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ABSTRACT. — We consider the log-likelihood function of hidden Markov models, its
derivatives and expectations of these (such as different information functions). We give explicit
expressions for these functions and bound them as the size of the chain increases. We apply ¢
bounds to obtain partial second order asymptotics and some qualitative properties of a speci
model as well as to extend some results of [19].
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RESUME. — On considére la fonction de log-vraisemblance de modeles de chaines de
Markov cachées, ses dérivées et leurs espérances. Nous en donnons des expressions explic
ainsi que des bornes quand la taille de la chaine augmente. Nous appliquons ces bornes
I'obtention d’asymptotiques partielles du second ordre et de propriétés qualitatives pour ur
modeéle particulier, ainsi qu'a I'extension de certains résultats de [19].
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1. Introduction

In two previous papers, [5] and [6], we developed the theory of inference for hidden
Markov models (HMMs) when the state space of the chain is finite but the hiding
mechanism is not finitely-valued. We recall the definition of these models. An HMM
is a discrete-time stochastic procg¢X,, Y,)} such that (i){X,} is a Markov chain, and
(ii) given {X,}, {Y,} is a sequence of conditionally independent random variables with
the conditional distribution of,, depending o X,} only throughX,. The distribution
of {Y;} is assumed to depend smoothly on a Euclidean paramietéquivalently an
HMM can be thought of a&, = h(X,, ¢,), where{e;} is an i.i.d. sequence independent
of {X,}, that is a stochastic function of,. The parameter mentioned before labels
both the transition probability matrix of the chain, the functiorand the distribution
of {g,}, although in principle the latter can be taken as fixed, for example uniform on
(0, 1). In this generality, HMMs include state space models, cf. [13]. We, in this paper
as before, restrict ourselves to the case where the state spacq ¥f jtigefinite. HMMs
have during the last decade become wide spread for modeling sequences of weak
dependent random variables, with applications in areas like speech processing, [20
neurophysiology, [10], and biology [15]. See also the monograph [17].

Inference for HMMs was first considered by Baum and Petrie, who treated the case
when {Y,} takes values in a finite set. In [2], results on consistency and asymptotic
normality of the maximume-likelihood estimator (MLE) are given, and the conditions for
consistency are weakened in [19]. Baum and Petrie and particularly Petrie also studie
the structure of the map — Ejlogpy(Y1 | Yo, Y_1,...), the conditional limiting
entropy per observation.

The results of [6] depend critically on bounds on derivatives of the loglikelihood of
the observations. Specifically, we showed that under Cramér-type conditiéps at

ak
Sup{wlogpﬁ(YL sy Yn) |19 - 190| g{;‘} g Mk(Yla "'vYn)a (1)

where Ey| My (Y, ..., Y,)| < C < oo for k =1, 2, as well as quasi-continuity of the
map®d — (82/892)log py (Y4, ..., Y,) atdy. The same type of bounds were applied to
state space models by [12].

Similar bounds were obtained and used in the case whesdfinitely supported by
[2] and [19]. They were actually able to show thaiifs the transition probability matrix
of the Markov chain (and whek is finitely supported this is the most general model)
and® = {9¥: v;; > 6 > 0,Vi, j}, then the map) — Ey,logpy(Y1| Yo, Y_1,...) has a
convergent series expansion everywhereon

Our technical goals are threefold:

(i) To exhibit bounds on the derivatives of the form (1) and to show that, under some
conditions, M; grows no faster thanC*k!. We shall derive these bounds by a
unified argument relying on results of [21] (henceforth referred to as S&S).

(i) To obtain bounds on

ak m
sux —Es| ——1lo Yi|Yo, Y_1,... .
p{aﬁk ﬂ(aﬁm gps(Y1| Yo, Y1 ))}
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We give conditions under which this expression is boundedoy" (k + m)!.
(iii) To establish bounds on

k

0
W(Iogpﬂ(yl | Yo, Y_1,....Y) —logpy(Y1| Yo, Y_1,...,Yy))

of the formCp!"—*! for p < 1.

Using these results, we shall, under suitable conditions

(&) Show how to establish stochastic asymptotic expansions for the MLE in terms

of derivatives of the loglikelihood af,. We sketch how in conjunction with
Edgeworth type expansions for sums of functions of Markov chains, these
establish the validity of procedures such as debiasing the MLE and other secon
order methods as available in the i.i.d. case.

(b) Show that the following functions are analytic. The Fisher information

2

0
1) = —Eﬂ{w 10g py (Y1 | Yo, Y1, .. .)},

the Kullback—Leibler distance

Pas

(Y11 Yo, Y—l,---)}
Py

K@) = Eﬁ{log

and the entropy
H®)=—Ey{logpy(Y1|Yo, Y_1,...)}.

(c) Study the behavior of these functions and their derivatives at péintsnder
which theX’s are i.i.d. (the transition probability matrix is degenerate). We show
that at such points, in principle, these quantities can be computed explicitly.

(d) Show how to use these expansions qualitatively to guess properfiég)afhich
can be established in other ways.

A number of lemmas and theorems are stated without proof or with a sketch proof.
Details of the proofs are available in the technical reports Bickel, Ritov and Rydén
(2002), which we refer to as ‘technical report’.

2. Assumptionsand main results

We observe)-valued random variable¥y,...,Y,, where) is a general space,
distributed as follows. We letX,}’_, be a stationary Markov chain with state space
{1,2,..., R} and transition probability matrid, = {ay(-,-)}. Then,Y,;,...,Y, are
conditionally independent giveiX,,..., X, and the conditional distribution o¥,
depends orX; only. We assume that these distributions have densjtj€s|x), where
yeYandx €{1,..., R}, with respect to some commaenfinite measure of)). Thus,
given X, =i, Y, has conditional density, (- | i). We assume thdtX,} is ergodic so that
the stationary distribution exists and is unique. We denote it {1y). The parametef
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liesin® € ® C R?, where® is open. All computations will be done under a particular
value of ¢, denoted byb.

We write Y. for (Y,,...,Y;) and defineX§ similarly. We can and will embed
Yy,...,Y,into {Yt Pl related to{ X, }7°_ ., by the mechanism described above. When
thisis done, we writey” __ for (..., Y,_1, ¥;) and defineX”___ similarly. Probabilities and
expectations will be denoted by and E, respectively, and the conditional expectation
given some random variablé by EY. Likelihood ratios (with respect ta,) will be
denoted byL and loglikelihood ratios by. Note that we use the same characters to
denote different functions; the specific function will be clear from the argument. If the
value of the parameter iy, we often replace it by 0. Thus,(Y") is the likelihood
ratio of Y7 calculated at?, whereasty(X, Y) is the loglikelihood ratio ofX andY
(being some general random variables) calculatety.ato further shorten the notation,
we let i, (9) = £y(X,, Y, | X771, Y™ for 1 > 1. Thus, by the very definition of an
HMM, h;(®) =logay(X,_1, X;) +10ggs(Y; | X,) for t > 1 andh(¢) =logmy (X1) +
loggy (Y1 ] X1). If a=(ay, ..., ay) is ad-dimensional vector with non-negative integer
entries, thenD, denotes the corresponding partial derivat@+ /(35 - - - 95¢), where

laly = E”ll a;. We call sucha a multi-index. Furthermore we define

()

Ci(y) = sup maxmaX{|Daloga19(z |+ |Daloggy(y )|+ |Da

eV lal+=k

with V, being a neighborhood af; and the outer maximum being taken over all multi-
indicesa with |a|. =k, and

5 Te| 1 0 .
© = Mmax HEQ H X;=x |:1<m<k, 1<r<m,

=1 i=p—1+1

Jiseeosjm =1, Zj,-:k, O=po<pi<---<p =m,

X1, ..., X, € {1,...,R}}.
The last quantity measures how big, in expectation, we can make a product of partiz
derivatives of theh, by distributing a total ofk derivatives and possible time indices
over different components of the parameter and time, respectively. In particular, if
Cr(y) =maxC,,(y): 1<m <k}, then
By <max{Eo(C (Y1) | X1=x)": xe(l,...,R}, 1<m <k} <C*

if all C; < C < oco. On the other hand, if thg are mutually independent, then
k
B < [J(Avmax{Eo(Cn(Y1) | X1=1x): x€{1,...,R}}).
m=1

We now state the main assumptions being used in this paper.

(A1) The entries of transition probability matrik, are bounded away from zero &g.
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(Aloo) Condition (A1) holds for allyy.

(A2k) For alli, j, 9 — logay (i, j) and® — logmy (i) hask continuous derivatives
in the neighborhood € V; of ¥, and for alli andy € ), ¢ — loggys(y | i) hask
continuous derivatives in the same neighborhood.

(A200) All'log ay (i, j) and logr, (i) and all their derivatives are uniformly bounded.
(A3k) B < o0.
(A300) All derivatives of loggy (v | i) are uniformly bounded iry.

We now state our main results.

THEOREM 2.1. — AssumgAl), (A2k) and (A3k) hold. Then for all multi-indices
with |a| . =k,

Eo|supDaly (Y})| < Cin By C5k!
veVy

for someC; and C, that depend on the transition probability matui,, 9 € Vg, only.

THEOREM 2.2.— Let a and b be multi indices withja], = k and |b|, = m,

respectively. Then the following assertions hold true.

(i) Under(Al), (A2k) and (A3k), Eo|Dalo(Y1|Y?,)| < C1B;Ckk! whereC; and
C, depend on the transition probability matrig only.

(i) Under(AL), (A200) and (A300), if —n < —t <0 then|DaPo(X1=x|Y?) —
DaPo(X1=x|Y%)| < Czp', p <1, whereCz depends on the uniform bound
on all derivatives andiy.

(i) Under(A1), (A2k), and(A3k), Eo|Dalo(Y1|Y®,)DpLo(YL )| < Csk!m!.

Remarks—
() The bounds in (i) and (iii) are the same as in the dasgi.i.d.
(i) The bound of (ii) expresses a strong mixing property. We could prove versions
of (i) and (iii) under (Al), (AZ), and (AZX), but the results are technically
complicated and we leave them to the reader.

THEOREM 2.3. — Under(A1l), (A200) and(A3o0) the following assertions hold true.
(i) Dalo(Y1|Y?,) convergesPy-a.s. toDalo(Y1] YO ).
(i) Eo(Dalo(Y1|Y?,)DyLo(Y?L,)) converges to an appropriate limit as— oo.
(i) nY2(Dalo(Y?) — EoDalo(Y?})) converges weakly to & (0, Varg(Dalo(Y1 |
Y?_.))) distribution underp,.

3. Proofs of main results

Throughout the remainder of the paper we shall assume that the paramete®space
is one-dimensional, that ¥ = 1. This causes no loss of generality, but simplifies the
notations as we do not need to work with mixed partial derivatives. Derivatives with
respect tay of orderk will be denoted with superindek, for exampleL'}".
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In many of the proofs, cumulants play a major role. A&t ..., Z, be k random
variables. We denote their cumulant by

10 9
[(Zy,....2;) = F— - — log(Ee 71 FuZ)
5 8u1 8uk ug=--=u;=0

: 3)
where: = /—1. The cumulant is a multilinear function (that is, it is linear in any of the
random variables if all other variables are kept fixed) and, in particulds, # - - - = Z;
thenl'(Z,, ..., Z;) is the standardth cumulant ofZ;. Finally, if Z = (Z,, ..., Z;) we
write ' (Z) =T'(Z4, ..., Z;) andI"' (Z) for the cumulant of the conditional distribution
of Z givenW.

For the proof of Theorem 2.1 we proceed as follows.

(i) We write £3’(Y?) as a linear combination of conditional cumulants of
S h(90), 1< j <k, by means of a general formula valid for any latent
variable model, see (4).

(i) By a generalization of results by S&S we give a bound on the individual
conditional cumulants of the form (1) to yield the result.

For the proof of Theorem 2.2(i), we use the same formula expreg§itig; | Y°,) as

Eg‘)(Yin) — Zg‘)(Y(ln) and analyzing it in the same way as in Theorem 2.1. For part (ii)
we use a further decomposition into so-called centered moments; see below and part (i
of Theorem 2.2. We also relaf)” to thek®, 1 <i < m, by another general formula.

For the general formula, we need additional notation. Zetbe the set of positive

integers. We let
T={U1.....J): k>0, J;€Z,, j=1,... k}.

ForJ € J, |J| denotes the dimension of the vectbrand|J |, =" J;. We define the
following subsets of7: J(k) ={J € J: |J|=k}and T (k) ={J € T: |J|4+ = k}.
Another useful set of integers is

Ty ={(I, ... [): L €Zy, m<Li<n, i=1,....k}.

For any integer vectord as above, mid = min/;, max/ = max/; and A(I) =
max/ — min/. Furthermore, ifaq, az, ... is any sequence and| = k, thena; =
(ar, ..., ar). An operation between two sequences is done term wise, sa,tlhat=
(an /by, ....a;/by). In general any operation is meant to be term by term/se
(Ji!, J2!, .., [Ta; =It_, a;, and a very typical expression in this paper is

) (J1) (Ji)
1 _< [11 f[kk>
J! T )

We now letX andY be any random vectors such that oilys observed withX being
missing at random.

PropPosSITION 3.1. — Suppose the loglikelihood ratio of the full data modg(X, Y)
is k times differentiable. Then the loglikelihood ratio of the observable modelinses
differentiable and



P.J. BICKEL ET AL./ Ann. |. H. Poincaré — PR 38 (2002) 825846 831

o k! Y( 5V (X, Y))
(Y)= — Ty | ———— ), (4)
13;@““ 0 J!
(J) Y
JeJ* (k)

The first of these formulae may be viewed as a generalization of results of [16] anc
[18], relating the score function and observed information of the observable véctor
to those of the full model. The above theorem provides results also for higher ordel
derivatives. Both of the statements of the theorem are closely related to the “exloc
relations” in [1, p. 140]. For the proof we need the following form of Faa di Bruno’s
formula, whose proof is in the technical report.

LEMMA 3.1.— (i)For any functionsf :R — Rand4:R — R with #(0) =0 and f
andh beingk times differentiable,

k k

9 koo
= »' hD0)/i!

(o)

4.9k
av 90
(i) If £:R* = R, then
k
0, 9%/2,..., 9%/ k!
auk ( ) 9=0
k! al!
= f(u]_v'-'vuk) *
JG;(]() |J|'H J! aujl e au]m u1=--=ur=0

Proof of Proposition 3.1. We start with the representation
Ly(Y)=log E§ €Y,

Note that for random variables whose joint moment generating function exists in a
vicinity of 0, the joint characteristic function in definition (3) of the cumulant can be
replaced by the joint moment generating function, and the fattor the denominator
then also disappears. Hence

g1

log EY e 4i%:
811 0y,

=T Wy, ..., Wy,) =T (W)).

uy=--=u ;=0

Now apply the first part of Lemma 3.1 to obtain

Yy = — IogEO ex Zﬁ‘ €5 (X, Y)/z'}
i=1

=0

Apply the second part of the lemma to this expression with

k
fua,...,ux) =logEY exp{ > uitd (X, Y)}

i=1
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to see that

k!
¢® )
)= > Y (e X, Y)).
JeTr w0 NI
The product[] J! can be taken insid€ because of the multilinearity of the cumulant
function and the proof of the first part of the lemma is complete.
Similarly,

LW A oY)
Y)= 35k

ok oo
= —expd > 0ieg’ () /!

S k! €57
N 17 J!

JeJ* (k)

9=0

by Lemma 3.1 Withf (us, ..., ug) = exp{>5_yu; 6" (V). O

The next lemma requires introduction of so-called centered moments and notation o
mixing. For any random variables,, Z,, ..., let x'(Z,) = Z, and x(Z,) = EZ,, and
define recursively

X' (Z1,...,Z;) = Zl(x’(Zz, ey Zy) — x(Zo, ..., Zk)),

X(Z1,....ZY)=Ex (Z1,..., Z).
x is called the centered moment function (S&S, p. 12). For example,

X(Z1, 23, Z3) = E(Z12273) — E(Z1)E(Z223) — E(Z1Z2)E(Z3)
+ E(Z1)E(Z2) E(Z3). (6)
Similar to the notation for cumulants, # = (Z,, ..., Zy) thenx (2) = x(Z4, ..., Z;)
andx " (Z) is the centered moment of the conditional distributiorZagiven W.
Let Z, = g (T,) for some measurable functiogs, where{7,}?2__ is Markovian and

obeys the following mixing condition in terms of constagis —oco < ¢ < oco. If F,,

is the o -field generated byZ,, —oco <t < m, and F,, is the o-field generated byz,,
n <t < oo, then for allm < n,

sup{|P(B|A)— P(B)|: A€ E,., BEF,, P(A)>0}< [] . 7)

LEMMA 3.2.— With {Z,} as above, assumgZ;| < C; a.s., 1<t < n, and let
1<n<n<---<,<n.Then

X(Ziys .. Zy) <2 1HC,] H ;.

j=n+1

Proof. —This is essentially Theorem 4.4 of S&S. The only difference is that we
allow different boundsC, on the Z;; the validity of this extension follows easily as
multiplicative constants can be moved in and out of centered moments.
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We now express the cumulants of sums in terms of centered moments, a generalizatic

of a formula of S&S. LetWy, W», ... be random vectors, i.8V; = (W; 1, W; 2, ...) etc.
If J € J is asetof indicesW; ; denotes the vector with elemeri#s ;, j € J.

LEMMA 3.3.— (i) The multivariate cumulart (-) can be expanded and bounded as
> T(Wry)
1eJ7 (7))

r(ZWi,,>
i—1
" 17| v
<Z Z Z Z MU(KL---7KU)H|X(WI(K,,),J(K,,))

’

i=1 1eJp(J) v=1 wK,={1.., 7]} g=1
min/=i
where the inner sum is over all partitions,, ..., K, of the set{1,...,|J|}, I(K,) =

Uk, 15 Ik, 05 - -) andJ(K,) is defined similarly. Tha/, are non-negative combinatorial
constants satisfying, in particular, thaf,(-) > 0 impIieSZ;:l A(I(Ky)) = A(D).

(i) Foralli and0< p <1,
4 |J]—1
<|J|!<—> .
1-p

To clarify the notation once more we remark tHatW, ;) = T'(W, j,, ..., Wi, ),
wherel = |I|=|J|.

11

> 2 X My (Ky, ... K,)pioa=r 20K

1eJ7 (7)) v=1 WKe={1,...,|J]}
min/=i

Proof. —The multilinearity of the cumulant function is one of its basic properties. The
bound in (i) comes from S&S Lemma 1.1, where also the property odtfis is found.
For part (i), note that the proof of S&S Lemma 4.6 starts with their (4.55), which is
equivalent to the expression in part (i) of the lemma. Then, in S&S’s notation, we use
Co=Ca=u=1, f(s,1) = p'*I and the boung*"»> on x(W,, ,,); the result now
follows from (4.60) in S&S. O

We remark that we tacitly assume that for any cumulai; ), the vectord (andJ)
are rearranged so that the elementd ddlecome sorted in non-decreasing order before
the cumulant is expanded into centered moments as in the above lemma. Since cumulat
are invariant with respect to permutations of the random variables involved, such ¢
rearrangement does not change the value of the cumulant, but it is necessary as we wze
to apply results like Lemmas 3.2 and 3.4 which do require sorted time indices.

We shall now examine the mixing condition (7) for HMMs and identify @&in this
particular case. Defing by

1— p=inf (minay(, j) Aminaj(, j))
veVo i,j ij

with o5 (i, j) = 9 (j) /79 (i) X g (J, i); note thaix; (i, j) are the transition probabilities
of the time-reversed Markov chain. Under (Ap)< 1. Generally, ifA, is ergodic there

is anm, m < R, such that alln-step transition probabilities are positive. Assuming
m =1, it holds that ifH, is a set defined in terms &, andY,, t <u < n only, then
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fors <1,
maxpPy (H, | Y], X;=1i) —minPy(H, | Y], X, =1i) <p'™". (8)
1 I

This result is proved in Douc, Moulines, and Rydén (2001, Corollary 1). A simple
conditioning argument then yields

max Py (H, | Y2, X, =i) — Py (H, | YI)| < p'™ forall 9 e Vp, (9)

which is our particular version of (7). Note that we work with the conditional Markov
chainX | Y (it is straightforward to verify that the conditional process is still Markov,
although non-homogeneous), because in view of Proposition 3.1 we want to examin
conditional cumulants. WheiY] is fixed we can identifyp, in (7) with p in (9).
Following [6, Lemma 5], one can also prove that fock <7 —1,

sup |Py(X,€AlYY) —Py(X, e AIYTY|<p ™t forally eVo.  (10)
AC{1,...,R}

In the casen > 1, an inequality similar to (8) still holds true but with the bound on
the conditional mixing now depending on the This causes an additional degree of
difficulty in our subsequent arguments and we do not treat this case.

The next result now follows from the above and Lemma 3.2.

LEMMA 3.4.— Let K, = (K, 1,...,K,¢) be an element of a partition as in
Lemma3.3. Then

L
(J(Kq)) —
%y (h,(K‘)’ @) <27 [ Cux, , Xie, o2 ED forall 9 € Vo,
j=1

wherel (K,) = Ik, ;. - - - Ik,,) €tc. andCy(y) is defined in(2).

Proof of Theorem 2.1. First note that we may repladg by any® in Proposition 3.1
without changing the definition df,, as only derivatives of this function appear in the
proposition. Hence

1
(k) <! —1Ir
|£ )’\k Z |J|y

J
vy (E:Llh? ‘(@)
Yy (Liz i (9)
JeJ (k)

J!

)‘ for all & € V.

Expandl’y 1 (3", 1) (9)) as in Lemma 3.3(). We can employ Lemma 3.4 to obtain
the bound

%
[T (it @)

q=1

[Kql

<H{2'Kq' I Co,, 0 gﬁ““q”}

1] v
=2"=1] C,j.(Y,_/.)pZFlA“(K‘f)) forallv e V. (11)
j=1



P.J. BICKEL ET AL./ Ann. |. H. Poincaré — PR 38 (2002) 825846 835

Taking the expectation of this bound and letting< i, < --- < i/ denote the distinct
points of the vecto¥, the structure of an HMM yields

11" <h51;z:;»<m>[}

g=1

Eo{ sup

veVp

I/

< 2|J|—vEO{ H ij (YI_/-)},OE":l A(I(Kg))

j=1

< 2|J|—vEO{EO<H H Cy,(¥y) ‘ X,lz> }pzqzlA(l(Kq))

e=1j:1;=i,
:lel_vE(’{HE"( Il e Xfé>}p2q=l“’“<q”
=1

Jilj=iy

<2'J"1meaxEo< IT ¢,

=1 j [j=l'é

X = x> pZ;=1A(’(Kq)). (12)

Multiplying by 1/ J! and using Lemma 3.3(ii) we obtain

n ) n |J]—1
vi (S0 D ) 8
Fzﬁ(iﬂ <;Bk|-]|! 1-,

8 |J]—1
1—0) '

8 |J]—-1
Eo| sup$Y (Y1)| < nk!By (—)
|l9€V0 v ! | JG;(]() 1_p

Eo{ sup

eV

=an|J|!<

Hence

<I’lk'Bk1_p(1+1 ,0) ,

see the technical report for detailsO

The next lemma is needed for the proof of Theorem 2.2.
LEMMA 3.5.—Leta’ <a < b < b and suppose thaV measurable w.r.t. the sigma-
field generated by”. Then
Eo{WLY" (Y0)} = Eo{WL" (YD)}, m=0,12,...

The proof is given in the technical report.

Proof of Theorem 2.2. i this proof we again use the notation of Lemma 3.3. and
drop the argumenty of the functioni as this parameter stays fixed throughout the
proof. Moreover, since this lemma and other ones are formulated in terms of positive
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time indices we shift the indices of the statement of the theorem and set out to prove
Eo|€8” (Y, | Yi7Y)| < C1BLCEk!.

By Proposition 3.1 and multilinearity of the cumulant function,

(k) (Y |Yn l) (k)(Yn) _e(k) (Yn 1)

I L POV Ul B vt
e J! ° J!

JeJ (k)
_ ¥ k! {Fvg(Z?:llhE”) Fvg—l(Z?_‘llhﬁ”)
- T 0 - 55 1o T
S J! J!
(St n
+,;JF°1( it (13)
/Lﬂ //:
T4

where the last sum is over all partitiong’, J”) of the setJ except(J’, J") = (J, ).
This partition is excluded since it is the first sum of the right hand side and will be
compared to the second one. Clearly, there are two types of cumulants here. The fir
two ones are similar and their difference will be shown to remain bounded in expectatior
asn — oo. The last sum involves cumulants that contain at least/gneand this is
sufficient to keep them bounded s> oc.

We start by considering

UK ) (K
V—H X0t (hrk,s ) H hl(xqq ),

where we assume that
S OA(I(KY) = AWD).
g=1

This difference can be bounded in two ways. First, each term of the difference can b
bounded separately. Arguing as for (11), we obtain

i< mo hxgmm xob (S

|1 v
<2x 2|J|—1 H ij (YI_/),OZqzlAU(Kq))- (14)
j=1

Secondly, we can write

1]
lyl= H Cy(Yr;) X H Xo (W1(1<q) J(Kp) — H Xo ;1 (W1(1<q),1(1<q)) ; (15)
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whereW;; = h\”’/C;(Y;). Consider the scheme

m m m j—1 m
HBi—HAi=Z< Bi)(Bj_Aj)< H Ai)- (16)
i=1 i=1 j=1\i=1 i=j+1

We expandy (W x,).sk,)) into a sum of ¥4I=1 products of expected values of products

of W;;’s, cf. (6), with each random factor being bounded by one. Pick one of the terms
in this sum. This term is thus a product of no more th&p| factors (with each factor
being a conditional expectation of a productWf;’s). We call these factord; and B;,
respectively, when the expectation is conditional6hand Yﬁ‘l, respectively. Using

(10) we find that for each factor, the difference between its conditional expectations
under Y? and Y%, respectively, is bounded by—1-maX/(Ky) £ prn-l-maxl - that js

|A; — B;| is bounded by this expression. Employing (16) the product, we can bound
it by we arrive at the boun{k, |p"~1=maxI Using this bound for each term, we find

Yi i K, -1 —1-max/
|X01(W1(K,,),J(Kq))—xol (WI(K,,),J(Kq))|<2| al |K,|p"— M,

where 2¢¢1~1 is the total number of terms in the sum gig}, | upper bounds the number
of factors in each term. In addition, just as Lemma 3.4 follows from Lemma 3.2 we

obtainlxgz(W,(Kq)J(Kq))l < 2IKal=1 A0 KD) and similarly fory . Hence, by applying
(16) to (15),

[J] v v
|y| < H ij (Ylj) Z( H 2|Kq|—lpA(1(Kq))> 2|Kp|—l|Kp|pn—l—maX1

j=1 p=1\ ¢g=1
q#p
[J]
<[l ¢y, g2t prmtmmaxd, (17)

j=1
We can combine these two bounds, (14) and (17), by taking a geometric mean;

|1 v
— 24+(n—1— 2
[y < 2U ] €, ()22 [HRpduam M KZH B0 1)
j=1

As in the proof of Theorem 2.1, it follows that

n—171(J) n—1y(J)
E FYX Zi:l hi _ FY271 Zi:l hi
o0 J! 0 J!

n—1 ) 8 [J]-1
< 21/2|J|1/23kZp“‘l‘”/zuu(il_ pl/z)
i=1

111
<2421 — pl/z)—lBk|J|1/2|J|!(m> . (19)
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We now proceed to bounding the second type of cumulants appearing in (13). Le
(J', J”) be a partition of some € J* (k) with J' # J. We can expand the cumulant
similarly to Lemma 3.3(i) to obtain

n—1
Y ’ "
1—w01<§ h;J)’hfzJ ))‘

i=1

I/

< Z Z Z Mu(Kl,-. K )H|X0’ h%;{q”)(lﬂi))’.

1€y Dx(mp"t V=1 UKg=(L. 1T}
Taking expectations, applying the bound (12) and multiplying b§f[LJ'! [T J”!) yields

n—1,J 4
o (S B
0 Jn g

Ep

11

225D SREED SRS SRR RU N S

Iejl"_l(lj/l)x{n}‘f//‘ v=1 WK,={1,...|J]}

Fix a partition(J’, J”) of J such that/” % J and anl € 77" (|J']) x {n}/"]. We
need to look closer at the combinatorial constam‘s(Kl,...,K ). If the partition
(K1,...,K,) is such that there is n&, with /(K,) containing an element less than
n as well as an element, thenM, (K4, ..., K,) = 0. This is because in the graph for
M,(K4, ..., K,) (see S&S, p. 80) there can be no edge over the vertex corresponding tc
the first occurrence of in 1. Hence, we may disregard partitions of this kind.

Now consider a partitiofiKy, ..., K,) with at least ond (K,) containing an element
less thann and an element, and let mak/ denote the second largest element of
the vectorl, not counting multiplen’s. We can form a new vectof’ from I by
replacing all elements of being equal to: by max7 + 1. Then3-, _; A(I'(K,)) <
Z;ZlA(I(Kq)) — (n —max [ — 1). This vector!’ is not a member of7;'~ Y x
{n}" (unless max = n — 1), but does belong tg7"/(|J’|) x {max 1 + 1}I/";
indeed, there is a one-to-one correspondence between vdctansl I’ with these
characteristics. Therefore

I/

Z Z Z Z M,(Kq,..., Kv)pzl;:lA(I(Kq))

ST eI DX V=L UK=L 1D

n—1 11

—i—1
Y Y Y Y MKk
i=1 J’L}J/J;J:J 1eTE(J ) x{i+11" v=1 WK, ={1,... |/}
% pzqzlm(&;))_

For a fixed dimensiof/”| the summation above is done ovee 7; (|J']) x {i + 11",

a subset of7]'(|/]) characterized as vectors having exagtly| elements of maximal
sizei + 1, all being located at the end of the vectorJfi(|/|) there are more elements
having exactly|J”| elements of maximal size+ 1, disregarding their location. This
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number is in exact correspondence with the number of partitiéhs/”) of J with |J”|
as prescribed; their common value is the combinatorial conétgdt, |J”|). Hence the
above expression is bounded by

n—1 [J]

L ' AUK
ST Y Y Y MK Kp M)
i=1 1) v=1 WKs=(1....|J|}

max/=i+1

n—1 |J]—-1 |J]—-1
; 4 1 4
<D jp"—’—l|J|!< ) < |J|!< ) ;
— 1-p 1-p 1-p

1=

where the second last inequality is Lemma 3.3(ii); by symmetry, the bound is still valid
when minl =i is replaced by mak = i. We note that this bound does in fact also
take the partition(J’, J”) = (@, J), which was not considered above, into account; it
corresponds td = {n}/!. Thus

n=1,0U" 2" 17]-1

n 11,00 1 8

ryt Lizih b | BilJ|! . (20)
J' JM 1-p 1-p

Ep

Adding (19) and (20) as in (13) we find, see the technical report for details, that

8 1J]-1
Eolty’ (Ya I Y1) <C'Bik! Y |J|1/2(1 1/2>
JeT+ W) -r
<C'Bk! Y VI
JeJ+ (k)
< C'Bir(1+ C)F k!

for someC > 8/(1— p%?) andC’ = 2%2/(1 - p¥?) +1/(1 — p).

Here is the proof of part (ii). Sincéd,Py(X1 = x | YEJ), j=t,...,n, can be
expressed as polynomials my(X1 = x | Y‘ij) andD, log Po(X1 = x | Y(lj), 1<r <k,
it is enough to establish bounds for these quantities. The clainRfof; = x | Y(lj) is
essentially part 3 of Lemma 5 of [6]. In general, note that, since

Pg(XlZX|Y(iJ)=EO{I(Xl=x)%‘ }

Ly(XZ .,
:PQ(XJ_:)C | YE]>E0{M ’

aX = )
Ly(YO A x}
it holds that

D,logPy(X1=x]Y?;)

! Dyl 1 )y
= 2 el 0 YE) — (Y2 ) 1Y Xa=x).
JeJ (r)
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One can argue as for part (i) of the theorem with the critical step being a bound on

v v
Y= H xo(Wrkp. 0k, | ng, X1=x)— H xo(Wrk,p.0kp) | ng, X1=x).
q=1 g=1

The argument follows the route in going from (15) to (18).

We now prove part (iii) of Theorem 2.2. We start by establishing a bound on derivative
of the likelihood. Note that by Proposition 3.1, Theorem 2.1 and a lemma found in the
technical report,

k! ,
EolLy’ (YH)|< Y — TI(CinB,Cy) < C5B((Cam) v k)" (21)
JeJ+ (k) /1! i
for some constant€;, C,, and B;.
Let
y=Al, —A%,. A= H hﬁf}{jq” .
Then

E{VL(m)(Yl )} EO{( min A?nlnl) (m)(YEn)}

n+min/—1

+ Z EO{ m|n111 quim_,-_l

AI:!-I'llnl 1+Am|n1 l)L(m)(Yl >}
=y1+v2,

say. We bound now each of the terms. First

(71l < CCY (Jmin | v m)" pams 81 KaD /2t MR 2

by Lemma 3.5, (21), and (18). Butmin/| v m)" pM&//4 < Cm! for someCs > 0,
whence

|)/1| Cmc|J| ‘ |m|n1|/4+z _lA([(Kq))

Similarly, by considering the appropriate differences in the expressiop, fdepending
on whether > max(/) or vice-versa,

lyal < ZC”’C”' (|min1|+i)vm)’"pzqzlA(”K"”/z*“V'm"‘”)/z

v

= .
< Z cg"clzf'mng,,:l A(I(Kg))/2+(i+Iminl|)/4

< Cznclzjlm!plel A(I(Kg))/3+] min1|/12‘
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Having the bound orEy{y L™} =y, + y», similar to the bound (18) op (except for
the factorC™m!), we continue as in the first part of the proof to prove the theorem.
This completes the proof of Theorem 2.2

Proof of Theorem 2.3. We proceed under the given assumptions. The first part of
Theorem 2.3 follows readily from part (ii) of Theorem 2.2, since

Dato(Y1]Y2,) = Dalog (Z P(X1=x|Y%)gy(Y1| x)) . (22)
For the second part note that
Dato(Y]) = 3. Datolts 1Y)
i=1
= Y Datolts 1 Vi) + 0, (1) (23)

i=(logn)2+1

by (22) and patrt (ii) of Theorem 2.2.

Now, under our assumptions the variables in the sum in (23) are uniformly boundec
and geometrically mixing since thgh one is a function ol; , = (Y;_qogny2. - - -» ¥i),
and the{U; ,} are uniformly inn geometricallyp-mixing. Then asymptotic normality,
with natural centering by means and scaling by standard deviations, follows by the
obvious extension to triangular arrays of the classical theorem of Ibragimov, see
[9, p. 47] for instance. That the means and variances converge to the limit postulate
is again an exercise in applying part (ii) of Theorem 2.2

4. Applications
4.1. A start at higher order asymptotics

Itis well known, see for example [1] that in the i.i.d. case it is possible under suitable
smoothnqss and moment conditions to ‘debias’ the MLEo first order, that is to
constructh(-) such that

Ey (5‘ + n_lé(zg‘)) =9+ O(n_g/z)

and b — b in probability, uniformly in, for a fixed continuousb. With further
conditions, @rn~%?) can be turned into @ 2).

Other second order asymptotics results of interest are Pfanzagl's second orde
optimality of functions of the MLE within classes of estimates with the same bias
function (see for example [3], the validity of Bartlett's correction to the likelihood ratio
test (see for example [4]), the second order validity of bootstitgsts (see for example
[11]) etc. The basic ingredients of debiasing are:

() A stochastic expansion for the MLE in terms of polynomials of the derivatives
of £, (Y?}).
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(b) Probability bounds on probabilities of intermediate and large deviations of the
derivativest,y (Y1).
For the other types of results one further needs,
(c) Edgeworth expansions for the joint distribution of the first few derivatives of
£y (Y1) atvo.
As we shall see, our bounds give (a) directly. We conjecture that (b) can be establishe
using results for sums of functions of Markov Variables as in S&S. Results of type (c)
under simple assumptions, although plausible appear difficult to attain.
Here is the argument for (a) under (A1), (&9, and (A3) and real?. Write & for
the MLE. Then, by a Taylor expansion,

" 1 N
—n"Y2Deo (Y1) = n2 (@B — 9o) n T Dalo(Y]) + En_l/zn(ﬁ — 90)’n D3ty (Y1),

wherev* lies between} andw,. Suppose for simplicity that all entries gf, are positive
and that the derivatives of lgg are uniformly bounded in a neighborhood®%f Then,

by Theorem 2.1, undety,

n"2Dlo(Y?)

n=1Dalo(Y1)

Iy ( ‘1/2DE0(Y”)> n~1D3lo(Y") (nY)

—n n .

2 1D2lo (YY) ~1Dolo(YY) ?

But n71D2lo(Y4) = —1(90) + O,(n~Y/?) by Theorem 2.3 (which can be viewed as a
refinement of Lemma 2 of [6]). Here

nY2(% — 9) = —

1 (Do) = —Eyy(D210g psy (Y11 Y° ).
Finally we get
nY2( — 90) =n"Y2Deo(Y1) I (90)
—nY2Deo(YE) I (90) 2 (n " Dalo(Y]) + 1 (90))
— 22 (Dto(¥]))"1 (90 *Dato(Y) + O, (n7Y.
the desired stochastic expansion.
4.2. Asymptotic expansions

The following results generalizes Theorem 3.18 of [19]. For simplicity we assume
that the parameter is real.

THEOREM 4.1. — Assume that{Aloo)—A3c0) hold. ThenI(¢#) and K(#) are
analytic functions. For instance,

K@) = ZD KL= ﬁ(’)

j=1

in some neighborhood of evey € ©.
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The series converges absolutely in some neighborhooth,ofince for everydo,
ID; K (90)| < C (o) j!.

Moreover,
D1K (90) = EoD{o(Y1|Y° ) =0,
D2K () = —1 (Do),
D;2K (90) = lim 13 (90),
where

9/
145 90) =~ = Eoe" (Y1) Ly (Y3)]

Yo
The I|m|t1(fd(190) exists under our assumptions and can be represented by
i/ )
J (k +d)! v (L 1.G=h) (ymax)
Z<k> S S X e{n ()W o) e

k=0 JeJt (k+d) 1eJ (7
min(/)=1

whereL; = Lq(Y)).

Proof. —Note that/ (¢) = —D,K (¥#), so that it is enough to establish the claim for
K(®).
Since

L) = Z Eo{es" (Yi 1 YLy (YD),
=1

we obtain

n

1
I(J) —
| nd (190)’ n

> (é) Eol e (v, 1Y) L (v))

i=1 k=0

and the bound follows from Theorem 2.2. The limit is clearly given by the similarly
bounded derivative of the expression

i @) 0 1
n||—>moo EO{EO (Yl | Y—n)LO(Y—n)}
We need the limit in this expression sinl;@(Y{oo) is not defined.
The other representation follows by expanding the derivatives as in Proposition 3.1
expanding the cumulant function as in Lemma 3.3 and using this lemma and Lemma 3.
to argue that the limit exists.

. : 1L (k+d)!
lim 1% () = lim =
n—o00 "d( 0) n—>oonz k Z |_]|!

k=0 JeT+(k+d)
L; —k) x(/)
x> EO{FO (J' )L (YT
IGJOO(VD

min(I):l
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:i:(i) 2 (k|JJr|7)!

k=0 JeJt(k+d)
Yo Ly) (j—k) (nymax)
X Z EQ{FO:L (T)LOJ (Yl )} |
1T () ’
min(/)=1

COROLLARY 4.1. — If under 8¢ the Y; are i.i.d., then the sum i§24) becomes in
principle computable as

J
E FY?’ LS ) L(j_k) Yma>(1) =0
0to J! 0 ( 1 )_

unlessly=1,I1—I,_1=0o0rl,i=1,...,|J]|.

Proof. —Unless the conditions above are satisfiétfo(Lﬂj)/J!) = 0, since the
indices involved could be split into two blocks of the forfin < --- < i} and {iy 1 <
- K imax([)} with ik+1 — i > 1.

Since all variables irLﬁ” are at most 2-dependent, the conditional cumulant would
have to vanish because the variables involved could be split into independent blacks.

We give some explicit computations for a special case below. We note that unfortu-

nately the number of non-zero termsli§: (L J1) grows exponentially as a function
of |J].

COROLLARY 4.2.— If Eg|log po(Y1)| < oo and the conditions of Theoretn2 hold
then H (¥) is analytic.

Proof. —H (¢#) = K () — Ey log po(Y1 | YEOO) in this case. O

4.3. Example: Information under independence and a two-state Markov chain
with Gaussian observations

We consider now a reversible two state Markov chain with normal observations. Let
X,’ (S {—1, 1}, P(Xi+l 75 X,’ | Xl) =p anin = Xi + & where. . ., €0, €1,... Al€ i.i.d.
N(0,0?), o? known, random variables independent of tigorocess. We identify the
parametemp with the ¢ of the general discussion and takg=1/2.

One can derive the information from Proposition 3.1. We obtain

1(1/2) = 4(1 — Egvan(X1X, | Ya, Yz)) = 4EQ(EQ(X1 | Yl))4, 1/(1/2) =0.

It is reasonable to conjecture the following result.

THEOREM 4.2. — Consider the two state symmetric Markov chain with normal
observations as above. Thénp) has the following properties
(i) Symmetryl(p)=1(1- p);
(i) Unimodality with minimum at/2;
(iii) Unboundness0 < liminf, 0 pI(p) <limsup, o pl(p) <1
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The proof of this result cannot depend on the expansion. Here is an argument.

Proof. —The first two properties will be proved by showing that for ariybetweenp
and 1— p there is a Markov kernel that does not depend on the unknown parameter
and transforms the observatiols Y, ... to another sequence of variablgs, Y5, ...,
such that the latter follows the same model as the original observations but with
parametenp*. This shows thaf (p*) < I(p), for any suchp, and in particular (p) =
I(1— p). Let Sy, Sy, ... bei.i.d. Bernoulli random variables with meanindependent
of theY process and define

Vi = (-2 Ty = ()2 (X ) = X e

Now, ¢ are still i.i.d. Gaussian, and;, X3, ... is still Markovian, with values in
{—1, 1}, but with probability of switching given by* = (1—«a)p + «(1— p).

We now prove the third property. We will argue that for gmythere is an estimator
of p, valid for values of the parameter in a small neighborhooggfvhose asymptotic
variance converges to 0 @g — 0. Since the information ai is larger than the inverse
of the variance of any regular estimator, Jimo/(po) = co. The details are in the
technical report. O
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