a parametric path(gt )0�t�α such that for anyt ∈ [0, α],
gt ∈ G, t → ‖gt −f

f
‖2 is continuous, tends to 0 ast tends to 0, and‖d − sgt

‖2 → 0 ast

tends to 0.
We first prove that all densities in 1/

√
n-neighborhoods off leading to a scored on

a parametric path define contiguous probabilitiesPn for the sequenceX1, . . . , Xn. We
refer the reader to [10] for the definition of contiguity and general results on likelihood
ratios for contiguous measures.
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Using the reparametrization‖gu−f

f
‖2 = u, for any d ∈ D, there exists a parametric

path(gu)0�u�α such that

∫ (
gu − f

f
− ud

)2

f dν = o
(
u2).

Now,

∫ (√
gu

f
− 1− u

2
d

)2

f dν =
∫ ( gu

f
− 1− ud

2
−
(√

gu

f
− 1

)2
2

)2

f dν

� 1

2

∫ (
gu − f

f
− ud

)2

f dν + 1

2

∫ (√
gu

f
− 1

)4

f dν

� o
(
u2)+ u2

∫ ( gu−f

f

u

)2(√
gu/f − 1√
gu/f + 1

)2

f dν.

Applying the dominated convergence theorem to the second term proves that the upper
bound is o(u2) so that the parametric path(gu)0�u�α is differentiable in quadratic
mean, with score functiond. As a consequence, anygc/

√
n along such a path defines

a Pn = (gc/
√

nν)⊗n mutually contiguous to(f ν)⊗n. Fix such agc/
√

n, and letd0 be the
associated score. We now have the theorem:

THEOREM 3.1. – Under (B),

sup
g∈G

(
�n(g) − �n(f )

)= 1

2
sup
d∈D

(
max

{
1√
n

n∑
i=1

d(Xi);0

})2

+ oPn
(1).

Proof. – Following the proof of Theorem 2.1, one can see that (3) and (4) hold again.
Sincef ∈ G, one may apply inequality 1.1 to obtain

sup
g∈G: �n(g)−�n(f )�0

∥∥∥∥g − f

f

∥∥∥∥
2
= OP

(
n−1/2). (6)

Taylor expansion gives that log(1+ u) = u − u2

2 + u2R(u), with limu→0 R(u) = 0. Thus
for anyg,

�n(g) − �n(f ) =
∥∥∥∥g − f

f

∥∥∥∥
2

n∑
i=1

sg(Xi) − 1

2

∥∥∥∥g − f

f

∥∥∥∥
2

2

n∑
i=1

(
sg(Xi)

)2

+
∥∥∥∥g − f

f

∥∥∥∥
2

2

n∑
i=1

(
sg(Xi)

)2
R

(∥∥∥∥g − f

f

∥∥∥∥
2
sg(Xi)

)
.

By (B), S admits a square integrable envelope functionF , and

max
i=1,...,n

F (Xi) = oP

(√
n
)
.
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Moreover, under (B)1
n

∑n
i=1(sg(Xi))

2 = OP(1). These facts, together with (6) lead to

sup
g∈G: �n(g)−�n(f )�0

∥∥∥∥g − f

f

∥∥∥∥
2

2

n∑
i=1

(
sg(Xi)

)2
R

(∥∥∥∥g − f

f

∥∥∥∥
2
sg(Xi)

)
= oP(1),

so that

sup
g∈G

(
�n(g) − �n(f )

)= sup
g∈G

{∥∥∥∥g − f

f

∥∥∥∥
2

n∑
i=1

sg(Xi) − 1

2

∥∥∥∥g − f

f

∥∥∥∥
2

2

n∑
i=1

(
sg(Xi)

)2}+ oP(1),

which implies that

2sup
g∈G

(
�n(g) − �n(f )

)
� sup

g: �n(g)−�n(f )�0

(
max

{∑n

i=1
sg(Xi)√
n

;0
})2

∑n

i=1
s2
g(Xi)

n

+ oP(1).

But under (B),S2 is Glivenko–Cantelli in probability so that

sup
g∈G

∣∣∣∣
∑n

i=1 s2
g(Xi)

n
− 1

∣∣∣∣= oP(1),

and

2sup
g∈G

(
�n(g) − �n(f )

)
� sup

g: �n(g)−�n(f )�0

(
max

{
1√
n

n∑
i=1

sg(Xi);0

})2

+ oP(1).

Let Gn = {g ∈ G: ‖g−f

f
‖2 � n−1/4}. Using (6), we obtain that

2sup
g∈G

(
�n(g) − �n(f )

)
� sup

g∈Gn

(
max

{
1√
n

n∑
i=1

sg(Xi);0

})2

+ oP(1).

Now, supg∈Gn
‖sg − D‖2 tends to 0 asn tends to infinity so that for a sequenceun

decreasing to 0, and with

$n = {
sg − d: g ∈ Gn, d ∈D, ‖sg − d‖2 � un

}
,

we obtain that

2sup
g∈G

(
�n(g) − �n(f )

)
�
(

max

{
sup
d∈D

1√
n

n∑
i=1

d(Xi) + sup
δ∈$n

1√
n

n∑
i=1

δ(Xi);0

})2

+ oP(1).

But using (B), the definition of$n and the maximal inequality p. 286 of [10],

sup
δ∈$n

1√
n

n∑
i=1

δ(Xi) = oP(1),
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so that

2sup
g∈G

(
�n(g) − �n(f )

)
� sup

d∈D

(
max

{
1√
n

n∑
i=1

d(Xi);0

})2

+ oP(1). (7)

Moreover, using the differentiability in quadratic mean along the parametric paths, one
obtains that for a sequence of finite subsetsDk increasing toD, one has for anyk

2sup
g∈G

(
�n(g) − �n(f )

)
� sup

d∈Dk

(
max

{
1√
n

n∑
i=1

d(Xi);0

})2

+ oP(1).

Therefore, equality holds in (7). Since(f ν)⊗n and Pn are mutually continguous, all
oP(1) are oPn

(1). ✷
Define(W(d))d∈D the centered gaussian process with covariance the scalar product

in L2(f dν). One has:

COROLLARY 3.1. –Assume that (B) holds. Under Pn, supg∈G(�n(g) − �n(f )) con-
verges in distribution to

1

2
sup
d∈D

(
max

{
W(d) + c

∫
dd0f dν;0

})2

.

The corollary follows from Theorem 3.1 by an application of Le Cam’s third Lemma
in metric spaces, see [11].

The result may be applied to mixtures of populations.

4. Self-normalized score tests

We still assume that the variablesXi ’s are independent with common unknown density
f . Let us now consider the testing problem ofH0: “g = f ” againstH1: “g �= f , g ∈ G”
for some particular densityf . To investigate the asymptotic level and the asymptotic
power of a test, one has to know about the (large or moderate) deviations of the testing
statistic.

Let S be as in Section 3,v(n) some sequence tending to+∞, and define the test
functionφn by φn = 1 if and only if

sup
s∈S

(
∑n

i=1 s(Xi))
2∑n

i=1 s2(Xi)
� v(n),

andφn = 0 otherwise. Letαn be the level of the test and 1− βn(g) its power function.
Introduce the assumption (C):D is f ν-Donsker, and for any positiveδ, there exists

a finite covering(Bi)i∈I of S such that, for anyi ∈ I , one can find functions(li, ui)

satisfying for anys ∈ Bi , l2
i � s2 � u2

i , sui � 0, sli � 0, and
∫

(ui − li )
2f dν � δ.

One has:



E. GASSIAT / Ann. I. H. Poincaré – PR 38 (2002) 897–906 905

THEOREM 4.1. – Assume (C). Let v(n) → +∞ with v(n) = o(n). Then for any g ∈ G
such that g �= f , one has

lim
n→+∞

1

v(n)
logαn = −1

2
and lim

n→+∞ 1− βn(g) = 1.

Proof. – Under (C), the self normalized ratio sups∈S
∑n

i=1 s(Xi)/
√∑n

i=1 s2(Xi) obeys
a moderate deviations principle by Theorem 3.1 of [1], and the result onαn follows.

The result onβn(g) is a consequence of (C) and the fact thatv(n) → +∞. ✷
Remark. – Assumption (C) holds in particular whenG is the set of mixtures of

gaussian densities with different means and same variance.

5. Proof of Inequalities 1.1 and 1.2

We have

�n(g) − �n(f ) =
n∑

i=1

log
(

1+
∥∥∥∥g − f

f

∥∥∥∥
2
sg(Xi)

)

�
∥∥∥∥g − f

f

∥∥∥∥
2

n∑
i=1

sg(Xi) − 1

2

∥∥∥∥g − f

f

∥∥∥∥
2

2

n∑
i=1

(sg)2
−(Xi),

since for any real numberu, log(1+ u) � u − 1
2u2−. As soon as�n(g) − �n(f ) � 0,

∥∥∥∥g − f

f

∥∥∥∥
2

n∑
i=1

sg(Xi) � 1

2

∥∥∥∥g − f

f

∥∥∥∥
2

2

n∑
i=1

(sg)2
−(Xi)

and Inequality 1.1 follows.
Now, for anyg ∈ G,

�n(g) − �n(f ) � sup
0�p�‖ g−f

f ‖2

n∑
i=1

log
(
1+ psg(Xi)

)

� sup
0�p�‖ g−f

f
‖2

[
p

n∑
i=1

sg(Xi) − p2

2

n∑
i=1

(sg)2
−(Xi)

]

� sup
p�0

[
p

n∑
i=1

sg(Xi) − p2

2

n∑
i=1

(sg)2
−(Xi)

]

� 1

2

(
∑n

i=1 sg(Xi))
2∑n

i=1(sg)2−(Xi)

and Inequality 1.2 follows.
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