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1. Introduction

In two previous papers, [5] and [6], we developed the theory of inference for hidden
Markov models (HMMs) when the state space of the chain is finite but the hiding
mechanism is not finitely-valued. We recall the definition of these models. An HMM
is a discrete-time stochastic process{(Xt, Yt)} such that (i){Xt} is a Markov chain, and
(ii) given {Xt}, {Yt} is a sequence of conditionally independent random variables with
the conditional distribution ofYn depending on{Xt} only throughXn. The distribution
of {Yt} is assumed to depend smoothly on a Euclidean parameterθ . Equivalently an
HMM can be thought of asYn = h(Xn, εn), where{εt} is an i.i.d. sequence independent
of {Xt }, that is a stochastic function ofXn. The parameter mentioned before labels
both the transition probability matrix of the chain, the functionh and the distribution
of {εt}, although in principle the latter can be taken as fixed, for example uniform on
(0,1). In this generality, HMMs include state space models, cf. [13]. We, in this paper
as before, restrict ourselves to the case where the state space of the{Xt} is finite. HMMs
have during the last decade become wide spread for modeling sequences of weakly
dependent random variables, with applications in areas like speech processing, [20],
neurophysiology, [10], and biology [15]. See also the monograph [17].

Inference for HMMs was first considered by Baum and Petrie, who treated the case
when {Yt} takes values in a finite set. In [2], results on consistency and asymptotic
normality of the maximum-likelihood estimator (MLE) are given, and the conditions for
consistency are weakened in [19]. Baum and Petrie and particularly Petrie also studied
the structure of the mapϑ → Eϑ logpϑ(Y1 | Y0, Y−1, . . .), the conditional limiting
entropy per observation.

The results of [6] depend critically on bounds on derivatives of the loglikelihood of
the observations. Specifically, we showed that under Cramér-type conditions atϑ0,

sup
{
∂k

∂ϑk
logpϑ(Y1, . . . , Yn): |ϑ − ϑ0| � ε

}
�Mk(Y1, . . . , Yn), (1)

whereEϑ0|Mk(Y1, . . . , Yn)| � C < ∞ for k = 1,2, as well as quasi-continuity of the
mapϑ 	→ (∂2/∂ϑ2) logpϑ(Y1, . . . , Yn) at ϑ0. The same type of bounds were applied to
state space models by [12].

Similar bounds were obtained and used in the case whereY is finitely supported by
[2] and [19]. They were actually able to show that ifϑ is the transition probability matrix
of the Markov chain (and whenY is finitely supported this is the most general model)
and� = {ϑ : ϑij � δ > 0,∀i, j}, then the mapϑ 	→ Eϑ0 logpϑ(Y1 | Y0, Y−1, . . .) has a
convergent series expansion everywhere on�.

Our technical goals are threefold:
(i) To exhibit bounds on the derivatives of the form (1) and to show that, under some

conditions,Mk grows no faster thannCkk!. We shall derive these bounds by a
unified argument relying on results of [21] (henceforth referred to as S&S).

(ii) To obtain bounds on

sup
{
∂k

∂ϑk
Eϑ

(
∂m

∂ϑm
logpϑ(Y1 | Y0, Y−1, . . .)

)}
.
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We give conditions under which this expression is bounded byCk+m(k +m)!.
(iii) To establish bounds on∣∣∣∣ ∂k∂ϑk (logpϑ(Y1 | Y0, Y−1, . . . , Yt )− logpϑ(Y1 | Y0, Y−1, . . . , Ys)

)∣∣∣∣
of the formCρ |t−s| for ρ < 1.

Using these results, we shall, under suitable conditions
(a) Show how to establish stochastic asymptotic expansions for the MLE in terms

of derivatives of the loglikelihood atϑ0. We sketch how in conjunction with
Edgeworth type expansions for sums of functions of Markov chains, these
establish the validity of procedures such as debiasing the MLE and other second
order methods as available in the i.i.d. case.

(b) Show that the following functions are analytic. The Fisher information

I (ϑ)= −Eϑ
{
∂2

∂ϑ2
logpϑ(Y1 | Y0, Y−1, . . .)

}
,

the Kullback–Leibler distance

K(ϑ)=Eϑ

{
log

pϑ0

pϑ
(Y1 | Y0, Y−1, . . .)

}
and the entropy

H(ϑ)= −Eϑ{logpϑ(Y1 | Y0, Y−1, . . .)
}
.

(c) Study the behavior of these functions and their derivatives at pointsϑ0 under
which theX’s are i.i.d. (the transition probability matrix is degenerate). We show
that at such points, in principle, these quantities can be computed explicitly.

(d) Show how to use these expansions qualitatively to guess properties ofI (ϑ)which
can be established in other ways.

A number of lemmas and theorems are stated without proof or with a sketch proof.
Details of the proofs are available in the technical reports Bickel, Ritov and Rydén
(2002), which we refer to as ‘technical report’.

2. Assumptions and main results

We observeY-valued random variablesY1, . . . , Yn, whereY is a general space,
distributed as follows. We let{Xt}nt=1 be a stationary Markov chain with state space
{1,2, . . . ,R} and transition probability matrixAϑ = {αϑ(·, ·)}. Then, Y1, . . . , Yn are
conditionally independent givenX1, . . . ,Xn and the conditional distribution ofYt
depends onXt only. We assume that these distributions have densitiesgϑ(y|x), where
y ∈ Y andx ∈ {1, . . . ,R}, with respect to some commonσ -finite measure onY . Thus,
givenXt = i, Yt has conditional densitygϑ(· | i). We assume that{Xt} is ergodic so that
the stationary distribution exists and is unique. We denote it byπϑ(·). The parameterϑ
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lies in ϑ ∈�⊆ Rd , where� is open. All computations will be done under a particular
value ofϑ , denoted byϑ0.

We write Yt
s for (Ys, . . . , Yt ) and defineXt

s similarly. We can and will embed
Y1, . . . , Yn into {Yt}∞

t=−∞ related to{Xt}∞
t=−∞ by the mechanism described above. When

this is done, we writeYt−∞ for (. . . , Yt−1, Yt) and defineXt−∞ similarly. Probabilities and
expectations will be denoted byP andE, respectively, and the conditional expectation
given some random variableY by EY. Likelihood ratios (with respect toϑ0) will be
denoted byL and loglikelihood ratios by+. Note that we use the same characters to
denote different functions; the specific function will be clear from the argument. If the
value of the parameter isϑ0, we often replace it by 0. ThusLϑ(Yn

1) is the likelihood
ratio of Yn

1 calculated atϑ , whereas+0(X,Y) is the loglikelihood ratio ofX and Y
(being some general random variables) calculated atϑ0. To further shorten the notation,
we let ht(ϑ) = +ϑ(Xt , Yt | Xt−1

1 ,Yt−1
1 ) for t � 1. Thus, by the very definition of an

HMM, ht (ϑ)= logαϑ(Xt−1,Xt )+ loggϑ(Yt |Xt) for t > 1 andh1(ϑ)= logπϑ(X1)+
loggϑ(Y1 | X1). If a = (a1, . . . , ad) is ad-dimensional vector with non-negative integer
entries, thenDa denotes the corresponding partial derivative∂ |a|+/(∂a1

ϑ1
· · ·∂adϑd ), where

|a|+ =∑d
1 ai . We call sucha a multi-index. Furthermore we define

Ck(y)= sup
ϑ∈V0

max|a|+=kmax
i,j

{∣∣Da logαϑ(i, j)
∣∣+ ∣∣Da loggϑ(y | i)∣∣+ ∣∣Da logπϑ(i)

∣∣}, (2)

with V0 being a neighborhood ofϑ0 and the outer maximum being taken over all multi-
indicesa with |a|+ = k, and

Bk = max

{
r∏
t=1

E0

(
pt∏

i=pt−1+1

Cji (Yt)

ji !
∣∣∣∣Xt = xt

)
: 1 �m� k, 1 � r �m,

j1, . . . , jm � 1,
∑

ji = k, 0= p0< p1< · · ·< pr =m,

x1, . . . , xr ∈ {1, . . . ,R}
}
.

The last quantity measures how big, in expectation, we can make a product of partial
derivatives of theht by distributing a total ofk derivatives and possible time indices
over different components of the parameter and time, respectively. In particular, if
Ck(y)= max{Cm(y): 1�m� k}, then

Bk � max
{
E0
(
Ck(Y1) |X1 = x

)m
: x ∈ {1, . . . ,R}, 1�m� k

}
� C k,

if all Ck � C <∞. On the other hand, if theYt are mutually independent, then

Bk �
k∏

m=1

(
1∨ max

{
E0(Cm(Y1) |X1 = x): x ∈ {1, . . . ,R}}).

We now state the main assumptions being used in this paper.

(A1) The entries of transition probability matrixAϑ are bounded away from zero onV0.
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(A1∞) Condition (A1) holds for allϑ0.

(A2k) For all i, j , ϑ 	→ logαϑ(i, j) andϑ 	→ logπϑ(i) hask continuous derivatives
in the neighborhoodϑ ∈ V0 of ϑ0, and for alli andy ∈ Y , ϑ 	→ loggϑ(y | i) hask
continuous derivatives in the same neighborhood.

(A2∞) All log αϑ(i, j) and logπϑ(i) and all their derivatives are uniformly bounded.

(A3k) Bk <∞.

(A3∞) All derivatives of loggϑ(y | i) are uniformly bounded iny.

We now state our main results.

THEOREM 2.1. – Assume(A1), (A2k) and (A3k) hold. Then for all multi-indicesa
with |a|+ = k,

E0
∣∣sup
ϑ∈V0

Da+ϑ
(
Yn

1

)∣∣�C1nBkC
k
2k!

for someC1 andC2 that depend on the transition probability matrixAϑ , ϑ ∈ V0, only.

THEOREM 2.2. – Let a and b be multi indices with|a|+ = k and |b|+ = m,
respectively. Then the following assertions hold true.

(i) Under (A1), (A2k) and (A3k), E0|Da+0(Y1 | Y0−n)| � C1BkC
k
2k! whereC1 and

C2 depend on the transition probability matrixA0 only.
(ii) Under (A1), (A2∞) and (A3∞), if −n � −t � 0 then |DaP0(X1 = x | Y0−n)−

DaP0(X1 = x | Y0−t )| � C3ρ
t , ρ < 1, whereC3 depends on the uniform bound

on all derivatives andA0.
(iii) Under(A1), (A2k), and(A3k), E0|Da+0(Y1 | Y0−n)DbL0(Y1−n)| � C3k!m!.
Remarks. –
(i) The bounds in (i) and (iii) are the same as in the case{Yi} i.i.d.
(ii) The bound of (ii) expresses a strong mixing property. We could prove versions

of (ii) and (iii) under (A1), (A2k), and (A3k), but the results are technically
complicated and we leave them to the reader.

THEOREM 2.3. – Under(A1), (A2∞) and(A3∞) the following assertions hold true.
(i) Da+0(Y1 | Y0−n) convergesP0-a.s. toDa+0(Y1 | Y0−∞).
(ii) E0(Da+0(Y1 | Y0−n)DbL0(Y1−n)) converges to an appropriate limit asn→ ∞.
(iii) n−1/2(Da+0(Yn

1) − E0Da+0(Yn
1)) converges weakly to aN(0,Var0(Da+0(Y1 |

Y0−∞))) distribution underP0.

3. Proofs of main results

Throughout the remainder of the paper we shall assume that the parameter space�

is one-dimensional, that isd = 1. This causes no loss of generality, but simplifies the
notations as we do not need to work with mixed partial derivatives. Derivatives with
respect toϑ of orderk will be denoted with superindexk, for exampleL(k)ϑ .
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In many of the proofs, cumulants play a major role. LetZ1, . . . ,Zk be k random
variables. We denote their cumulant by

3(Z1, . . . ,Zk)= 1

ιk

∂

∂u1
· · · ∂

∂uk
log
(
Eeι(u1Z1+···+ukZk))∣∣∣∣

u1=···=uk=0
, (3)

whereι= √−1. The cumulant is a multilinear function (that is, it is linear in any of the
random variables if all other variables are kept fixed) and, in particular, ifZ1 = · · · = Zk
then3(Z1, . . . ,Zk) is the standardkth cumulant ofZ1. Finally, if Z = (Z1, . . . ,Zk) we
write3(Z)= 3(Z1, . . . ,Zk) and3W(Z) for the cumulant of the conditional distribution
of Z givenW .

For the proof of Theorem 2.1 we proceed as follows.
(i) We write +

(k)
0 (Y

n
1) as a linear combination of conditional cumulants of∑n

t=1h
(j)
t (ϑ0), 1 � j � k, by means of a general formula valid for any latent

variable model, see (4).
(ii) By a generalization of results by S&S we give a bound on the individual

conditional cumulants of the form (1) to yield the result.
For the proof of Theorem 2.2(i), we use the same formula expressing+

(k)
0 (Y1 | Y0−n) as

+
(k)
0 (Y

1−n)− +
(k)
0 (Y

0−n) and analyzing it in the same way as in Theorem 2.1. For part (ii)
we use a further decomposition into so-called centered moments; see below and part (ii)
of Theorem 2.2. We also relateL(m)0 to theh(i), 1� i �m, by another general formula.

For the general formula, we need additional notation. LetZ+ be the set of positive
integers. We let

J = {
(J1, . . . , Jk): k > 0, Jj ∈ Z+, j = 1, . . . , k

}
.

For J ∈ J , |J | denotes the dimension of the vectorJ and |J |+ =∑
Jj . We define the

following subsets ofJ : J (k) = {J ∈ J : |J | = k} andJ +(k) = {J ∈ J : |J |+ = k}.
Another useful set of integers is

J n
m(k)=

{
(I1, . . . , Ik): Ii ∈ Z+, m� Ii � n, i = 1, . . . , k

}
.

For any integer vectorI as above, minI = minIi , maxI = maxIi and 8(I) =
maxI − minI . Furthermore, ifa1, a2, . . . is any sequence and|I | = k, then aI =
(aI1, . . . , aIk ). An operation between two sequences is done term wise, so thataI /bI =
(aI1/bI1, . . . , aIk/bIk ). In general any operation is meant to be term by term, soJ ! =
(J1!, J2!, . . .),∏aI =∏k

i=1 aIi and a very typical expression in this paper is

f
(J )
I

J ! =
(
f
(J1)
I1

J1! , . . . ,
f
(Jk)
Ik

Jk!
)
.

We now letX andY be any random vectors such that onlyY is observed withX being
missing at random.

PROPOSITION 3.1. – Suppose the loglikelihood ratio of the full data model+ϑ(X,Y)
is k times differentiable. Then the loglikelihood ratio of the observable model isk times
differentiable and
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+
(k)
0 (Y)=

∑
J∈J+(k)

k!
|J |!3

Y
0

(
+
(J )
0 (X,Y)
J !

)
, (4)

L
(k)
0 (Y)=

∑
J∈J+(k)

k!
|J |!

∏ +
(J )
0 (Y)
J ! . (5)

The first of these formulae may be viewed as a generalization of results of [16] and
[18], relating the score function and observed information of the observable vectorY
to those of the full model. The above theorem provides results also for higher order
derivatives. Both of the statements of the theorem are closely related to the “exlog
relations” in [1, p. 140]. For the proof we need the following form of Faa di Bruno’s
formula, whose proof is in the technical report.

LEMMA 3.1. – (i)For any functionsf : R → R andh : R → R with h(0)= 0 andf
andh beingk times differentiable,

∂k

∂ϑk
f
(
h(ϑ)

)∣∣∣∣
ϑ=0

= ∂k

∂ϑk
f

(
k∑
i=0

ϑih(i)(0)/i!
)∣∣∣∣∣

ϑ=0

.

(ii) If f : Rk → R, then

∂k

∂ϑk
f
(
ϑ,ϑ2/2, . . . , ϑk/k!)∣∣∣∣

ϑ=0

= ∑
J∈J+(k)

k!
|J |!∏J !

∂ |J |

∂uJ1 · · · ∂uJ|J |
f (u1, . . . , uk)

∣∣∣∣
u1=···=uk=0

.

Proof of Proposition 3.1. –We start with the representation

+ϑ(Y)= logEY
0 e+ϑ (X,Y).

Note that for random variables whose joint moment generating function exists in a
vicinity of 0, the joint characteristic function in definition (3) of the cumulant can be
replaced by the joint moment generating function, and the factorιk in the denominator
then also disappears. Hence

∂ |J |

∂J1 · · ·∂J|J |
logEY

0 e
∑

uiWi

∣∣∣∣
u1=···=u|J |=0

= 3Y(WJ1, . . . ,WJ|J |)= 3Y(WJ ).

Now apply the first part of Lemma 3.1 to obtain

+
(k)
0 (Y)=

∂k

∂ϑk
logEY

0 exp

{
k∑
i=1

ϑi+
(i)
0 (X,Y)/i!

}∣∣∣∣∣
ϑ=0

.

Apply the second part of the lemma to this expression with

f (u1, . . . , uk)= logEY
0 exp

{
k∑
i=1

ui+
(i)
0 (X,Y)

}
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to see that

+
(k)
0 (Y)=

∑
J∈J+(k)

k!
|J |!∏J !3

Y(+(J )0 (X,Y)
)
.

The product
∏
J ! can be taken inside3 because of the multilinearity of the cumulant

function and the proof of the first part of the lemma is complete.
Similarly,

L
(k)
0 (Y)=

∂k

∂ϑk
e+ϑ (Y)

∣∣∣∣
ϑ=0

= ∂k

∂ϑk
exp

{
k∑
j=1

ϑj+
(j)
0 (Y)/j !

}∣∣∣∣∣
ϑ=0

= ∑
J∈J+(k)

k!
|J |!

∏ +
(J )
0 (Y)
J !

by Lemma 3.1 withf (u1, . . . , uk)= exp{∑k
j=1uj+

(j)
0 (Y)}. ✷

The next lemma requires introduction of so-called centered moments and notation of
mixing. For any random variablesZ1,Z2, . . . , let χ ′(Z1)= Z1 andχ(Z1)= EZ1, and
define recursively

χ ′(Z1, . . . ,Zk)=Z1
(
χ ′(Z2, . . . ,Zk)− χ(Z2, . . . ,Zk)

)
,

χ(Z1, . . . ,Zk)=Eχ ′(Z1, . . . ,Zk).

χ is called the centered moment function (S&S, p. 12). For example,

χ(Z1,Z2,Z3)=E(Z1Z2Z3)−E(Z1)E(Z2Z3)−E(Z1Z2)E(Z3)

+E(Z1)E(Z2)E(Z3). (6)

Similar to the notation for cumulants, ifZ = (Z1, . . . ,Zk) thenχ(Z)= χ(Z1, . . . ,Zk)

andχW(Z) is the centered moment of the conditional distribution ofZ givenW .
LetZt = gt (Tt) for some measurable functionsgt , where{Tt}∞

t=−∞ is Markovian and
obeys the following mixing condition in terms of constantsϕt , −∞ < t < ∞. If Fm

is theσ -field generated byZt , −∞ < t � m, andFn is theσ -field generated byZt ,
n� t <∞, then for allm< n,

sup
{∣∣P(B |A)− P(B)

∣∣: A ∈F m, B ∈Fn, P (A) > 0
}

�
n∏

t=m+1

ϕt . (7)

LEMMA 3.2. – With {Zt} as above, assume|Zt | � Ct a.s., 1 � t � n, and let
1� t1 � t2 � · · · � tk � n. Then

χ(Zt1, . . . ,Ztk )� 2k−1
k∏
j=1

Ctj

tk∏
j=t1+1

ϕj .

Proof. –This is essentially Theorem 4.4 of S&S. The only difference is that we
allow different boundsCt on theZt ; the validity of this extension follows easily as
multiplicative constants can be moved in and out of centered moments.✷
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We now express the cumulants of sums in terms of centered moments, a generalization
of a formula of S&S. LetW1,W2, . . . be random vectors, i.e.Wi = (Wi,1,Wi,2, . . .) etc.
If J ∈ J is a set of indices,Wi,J denotes the vector with elementsWi,j , j ∈ J .

LEMMA 3.3. – (i)The multivariate cumulant3(·) can be expanded and bounded as∣∣∣∣∣3
(

n∑
i=1

Wi,J

)∣∣∣∣∣=
∣∣∣∣ ∑
I∈J n

1 (|J |)
3(WI,J )

∣∣∣∣
�

n∑
i=1

∑
I∈J n

1 (|J |)
minI=i

|J |∑
ν=1

∑
�Kq={1,...,|J |}

Mν(K1, . . . ,Kν)

ν∏
q=1

∣∣χ(WI(Kq),J (Kq))
∣∣,

where the inner sum is over all partitionsK1, . . . ,Kν of the set{1, . . . , |J |}, I (Kq) =
(IKq,1, IKq,2, . . .) andJ (Kq) is defined similarly. TheMν are non-negative combinatorial
constants satisfying, in particular, thatMν(·) > 0 implies

∑ν
q=18(I (Kq))�8(I).

(ii) For all i and0 � ρ < 1,∣∣∣∣∣ ∑
I∈J n

1 (|J |)
minI=i

|J |∑
ν=1

∑
�Kq={1,...,|J |}

Mν(K1, . . . ,Kν)ρ

∑ν

q=1
8(I (Kq))

∣∣∣∣∣� |J |!
(

4

1− ρ

)|J |−1

.

To clarify the notation once more we remark that3(WI,J ) = 3(Wi1,j1, . . . ,Wi+,j+),
where+= |I | = |J |.

Proof. –The multilinearity of the cumulant function is one of its basic properties. The
bound in (i) comes from S&S Lemma 1.1, where also the property of theMν ’s is found.
For part (ii), note that the proof of S&S Lemma 4.6 starts with their (4.55), which is
equivalent to the expression in part (i) of the lemma. Then, in S&S’s notation, we use
C0 = C2 = u = 1, f (s, t) = ρ |t−s| and the boundρ8(Ip) on χ(WIp,Jp); the result now
follows from (4.60) in S&S. ✷

We remark that we tacitly assume that for any cumulant3(WI,J ), the vectorsI (andJ )
are rearranged so that the elements ofI become sorted in non-decreasing order before
the cumulant is expanded into centered moments as in the above lemma. Since cumulants
are invariant with respect to permutations of the random variables involved, such a
rearrangement does not change the value of the cumulant, but it is necessary as we want
to apply results like Lemmas 3.2 and 3.4 which do require sorted time indices.

We shall now examine the mixing condition (7) for HMMs and identify theϕ’s in this
particular case. Defineρ by

1− ρ = inf
ϑ∈V0

(
min
i,j
αϑ(i, j)∧ min

i,j
α∗
ϑ(i, j)

)
with α∗

ϑ(i, j)= πϑ(j)/πϑ(i)×αϑ(j, i); note thatα∗
ϑ(i, j) are the transition probabilities

of the time-reversed Markov chain. Under (A1),ρ < 1. Generally, ifAϑ is ergodic there
is anm, m � R, such that allm-step transition probabilities are positive. Assuming
m = 1, it holds that ifHt is a set defined in terms ofXu andYu, t � u � n only, then
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for s < t ,

max
i
Pϑ
(
Ht | Yn

1,Xs = i
)− min

i
Pϑ
(
Ht | Yn

1,Xs = i
)
� ρt−s . (8)

This result is proved in Douc, Moulines, and Rydén (2001, Corollary 1). A simple
conditioning argument then yields

max
i

∣∣Pϑ(Ht | Yn
1,Xs = i

)−Pϑ
(
Ht | Yn

1

)∣∣� ρt−s for all ϑ ∈ V0, (9)

which is our particular version of (7). Note that we work with the conditional Markov
chainX | Y (it is straightforward to verify that the conditional process is still Markov,
although non-homogeneous), because in view of Proposition 3.1 we want to examine
conditional cumulants. WhenYn

1 is fixed we can identifyϕt in (7) with ρ in (9).
Following [6, Lemma 5], one can also prove that for 1� s � t − 1,

sup
A⊆{1,...,R}

∣∣Pϑ(Xs ∈A | Yt
1

)−Pϑ
(
Xs ∈A | Yt−1

1

)∣∣� ρt−1−s for all ϑ ∈ V0. (10)

In the casem > 1, an inequality similar to (8) still holds true but with the bound on
the conditional mixing now depending on theYt . This causes an additional degree of
difficulty in our subsequent arguments and we do not treat this case.

The next result now follows from the above and Lemma 3.2.

LEMMA 3.4. – Let Kq = (Kq,1, . . . ,Kq,+) be an element of a partition as in
Lemma3.3. Then

∣∣χYn1
ϑ

(
h
(J (Kq))

I (Kq)
(ϑ)
)∣∣� 2+−1

+∏
j=1

CJKq,j (YIKq,j )ρ
8(I (Kq)) for all ϑ ∈ V0,

whereI (Kq)= (IKq,1, . . . , IKq,+) etc. andCk(y) is defined in(2).

Proof of Theorem 2.1. –First note that we may replaceϑ0 by anyϑ in Proposition 3.1
without changing the definition ofht , as only derivatives of this function appear in the
proposition. Hence

∣∣+(k)ϑ (Yn
1)
∣∣� k! ∑

J∈J+(k)

1

|J |!
∣∣∣∣3Yn1
ϑ

(∑n
i=1h

(J )
i (ϑ)

J !
)∣∣∣∣ for all ϑ ∈ V0.

Expand3
Yn1
ϑ (
∑n
i=1h

(J )
i (ϑ)) as in Lemma 3.3(i). We can employ Lemma 3.4 to obtain

the bound∣∣∣∣∣
ν∏
q=1

χ
Yn1
ϑ

(
h
(J (Kq))

I (Kq)
(ϑ)
)∣∣∣∣∣�

ν∏
q=1

{
2|Kq |−1

|Kq |∏
j=1

CJKq,j (YIKq,j )ρ
8(I (Kq))

}

= 2|J |−ν
|J |∏
j=1

CJj (YIj )ρ

∑ν

q=1
8(I (Kq)) for all ϑ ∈ V0. (11)
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Taking the expectation of this bound and lettingi′1 < i′2 < · · ·< i′r denote the distinct
points of the vectorI , the structure of an HMM yields

E0

{
sup
ϑ∈V0

∣∣∣∣∣
ν∏
q=1

χYn1
(
h
(J (Kq))

I (Kq)
(ϑ)
)∣∣∣∣∣
}

� 2|J |−νE0

{ |J |∏
j=1

CJj (YIj )

}
ρ

∑ν

q=1
8(I (Kq))

� 2|J |−νE0

{
E0

(
r∏
+=1

∏
j : Ij=i′+

CJj (Yi′+)

∣∣∣∣∣Xn
1

)}
ρ

∑ν

q=1
8(I (Kq))

= 2|J |−νE0

{
r∏
+=1

E0

( ∏
j : Ij=i′+

CJj (Yi′+ )

∣∣∣∣∣Xi′+
)}

ρ

∑ν

q=1
8(I (Kq))

� 2|J |−1
r∏
+=1

max
x
E0

( ∏
j : Ij=i′+

CJj (Yi′+)

∣∣∣∣∣Xi′+ = x

)
ρ

∑ν

q=1
8(I (Kq)). (12)

Multiplying by 1/
∏
J ! and using Lemma 3.3(ii) we obtain

E0

{
sup
ϑ∈V0

∣∣∣∣3Yn1
ϑ

(∑n
i=1h

(J )
i (ϑ)

J !
)∣∣∣∣}�

n∑
i=1

Bk|J |!
(

8

1− ρ

)|J |−1

= nBk|J |!
(

8

1− ρ

)|J |−1

.

Hence

E0
∣∣sup
ϑ∈V0

+
(k)
ϑ

(
Yn

1

)∣∣� nk!Bk ∑
J∈J+(k)

(
8

1− ρ

)|J |−1

� nk!Bk 8

1− ρ

(
1+ 8

1− ρ

)k−1

,

see the technical report for details.✷
The next lemma is needed for the proof of Theorem 2.2.

LEMMA 3.5. – Leta′ � a � b� b′ and suppose thatW measurable w.r.t. the sigma-
field generated byYb

a. Then

E0
{
WL

(m)
0

(
Yb′
a′
)}=E0

{
WL

(m)
0

(
Yb
a

)}
, m= 0,1,2, . . .

The proof is given in the technical report.

Proof of Theorem 2.2. –In this proof we again use the notation of Lemma 3.3. and
drop the argumentϑ0 of the functionh as this parameter stays fixed throughout the
proof. Moreover, since this lemma and other ones are formulated in terms of positive
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time indices we shift the indices of the statement of the theorem and set out to prove

E0
∣∣+(k)0

(
Yn | Yn−1

1

)∣∣� C1BkC
k
2k!.

By Proposition 3.1 and multilinearity of the cumulant function,

+
(k)
0

(
Yn | Yn−1

1

)= +
(k)
0

(
Yn

1

)− +
(k)
0

(
Yn−1

1

)
= ∑
J∈J+(k)

k!
|J |!

{
3

Yn1
0

(∑n−1
i=1 h

(J )
i + h(J )n

J !
)

− 3
Yn−1

1
0

(∑n−1
i=1 h

(J )
i

J !
)}

= ∑
J∈J+(k)

k!
|J |!

{
3

Yn1
0

(∑n−1
i=1 h

(J )
i

J !
)

−3
Yn−1

1
0

(∑n−1
i=1 h

(J )
i

J !
)

+ ∑
J ′�J ′′=J
J ′ �=J

3
Yn1
0

(∑n−1
i=1 h

(J ′)
i

J ′! ,
h(J

′′)
n

J ′′!
)}
, (13)

where the last sum is over all partitions(J ′, J ′′) of the setJ except(J ′, J ′′) = (J,∅).
This partition is excluded since it is the first sum of the right hand side and will be
compared to the second one. Clearly, there are two types of cumulants here. The first
two ones are similar and their difference will be shown to remain bounded in expectation
asn → ∞. The last sum involves cumulants that contain at least onehn, and this is
sufficient to keep them bounded asn→ ∞.

We start by considering

γ =
ν∏
q=1

χ
Yn1
0

(
h
(J (Kq))

I (Kq)

)−
ν∏
q=1

χ
Yn−1

1
0

(
h
(J (Kq))

I (Kq)

)
,

where we assume that
ν∑
q=1

8
(
I (Kq)

)
�8(I).

This difference can be bounded in two ways. First, each term of the difference can be
bounded separately. Arguing as for (11), we obtain

|γ | �
ν∏
q=1

∣∣χYn1
0

(
h
(J (Kq))

I (Kq)

)∣∣+ ν∏
q=1

∣∣χYn−1
1

0

(
h
(J (Kq))

I (Kq)

)∣∣
� 2× 2|J |−1

|J |∏
j=1

CJj (YIj )ρ

∑ν

q=1
8(I (Kq)). (14)

Secondly, we can write

|γ | =
|J |∏
j=1

CJj (YIj )×
∣∣∣∣∣
ν∏
q=1

χ
Yn1
0 (WI(Kq),J (Kq))−

ν∏
q=1

χ
Yn−1

1
0 (WI(Kq),J (Kq))

∣∣∣∣∣, (15)
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whereWij = h
(j)
i /Cj (Yi). Consider the scheme

m∏
i=1

Bi −
m∏
i=1

Ai =
m∑
j=1

(
j−1∏
i=1

Bi

)
(Bj −Aj)

(
m∏

i=j+1

Ai

)
. (16)

We expandχ(WI(Kq),J (Kq)) into a sum of 2|Kq |−1 products of expected values of products
of Wij ’s, cf. (6), with each random factor being bounded by one. Pick one of the terms
in this sum. This term is thus a product of no more than|Kq | factors (with each factor
being a conditional expectation of a product ofWij ’s). We call these factorsAi andBi ,
respectively, when the expectation is conditional onYn

1 andYn−1
1 , respectively. Using

(10) we find that for each factor, the difference between its conditional expectations
under Yn

1 and Yn−1
1 , respectively, is bounded byρn−1−maxI (Kq) � ρn−1−maxI , that is

|Ai − Bi| is bounded by this expression. Employing (16) the product, we can bound
it by we arrive at the bound|Kq |ρn−1−maxI . Using this bound for each term, we find

∣∣χYn1
0 (WI(Kq),J (Kq))− χ

Yn−1
1

0 (WI(Kq),J (Kq))
∣∣� 2|Kq |−1|Kq |ρn−1−maxI ,

where 2|Kq |−1 is the total number of terms in the sum and|Kq | upper bounds the number
of factors in each term. In addition, just as Lemma 3.4 follows from Lemma 3.2 we

obtain|χYn1
0 (WI(Kq),J (Kq))| � 2|Kq |−1ρ8(I (Kq)) and similarly forYn−1

1 . Hence, by applying
(16) to (15),

|γ | �
|J |∏
j=1

CJj (YIj )

ν∑
p=1

(
ν∏
q=1
q �=p

2|Kq |−1ρ8(I (Kq))

)
2|Kp|−1|Kp|ρn−1−maxI

�
|J |∏
j=1

CJj (YIj ) |J |2|J |−1ρn−1−maxI . (17)

We can combine these two bounds, (14) and (17), by taking a geometric mean;

|γ | � 2|J |−1
|J |∏
j=1

CJj (YIj )2
1/2|J |1/2ρ

∑ν

q=1
8(I (Kq))/2+(n−1−maxI )/2

. (18)

As in the proof of Theorem 2.1, it follows that

E0

∣∣∣∣3Yn1
0

(∑n−1
i=1 h

(J )
i

J !
)

− 3
Yn−1

1
0

(∑n−1
i=1 h

(J )
i

J !
)∣∣∣∣

� 21/2|J |1/2Bk
n−1∑
i=1

ρ(n−1−i)/2|J |!
(

8

1− ρ1/2

)|J |−1

� 21/2(1− ρ1/2)−1Bk|J |1/2|J |!
(

8

1− ρ1/2

)|J |−1

. (19)
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We now proceed to bounding the second type of cumulants appearing in (13). Let
(J ′, J ′′) be a partition of someJ ∈ J +(k) with J ′ �= J . We can expand the cumulant
similarly to Lemma 3.3(i) to obtain∣∣∣∣∣3Yn1

0

(
n−1∑
i=1

h
(J ′)
i , h(J

′′)
n

)∣∣∣∣∣
�

∑
I∈J n−1

1 (|J ′|)×{n}|J ′′ |

|J |∑
ν=1

∑
�Kq={1,...,|J |}

Mν(K1, . . . ,Kν)

ν∏
q=1

∣∣χYn1
0

(
h
(J ′,J ′′)(Kq)
I (Kq)

)∣∣.
Taking expectations, applying the bound (12) and multiplying by 1/(

∏
J ′!∏J ′′!) yields

E0

∣∣∣∣3Yn1
0

(∑n−1
i=1 h

(J ′)
i

J ′! ,
h(J

′′)
n

J ′′!
)∣∣∣∣

� 2|J |−1Bk
∑

I∈J n−1
1 (|J ′|)×{n}|J ′′ |

|J |∑
ν=1

∑
�Kq={1,...,|J |}

Mν(K1, . . . ,Kν)ρ

∑ν

q=1
8(I (Kq)).

Fix a partition(J ′, J ′′) of J such thatJ ′′ �= J and anI ∈ J n−1
1 (|J ′|) × {n}|J ′′|. We

need to look closer at the combinatorial constantsMν(K1, . . . ,Kν). If the partition
(K1, . . . ,Kν) is such that there is noKq with I (Kq) containing an element less than
n as well as an elementn, thenMν(K1, . . . ,Kν) = 0. This is because in the graph for
Mν(K1, . . . ,Kν) (see S&S, p. 80) there can be no edge over the vertex corresponding to
the first occurrence ofn in I . Hence, we may disregard partitions of this kind.

Now consider a partition(K1, . . . ,Kν) with at least oneI (Kq) containing an element
less thann and an elementn, and let max′ I denote the second largest element of
the vectorI , not counting multiplen’s. We can form a new vectorI ′ from I by
replacing all elements ofI being equal ton by max′ I + 1. Then

∑ν
q=18(I

′(Kq)) �∑ν
q=18(I (Kq)) − (n − max′ I − 1). This vectorI ′ is not a member ofJ n−1

1 (|J ′|) ×
{n}|J ′′| (unless max′ I = n − 1), but does belong toJ max′ I

1 (|J ′|) × {max′ I + 1}|J ′′|;
indeed, there is a one-to-one correspondence between vectorsI and I ′ with these
characteristics. Therefore∑

J ′�J ′′=J
J ′ �=J

∑
I∈J n−1

1 (|J ′|)×{n}|J ′′ |

|J |∑
ν=1

∑
�Kq={1,...,|J |}

Mν(K1, . . . ,Kν)ρ

∑ν

q=1
8(I (Kq))

�
n−1∑
i=1

ρn−i−1
∑

J ′�J ′′=J
J ′ �=J

∑
I∈J i

1(|J ′|)×{i+1}|J ′′ |

|J |∑
ν=1

∑
�Kq={1,...,|J |}

Mν(K1, . . . ,Kν)

× ρ

∑ν

q=1
8(I (Kq)).

For a fixed dimension|J ′′| the summation above is done overI ∈ J i
1(|J ′|)× {i + 1}|J ′′|,

a subset ofJ n
1 (|J |) characterized as vectors having exactly|J ′′| elements of maximal

sizei + 1, all being located at the end of the vector. InJ n
1 (|J |) there are more elements

having exactly|J ′′| elements of maximal sizei + 1, disregarding their location. This



P.J. BICKEL ET AL. / Ann. I. H. Poincaré – PR 38 (2002) 825–846 839

number is in exact correspondence with the number of partitions(J ′, J ′′) of J with |J ′′|
as prescribed; their common value is the combinatorial constantC(|J |, |J ′′|). Hence the
above expression is bounded by

n−1∑
i=1

ρn−i−1
∑

I∈J n
1 (|J |)

maxI=i+1

|J |∑
ν=1

∑
�Kq={1,...,|J |}

Mν(K1, . . . ,Kν)ρ

∑ν

q=1
8(I (Kq))

�
n−1∑
i=1

ρn−i−1|J |!
(

4

1− ρ

)|J |−1

� 1

1− ρ
|J |!

(
4

1− ρ

)|J |−1

,

where the second last inequality is Lemma 3.3(ii); by symmetry, the bound is still valid
when minI = i is replaced by maxI = i. We note that this bound does in fact also
take the partition(J ′, J ′′) = (∅, J ), which was not considered above, into account; it
corresponds toI = {n}|J |. Thus

E0

∣∣∣∣3Yn1
0

(∑n−1
i=1 h

(J ′)
i

J ′! ,
h(J

′′)
n

J ′′!
)∣∣∣∣� 1

1− ρ
Bk|J |!

(
8

1− ρ

)|J |−1

. (20)

Adding (19) and (20) as in (13) we find, see the technical report for details, that

E0
∣∣+(k)0

(
Yn | Yn−1

1

)∣∣�C ′Bkk!
∑

J∈J+(k)
|J |1/2

(
8

1− ρ1/2

)|J |−1

�C ′Bkk!
∑

J∈J+(k)
C|J |−1

�C ′Bk(1+C)k−1k!
for someC > 8/(1− ρ1/2) andC ′ = 21/2/(1− ρ1/2)+ 1/(1− ρ).

Here is the proof of part (ii). SinceDkP0(X1 = x | Y0−j ), j = t, . . . , n, can be
expressed as polynomials inP0(X1 = x | Y0−j ) andDr logP0(X1 = x | Y0−j ), 1� r � k,
it is enough to establish bounds for these quantities. The claim forP0(X1 = x | Y0−j ) is
essentially part 3 of Lemma 5 of [6]. In general, note that, since

Pϑ
(
X1 = x | Y0

−j
)=E0

{
I (X1 = x)

Lϑ(X1−j ,Y0−j )
Lϑ(Y0−j )

∣∣∣∣Y0
−j
}

=P0
(
X1 = x | Y0

−j
)
E0

{
Lϑ(X1−j ,Y0−j )
Lϑ(Y0−j )

∣∣∣∣Y0
−j ,X1 = x

}
,

it holds that

Dr logP0
(
X1 = x | Y0

−j
)

= ∑
J∈J+(r)

r!
|J |!∏J !30

(
+
(J )
0

(
X1

−j ,Y
1
−j
)− +

(J )
0

(
Y0

−j
) | Y0

−j , X1 = x
)
.
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One can argue as for part (i) of the theorem with the critical step being a bound on

γ̃ =
ν∏
q=1

χ0
(
WI(Kq),J (Kq) | Y0

−j ,X1 = x
)−

ν∏
q=1

χ0
(
WI(Kq),J (Kq) | Y0

−j ,X1 = x
)
.

The argument follows the route in going from (15) to (18).
We now prove part (iii) of Theorem 2.2. We start by establishing a bound on derivative

of the likelihood. Note that by Proposition 3.1, Theorem 2.1 and a lemma found in the
technical report,

E0
∣∣L(k)0

(
Yn

1

)∣∣� ∑
J∈J+(k)

k!
|J |!

∏
i

(
C1nBJiC

Ji
2

)
�Ck2Bk

(
(C1n)∨ k)k (21)

for some constantsC1, C2, andBk .
Let

γ ≡A1
−n −A0

−n, A
j
i ≡

ν∏
q=1

χ
Yj
i

0

(
h
(J (Kq))

I (Kq)

)
.

Then

E0
{
γL

(m)
0

(
Y1

−n
)}=E0

{(
A1

minI −A0
minI

)
L
(m)
0

(
Y1

−n
)}

+
n+minI−1∑

i=0

E0
{(
A1

minI−i−1 −A0
minI−i−1

−A1
minI−i +A0

minI−i
)
L
(m)
0

(
Y1

−n
)}

= γ1 + γ2,

say. We bound now each of the terms. First

|γ1| � Cm1 C
|J |
2

(|minI | ∨m)mρ∑ν

q=1
8(I (Kq))/2+|minI |/2

by Lemma 3.5, (21), and (18). But(|minI | ∨ m)mρmaxI/4 < Cm3 m! for someC3 > 0,
whence

|γ1| � Cm1 C
|J |
2 m!ρ |minI |/4+∑ν

q=1
8(I (Kq)).

Similarly, by considering the appropriate differences in the expression forγ2 depending
on whetheri >max(I ) or vice-versa,

|γ2| �
∞∑
i=1

Cm1 C
|J |
2

(
(|minI | + i)∨m)mρ∑ν

q=1
8(I (Kq))/2+(i∨ |minI |)/2

�
∞∑
i=1

Cm3 C
|J |
2 m!ρ

∑ν

q=1
8(I (Kq))/2+(i+|minI |)/4

�Cm4 C
|J |
2 m!ρ

∑ν

q=1
8(I (Kq))/3+|minI |/12

.
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Having the bound onE0{γL(m)} = γ1 + γ2, similar to the bound (18) onγ (except for
the factorCmm!), we continue as in the first part of the proof to prove the theorem.

This completes the proof of Theorem 2.2.✷
Proof of Theorem 2.3. –We proceed under the given assumptions. The first part of

Theorem 2.3 follows readily from part (ii) of Theorem 2.2, since

Da+0
(
Y1 | Y0

−n
)=Da log

(∑
x

P (X1 = x | Y0
−n)gϑ(Y1 | x)

)∣∣∣∣
ϑ=0
. (22)

For the second part note that

Da+0
(
Yn

1

)=
n∑
i=1

Da+0
(
Yi | Yi−1

1

)
=

n∑
i=(logn)2+1

Da+0
(
Yi | Yi−1

i−(logn)2
)+ op

(
n1/2), (23)

by (22) and part (ii) of Theorem 2.2.
Now, under our assumptions the variables in the sum in (23) are uniformly bounded

and geometrically mixing since theith one is a function ofUi,n = (Yi−(logn)2, . . . , Yi),
and the{Ui,n} are uniformly inn geometricallyϕ-mixing. Then asymptotic normality,
with natural centering by means and scaling by standard deviations, follows by the
obvious extension to triangular arrays of the classical theorem of Ibragimov, see
[9, p. 47] for instance. That the means and variances converge to the limit postulated
is again an exercise in applying part (ii) of Theorem 2.2.✷

4. Applications

4.1. A start at higher order asymptotics

It is well known, see for example [1] that in the i.i.d. case it is possible under suitable
smoothness and moment conditions to ‘debias’ the MLEϑ̂ to first order, that is to
constructb̂(·) such that

Eϑ
(
ϑ̂ + n−1b̂(ϑ̂)

)= ϑ + O
(
n−3/2)

and b̂ → b in probability, uniformly in ϑ , for a fixed continuousb. With further
conditions, O(n−3/2) can be turned into O(n−2).

Other second order asymptotics results of interest are Pfanzagl’s second order
optimality of functions of the MLE within classes of estimates with the same bias
function (see for example [3], the validity of Bartlett’s correction to the likelihood ratio
test (see for example [4]), the second order validity of bootstrapt-tests (see for example
[11]) etc. The basic ingredients of debiasing are:

(a) A stochastic expansion for the MLE in terms of polynomials of the derivatives
of +ϑ(Yn

1).
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(b) Probability bounds on probabilities of intermediate and large deviations of the
derivatives+ϑ(Yn

1).
For the other types of results one further needs,

(c) Edgeworth expansions for the joint distribution of the first few derivatives of
+ϑ(Yn

1) atϑ0.
As we shall see, our bounds give (a) directly. We conjecture that (b) can be established
using results for sums of functions of Markov Variables as in S&S. Results of type (c)
under simple assumptions, although plausible appear difficult to attain.

Here is the argument for (a) under (A1), (A2∞), and (A3∞) and realϑ . Write ϑ̂ for
the MLE. Then, by a Taylor expansion,

−n−1/2D+0
(
Yn

1

)= n1/2(ϑ̂ − ϑ0) n
−1D2+0

(
Yn

1

)+ 1

2
n−1/2n(ϑ̂ − ϑ0)

2n−1D3+ϑ∗
(
Yn

1

)
,

whereϑ∗ lies between̂ϑ andϑ0. Suppose for simplicity that all entries ofA0 are positive
and that the derivatives of loggϑ are uniformly bounded in a neighborhood ofϑ0. Then,
by Theorem 2.1, underϑ0,

n1/2(ϑ̂ − ϑ0)= −n
−1/2D+0(Yn

1)

n−1D2+0(Yn
1)

− 1

2
n−1/2

(
n−1/2D+0(Yn

1)

n−1D2+0(Yn
1)

)2
n−1D3+0(Yn

1)

n−1D2+0(Yn
1)

+ Op

(
n−1).

But n−1D2+0(Yn
1) = −I (ϑ0) + Op(n

−1/2) by Theorem 2.3 (which can be viewed as a
refinement of Lemma 2 of [6]). Here

I (ϑ0)= −Eϑ0

(
D2 logpϑ0

(
Y1 | Y0

−∞
))
.

Finally we get

n1/2(ϑ̂ − ϑ0)= n−1/2D+0
(
Yn

1

)
I (ϑ0)

−1

− n−1/2D+0
(
Yn

1

)
I (ϑ0)

−2(n−1D2+0
(
Yn

1

)+ I (ϑ0)
)

− 1

2
n−5/2(D+0

(
Yn

1

))2
I (ϑ0)

−3D3+0
(
Yn

1

)+ Op

(
n−1),

the desired stochastic expansion.

4.2. Asymptotic expansions

The following results generalizes Theorem 3.18 of [19]. For simplicity we assume
that the parameter is real.

THEOREM 4.1. – Assume that(A1∞)–(A3∞) hold. ThenI (ϑ) and K(ϑ) are
analytic functions. For instance,

K(ϑ)=
∞∑
j=1

DjK(ϑ0)
(ϑ − ϑ0)

j

j !

in some neighborhood of everyϑ0 ∈�.
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The series converges absolutely in some neighborhood ofϑ0, since for everyϑ0,
|DjK(ϑ0)| � C(ϑ0)

j j !.
Moreover,

D1K(ϑ0)=E0D+0
(
Y1 | Y0

−∞
)= 0,

D2K(ϑ0)= −I (ϑ0),

Dj+2K(ϑ0)= lim
n→∞ I

(j)
n2 (ϑ0),

where

I
(j)
nd (ϑ0)= n−1 ∂

j

∂ϑj
E0
[
+
(d)
ϑ

(
Yn

1

)
Lϑ
(
Yn

1

)]∣∣∣∣
ϑ0

.

The limitI (j)∞d(ϑ0) exists under our assumptions and can be represented by

j∑
k=0

(
j

k

) ∑
J∈J+(k+d)

(k + d)!
|J !|

∑
I∈J∞

1 (|J |)
min(I )=1

E0

{
3

Y∞
1

0

(
L
(J )
I

J !
)
L
(j−k)
0

(
Ymax(I )

1

)}
, (24)

whereLI =L0(YI ).

Proof. –Note thatI (ϑ) = −D2K(ϑ), so that it is enough to establish the claim for
K(ϑ).

Since

Ind(ϑ)=
n∑
i=1

E0
{
+
(d)
ϑ

(
Yi | Yi−1

1

)
Lϑ
(
Yn

1

)}
,

we obtain

∣∣I (j)nd (ϑ0)
∣∣= 1

n

∣∣∣∣∣
n∑
i=1

j∑
k=0

(
j

k

)
E0
{
+
(k+d)
0

(
Yi | Yi−1

1

)
L
(j−k)
0

(
Yn

1

)}∣∣∣∣∣
and the bound follows from Theorem 2.2. The limit is clearly given by the similarly
bounded derivative of the expression

lim
n→∞E0

{
+
(d)
0

(
Y1 | Y0

−n
)
L0
(
Y1

−n
)}
.

We need the limit in this expression sinceL0(Y1−∞) is not defined.
The other representation follows by expanding the derivatives as in Proposition 3.1,

expanding the cumulant function as in Lemma 3.3 and using this lemma and Lemma 3.5
to argue that the limit exists.

lim
n→∞ I

(j)
nd (ϑ0)= lim

n→∞
1

n

j∑
k=0

(
j

k

) ∑
J∈J +(k+d)

(k+ d)!
|J |!

× ∑
I∈J∞

1
(|J |)

min(I )=1

E0

{
3

Y∞
1

0

(
L
(J )
I

J !
)
L
(j−k)
0

(
Ymax(I )

1

)}
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=
j∑
k=0

(
j

k

) ∑
J∈J+(k+d)

(k+ d)!
|J |!

× ∑
I∈J∞

1 (|J |)
min(I )=1

E0

{
3

Y∞
1

0

(
L
(J )
I

J !
)
L
(j−k)
0

(
Ymax(I )

1

)}
. ✷

COROLLARY 4.1. – If under ϑ0 the Yi are i.i.d., then the sum in(24) becomes in
principle computable as

E03
Y∞

1
0

(
L
(J )
I

J !
)
L
(j−k)
0

(
Ymax(I )

1

)= 0

unlessI1 = 1, I1 − Ii−1 = 0 or 1, i = 1, . . . , |J |.
Proof. –Unless the conditions above are satisfied,3

Y∞
1

0 (L
(J )
I /J !) = 0, since the

indices involved could be split into two blocks of the form{i1 � · · · � ik} and {ik+1 �
· · · � imax(I )} with ik+1 − ik > 1.

Since all variables inL(J )I are at most 2-dependent, the conditional cumulant would
have to vanish because the variables involved could be split into independent blocks.✷

We give some explicit computations for a special case below. We note that unfortu-

nately the number of non-zero terms in3
Y∞

1
0 (L

(J )
I /J !) grows exponentially as a function

of |J |.
COROLLARY 4.2. – If E0| logp0(Y1)|<∞ and the conditions of Theorem2.2 hold

thenH(ϑ) is analytic.

Proof. –H(ϑ)=K(ϑ)−Eϑ logp0(Y1 | Y0−∞) in this case. ✷
4.3. Example: Information under independence and a two-state Markov chain

with Gaussian observations

We consider now a reversible two state Markov chain with normal observations. Let
Xi ∈ {−1,1}, P(Xi+1 �= Xi | Xi) = p andYi = Xi + εi where. . . , ε0, ε1, . . . are i.i.d.
N(0, σ 2), σ 2 known, random variables independent of theX process. We identify the
parameterp with theϑ of the general discussion and takeϑ0 = 1/2.

One can derive the information from Proposition 3.1. We obtain

I (1/2)= 4
(
1−E0 var0(X1X2 | Y1, Y2)

)= 4E0
(
E0(X1 | Y1)

)4
, I ′(1/2)= 0.

It is reasonable to conjecture the following result.

THEOREM 4.2. – Consider the two state symmetric Markov chain with normal
observations as above. ThenI (p) has the following properties:

(i) Symmetry: I (p)= I (1− p);
(ii) Unimodality with minimum at1/2;
(iii) Unboundness: 0< lim infp↓0pI (p)� lim supp↓0pI (p)� 1.
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The proof of this result cannot depend on the expansion. Here is an argument.

Proof. –The first two properties will be proved by showing that for anyp∗ betweenp
and 1− p there is a Markov kernel that does not depend on the unknown parameterp,
and transforms the observationsY1, Y2, . . . to another sequence of variablesY ∗

1 , Y
∗
2 , . . . ,

such that the latter follows the same model as the original observations but with
parameterp∗. This shows thatI (p∗)� I (p), for any suchp, and in particularI (p)=
I (1− p). Let S1, S2, . . . be i.i.d. Bernoulli random variables with meanα, independent
of theY process and define

Y ∗
i = (−1)

∑i

j=1
Sj Yi = (−1)

∑i

j=1
Sj (Xi + εi)=X∗

i + ε∗
i .

Now, ε∗
i are still i.i.d. Gaussian, andX∗

1,X
∗
2, . . . is still Markovian, with values in

{−1,1}, but with probability of switching given byp∗ = (1− α)p+ α(1− p).
We now prove the third property. We will argue that for anyp0 there is an estimator

of p, valid for values of the parameter in a small neighborhood ofp0, whose asymptotic
variance converges to 0 asp0 → 0. Since the information atp0 is larger than the inverse
of the variance of any regular estimator, limp0→0 I (p0) = ∞. The details are in the
technical report. ✷
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