SOME EXACT RATES IN THE FUNCTIONAL LAW OF THE ITERATED LOGARITHM

QUELQUES VITESSES EXACTES DANS LA LOI FONCTIONNELLE DU LOGARITHME ITÉRÉ

Philippe BERTHET ${ }^{\text {a,* }}$, Mikhail LIFSHITS ${ }^{\text {b,c, } 1}$
${ }^{\text {a }}$ IRMAR, Université Rennes 1, campus de Beaulieu, 35042 Rennes, France
${ }^{\mathrm{b}}$ St-Petersburg State University 198904, Stary Peterhof, Bibliotechnaya pl., 2,
Department of Mathematics and Mechanics, Russia
${ }^{\text {c }}$ Université Lille I, 59655 Villeneuve d'Ascq cedex, France

Received 21 March 2001, revised 4 June 2002

Abstract. - We find exact convergence rate in the Strassen's functional law of the iterated logarithm for a class of elements on the boundary of the limit set. Our result applies, in particular, to the power functions $c_{\alpha} x^{\alpha}$ with $\left.\alpha \in\right] 1 / 2,1[$, thus solving a small ball estimate problem which was open for ten years.
© 2002 Éditions scientifiques et médicales Elsevier SAS
MSC: 60F15; 60G15; 60F17; 60G17
Keywords: Brownian Motion; Strassen's and Chung's functional laws; Small ball probabilities
Résumé. - Nous établissons la vitesse de convergence exacte dans la loi fonctionnelle du logarithme itéré de Strassen pour une classe d'éléments de la frontière de l'ensemble limite. Notre résultat s'applique en particulier aux fonctions puissance $c_{\alpha} x^{\alpha}$ avec $\left.\alpha \in\right] 1 / 2$, 1 [, résolvant ainsi un problème de probabilité de petite boule resté ouvert durant une décennie.
© 2002 Éditions scientifiques et médicales Elsevier SAS
Mots Clés: Mouvement Brownien ; Lois fonctionnelles de Strassen et Chung; Probabilités de petite boule

[^0]
1. Introduction

1.1. Strassen's law

Let W be a standard Brownian motion. Consider for $T>3$ the random processes

$$
W_{T}(x)=\frac{W(T x)}{\sqrt{2 T \log \log T}}
$$

indexed by $x \in[0,1]$. Let \mathcal{C} be the space of real valued continuous functions on $[0,1]$ starting from 0 , equipped with the supremum norm $\|\cdot\|$. According to Strassen's functional law of the iterated logarithm (see [12]) the sequence $\left\{W_{T}, T \geqslant 3\right\}$ is almost surely relatively compact in $(\mathcal{C},\|\cdot\|)$ and its almost sure limit set is

$$
\mathcal{H}_{1}=\left\{h: h(x)=\int_{[0, x]} h^{\prime} d \lambda, J(h) \leqslant 1\right\}
$$

where λ denotes the Lebesgue measure, h^{\prime} any Lebesgue derivative of a λ-absolutely continuous function h and the energy of h is given by $J(h)=\int_{[0,1]} h^{\prime 2} d \lambda$. Since \mathcal{H}_{1} is closed, this implies

$$
\liminf _{T \rightarrow \infty}\left\|W_{T}-h\right\|\left\{\begin{array}{ll}
=0 & \text { if } h \in \mathcal{H}_{1} \tag{1}\\
>0 & \text { if } h \notin \mathcal{H}_{1}
\end{array} \quad\right. \text { a.s. }
$$

Thus $J(h)$ quantifies at the first order the difficulty for W_{T} to look like h. Recall further that W satisfies the usual large deviation principle on $(\mathcal{C},\|\cdot\|)$ with the good rate function $J(h) / 2$, in the sense of Deuschel and Stroock [5]. According to De Acosta [6], $J(h) / 2$ also governs the small deviations of W in the direction of enlarged h.

1.2. Functional Chung's law

Fix an accumulation point $h \in \mathcal{H}_{1}$. In [3] (see also [6]) Csáki proved that if $J(h)<1$, then the exact rate in (1) depends on $J(h)$ only, namely,

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \log \log T\left\|W_{T}-h\right\|=\frac{\pi}{4 \sqrt{1-J(h)}} \quad \text { a.s. } \tag{2}
\end{equation*}
$$

This reduces to Chung's law when $h=0$ (see [2]). Conversely, when $J(h)=1$, the limit (2) is infinite. Moreover Goodman and Kuelbs obtained in [7]

$$
\begin{equation*}
c(h)=\liminf _{T \rightarrow \infty}(\log \log T)^{2 / 3}\left\|W_{T}-h\right\|<\infty \quad \text { a.s. } \tag{3}
\end{equation*}
$$

In this case the increasing function, which we call the global energy loss of h,

$$
\varphi_{h}(\varepsilon)=1-\inf _{\|g-h\| \leqslant \varepsilon} J(g)
$$

is crucial with respect to the exact rate in (1). The infimum is taken among λ-absolutely continuous functions g. More precisely, if $J(h)=1$, we distinguish between slowest and
intermediate rates according to the criterion

$$
d(h)=\lim _{\varepsilon \rightarrow 0} \frac{\varphi_{h}(\varepsilon)}{\varepsilon} \begin{cases}\in[2, \infty[, & c(h)>0, \tag{4}\\ =\infty, & c(h)=0,\end{cases}
$$

since $d(h)$ always exists (see [10, Section 5]) and determines $c(h)$ as recalled below.
Remark 1. - The question of exact rates and constants in (2) under various norms has been intensively investigated in the last decade (see Berthet and Shi [1] and references therein). For instance, (4) remains unchanged under L_{2} metric as shown by the exact rates for the L_{2} version of (1) calculated in Kuelbs, Li and Talagrand [10].

Let us picture out the situation on the border of \mathcal{H}_{1},

$$
\partial \mathcal{H}_{1}=\left\{h: h \in \mathcal{H}_{1}, \quad J(h)=1\right\} .
$$

1.3. Slowest functions

The behaviour of φ_{h} at zero is closely related to the length and smoothness of h. Let γ be a signed Borel measure on $[0,1]$ such that $\gamma([x, 1])$ defines a version of $h^{\prime}(x)$. If γ can be chosen of bounded variation, then $V\left(h^{\prime}, B\right)$ denotes the total variation of γ over any Borel set $B \subset[0,1]$ and we write $V(h)=V\left(h^{\prime},[0,1]\right)<\infty$. Otherwise we set $V\left(h^{\prime}, B\right)=\infty$ and $V\left(h^{\prime}\right)=\infty$.

The slowest functions are

$$
\partial^{s} \mathcal{H}_{1}=\left\{h: h \in \mathcal{H}_{1}, \quad J(h)=1, \quad V\left(h^{\prime}\right)<\infty\right\}
$$

since Grill showed in [9] that $c(h)>0$ in (3) if, and only if, $h \in \partial^{s} \mathcal{H}_{1}$ which is also equivalent to $d(h) \in[2, \infty)$ in (4) (see e.g. [7,10]). It is very difficult for the Brownian motion to follow uniformly such smooth trajectories.

The exact constant $c(h)$ is obtained by Csáki in [3,4] when h is piecewise linear or quadratic. Recently, in [8] Gorn and Lifshits extended Csáki's method to characterize $c(h)$ for any $h \in \partial^{s} \mathcal{H}_{1}$ as the unique solution of an equation and provided a procedure for its numerical calculation.

1.4. Intermediate functions

In his seminal work [9], Grill proved that any intermediate function $h \in \partial^{i} \mathcal{H}_{1}=$ $\partial \mathcal{H}_{1} \backslash \partial^{s} \mathcal{H}_{1}$ satisfies

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \frac{\left\|W_{T}-h\right\|}{\varepsilon(T)} \in[1,2] \quad \text { a.s. } \tag{5}
\end{equation*}
$$

where the rate $\varepsilon(T)$ is the unique solution of

$$
\begin{equation*}
\sqrt{\varphi_{h}(\varepsilon)}=\frac{\pi}{4 \varepsilon \log \log T} \tag{6}
\end{equation*}
$$

Note that $\lim _{T \rightarrow \infty} \varepsilon(T)=0, \lim _{T \rightarrow \infty} \varepsilon(T) \log \log T=\infty$ and $\varepsilon(T)$ is decreasing. Further, $d(h)=\infty$ and thus, by (5) and (6), $c(h)=0$ in (3). Also, in practice it suffices to find an equivalent for $\varphi_{h}(\varepsilon)$ and hence for $\varepsilon(T)$.

The functions of $\partial^{i} \mathcal{H}_{1}$ are more easily approached by a Brownian path because they have a larger global energy loss function. This may be due to their irregular behaviour oscillating or just non-smooth pieces admit efficient rectification.

Remark 2. - Interestingly, the statements (5) and (6) remain true for all $h \in \mathcal{H}_{1}$ and the liminf in (5) is 1 whenever φ_{h} is slowly varying at 0 . For instance, it is the case when $J(h)<1$ and (2) immediately follows. Conversely, if $h \in \partial^{s} \mathcal{H}_{1}$ then $d(h)$ in (4) is explicited in [10] and (6) then yields the right order $(\log \log T)^{-2 / 3}$ but comparing (5) and (3) via the result of [8] shows that $\left(16 \pi^{-2} d(h)\right)^{1 / 3} \neq c(h)$ for some $h \in \partial^{s} \mathcal{H}_{1}$. Hence the constant in (5) is not 1 in general.

Surprisingly, many years after (5) has appeared, the exact rate was not obtained even for simple power functions (cf. Example 1 below). We intend to show that the liminf in (5) is 1 for a large class of $h \in \partial^{i} \mathcal{H}_{1}$.

1.5. Typical intermediate functions

In order to illustrate our results let us introduce elementary critical functions - having Lebesgue derivative of infinite variation and unit L_{2} norm. All are locally Hölder with index $\alpha \in] 1 / 2,1[$ and have loss function

$$
\varphi_{h}(\varepsilon)=\mathrm{O}\left(\varepsilon^{(2 \alpha-1) / \alpha}\right)
$$

with exact constants easily computed by invoking optimization arguments. Let $\Delta_{\alpha}=$ $\alpha^{2}(1-\alpha)^{(1-\alpha) / \alpha}(2 \alpha-1)^{-1}$. We assume everywhere that ε is small enough.

Example 1. - The function $h_{1}(x)=b x^{\alpha}= \pm \sqrt{2 \alpha-1} x^{\alpha} / \alpha \in \partial^{i} \mathcal{H}_{1}$ has energy loss

$$
\begin{aligned}
\varphi_{h_{1}}(\varepsilon) & =2|b|^{1 / \alpha} \Delta_{\alpha} \varepsilon^{(2 \alpha-1) / \alpha} \\
& =2(2 \alpha-1)^{(1-2 \alpha) /(2 \alpha)} \alpha^{(2 \alpha-1) / \alpha}(1-\alpha)^{(1-\alpha) / \alpha} \varepsilon^{(2 \alpha-1) / \alpha}
\end{aligned}
$$

localized at the origin. The constant belongs to $] 1,2[$.
Next, a smooth perturbation is added with almost no effect.
Example 2. - Let $0<c^{2}<c_{\alpha}^{2}=(2 \alpha-1)(1-\alpha)^{-2}, a=c\left(-1 \pm \sqrt{c^{-2}-c_{\alpha}^{-2}}\right)$ and $h_{2}(x)=c x^{\alpha}+a x$. Then $h_{2} \in \partial^{i} \mathcal{H}_{1}$ and

$$
\varphi_{h_{2}}(\varepsilon)=2|c|^{1 / \alpha} \Delta_{\alpha} \varepsilon^{(2 \alpha-1) / \alpha}+2 a \varepsilon .
$$

In Examples 3 and 4 we consider a single α-Hölder point $y \in] 0$, $1[$ away from the origin. Denote $\left.\left.l_{+} \in\right] 0,1-y\right]$ (respectively $\left.\left.l_{-} \in\right] 0, y\right]$) the length of an interval starting (respectively ending) at y. Interestingly, y and $l_{ \pm}$eventually play no role.

Example 3. - Let $h_{3}=I_{[0, y[} h_{3-}+I_{\left[y, y+l_{+}[\right.} h_{3 \alpha}+I_{\left[y+l_{+}, 1\right]} h_{3+}$ with $h_{3 \alpha}(x)=h_{3-}(y)+$ $b(x-y)^{\alpha}, b \neq 0$ and $h_{3 \pm}^{\prime}$ of bounded variation. Then $h_{3} \in \partial^{i} \mathcal{H}_{1}$ satisfies

$$
\varphi_{h_{3}}(\varepsilon)=2^{(3 \alpha-1) / \alpha}|b|^{1 / \alpha} \Delta_{\alpha} \varepsilon^{(2 \alpha-1) / \alpha}+\mathrm{O}(\varepsilon)
$$

In particular, taking $h_{3-}^{\prime}=a$ and $h_{3+}^{\prime}=c$ constant yields $\mathrm{O}(\varepsilon)=-\operatorname{sign}(b) \times 2 a \varepsilon-$ $y^{-1} \varepsilon^{2}+\phi(\varepsilon)$ where, if $c b \in\left[0, \alpha b^{2} l_{+}^{\alpha-1}\right], \phi(\varepsilon)=0$ and, if $c b<0, \phi(\varepsilon)=|4 c| \varepsilon-4(1-$ $\left.y-l_{+}\right)^{-1} \varepsilon^{2}$ whereas, if $c b>\alpha b^{2} l_{+}^{\alpha-1}, \phi(\varepsilon)=|4 c|\left(1-\alpha l_{+}^{\alpha-1} b / c\right) \varepsilon+\mathrm{O}\left(\varepsilon^{3 / 2}\right)$.

Observe that $\varphi_{h_{3}}(\varepsilon) \sim \varphi_{h_{1}}(2 \varepsilon)$ when $h_{3 \pm}^{\prime}=0$ because $|g(y)-h(y)|<\varepsilon$ is less restrictive than $g(0)=0$. Compare this with another situation of the kind - a doubly Hölder point:

Example 4. - Let $y \in] 0,1\left[, a^{2}<y, b_{ \pm} \neq 0, h_{\alpha \pm}(x)=a+b_{ \pm}|y-x|^{\alpha}\right.$ and $h_{4 \pm}^{\prime}$ of bounded variation be such that $h_{4}=I_{\left[0, y-l_{-}\right]} h_{4-}+I_{] y-l_{-}, y[} h_{\alpha-}+I_{\left[y, y+l_{+}\right.} h_{\alpha+}+$ $I_{\left[y+l_{+}, 1\right]} h_{4+}$ belongs to $\partial \mathcal{H}_{1}$. If $b_{-} b_{+}>0$ we have

$$
\varphi_{h_{4}}(\varepsilon)=2^{(3 \alpha-1) / \alpha}\left(\left|b_{-}\right|^{1 / \alpha}+\left|b_{+}\right|^{1 / \alpha}\right) \Delta_{\alpha} \varepsilon^{(2 \alpha-1) / \alpha}+\mathrm{O}(\varepsilon)
$$

whereas, if $b_{-} b_{+}<0$ less energy can be spared, since then

$$
\varphi_{h_{4}}(\varepsilon)=2^{(3 \alpha-1) / \alpha}\left(\left|b_{-}\right|^{1 /(1-\alpha)}+\left|b_{+}\right|^{1 /(1-\alpha)}\right)^{(1-\alpha) / \alpha} \Delta_{\alpha} \varepsilon^{(2 \alpha-1) / \alpha}+\mathrm{O}(\varepsilon)
$$

We end with a natural extension of Example 3 in the spirit of Theorem 2 below.
Example 5. - For $i=0, \ldots, n$ let $\left.\alpha_{i} \in\right] 1 / 2,1\left[, b_{i} \neq 0, x_{i} \in\right] 0,1\left[, x_{i}<x_{i+1}, l_{i} \in\right.$ $\left.] 0, x_{i+1}-x_{i}\right], h_{5, i}(x)=a_{i}+b_{i}\left(x-x_{i}\right)^{\alpha_{i}}, I_{0}=[0,1] \backslash \bigcup_{i=1}^{n}\left[x_{i}, x_{i}+l_{i}\right]$ and $h_{5,0}^{\prime}$ of bounded variation be such that

$$
h_{5}=\sum_{i=1}^{n} I_{\left[x_{i}, x_{i}+l_{i}\right]} h_{5, i}+I_{0} h_{5,0} \in \partial \mathcal{H}_{1}
$$

Then, for $\alpha=\min _{i} \alpha_{i}$ we have

$$
\varphi_{h_{5}}(\varepsilon)=2^{(3 \alpha-1) / \alpha}\left(\sum_{i: \alpha_{i}=\alpha}\left|b_{i}\right|^{1 / \alpha}\right) \Delta_{\alpha} \varepsilon^{(2 \alpha-1) / \alpha}+\mathrm{O}(\varepsilon)
$$

2. Main results

The exact constant in (5) depends on the nature of rectified trajectories

$$
\begin{equation*}
\mathcal{R}_{h}(\varepsilon)=\left\{h_{\varepsilon}: h_{\varepsilon} \in \mathcal{H}_{1},\left\|h_{\varepsilon}-h\right\| \leqslant \varepsilon, J\left(h_{\varepsilon}\right)=1-\varphi_{h}(\varepsilon)\right\} \tag{7}
\end{equation*}
$$

which are close to h with shortened paths. Unfortunately, the study of \mathcal{R}_{h} is not an easy task - except for simple functions as h_{1}, h_{2} or particularized h_{3} - since there is no general way to evaluate the crucial function φ_{h}. Our answer concerns the case where the energy loss of h occurs on the neighborhood of a finite subset of $[0,1]$ due to a few isolated critical points. This framework includes the above examples.

The main innovation which enables to solve the problem in this case, has geometric nature. Namely, for the lower estimate of probabilities $\mathbb{P}\left(\left\|W_{T}-h\right\|<\varepsilon\right)$ we use the probabilities of the kind $\mathbb{P}\left(W_{T} \in A(h, \varepsilon)\right)$ where $A(h, \varepsilon)$ is a subset of the ε-ball around h but it is not a ball itself. Instead, $A(h, \varepsilon)$ turns out to be a set of trajectories running
inside of a very narrow strip at the most critical points of h and inside of a large one elsewhere.

For any Borel subset B of $[0,1]$ and h absolutely continuous we write

$$
\|h\|_{B}=\sup _{B}|h|, \quad J(h, B)=\int_{B} h^{\prime 2} d \lambda
$$

and consider the local energy loss function of h,

$$
\varphi_{h}(\varepsilon, B)=J(h, B)-\inf _{\|g-h\| \leqslant \varepsilon} J(h, B)
$$

so that $\varphi_{h}(\varepsilon,[0,1])=\varphi_{h}(\varepsilon)$. First consider the generic situation where the energy must be spared at 0 .

THEOREM 1. - If $h \in \partial^{i} \mathcal{H}_{1}$ is such that for any $\left.x \in\right] 0,1[$,

$$
\begin{equation*}
V\left(h^{\prime},[0, x]\right)=\infty \quad \text { and } \quad V\left(h^{\prime},[x, 1]\right)<\infty \tag{8}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{\varphi_{h}(\varepsilon,[0, x])}{\varphi_{h}(\varepsilon)}=1 \tag{9}
\end{equation*}
$$

and the unique solution $\varepsilon(T)$ of Eq. (6) satisfies

$$
\liminf _{T \rightarrow \infty} \frac{\left\|W_{T}-h\right\|}{\varepsilon(T)}=1 \quad \text { a.s. }
$$

Note that (9) allows to solve (6) using any $\varphi_{h}(\varepsilon,[0, x])$ instead of $\varphi_{h}(\varepsilon)$. Hence φ_{h} needs to be studied locally only - optimal h_{ε} in (7) is not required.

Remark 3. - Concerning the relationship between (7) and (8), consider the simple situation where h follows the assumptions of Theorem 1 and h is either (i) concave on $\left[0, x_{0}\right]$ with $h^{\prime}(0)=\infty$ or (ii) convex on $\left[0, x_{0}\right]$ with $h^{\prime}(0)=-\infty$. Define δ_{ε} as the smallest solution of (i) $h(\delta) \geqslant \varepsilon+\delta h^{\prime}(\delta)$ or (ii) $h(\delta) \leqslant-\varepsilon+\delta h^{\prime}(\delta)$ so that δ_{ε} decreases to 0 as ε tends to 0 . Then for all $\varepsilon>0$ small enough there exists $h_{\varepsilon} \in \mathcal{R}_{h}(\varepsilon)$ and $x \in\left(0, x_{0}\right)$ such that $\mathbf{1}_{\left[\delta_{\varepsilon}, x\right]} h_{\varepsilon}^{\prime}=\mathbf{1}_{\left[\delta_{\varepsilon}, x\right]} h^{\prime}$ a.e. Further, (9) can be refined into

$$
\varphi_{h}(\varepsilon)=J\left(h,\left[0, \delta_{\varepsilon}\right]\right)-\left(\left|h\left(\delta_{\varepsilon}\right)\right|-\varepsilon\right)^{2} / \delta_{\varepsilon}+\mathrm{O}(\varepsilon)
$$

We provide a detailed proof of Theorem 1 to help the reader in understanding what makes the following more general version work.

THEOREM 2. - Let $h \in \partial^{i} \mathcal{H}_{1}$ be such that there exists $0 \leqslant x_{1}<\cdots<x_{n} \leqslant 1$ satisfying, for any $\theta>0, A_{\theta, i}=\left[x_{i}-\theta, x_{i}+\theta\right] \cap[0,1]$ and $A_{\theta}=\bigcup_{i=1}^{n} A_{\theta, i}$,

$$
\begin{equation*}
V\left(h^{\prime}, A_{\theta}\right)=\infty \quad \text { and } \quad V\left(h^{\prime},[0,1] \backslash A_{\theta}\right)<\infty \tag{10}
\end{equation*}
$$

Then the conclusion of Theorem 1 holds true, with (9) replaced with

$$
\lim _{\varepsilon \rightarrow 0} \frac{\varphi_{h}\left(\varepsilon, A_{\theta}\right)}{\varphi_{h}(\varepsilon)}=1
$$

Remark 4. - Comparing the quantities $\varphi_{h}\left(\varepsilon, A_{\theta, i}\right)$ can tell us how many x_{i} are really essential. We call a point x_{i} sub-critical whenever for all $\theta>0$ such that $\bigcap_{i=1}^{n} A_{\theta, i}=\emptyset$,

$$
\lim _{\varepsilon \rightarrow 0} \frac{\varphi_{h}\left(\varepsilon, A_{\theta, i}\right)}{\varphi_{h}(\varepsilon)}=0
$$

If x_{i} is sub-critical, then the resulting rate $\varepsilon(T)$ is not affected by $\varphi_{h}\left(\varepsilon, A_{\theta, i}\right)$.
Remark 5. - The actual position x_{i} of the most critical oscillation slightly influences φ_{h} and the exact constant in $\varepsilon(T)$ but not the rate. Usually, having $x_{1}=0$ leads to higher $\varepsilon(T)$ because translating the same oscillation at $x_{1}>0$ turns $\varphi_{h}(\varepsilon,[0, \theta])$ into $\varphi_{h}\left(2 \varepsilon,\left[x_{i}, x_{i}+\theta\right]\right)$ - compare h_{1} and h_{3}.

We now deduce from Theorem 2 the functional Chung law for our examples.
COROLLARY 3. - If $h \in \partial^{i} \mathcal{H}_{1}$ satisfies (10) and

$$
d_{\rho}(h)=\lim _{\varepsilon \rightarrow 0} \varepsilon^{-\rho} \varphi_{h}(\varepsilon) \in(0, \infty)
$$

with $\rho<1$ then

$$
\liminf _{T \rightarrow \infty}(\log \log T)^{2 /(\rho+2)}\left\|W_{T}-h\right\|=\left(\frac{\pi^{2}}{16 d_{\rho}(h)}\right)^{1 /(\rho+2)} \quad \text { a.s. }
$$

Corollary 3 applies to h_{i} for $i=1, \ldots, 5$ with $\rho=2-1 / \alpha$ and explicit $d_{\rho}\left(h_{i}\right)$. In particular,

$$
\begin{align*}
& \liminf _{T \rightarrow \infty}(\log \log T)^{2 \alpha /(4 \alpha-1)}\left\|W_{T}-h_{1}\right\| \\
& \quad=\frac{\left(\pi^{2} / 32\right)^{\alpha /(4 \alpha-1)}(2 \alpha-1)^{(2 \alpha-1) /(8 \alpha-2)}}{\alpha^{(2 \alpha-1) /(4 \alpha-1)}(1-\alpha)^{(1-\alpha) /(4 \alpha-1)}} \quad \text { a.s. } \tag{11}
\end{align*}
$$

The power $2 \alpha /(4 \alpha-1)$ fills the gap between $2 / 3$ and 1 , as announced in erroneous Corollaries 1 and 4 in [9]. Our results for h_{i} now provide right power, exact constants and remainder terms.

Remark 6. - When $\alpha \rightarrow 1 / 2$, the limiting constant tends to $\pi / 4$, hence (11) falls in agreement with Chung's law, that is (2) for $h=0$. Clearly, for α very close to $1 / 2$ both h_{1} and W_{T} expend most of their energy at the origin and then, roughly speaking, stay within the interval $[-\varepsilon, \varepsilon]$ while the time varies from almost zero to one. The same comment stands for h_{3} when $h_{3 \pm}^{\prime}=0$ but the limiting constant is smaller than Chung's one. When $\alpha \rightarrow 1$, the limiting constant tends to $\left(\pi^{2} / 32\right)^{1 / 3}$, thus (11) also provides a correct interpolation towards the exact rate for $h(x)=x$ given in Csáki [3].

3. Proofs

In this section we achieve the lower bound in (5) under (8), then under (10).

3.1. Proof of Theorem 1

Our preliminary lemma justifies (9).
Lemma 4. - Let $h \in \partial^{i} \mathcal{H}_{1}$ obey (8). For all $\left.x \in\right] 0$, $1[$ we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{\varphi_{h}(\varepsilon,[0, x])}{\varepsilon}=\infty \quad \text { and } \quad \limsup _{\varepsilon \rightarrow 0} \frac{\varphi_{h}(\varepsilon,[x, 1])}{\varepsilon}<\infty \tag{12}
\end{equation*}
$$

Further, there exists a positive function $\rho_{x}(\varepsilon)$ such that $\lim _{\varepsilon \rightarrow 0} \rho_{x}(\varepsilon)=0$ and

$$
\begin{equation*}
\varphi_{h}(\varepsilon) \geqslant \varphi_{h}(\varepsilon,[0, x]) \geqslant\left(1-\rho_{x}(\varepsilon)\right) \varphi_{h}(\varepsilon) \tag{13}
\end{equation*}
$$

Proof. - Under (8), Propositions 1 and 2 in [10] respectively imply

$$
\lim _{\varepsilon \rightarrow 0} \frac{\varphi_{h}(\varepsilon,[x, 1])}{2 \varepsilon}=\left|h^{\prime}(x)\right|+\left|h^{\prime}(1)\right|+V\left(h^{\prime},[x, 1]\right)<\infty
$$

and

$$
\lim _{\varepsilon \rightarrow 0} \frac{\varphi_{h}(\varepsilon,[0, x])}{2 \varepsilon}=\left|h^{\prime}(x)\right|+V\left(h^{\prime},[0, x]\right)=\infty
$$

whence (12). In the same way, $\lim _{\varepsilon \rightarrow 0} \varphi_{h}(\varepsilon) / \varepsilon=\infty$. The upper bound in (13) comes from the fact that replacing g^{\prime} with h^{\prime} on $[x, 1]$ yields

$$
\begin{aligned}
\varphi_{h}(\varepsilon) & =1-\inf _{\|g-h\| \leqslant \varepsilon}(J(g,[0, x])+J(g,[x, 1])) \\
& \geqslant 1-\inf _{\|g-h\| \leqslant \varepsilon}(J(g,[0, x])+J(h,[x, 1]))=\varphi_{h}(\varepsilon,[0, x])
\end{aligned}
$$

Since

$$
\begin{aligned}
\varphi_{h}(\varepsilon,[0, x])+\varphi_{h}(\varepsilon,[x, 1]) & =1-\left(\inf _{\|g-h\| \leqslant \varepsilon} J(g,[0, x])+\inf _{\|g-h\| \leqslant \varepsilon} J(g,[x, 1])\right) \\
& \geqslant 1-\inf _{\|g-h\| \leqslant \varepsilon}(J(g,[0, x])+J(g,[x, 1]))=\varphi_{h}(\varepsilon),
\end{aligned}
$$

we see that $\rho_{x}(\varepsilon)=\varphi_{h}(\varepsilon,[x, 1]) / \varphi_{h}(\varepsilon)$ satisfies (13) together with

$$
\lim _{\varepsilon \rightarrow 0} \rho_{x}(\varepsilon)=\lim _{\varepsilon \rightarrow 0} \frac{\varphi_{h}(\varepsilon,[x, 1]) / \varepsilon}{\varphi_{h}(\varepsilon) / \varepsilon}=0
$$

Fix $h \in \partial^{i} \mathcal{H}_{1}$ satisfying (8). For brevity, we write $D=(2 \log \log T)^{1 / 2}$ and let $\varepsilon=$ $\varepsilon(T)$ be the solution of (6). The forthcoming constants $\beta_{i}>0$ are everywhere sufficiently small. The following steps aim to evaluate

$$
\begin{equation*}
\mathbb{P}\left(\left\|W_{T}-h\right\| \leqslant\left(1+\beta_{1}\right) \varepsilon\right) \tag{14}
\end{equation*}
$$

for all sufficiently large T.

Step 1. Let us start with useful consequences of the assumptions in force. Since $d(h)=\infty$ in (4), we have $\lim _{\varepsilon \rightarrow 0} \varphi_{h}(\varepsilon) / \varepsilon=\infty$ whereas $\lim _{\varepsilon \rightarrow 0} \varphi_{h}(\varepsilon)=0$ by semicontinuity of the energy function. Moreover, (6) means

$$
\begin{equation*}
\frac{\varphi_{h}(\varepsilon)}{\varepsilon}=\frac{\pi^{2}}{4 D^{4} \varepsilon^{3}} \tag{15}
\end{equation*}
$$

thus $\lim _{T \rightarrow \infty} \varepsilon=0, \lim _{T \rightarrow \infty} D^{4 / 3} \varepsilon=0$ but $\lim _{T \rightarrow \infty} D^{2} \varepsilon=\infty$. Next, (8) and (12) ensure that for every fixed $x \in] 0,1\left[, \beta_{2}>0\right.$ and arbitrarily small ε,

$$
\begin{equation*}
\left|h^{\prime}(1)\right|+V\left(h^{\prime},[x, 1]\right)<\beta_{2} \frac{\varphi_{h}(\varepsilon,[0, x])}{\varepsilon} \tag{16}
\end{equation*}
$$

Mixing (13) and (15) further gives, for any $\beta_{3}>0$ and ε small enough,

$$
\begin{equation*}
\frac{\varphi_{h}(\varepsilon,[0, x])}{\varepsilon} \geqslant\left(1-\beta_{3}\right) \frac{\varphi_{h}(\varepsilon)}{\varepsilon}=\left(1-\beta_{3}\right) \frac{\pi^{2}}{4 D^{4} \varepsilon^{3}} \tag{17}
\end{equation*}
$$

For any $\varepsilon>0$ and $x \in] 0,1\left[\right.$ consider $h_{\varepsilon} \in \mathcal{H}_{1}$ such that $\left\|h_{\varepsilon}-h\right\| \leqslant \varepsilon$ and $J\left(h_{\varepsilon},[0, x]\right)=$ $J(h,[0, x])-\varphi_{h}(\varepsilon,[0, x])$. We introduce the mixture $g_{\varepsilon}=\left(1-\beta_{4}\right) h_{\varepsilon}+\beta_{4} h$. Obviously,

$$
\begin{equation*}
\left\|g_{\varepsilon}-h\right\| \leqslant\left(1-\beta_{4}\right) \varepsilon \tag{18}
\end{equation*}
$$

Step 2. We split the lower bound in two parts observing that the most probable way of fulfilling our small ball requirement (14) for Brownian path is to follow g_{ε} on $[0, x]$ very closely, then to stay in a larger tube around h on $[x, 1]$. By independence and stationarity of the increments of W,

$$
\begin{align*}
& \mathbb{P}\left(\|W-D h\| \leqslant\left(1+\beta_{1}\right) D \varepsilon\right) \\
& \quad \geqslant \mathbb{P}\left(\left\{\|W-D h\|_{[0, x]} \leqslant D \varepsilon\right\} \cap\left\{\|W-D h\|_{[x, 1]} \leqslant\left(1+\beta_{1}\right) D \varepsilon\right\}\right) \\
& \quad \geqslant \\
& \quad P\left(\|W-D h\|_{[0, x]} \leqslant D \varepsilon\right) \tag{19}\\
& \quad \times \inf _{|a| \leqslant D \varepsilon} \mathbb{P}\left(\left\|a+\widetilde{W}-D \Delta_{x} h\right\|_{[0,1-x]} \leqslant\left(1+\beta_{1}\right) D \varepsilon\right)
\end{align*}
$$

where $\Delta_{x} h(s)=h(x+s)-h(x)$ for $s \in[0,1-x], \widetilde{W}(s)=W(x+s)-W(x)$ is still a Brownian motion and $a=W(x)-D h(x)$ is controlled by the first event.

Step 3. Using (18) and the Cameron-Martin formula, we get

$$
\begin{aligned}
\mathbb{P}\left(\|W-D h\|_{[0, x]} \leqslant D \varepsilon\right) & \geqslant \mathbb{P}\left(\left\|W-D g_{\varepsilon}\right\|_{[0, x]} \leqslant \beta_{4} D \varepsilon\right) \\
& \geqslant \mathbb{P}\left(\|W\|_{[0, x]} \leqslant \beta_{4} D \varepsilon\right) \exp \left(-\frac{D^{2}}{2} J\left(g_{\varepsilon},[0, x]\right)\right)
\end{aligned}
$$

Now, by Chung's estimate (see [2]) and the scaling property, for every $\beta_{5}>0$ all $D \varepsilon$ small enough satisfy

$$
\mathbb{P}\left(\|W\|_{[0, x]} \leqslant \beta_{4} D \varepsilon\right) \geqslant \exp \left(-\left(\frac{\pi^{2}}{8}+\beta_{5}\right)\left(\frac{\beta_{4} D \varepsilon}{\sqrt{x}}\right)^{-2}\right)
$$

Recalling the definition of h_{ε}, assumption (8), and $J\left(h_{\varepsilon}\right)<J(h)=1$ we have

$$
\begin{aligned}
J\left(g_{\varepsilon},[0, x]\right)= & J\left(\left(1-\beta_{4}\right) h_{\varepsilon}+\beta_{4} h,[0, x]\right) \\
\leqslant & \left(1-\beta_{4}\right)^{2} J\left(h_{\varepsilon},[0, x]\right)+\beta_{4}^{2} J(h,[0, x]) \\
& +2 \beta_{4}\left(1-\beta_{4}\right) \sqrt{J\left(h_{\varepsilon},[0, x]\right) J(h,[0, x])} \\
\leqslant & \left(1-\beta_{4}\right)^{2}\left(J(h,[0, x])-\varphi_{h}(\varepsilon,[0, x])\right) \\
& +\beta_{4}^{2} J(h,[0, x])+2 \beta_{4}\left(1-\beta_{4}\right) J(h,[0, x]) \\
= & J(h,[0, x])-\left(1-\beta_{4}\right)^{2} \varphi_{h}(\varepsilon,[0, x])
\end{aligned}
$$

Therefore, ultimately in $D \varepsilon \rightarrow 0$,

$$
\begin{align*}
\mathbb{P}\left(\|W-D h\|_{[0, x]} \leqslant D \varepsilon\right) \geqslant \exp (& -\frac{D^{2}}{2}\left(J(h,[0, x])-\left(1-\beta_{4}\right)^{2} \varphi_{h}(\varepsilon,[0, x])\right) \\
& \left.-\left(\frac{\pi^{2}}{8}+\beta_{5}\right) \frac{x}{\left(\beta_{4} D \varepsilon\right)^{2}}\right) . \tag{20}
\end{align*}
$$

Step 4. Fix $|a| \leqslant D \varepsilon$. The Cameron-Martin formula implies

$$
\begin{align*}
\mathbb{P}(\| a & \left.+\widetilde{W}-D \Delta_{x} h \|_{[0,1-x]} \leqslant\left(1+\beta_{1}\right) D \varepsilon\right) \\
\quad= & \exp \left(-\frac{D^{2}}{2} J\left(\Delta_{x} h,[0,1-x]\right)\right) \\
& \times \mathbb{E}\left(I_{\left\{\|a+\widetilde{W}\|_{[0,1-x]} \leqslant\left(1+\beta_{1}\right) D \varepsilon\right\}} \exp \left(-D \int_{[0,1-x]}\left(\Delta_{x} h\right)^{\prime} d \widetilde{W}\right)\right) \tag{21}
\end{align*}
$$

Now, remind that $h^{\prime}(x+s)=\gamma([x+s, 1])$ is a version of $\left(\Delta_{x} h\right)^{\prime}$ on $s \in[0,1-x]$ and let γ_{x} denote the corresponding measure on $[0,1-x]$, i.e. γ translated by $-x$. Taking into account (16) and the indicator function in (21), the integration by parts then gives

$$
\begin{aligned}
\int_{[0,1-x]}\left(\Delta_{x} h\right)^{\prime} d \widetilde{W} & =\widetilde{W}(1-x)\left(\Delta_{x} h\right)^{\prime}(1-x)+\int_{[0,1-x]} \widetilde{W} d \gamma_{x} \\
& \leqslant \sup _{[0,1-x]}|\widetilde{W}|\left(\left|h^{\prime}(1)\right|+V\left(h^{\prime},[x, 1]\right)\right) \\
& \leqslant\left(|a|+\left(1+\beta_{1}\right) D \varepsilon\right) \beta_{2} \frac{\varphi_{h}(\varepsilon,[0, x])}{\varepsilon} \\
& \leqslant\left(2+\beta_{1}\right) \beta_{2} D \varphi_{h}(\varepsilon,[0, x])
\end{aligned}
$$

Next we rescale \widetilde{W} to a standard Wiener process W again and apply a boundary crossing estimate (see [11] or e.g. Theorem 4.5 in [1]). Uniformly in $|a| \leqslant D \varepsilon$ we get, as $D \varepsilon \rightarrow 0$,

$$
\begin{aligned}
& \mathbb{P}\left(\|a+\widetilde{W}\|_{[0,1-x]} \leqslant\left(1+\beta_{1}\right) D \varepsilon\right) \\
& \quad=\mathbb{P}\left(\|a+\sqrt{1-x} W\|_{[0,1]} \leqslant\left(1+\beta_{1}\right) D \varepsilon\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geqslant \mathbb{P}\left(\left\{\frac{-\beta_{1} D \varepsilon}{\sqrt{1-x}} \leqslant W(t) \leqslant \frac{\left(2+\beta_{1}\right) D \varepsilon}{\sqrt{1-x}}: t \in[0,1]\right\}\right) \\
& =\exp \left(-\frac{\pi^{2}(1-x)+\mathrm{o}(1)}{2\left(2+\beta_{1}+\beta_{1}\right)^{2}(D \varepsilon)^{2}}\right)
\end{aligned}
$$

Thus (21) is bounded below by

$$
\begin{equation*}
\exp \left(-\frac{D^{2}}{2} J(h,[x, 1])-\left(\frac{\pi^{2}(1-x)}{8\left(1+\beta_{1}\right)^{2}}+\beta_{6}\right) \frac{1}{(D \varepsilon)^{2}}-\left(2+\beta_{1}\right) \beta_{2} D^{2} \varphi_{h}(\varepsilon,[0, x])\right) \tag{22}
\end{equation*}
$$

for every $\beta_{6}>0$ provided ε and $D \varepsilon$ are small enough.
Step 5. Combining (19), (20) and (22), all small ε satisfy

$$
\begin{aligned}
& \mathbb{P}\left(\|W-D h\| \leqslant\left(1+\beta_{1}\right) D \varepsilon\right) \\
& \geqslant \exp \left(-\frac{D^{2}}{2}-\left(\frac{1-x}{\left(1+\beta_{1}\right)^{2}}+\left(1+\frac{8 \beta_{5}}{\pi^{2}}\right) \frac{x}{\beta_{4}^{2}}+\frac{8 \beta_{6}}{\pi^{2}}\right) \frac{\pi^{2}}{8(D \varepsilon)^{2}}\right. \\
&\left.+\left(\left(1-\beta_{4}\right)^{2}-2\left(2+\beta_{1}\right) \beta_{2}\right) \frac{D^{2}}{2} \varphi_{h}(\varepsilon,[0, x])\right)
\end{aligned}
$$

which, in view of (17), yields

$$
\begin{aligned}
& \mathbb{P}\left(\|W-D h\| \leqslant\left(1+\beta_{1}\right) D \varepsilon\right) \\
& \geqslant \\
& \quad \exp \left(-\frac{D^{2}}{2}+\frac{\pi^{2}}{8(D \varepsilon)^{2}}\left(\left(\left(1-\beta_{4}\right)^{2}-2\left(2+\beta_{1}\right) \beta_{2}\right)\left(1-\beta_{3}\right)\right.\right. \\
&\left.\left.-\frac{1}{\left(1+\beta_{1}\right)^{2}}-\left(1+\frac{8 \beta_{5}}{\pi^{2}}-\frac{\beta_{4}^{2}}{\left(1+\beta_{1}\right)^{2}}\right) \frac{x}{\beta_{4}^{2}}-\frac{8 \beta_{6}}{\pi^{2}}\right)\right) \\
& \quad \geqslant \exp \left(-\frac{D^{2}}{2}+\frac{\beta_{7}}{(D \varepsilon)^{2}}\right)
\end{aligned}
$$

where $\beta_{7}>0$ provided $\beta_{4}<\left(1+\beta_{1}\right)^{-1} \beta_{1}$ and $\beta_{2}, \beta_{3}, \beta_{6}, x$ are chosen sufficiently small with respect to β_{1} and β_{4}. Hence, if T is so large that $D^{4 / 3} \varepsilon \leqslant \sqrt{\beta_{7}}$, and (15), (20), and (22) simultaneously hold, we obtain the precise estimate

$$
\mathbb{P}\left(\|W-D h\| \leqslant\left(1+\beta_{1}\right) D \varepsilon\right) \geqslant \exp \left(-\frac{D^{2}}{2}+D^{2 / 3}\right)=\frac{1}{\log T} \exp \left((2 \log \log T)^{1 / 3}\right)
$$

Step 6. The lower bound of Step 5 allows to conclude the proof by the following standard argument, as in [3]. Applying divergent part of Borel-Cantelli lemma along the sequence $T_{n}=n^{n}$ with slightly modified W_{T} and h to ensure independence, we easily deduce that for every $\beta_{1}>0$

$$
\liminf _{T \rightarrow \infty} \frac{\left\|W_{T}-h\right\|}{\varepsilon(T)} \leqslant 1+\beta_{1} \quad \text { a.s. }
$$

3.2. Proof of Theorem 2

Fix $\theta>0$ so small that $\bigcap_{i \leqslant n} A_{\theta, i}=\emptyset$ and hence $B_{\theta}=[0,1] \backslash A_{\theta}=\bigcup_{j \leqslant m_{h}} B_{\theta, j}$ is a union of m_{h} disjoint intervals. Clearly, $m_{h}=n$ exept when $\left(x_{1}, x_{n}\right)=(0,1)\left(m_{h}=n-1\right)$ or $0<x_{1}<x_{n}<1\left(m_{h}=n+1\right)$.

Under (10), Lemma 4 holds with $[0, x]$ changed into A_{θ} and $[x, 1]$ into B_{θ}, by the same arguments. Also, $V\left(h, A_{\theta, i}\right)<\infty$ implies $\lim _{\varepsilon \rightarrow 0} \varphi_{h}\left(\varepsilon, A_{\theta, i}\right) / \varphi_{h}\left(\varepsilon, A_{\theta}\right)=0$ thus we can assume with no loss of generality that

$$
\begin{equation*}
\inf _{i \leqslant n} V\left(h, A_{\theta, i}\right)=\infty \tag{23}
\end{equation*}
$$

In step 1, (16) becomes

$$
\begin{align*}
\sum_{j=1}^{m_{h}} \psi\left(B_{\theta, j}\right) & =\sum_{j=1}^{m_{h}}\left(\left|h^{\prime}\left(\inf B_{\theta, j}\right)\right|+\left|h^{\prime}\left(\sup B_{\theta, j}\right)\right|+V\left(h^{\prime}, B_{\theta, j}\right)\right) \\
& <\beta_{2} \frac{\varphi_{h}\left(\varepsilon, A_{\theta}\right)}{\varepsilon} \tag{24}
\end{align*}
$$

In step 2 , we progressively enlarge the size of the main strip around h by using constants $\beta_{0}^{1}=0<\beta_{i}^{1}<\beta_{i+1}^{1}<\beta_{m_{h}+n-1}^{1}=\beta_{1}$. Let $(\tau, \delta)=(\theta, 1)$ whenever $x_{1}=0$ and $(\tau, \delta)=\left(x_{1}-\theta, 0\right)$ otherwise. Writing $\alpha_{i}=\lambda\left(A_{\theta, i}\right)$ and $\left.\eta_{j}=\lambda\left(B_{\theta, j}\right)\right)$ the basic decomposition (19) now reads

$$
\begin{aligned}
& \mathbb{P}\left(\|W-D h\| \leqslant\left(1+\beta_{1}\right) D \varepsilon\right) \\
& \quad \geqslant \mathbb{P}\left(\|W-D h\|_{[0, \tau]} \leqslant D \varepsilon\right) \\
& \quad \prod_{i=1+\delta}^{n} \inf _{|b| \leqslant\left(1+\beta_{2 i-2-\delta}^{1}\right) D \varepsilon} \mathbb{P}\left(\left\|b+W_{i}-D \Delta_{i} h\right\|_{\left[0, \alpha_{i}\right]} \leqslant\left(1+\beta_{2 i-1-\delta}^{1}\right) D \varepsilon\right) \\
& \quad \prod_{j=2-\delta}^{m_{h}} \inf ^{|a| \leqslant\left(1+\beta_{2 j-3+\delta}^{1}\right) D \varepsilon} \\
& \mathbb{P}\left(\left\{\left\|a+\widetilde{W}_{j}-D \widetilde{\Delta}_{j} h\right\|_{\left[0, \eta_{j}\right]} \leqslant\left(1+\beta_{2 j-2+\delta}^{1}\right) D \varepsilon\right\}\right)
\end{aligned}
$$

where an empty product is $1, W_{i}$ and \widetilde{W}_{j} are mutually independent standard Brownian paths,

$$
\Delta_{i} h(s)=h\left(x_{i}-\theta+s\right)-h\left(x_{i}-\theta\right)
$$

and

$$
\widetilde{\Delta}_{j} h(s)=h\left(\inf B_{\theta, j}+s\right)-h\left(\inf B_{\theta, j}\right)
$$

The following estimates do not depend on the exit levels a from $A_{\theta, i}$ and b from $B_{\theta, j}$ controlling the chain of conditioning events since θ is fixed and crucial rectifications occur very close to the x_{i} 's, as $\varepsilon \rightarrow 0$.

In step 3 , a new argument is required when $b \neq 0$. For fixed $i \geqslant 1+\delta$ we consider $h_{\varepsilon, i} \in \mathcal{H}_{1}$ such that $\left\|h_{\varepsilon, i}-h\right\|_{A_{\theta, i}} \leqslant \varepsilon$ and $J\left(h_{\varepsilon, i}, A_{\theta, i}\right)=J\left(h, A_{\theta, i}\right)-\varphi_{h}\left(\varepsilon, A_{\theta, i}\right)$. Under (23) we have, for $A_{\theta, i}^{-}=\left[x_{i}-\theta, x_{i}-\theta / 2\right]$,

$$
\lim _{\varepsilon \rightarrow 0} \frac{\varepsilon}{\varphi_{h}\left(\varepsilon, A_{\theta, i}\right)}=\lim _{\varepsilon \rightarrow 0} \frac{\varphi_{h}\left(\varepsilon, A_{\theta, i}^{-}\right)}{\varphi_{h}\left(\varepsilon, A_{\theta, i}\right)}=0
$$

Therefore, $h_{\varepsilon, i}$ can be modified on $A_{\theta, i}^{-}$at almost no energy cost.

LEMMA 5. - If ε is small enough, then, for any $i \geqslant 1+\delta$ and $|c| \leqslant \varepsilon$ one can find $h_{c, \varepsilon, i} \in \mathcal{H}_{1}$ such that $h_{c, \varepsilon, i}\left(x_{i}-\theta\right)=h\left(x_{i}-\theta\right)+c,\left\|h_{c, \varepsilon, i}-h\right\|_{A_{\theta, i}} \leqslant \varepsilon$ and $J\left(h_{c, \varepsilon, i}, A_{\theta, i}\right) \leqslant J\left(h, A_{\theta, i}\right)-\left(1-\beta_{9}\right) \varphi_{h}\left(\varepsilon, A_{\theta, i}\right)$.

A solution is given by letting $h_{c, \varepsilon, i}^{\prime}=h^{\prime}+2\left(h_{\varepsilon, i}\left(x_{i}-\theta / 2\right)-h\left(x_{i}-\theta / 2\right)-c\right) / \theta$ on $A_{\theta, i}^{-}$and $h_{c, \varepsilon, i}^{\prime}=h_{\varepsilon, i}^{\prime}$ on $A_{\theta, i} \backslash A_{\theta, i}^{-}$since then

$$
\begin{aligned}
J\left(h_{c, \varepsilon, i}, A_{\theta, i}\right) & =J\left(h, A_{\theta, i}^{-}\right)+\mathrm{O}(\varepsilon)+J\left(h_{\varepsilon, i}, A_{\theta, i} \backslash A_{\theta, i}^{-}\right) \\
& =J\left(h, A_{\theta, i}\right)-\varphi_{h}\left(\varepsilon, A_{\theta, i}\right)+\mathrm{O}(\varepsilon)+\left(J\left(h, A_{\theta, i}^{-}\right)-J\left(h_{\varepsilon, i}, A_{\theta, i}^{-}\right)\right)
\end{aligned}
$$

Let $0<\beta_{4}<\inf _{0 \leqslant k \leqslant m_{h}+n-2}\left(\beta_{k+1}^{1}-\beta_{k}^{1}\right)$. Combining Lemma 5 with the arguments of step 3 we obtain, uniformly in $|b| \leqslant\left(1+\beta_{k}^{1}\right) D \varepsilon<\left(1+\beta_{k+1}^{1}\right) D \varepsilon$,

$$
\begin{aligned}
& \mathbb{P}\left(\left\|b+W_{i}-D \Delta_{i} h\right\|_{\left[0, \alpha_{i}\right]} \leqslant\left(1+\beta_{k+1}^{1}\right) D \varepsilon\right) \\
& \quad \geqslant \mathbb{P}\left(\left\|W_{i}-D \Delta_{i} h_{b / D,\left(1+\beta_{k+1}^{1}\right) \varepsilon, i}\right\|_{\left[0, \alpha_{i}\right]} \leqslant \beta_{4} D \varepsilon\right) \\
& \quad \geqslant \exp \left(-\frac{D^{2}}{2}\left(J\left(h, A_{\theta, i}\right)-\left(1-\beta_{9}\right) \varphi_{h}\left(\varepsilon, A_{\theta, i}\right)\right)-\frac{\left(1+\beta_{5}\right) \pi^{2} \alpha_{i}}{8\left(\beta_{4} D \varepsilon\right)^{2}}\right)
\end{aligned}
$$

Next, along the lines of step 4 , we get, for $|a| \leqslant\left(1+\beta_{k}^{1}\right) D \varepsilon$ and $D \varepsilon$ small enough,

$$
\begin{gathered}
\mathbb{P}\left(\left\{\left\|a+\widetilde{W}_{j}-D \widetilde{\Delta}_{j} h\right\|_{\left[0, \eta_{j}\right]} \leqslant\left(1+\beta_{k+1}^{1}\right) D \varepsilon\right\}\right) \\
\geqslant \exp \left(-\frac{D^{2}}{2} J\left(h, B_{\theta, j}\right)-\frac{\pi^{2}\left(1+\beta_{6}\right) \eta_{j}}{8\left(1+\beta_{k+1}^{1}\right)^{2}(D \varepsilon)^{2}}\right. \\
\left.-\left(2+\beta_{k}^{1}+\beta_{k+1}^{1}\right) \psi\left(B_{\theta, j}\right) D^{2} \varepsilon\right)
\end{gathered}
$$

Taking care of $\mathbb{P}\left(\|W-D h\|_{[0, \tau]} \leqslant D \varepsilon\right)$ in one or the other way - according to δ and recalling that $a=b=0$ in this case - it follows that

$$
\begin{aligned}
& \mathbb{P}\left(\|W-D h\| \leqslant\left(1+\beta_{1}\right) D \varepsilon\right) \\
& \qquad \geqslant \\
& \quad \exp \left(-\frac{\pi^{2}}{8(D \varepsilon)^{2}}\left(\frac{1+\beta_{6}}{\left(1+\beta_{1}^{1}\right)^{2}} \sum_{j=1}^{m_{h}} \eta_{j}+\left(\frac{1+\beta_{5}}{\beta_{4}^{2}}\right) \sum_{i=1}^{n} \alpha_{i}\right)\right. \\
& \left.\quad-\frac{D^{2}}{2}\left(1-\left(1-\beta_{9}\right) \varphi_{h}\left(\varepsilon, A_{\theta}\right)+4\left(1+\beta_{1}\right) \sum_{j=1}^{m_{h}} \psi\left(B_{\theta, j}\right) \varepsilon\right)\right)
\end{aligned}
$$

where we used $\beta_{1}^{1} \leqslant \beta_{k}^{1} \leqslant \beta_{1}$ for $k \geqslant 1$ and $\varphi_{h}\left(\varepsilon, A_{\theta}\right) \leqslant \sum_{i \leqslant n} \varphi_{h}\left(\varepsilon, A_{\theta, i}\right)$. Since

$$
1-\sum_{j=1}^{m_{h}} \eta_{j}=\sum_{i=1}^{n} \alpha_{i} \leqslant 2 n \theta
$$

is arbitrarily small, we conclude as for Theorem 1 , by (24) and $\varphi_{h}\left(\varepsilon, A_{\theta}\right) \geqslant(1-$ $\left.\beta_{3}\right) \pi^{2} / 4 D^{4} \varepsilon^{2}$.

REFERENCES

[1] P. Berthet, Z. Shi, Small ball estimates for Brownian motion under a weighted sup-norm, Studia Sci. Math. Hungarica 36 (2000) 275-289.
[2] K.L. Chung, On the maximum partial sums of sequences of independent random variables, Trans. Amer. Math. Soc. 64 (1948) 205-233.
[3] E. Csáki, A relation between Chung's and Strassen's law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie Verw. Gebeite 54 (1980) 287-301.
[4] E. Csáki, A liminf result in Strassen's law of the iterated logarithm, Colloq. Math. Soc. János Bolyai 57 (1989) 83-93.
[5] J.D. Deuschel, D.M. Stroock, Large Deviations, Academic Press, 1989.
[6] A. De Acosta, Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm, Ann. Probab. 11 (1983) 78-101.
[7] V. Goodman, J. Kuelbs, Rates of clustering in Strassen's LIL for Brownian motion, J. Theoret. Probab. 4 (1991) 285-309.
[8] N. Gorn, M. Lifshits, Chung's law and the Csáki function, J. Theoret. Probab. 12 (1999) 399-420.
[9] K. Grill, A liminf result in Strassen's law of the iterated logarithm, Probab. Theory Related Fields 89 (1991) 149-157.
[10] J. Kuelbs, W.V. Li, M. Talagrand, Liminf results for Gaussian samples and Chung's functional LIL, Ann. Probab. 22 (1994) 1879-1903.
[11] A.A. Mogulskii, Small deviations in a space of trajectories, Theoret. Probab. Appl. 19 (1974) 726-736.
[12] V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie Verw. Gebeite 3 (1964) 211-226.

[^0]: * Corresponding author.

 E-mail addresses: philippe.berthet@univ-rennes1.fr (P. Berthet), lifts@ mail.rcom.ru (M. Lifshits).
 ${ }^{1}$ Research supported by INTAS grant 99-01317 and RFBR-DFG grant 99-01-0427.

