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1. Introduction

1.1. Strassen’s law

Let W be a standard Brownian motion. Consider forT > 3 the random processes

WT (x) = W(T x)√
2T log logT

indexed byx ∈ [0, 1]. Let C be the space of real valued continuous functions on[0, 1]
starting from 0, equipped with the supremum norm‖ · ‖. According to Strassen’s
functional law of the iterated logarithm (see [12]) the sequence{WT , T � 3} is almost
surely relatively compact in(C,‖ · ‖) and its almost sure limit set is

H1 =
{

h: h(x) =
∫

[0,x]
h′ dλ, J (h) � 1

}

whereλ denotes the Lebesgue measure,h′ any Lebesgue derivative of aλ-absolutely
continuous functionh and the energy ofh is given byJ (h) = ∫

[0,1] h′2 dλ. SinceH1 is
closed, this implies

lim inf
T →∞ ‖WT − h‖

{= 0 if h ∈H1

> 0 if h /∈H1
a.s. (1)

ThusJ (h) quantifies at the first order the difficulty forWT to look like h. Recall further
thatW satisfies the usual large deviation principle on(C,‖·‖) with the good rate function
J (h)/2, in the sense of Deuschel and Stroock [5]. According to De Acosta [6],J (h)/2
also governs the small deviations ofW in the direction of enlargedh.

1.2. Functional Chung’s law

Fix an accumulation pointh ∈H1. In [3] (see also [6]) Csáki proved that ifJ (h) < 1,
then the exact rate in (1) depends onJ (h) only, namely,

lim inf
T →∞ log logT ‖WT − h‖ = π

4
√

1− J (h)
a.s. (2)

This reduces to Chung’s law whenh = 0 (see [2]). Conversely, whenJ (h) = 1, the limit
(2) is infinite. Moreover Goodman and Kuelbs obtained in [7]

c(h) = lim inf
T →∞ (log logT )2/3‖WT − h‖ < ∞ a.s. (3)

In this case the increasing function, which we call theglobal energy lossof h,

ϕh(ε) = 1− inf‖g−h‖�ε
J (g)

is crucial with respect to the exact rate in (1). The infimum is taken amongλ-absolutely
continuous functionsg. More precisely, ifJ (h) = 1, we distinguish betweenslowestand
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intermediaterates according to the criterion

d(h) = lim
ε→0

ϕh(ε)

ε

{∈ [2,∞[, c(h) > 0,
= ∞, c(h) = 0,

(4)

sinced(h) always exists (see [10, Section 5]) and determinesc(h) as recalled below.

Remark1. – The question of exact rates and constants in (2) under various norms has
been intensively investigated in the last decade (see Berthet and Shi [1] and references
therein). For instance, (4) remains unchanged underL2 metric as shown by the exact
rates for theL2 version of (1) calculated in Kuelbs, Li and Talagrand [10].

Let us picture out the situation on the border ofH1,

∂H1 = {
h: h ∈H1, J (h) = 1

}
.

1.3. Slowest functions

The behaviour ofϕh at zero is closely related to the length and smoothness ofh. Let
γ be a signed Borel measure on[0, 1] such thatγ ([x, 1]) defines a version ofh′(x). If
γ can be chosen of bounded variation, thenV (h′, B) denotes the total variation ofγ
over any Borel setB ⊂ [0, 1] and we writeV (h

′
) = V (h′, [0, 1]) < ∞. Otherwise we set

V (h′, B) = ∞ andV (h′) = ∞.

Theslowestfunctions are

∂sH1 = {
h: h ∈H1, J (h) = 1, V (h′) < ∞}

,

since Grill showed in [9] thatc(h) > 0 in (3) if, and only if, h ∈ ∂sH1 which is also
equivalent tod(h) ∈ [2,∞) in (4) (see e.g. [7,10]). It is very difficult for the Brownian
motion to follow uniformly such smooth trajectories.

The exact constantc(h) is obtained by Csáki in [3,4] whenh is piecewise linear or
quadratic. Recently, in [8] Gorn and Lifshits extended Csáki’s method to characterize
c(h) for any h ∈ ∂sH1 as the unique solution of an equation and provided a procedure
for its numerical calculation.

1.4. Intermediate functions

In his seminal work [9], Grill proved that anyintermediatefunction h ∈ ∂iH1 =
∂H1\∂sH1 satisfies

lim inf
T →∞

‖WT − h‖
ε(T )

∈ [1, 2] a.s. (5)

where the rateε(T ) is the unique solution of

√
ϕh(ε) = π

4ε log logT
. (6)



814 P. BERTHET, M. LIFSHITS / Ann. I. H. Poincaré – PR 38 (2002) 811–824

Note that limT →∞ ε(T ) = 0, limT →∞ ε(T ) log logT = ∞ and ε(T ) is decreasing.
Further,d(h) = ∞ and thus, by (5) and (6),c(h) = 0 in (3). Also, in practice it suffices
to find an equivalent forϕh(ε) and hence forε(T ).

The functions of∂iH1 are more easily approached by a Brownian path because they
have a larger global energy loss function. This may be due to their irregular behaviour –
oscillating or just non-smooth pieces admit efficient rectification.

Remark2. – Interestingly, the statements (5) and (6) remain true for allh ∈ H1 and
the liminf in (5) is 1 wheneverϕh is slowly varying at 0. For instance, it is the case
whenJ (h) < 1 and (2) immediately follows. Conversely, ifh ∈ ∂sH1 thend(h) in (4)
is explicited in [10] and (6) then yields the right order(log logT )−2/3 but comparing
(5) and (3) via the result of [8] shows that(16π−2d(h))1/3 �= c(h) for someh ∈ ∂sH1.
Hence the constant in (5) is not 1 in general.

Surprisingly, many years after (5) has appeared, the exact rate was not obtained even
for simple power functions (cf. Example 1 below). We intend to show that the liminf in
(5) is 1 for a large class ofh ∈ ∂iH1.

1.5. Typical intermediate functions

In order to illustrate our results let us introduce elementary critical functions – having
Lebesgue derivative of infinite variation and unitL2 norm. All are locally Hölder with
indexα ∈]1/2, 1[ and have loss function

ϕh(ε) = O
(
ε(2α−1)/α

)
with exact constants easily computed by invoking optimization arguments. Let�α =
α2(1− α)(1−α)/α(2α − 1)−1. We assume everywhere thatε is small enough.

Example1. – The functionh1(x) = bxα = ±√
2α − 1xα/α ∈ ∂iH1 has energy loss

ϕh1(ε) = 2|b|1/α�αε(2α−1)/α

= 2(2α − 1)(1−2α)/(2α)α(2α−1)/α(1− α)(1−α)/αε(2α−1)/α

localized at the origin. The constant belongs to]1, 2[.
Next, a smooth perturbation is added with almost no effect.

Example2. – Let 0< c2 < c2
α = (2α − 1)(1 − α)−2, a = c(−1 ±

√
c−2 − c−2

α ) and

h2(x) = cxα + ax. Thenh2 ∈ ∂iH1 and

ϕh2(ε) = 2|c|1/α�αε(2α−1)/α + 2aε.

In Examples 3 and 4 we consider a singleα-Hölder pointy ∈]0, 1[ away from the
origin. Denotel+ ∈ ]0, 1 − y] (respectivelyl− ∈ ]0, y]) the length of an interval starting
(respectively ending) aty. Interestingly,y andl± eventually play no role.

Example3. – Leth3 = I[0,y[h3− + I[y,y+l+[h3α + I[y+l+,1]h3+ with h3α(x) = h3−(y) +
b(x − y)α , b �= 0 andh′

3± of bounded variation. Thenh3 ∈ ∂iH1 satisfies

ϕh3(ε) = 2(3α−1)/α|b|1/α�αε(2α−1)/α + O(ε).
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In particular, takingh′
3− = a and h′

3+ = c constant yields O(ε) = −sign(b) × 2aε −
y−1ε2 + φ(ε) where, ifcb ∈ [0, αb2lα−1+ ], φ(ε) = 0 and, ifcb < 0, φ(ε) = |4c|ε − 4(1−
y − l+)−1ε2 whereas, ifcb > αb2lα−1+ , φ(ε) = |4c|(1− αlα−1+ b/c)ε + O(ε3/2).

Observe thatϕh3(ε) ∼ ϕh1(2ε) when h′
3± = 0 because|g(y) − h(y)| < ε is less

restrictive thang(0) = 0. Compare this with another situation of the kind – a doubly
Hölder point:

Example4. – Let y ∈]0, 1[, a2 < y, b± �= 0, hα±(x) = a + b±|y − x|α and h′
4±

of bounded variation be such thath4 = I[0,y−l−]h4− + I]y−l−,y[hα− + I[y,y+l+[hα+ +
I[y+l+,1]h4+ belongs to∂H1. If b−b+ > 0 we have

ϕh4(ε) = 2(3α−1)/α
(|b−|1/α + |b+|1/α

)
�αε(2α−1)/α + O(ε)

whereas, ifb−b+ < 0 less energy can be spared, since then

ϕh4(ε) = 2(3α−1)/α
(|b−|1/(1−α) + |b+|1/(1−α)

)(1−α)/α
�αε(2α−1)/α + O(ε).

We end with a natural extension of Example 3 in the spirit of Theorem 2 below.

Example5. – For i = 0, . . . , n let αi ∈]1/2, 1[, bi �= 0, xi ∈]0, 1[, xi < xi+1, li ∈
]0, xi+1 − xi], h5,i(x) = ai + bi(x − xi)

αi , I0 = [0, 1]\⋃n
i=1[xi, xi + li] and h′

5,0 of
bounded variation be such that

h5 =
n∑

i=1

I[xi ,xi+li ]h5,i + I0h5,0 ∈ ∂H1.

Then, forα = mini αi we have

ϕh5(ε) = 2(3α−1)/α

( ∑
i: αi=α

|bi |1/α

)
�αε(2α−1)/α + O(ε).

2. Main results

The exact constant in (5) depends on the nature ofrectifiedtrajectories

Rh(ε) = {
hε: hε ∈H1, ‖hε − h‖ � ε, J (hε) = 1− ϕh(ε)

}
(7)

which are close toh with shortened paths. Unfortunately, the study ofRh is not an
easy task – except for simple functions ash1, h2 or particularizedh3 – since there is
no general way to evaluate the crucial functionϕh. Our answer concerns the case where
the energy loss ofh occurs on the neighborhood of a finite subset of[0, 1] due to a few
isolated critical points. This framework includes the above examples.

The main innovation which enables to solve the problem in this case, has geometric
nature. Namely, for the lower estimate of probabilitiesP(||WT − h|| < ε) we use the
probabilities of the kindP(WT ∈ A(h, ε)) whereA(h, ε) is a subset of theε-ball around
h but it is not a ball itself. Instead,A(h, ε) turns out to be a set of trajectories running
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inside of a very narrow strip at the most critical points ofh and inside of a large one
elsewhere.

For any Borel subsetB of [0, 1] andh absolutely continuous we write

‖h‖B = sup
B

|h|, J (h, B) =
∫
B

h′2 dλ

and consider thelocal energy lossfunction ofh,

ϕh(ε, B) = J (h, B) − inf‖g−h‖�ε
J (h, B)

so thatϕh(ε, [0, 1]) = ϕh(ε). First consider the generic situation where the energy must
be spared at 0.

THEOREM 1. – If h ∈ ∂iH1 is such that for anyx ∈]0, 1[,

V
(
h′, [0, x]) = ∞ and V

(
h′, [x, 1]) < ∞ (8)

then

lim
ε→0

ϕh(ε, [0, x])
ϕh(ε)

= 1 (9)

and the unique solutionε(T ) of Eq.(6) satisfies

lim inf
T →∞

‖WT − h‖
ε(T )

= 1 a.s.

Note that (9) allows to solve (6) using anyϕh(ε, [0, x]) instead ofϕh(ε). Henceϕh

needs to be studied locally only – optimalhε in (7) is not required.

Remark3. – Concerning the relationship between (7) and (8), consider the simple
situation whereh follows the assumptions of Theorem 1 andh is either (i) concave
on [0, x0] with h

′
(0) = ∞ or (ii) convex on[0, x0] with h

′
(0) = −∞. Defineδε as the

smallest solution of (i)h(δ) � ε+δh′(δ) or (ii) h(δ) � −ε+δh′(δ) so thatδε decreases to
0 asε tends to 0. Then for allε > 0 small enough there existshε ∈Rh(ε) andx ∈ (0, x0)

such that1[δε,x]h′
ε = 1[δε,x]h′ a.e. Further, (9) can be refined into

ϕh(ε) = J
(
h, [0, δε]) − (|h(δε)| − ε

)2
/δε + O(ε).

We provide a detailed proof of Theorem 1 to help the reader in understanding what
makes the following more general version work.

THEOREM 2. –Let h ∈ ∂iH1 be such that there exists0 � x1 < · · · < xn � 1
satisfying, for anyθ > 0, Aθ,i = [xi − θ, xi + θ] ∩ [0, 1] andAθ = ⋃n

i=1 Aθ,i ,

V (h′, Aθ) = ∞ and V
(
h′, [0, 1]\Aθ

)
< ∞. (10)
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Then the conclusion of Theorem1 holds true, with(9) replaced with

lim
ε→0

ϕh(ε, Aθ)

ϕh(ε)
= 1.

Remark4. – Comparing the quantitiesϕh(ε, Aθ,i) can tell us how manyxi are really
essential. We call a pointxi sub-criticalwhenever for allθ > 0 such that

⋂n
i=1 Aθ,i = ∅,

lim
ε→0

ϕh(ε, Aθ,i)

ϕh(ε)
= 0.

If xi is sub-critical, then the resulting rateε(T ) is not affected byϕh(ε, Aθ,i).

Remark5. – The actual positionxi of the most critical oscillation slightly influences
ϕh and the exact constant inε(T ) but not the rate. Usually, havingx1 = 0 leads to
higher ε(T ) because translating the same oscillation atx1 > 0 turnsϕh(ε, [0, θ]) into
ϕh(2ε, [xi , xi + θ]) – compareh1 andh3.

We now deduce from Theorem 2 the functional Chung law for our examples.

COROLLARY 3. – If h ∈ ∂iH1 satisfies(10) and

dρ(h) = lim
ε→0

ε−ρϕh(ε) ∈ (0,∞)

with ρ < 1 then

lim inf
T →∞ (log logT )2/(ρ+2)‖WT − h‖ =

(
π2

16dρ(h)

)1/(ρ+2)

a.s.

Corollary 3 applies tohi for i = 1, . . . , 5 with ρ = 2 − 1/α and explicitdρ(hi). In
particular,

lim inf
T →∞ (log logT )2α/(4α−1)‖WT − h1‖

= (π2/32)α/(4α−1)(2α − 1)(2α−1)/(8α−2)

α(2α−1)/(4α−1)(1− α)(1−α)/(4α−1)
a.s. (11)

The power 2α/(4α − 1) fills the gap between 2/3 and 1, as announced in erroneous
Corollaries 1 and 4 in [9]. Our results forhi now provide right power, exact constants
and remainder terms.

Remark6. – Whenα → 1/2, the limiting constant tends toπ/4, hence (11) falls in
agreement with Chung’s law, that is (2) forh = 0. Clearly, forα very close to 1/2 both
h1 andWT expend most of their energy at the origin and then, roughly speaking, stay
within the interval[−ε, ε] while the time varies from almost zero to one. The same
comment stands forh3 whenh′

3± = 0 but the limiting constant is smaller than Chung’s
one. Whenα → 1, the limiting constant tends to(π2/32)1/3, thus (11) also provides a
correct interpolation towards the exact rate forh(x) = x given in Csáki [3].
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3. Proofs

In this section we achieve the lower bound in (5) under (8), then under (10).

3.1. Proof of Theorem 1

Our preliminary lemma justifies (9).

LEMMA 4. –Let h ∈ ∂iH1 obey(8). For all x ∈]0, 1[ we have

lim
ε→0

ϕh(ε, [0, x])
ε

= ∞ and lim sup
ε→0

ϕh(ε, [x, 1])
ε

< ∞. (12)

Further, there exists a positive functionρx(ε) such thatlimε→0 ρx(ε) = 0 and

ϕh(ε) � ϕh

(
ε, [0, x]) �

(
1− ρx(ε)

)
ϕh(ε). (13)

Proof. –Under (8), Propositions 1 and 2 in [10] respectively imply

lim
ε→0

ϕh(ε, [x, 1])
2ε

= ∣∣h′(x)
∣∣ + ∣∣h′(1)

∣∣ + V
(
h′, [x, 1]) < ∞

and

lim
ε→0

ϕh(ε, [0, x])
2ε

= |h′(x)| + V
(
h′, [0, x]) = ∞

whence (12). In the same way, limε→0 ϕh(ε)/ε = ∞. The upper bound in (13) comes
from the fact that replacingg′ with h′ on [x, 1] yields

ϕh(ε) = 1− inf‖g−h‖�ε

(
J

(
g, [0, x]) + J

(
g, [x, 1]))

� 1− inf‖g−h‖�ε

(
J

(
g, [0, x]) + J

(
h, [x, 1])) = ϕh

(
ε, [0, x]).

Since

ϕh

(
ε, [0, x]) + ϕh

(
ε, [x, 1]) = 1− (

inf‖g−h‖�ε
J

(
g, [0, x]) + inf‖g−h‖�ε

J
(
g, [x, 1]))

� 1− inf‖g−h‖�ε

(
J

(
g, [0, x]) + J

(
g, [x, 1])) = ϕh(ε),

we see thatρx(ε) = ϕh(ε, [x, 1])/ϕh(ε) satisfies (13) together with

lim
ε→0

ρx(ε) = lim
ε→0

ϕh(ε, [x, 1])/ε

ϕh(ε)/ε
= 0. ✷

Fix h ∈ ∂iH1 satisfying (8). For brevity, we writeD = (2 log logT )1/2 and letε =
ε(T ) be the solution of (6). The forthcoming constantsβi > 0 are everywhere sufficiently
small. The following steps aim to evaluate

P
(‖WT − h‖ � (1+ β1)ε

)
(14)

for all sufficiently largeT .
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Step1. Let us start with useful consequences of the assumptions in force. Since
d(h) = ∞ in (4), we have limε→0 ϕh(ε)/ε = ∞ whereas limε→0 ϕh(ε) = 0 by semi-
continuity of the energy function. Moreover, (6) means

ϕh(ε)

ε
= π2

4D4ε3
(15)

thus limT →∞ ε = 0, limT →∞ D4/3ε = 0 but limT →∞ D2ε = ∞. Next, (8) and (12) ensure
that for every fixedx ∈]0, 1[, β2 > 0 and arbitrarily smallε,

∣∣h′(1)
∣∣ + V

(
h′, [x, 1]) < β2

ϕh(ε, [0, x])
ε

. (16)

Mixing (13) and (15) further gives, for anyβ3 > 0 andε small enough,

ϕh(ε, [0, x])
ε

� (1− β3)
ϕh(ε)

ε
= (1− β3)

π2

4D4ε3
. (17)

For anyε > 0 andx ∈]0, 1[ considerhε ∈H1 such that‖hε −h‖ � ε andJ (hε, [0, x]) =
J (h, [0, x])−ϕh(ε, [0, x]). We introduce the mixturegε = (1−β4)hε +β4h. Obviously,

‖gε − h‖ � (1− β4)ε. (18)

Step2. We split the lower bound in two parts observing that the most probable way of
fulfilling our small ball requirement (14) for Brownian path is to followgε on [0, x] very
closely, then to stay in a larger tube aroundh on [x, 1]. By independence and stationarity
of the increments ofW ,

P
(‖W − Dh‖ � (1+ β1)Dε

)
� P

({‖W − Dh‖[0,x] � Dε
} ∩ {‖W − Dh‖[x,1] � (1+ β1)Dε

})
� P

(‖W − Dh‖[0,x] � Dε
)

× inf|a|�Dε
P

(‖a + W̃ − D�xh‖[0,1−x] � (1+ β1)Dε
)

(19)

where�xh(s) = h(x + s) − h(x) for s ∈ [0, 1− x], W̃(s) = W(x + s) − W(x) is still a
Brownian motion anda = W(x) − Dh(x) is controlled by the first event.

Step3. Using (18) and the Cameron–Martin formula, we get

P
(‖W − Dh‖[0,x] � Dε

)
� P

(‖W − Dgε‖[0,x] � β4Dε
)

� P
(‖W‖[0,x] � β4Dε

)
exp

(
−D2

2
J

(
gε, [0, x])).

Now, by Chung’s estimate (see [2]) and the scaling property, for everyβ5 > 0 all Dε

small enough satisfy

P
(‖W‖[0,x] � β4Dε

)
� exp

(
−

(
π2

8
+ β5

)(
β4Dε√

x

)−2)
.
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Recalling the definition ofhε, assumption (8), andJ (hε) < J (h) = 1 we have

J
(
gε, [0, x]) = J

(
(1− β4)hε + β4h, [0, x])

� (1− β4)2J
(
hε, [0, x]) + β2

4J
(
h, [0, x])

+ 2β4(1− β4)

√
J

(
hε, [0, x])J

(
h, [0, x])

� (1− β4)2(J (
h, [0, x]) − ϕh

(
ε, [0, x]))

+ β2
4J

(
h, [0, x]) + 2β4(1− β4)J

(
h, [0, x])

= J
(
h, [0, x]) − (1− β4)2ϕh

(
ε, [0, x]).

Therefore, ultimately inDε → 0,

P
(‖W − Dh‖[0,x] � Dε

)
� exp

(
−D2

2

(
J

(
h, [0, x]) − (1− β4)2ϕh

(
ε, [0, x]))

−
(

π2

8
+ β5

)
x

(β4Dε)2

)
. (20)

Step4. Fix |a| � Dε. The Cameron–Martin formula implies

P
(‖a + W̃ − D�xh‖[0,1−x] � (1+ β1)Dε

)
= exp

(
−D2

2
J

(
�xh, [0, 1− x]))

× E

(
I{‖a+W̃‖[0,1−x]�(1+β1)Dε} exp

(
−D

∫
[0,1−x]

(�xh)′ dW̃

))
. (21)

Now, remind thath′(x + s) = γ ([x + s, 1]) is a version of(�xh)′ on s ∈ [0, 1 − x] and
let γx denote the corresponding measure on[0, 1 − x], i.e. γ translated by−x. Taking
into account (16) and the indicator function in (21), the integration by parts then gives∫

[0,1−x]
(�xh)′ dW̃ = W̃ (1− x)(�xh)′(1− x) +

∫
[0,1−x]

W̃ dγx

� sup
[0,1−x]

|W̃ |(∣∣h′(1)
∣∣ + V

(
h′, [x, 1]))

�
(|a| + (1+ β1)Dε

)
β2

ϕh(ε, [0, x])
ε

� (2+ β1)β2Dϕh

(
ε, [0, x]).

Next we rescalẽW to a standard Wiener processW again and apply a boundary crossing
estimate (see [11] or e.g. Theorem 4.5 in [1]). Uniformly in|a| � Dε we get, asDε → 0,

P
(‖a + W̃‖[0,1−x] � (1+ β1)Dε

)
= P

(‖a + √
1− xW‖[0,1] � (1+ β1)Dε

)
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� P

({−β1Dε√
1− x

� W(t) � (2+ β1)Dε√
1− x

: t ∈ [0, 1]
})

= exp
(

− π2(1− x) + o(1)

2(2+ β1 + β1)2(Dε)2

)
.

Thus (21) is bounded below by

exp
(

−D2

2
J

(
h, [x, 1])−

(
π2(1− x)

8(1+ β1)2
+β6

)
1

(Dε)2
−(2+β1)β2D2ϕh

(
ε, [0, x])) (22)

for everyβ6 > 0 providedε andDε are small enough.
Step5. Combining (19), (20) and (22), all smallε satisfy

P
(‖W − Dh‖ � (1+ β1)Dε

)
� exp

(
−D2

2
−

(
1− x

(1+ β1)2
+

(
1+ 8β5

π2

)
x

β2
4

+ 8β6

π2

)
π2

8(Dε)2

+ (
(1− β4)2 − 2(2+ β1)β2

)D2

2
ϕh

(
ε, [0, x]))

which, in view of (17), yields

P
(‖W − Dh‖ � (1+ β1)Dε

)
� exp

(
−D2

2
+ π2

8(Dε)2

((
(1− β4)2 − 2(2+ β1)β2

)
(1− β3)

− 1

(1+ β1)2
−

(
1+ 8β5

π2
− β2

4

(1+ β1)2

)
x

β2
4

− 8β6

π2

))

� exp
(

−D2

2
+ β7

(Dε)2

)

whereβ7 > 0 providedβ4 < (1+ β1)−1β1 andβ2, β3, β6, x are chosen sufficiently small
with respect toβ1 andβ4. Hence, ifT is so large thatD4/3ε �

√
β7, and (15), (20), and

(22) simultaneously hold, we obtain the precise estimate

P
(‖W − Dh‖ � (1+ β1)Dε

)
� exp

(
−D2

2
+ D2/3

)
= 1

logT
exp

(
(2 log logT )1/3).

Step6. The lower bound of Step 5 allows to conclude the proof by the following
standard argument, as in [3]. Applying divergent part of Borel–Cantelli lemma along the
sequenceTn = nn with slightly modifiedWT andh to ensure independence, we easily
deduce that for everyβ1 > 0

lim inf
T →∞

‖WT − h‖
ε(T )

� 1+ β1 a.s.
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3.2. Proof of Theorem 2

Fix θ > 0 so small that
⋂

i�n Aθ,i = ∅ and henceBθ = [0, 1]\Aθ = ⋃
j�mh

Bθ,j is a
union ofmh disjoint intervals. Clearly,mh = n exept when(x1, xn) = (0, 1) (mh = n−1)
or 0< x1 < xn < 1 (mh = n + 1).

Under (10), Lemma 4 holds with[0, x] changed intoAθ and [x, 1] into Bθ , by the
same arguments. Also,V (h, Aθ,i) < ∞ implies limε→0 ϕh(ε, Aθ,i)/ϕh(ε, Aθ) = 0 thus
we can assume with no loss of generality that

inf
i�n

V (h, Aθ,i) = ∞. (23)

In step 1, (16) becomes
mh∑
j=1

ψ(Bθ,j ) =
mh∑
j=1

(∣∣h′(inf Bθ,j )
∣∣ + ∣∣h′(supBθ,j )

∣∣ + V (h′, Bθ,j )
)

< β2
ϕh(ε, Aθ )

ε
. (24)

In step 2, we progressively enlarge the size of the main strip aroundh by using
constantsβ1

0 = 0 < β1
i < β1

i+1 < β1
mh+n−1 = β1. Let (τ, δ) = (θ, 1) wheneverx1 = 0

and (τ, δ) = (x1 − θ, 0) otherwise. Writingαi = λ(Aθ,i) and ηj = λ(Bθ,j )) the basic
decomposition (19) now reads

P
(‖W − Dh‖ � (1+ β1)Dε

)
� P

(‖W − Dh‖[0,τ ] � Dε
)

n∏
i=1+δ

inf
|b|�(1+β1

2i−2−δ
)Dε

P
(‖b + Wi − D�ih‖[0,αi ] �

(
1+ β1

2i−1−δ

)
Dε

)
mh∏

j=2−δ

inf
|a|�(1+β1

2j−3+δ
)Dε

P
({‖a + W̃j − D�̃j h‖[0,ηj ] �

(
1+ β1

2j−2+δ

)
Dε

})

where an empty product is 1,Wi andW̃j are mutually independent standard Brownian
paths,

�ih(s) = h(xi − θ + s) − h(xi − θ)

and

�̃j h(s) = h(inf Bθ,j + s) − h(inf Bθ,j ).

The following estimates do not depend on the exit levelsa from Aθ,i andb from Bθ,j

controlling the chain of conditioning events sinceθ is fixed and crucial rectifications
occur very close to thexi ’s, asε → 0.

In step 3, a new argument is required whenb �= 0. For fixedi � 1 + δ we consider
hε,i ∈H1 such that‖hε,i −h‖Aθ,i

� ε andJ (hε,i, Aθ,i) = J (h, Aθ,i)−ϕh(ε, Aθ,i). Under
(23) we have, forA−

θ,i = [xi − θ, xi − θ/2],

lim
ε→0

ε

ϕh(ε, Aθ,i)
= lim

ε→0

ϕh(ε, A−
θ,i )

ϕh(ε, Aθ,i)
= 0.

Therefore,hε,i can be modified onA−
θ,i at almost no energy cost.
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LEMMA 5. – If ε is small enough, then, for anyi � 1 + δ and |c| � ε one can
find hc,ε,i ∈ H1 such thathc,ε,i(xi − θ) = h(xi − θ) + c, ‖hc,ε,i − h‖Aθ,i

� ε and
J (hc,ε,i, Aθ,i) � J (h, Aθ,i) − (1− β9)ϕh(ε, Aθ,i).

A solution is given by lettingh
′
c,ε,i = h′ + 2(hε,i(xi − θ/2) − h(xi − θ/2) − c)/θ on

A−
θ,i andh

′
c,ε,i = h′

ε,i on Aθ,i\A−
θ,i since then

J (hc,ε,i, Aθ,i) = J (h, A−
θ,i) + O(ε) + J (hε,i, Aθ,i\A−

θ,i )

= J (h, Aθ,i) − ϕh(ε, Aθ,i) + O(ε) + (
J (h, A−

θ,i) − J (hε,i, A−
θ,i)

)
.

Let 0 < β4 < inf0�k�mh+n−2(β1
k+1 − β1

k ). Combining Lemma 5 with the arguments of
step 3 we obtain, uniformly in|b| � (1+ β1

k )Dε < (1+ β1
k+1)Dε,

P
(‖b + Wi − D�ih‖[0,αi ] � (1+ β1

k+1)Dε
)

� P
(‖Wi − D�ihb/D,(1+β1

k+1)ε,i‖[0,αi ] � β4Dε
)

� exp
(

−D2

2

(
J (h, Aθ,i) − (1− β9)ϕh(ε, Aθ,i)

) − (1+ β5)π2αi

8(β4Dε)2

)
.

Next, along the lines of step 4, we get, for|a| � (1+ β1
k )Dε andDε small enough,

P
({‖a + W̃j − D�̃jh‖[0,ηj ] � (1+ β1

k+1)Dε
})

� exp
(

−D2

2
J (h, Bθ,j ) − π2(1+ β6)ηj

8(1+ β1
k+1)2(Dε)2

− (2+ β1
k + β1

k+1)ψ(Bθ,j )D2ε

)
.

Taking care ofP(‖W − Dh‖[0,τ ] � Dε) in one or the other way – according toδ and
recalling thata = b = 0 in this case – it follows that

P
(‖W − Dh‖ � (1+ β1)Dε

)
� exp

(
− π2

8(Dε)2

(
1+ β6

(1+ β1
1)2

mh∑
j=1

ηj +
(

1+ β5

β2
4

) n∑
i=1

αi

)

− D2

2

(
1− (1− β9)ϕh(ε, Aθ ) + 4(1+ β1)

mh∑
j=1

ψ(Bθ,j )ε

))

where we usedβ1
1 � β1

k � β1 for k � 1 andϕh(ε, Aθ) � ∑
i�n ϕh(ε, Aθ,i). Since

1−
mh∑
j=1

ηj =
n∑

i=1

αi � 2nθ

is arbitrarily small, we conclude as for Theorem 1, by (24) andϕh(ε, Aθ) � (1 −
β3)π2/4D4ε2. ✷
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