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ABSTRACT. – We consider here i.i.d. variables which are distributed according to a Pareto
P(α) up to some pointx1 and a ParetoP(β) (with a different parameter) after this point.
This model constitutes an approximation for estimating extreme tail probabilities, especially
for financial or insurance data. We estimate the parameters by maximizing the likelihood of the
sample, and investigate the rates of convergence and the asymptotic laws. We find here a problem
which is very close to the change point question from the point of view of limits of experiments.
Especially, the rates of convergence and the limiting law obtained here are the same as in a
change point framework. Simulations are giving an illustration of the quality of the procedure.
 2002 Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – Nous considérons unn-échantillon de variables aléatoires réelles qui suivent une
loi de ParetoP(α) jusqu’à un pointx1 puis une ParetoP(β) après ce point. Ce modèle est une
approximation des modèles utilisés pour estimer des probabilités d’extrèmes en particulier en
finances.

Nous considérons les estimateurs des différents paramètres qui maximisent la vraisemblance
et déterminons leur lois asymptotiques. Nous retrouvons un problème proche du problème
de rupture de modèle du point de vue des expériences limites. En particulier, les vitesses de
convergence des estimateurs ainsi que les lois limites obtenues sont les mêmes. Nous donnons
des simulations pour montrer la qualité de cette procédure.
 2002 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Our aim in this paper is to analyze the likelihood process ofn independent identically
variables which common law has the following distribution function

Fx0,x1,α,β(x)=
(

1−
(
x0

x

)α)
1{x0�x�x1} +

(
1−

(
x0

x1

)α(
x1

x

)β)
1{x1�x} (1)

for 0< x0 < x1 andα,β � 1. We are interested in estimating the parametersα, β, x0, x1.
As can be seen, this distribution clearly presents two regimes, each of them is of Pareto
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type. The parameterx1 appears as particularly challenging to estimate since it is the
point of change between the two different regimes. We show that this parameter actually
behaves like a change point parameter, in the sense of experiments. More precisely, we
show that the likelihood process converges in the same sense and to the same limiting
process as in the case of a change point problem.

Hence, we find results which are strongly connected to Deshayes, Picard [3,4]. The
technic of proof also follows rather closely the previous work. However, for the proof of
the tightness, we take advantage of the now classical technology of the wavelets (here
the Ciesielski basis), and the associated spaces.

The work cited above was part of a thesis conducted with Didier Dacunha Castelle
as advisor. It was also very much inspired by the work of Lucien LeCam (see [8]) on
limits of experiments and of Ildar Ibraguimov and Rafael Hasminskii (see [7]) on the
likelihood process.

However, besides this homage, we had specific motivations. A very important problem
in finance or insurance consists in estimating values at risk (VaR), or in other words
quantiles for very small (or very big) probabilities (see for instance the impressive
book of Embrecht, Klüppelberg and Mikosch [5]). As we are concerned with tails,
the theorems of attraction for the maximum ofn variables are generally applying, and
under assumptions which are generally fulfilled in the context of insurance, the problem
roughly consists in estimating the tail index of a Pareto distribution. However, this
estimation has to be performed on the observations where the attraction is supposed
to be true, i.e. the ‘tail’ observations. Immediately, a very delicate problem occurs in
theory and even more in practice: how to choose the number of such observations?
There obviously appears a trade off between a bias phenomenon (the attraction is
reasonable only for the very last observations) and variance (the larger the number of
taken observations, the smaller is the variance). Various possibilities have been proposed,
let us just cite as a reference the fundamental paper of de Haan, Peng [2]. We adopt here
a rather different point of view, by trying to find this optimal number of observations
as the point of change between two regimes, where the last one obviously is a Pareto.
We do not give here a complete resolution of this aspect since we are only considering
two Pareto regimes. The next step consisting in performing the procedure with a much
broader assumption on the first regime, will be done in a following paper.

2. Study of the likelihood ratio process

As in the context of a change point model, one can prove here that the interesting
situation corresponds to assuming thatdn = β − α (hence in factβn − αn) is tending to
zero whenn is tending to infinity. Letu, v,w, t be some constants and let us consider
the sequence of processes:

�n(u, v,w, t)=
Ln(x0 + w

n
, x1 + t

nd2
n
, αn + u√

n
, βn + v√

n
)

Ln(x0, x1, αn, βn)

whereLn(x0, x1, α,β) is the likelihood of the sampleX1, . . . ,Xn (i.i.d. variables of
distribution given by (1)). We obtain the following result:
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THEOREM 1. –Let 0< x0 < x1 be real numbers. Let us suppose that the real para-
metersαn,βn are larger than1 and are depending onn in such a way thatlimn→+∞ αn =
limn→+∞ βn = α∗ with dn = βn − αn tending to0 andnd4

n tending to infinity.
Then, the sequence of processes{�n(u, v,w, t), (u, v,w, t) ∈ R

4} weakly converges
under P

n
x0,x1,αn,βn

to the process{�(u, v,w, t), (u, v,w, t) ∈ R
4} with the topology of

uniform convergence on compact sets, where� is defined by:

log�(u, v,w, t)=
[(

uξ1 − 1

2
u2σ 2

1

)
+

(
vξ2 − 1

2
v2σ 2

2

)

+ c

(
W(t)− |t|

2

)
+w

α∗

x0

]
1{E>w}

where
• ξ1 is a gaussian vector of mean0 and of varianceσ 2

1 = 1−(x1/x0)
−α∗

α∗2 ,

• ξ2 is a gaussian vector of mean0 and of varianceσ 2
2 = (x1/x0)

−α∗

α∗2 ,

• W is a Brownian motion onR andc = (
(x1/x0)

−α∗
α∗x1

)−1/2,
• E is an exponential variable of parameterα∗.

Moreover,ξ1, ξ2, W , E are independent.

3. Estimation

For a fixed real numberx, if we callϒ(x) (respectivelyϒ(x) ) the subset of the data
larger thanx (respectively smaller) andN(x) (respectivelyn − N(x)) its cardinality,
then, the maximum likelihood estimators of the parametersx0, x1, αn, βn are defined by
the following equalities:

x̂0 =X(1),

α̂=
[

1

n−N(x̂1)

∑
Xi∈ϒ(x̂1)

log
(
Xi

x̂0

)
+ N(x̂1)

n−N(x̂1)
log

(
x̂1

x̂0

)]−1

,

β̂ =
[

1

N(x̂1)

∑
Xi∈ϒ(x̂1)

log
(
Xi

x̂1

)]−1

,

x̂1 = arg max
x∈{X1,...,Xn}

∑
Xi∈ϒ(x)

(
log

(
β̂

α̂

)
+ (α̂ − β̂) log

(
Xi

x

))
.

THEOREM 2. –Under the same hypotheses as in Theorem1, the maximum likelihood
estimators of the four parameters are asymptotically independent and have the following
asymptotic distributions(underPn

x0,x1,αn,βn
):




n(x̂0 − x0) → Exp(α∗)√
n(α̂ − αn) → N (0, σ 2

1 )√
n(β̂ − βn) → N (0, σ 2

2 )

nd2
n(x̂1 − x1) → ζ

whereζ = arg maxt∈R c(W(t)− |t |
2 ) andσ 2

1 , σ
2
2 , c are defined in Theorem1.
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Table 1

n1 n2 x0 x1 α β

True 10 20 2 2.1

Empirical mean 1524 1235 10.0021 20.0182 1.8145 2.0929

Empirical s.d. 0.0000 0.0068 0.0005 0.0042

Table 2

n1 n2 x0 x1 α β

True 10 20 2.1 2

Empirical mean 610 213 10.0059 21.0152 2.0000 2.7930

Empirical s.d. 0.0000 0.0079 0.0534 17.8443

True 10 20 2.1 2

Empirical mean 163 704 10.0265 19.9967 0.2938 1.9954

Empirical s.d. 0.0006 0.0030 0.0002 0.0053

True 10 20 2.1 2

Empirical mean 60 1167 10.0509 19.9527 0.0757 1.9972

Empirical s.d. 0.0035 0.0123 0.0000 0.0044

True 10 20 2 2.1

Empirical mean 1520 64 10.0028 10.9994 2.4418 3.5901

Empirical s.d. 0.0000 1.0272 0.0320 0.1043

3.1. Simulation results

For each simulation, we work withN = 50 samples of the data; we give the number
n1 (respectivelyn2) of data falling betweenx0 andx1 (respectively larger thanx1). For
every simulation, we observe thatx0 is the parameter which is the best estimated. It was
expected since its rate of convergence is the fastest. In the opposite, the ratedn is the
smallest one and then, the empirical variance ofx̂1 is the worse one.

First, we consider a large number of data. The results are excellent (see Table 1): our
procedure is able to detect a very small break betweenα andβ.

Next, we consider the case wheren1 is varying but we keep relatively large values for
n2. As expected, small values ofn1, seriously damage the estimation ofα, however, the
other parameter are encouragingly well fitted (see Table 2). For smalln2, the procedure
does not detect well the change point even ifn1 is large. In fact, we find here a problem
quite similar to the problem of the “horror plot” when we compute the Hill estimator of
the tail parameter. The likelihood (as function ofx) is very erratic for smallx and then
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Table 3

n1 n2 x0 x1 α β

True 10 15 1.5 2.1

Empirical mean 658 55 10.0047 11.3303 3.0660 4.0971

Empirical s.d. 0.0000 3.1229 0.3824 0.9730

True 10 20 1.5 2.1

Empirical mean 630 68 10.0065 11.1964 1.9784 2.9256

Empirical s.d. 0.0000 0.6113 0.0330 0.0327

True 10 50 1.5 2.1

Empirical mean 641 83 10.0087 35.8182 1.4297 2.0191

Empirical s.d. 0.0000 722.5523 0.0338 0.4354

x1 is always under-estimated. This problem does not appear whenn2 is large (even if
n1 is small).

Table 3 more precisely investigates the case of smalln2. We observe that results are
better whenx1 − x0 is large enough for the parametersα andβ. In the first lines, the true
parametersα andβ do not belong to the interval [emp.mean− 2emp.s.d., emp.mean.+
2emp.s.d.]. But in the last case, the change point is not well estimated (see the standard
error).

4. Proofs

4.1. Proof of Theorem 1

The proof, as usual, relies on two classical arguments. The first one consists in
proving that the finite distributions are converging. This is an elementary consequence
of Proposition 1 (see Section 4.2).

The second argument is generally somewhat more complex. It consists in proving
the tightness of the sequence. As can be seen in Proposition 1, the log-likelihood splits
into three terms. The two first ones are only involving standard arguments to prove the
tightness. For their behavior we refer to Ibragimov and Khas’minskii [7] or Deshayes
and Picard [3]. However, the last term requests a more careful attention; its behaviour is
studied in Proposition 2 (see Section 4.3).

In the sequel, we omit the parameters in the expectations and the probabilities, but
they are taken without ambiguity under the distributionP

n
x0,x1,αn,βn

.

4.2. Expansion of the likelihood ratio

PROPOSITION 1. – Let t, u, v,w be some constants and assume thatlimn→+∞ nd4
n =

+∞ and limn→+∞ dn = 0. Then, we have
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log�n(u, v,w, t)=
[(

−uξ1,n − 1

2
u2σ 2

1

)
+

(
−vξ2,n − 1

2
v2σ 2

2

)

+
(
dnWn(t)− σ 2(t)

2

)
+w

α∗

x0
+ oP (1)

]
1{En>w+o(1)}

where

ξ1,n = 1√
n

n∑
i=1

[(
Yi − 1

αn

)
1{log(

x0
x1

+ w
nx1

)�Yi�0} − E

(
Yi − 1

αn

)
1{log(

x0
x1

+ w
nx1

)�Yi�0}
]
1{t>0}

+ 1√
n

n∑
i=1

[(
Yi − 1

αn

)
1{log(

x0
x1

+ w
nx1

)�Yi�log(1+ t

x1nd
2
n

)}

− E

(
Yi − 1

αn

)
1{log(

x0
x1

+ w
nx1

)�Yi�log(1+ t

x1nd
2
n

)}
]
1{t<0},

ξ2,n = 1√
n

n∑
i=1

[(
Zi − 1

βn

)
1{log(1+ t

x1nd
2
n

)�Zi} − E

(
Zi − 1

βn

)
1{log(1+ t

x1nd
2
n

)�Zi }
]
1{t>0}

+ 1√
n

n∑
i=1

[(
Zi − 1

βn

)
1{0�Zi } − E

(
Zi − 1

βn

)
1{0�Zi}

]
1{t<0},

Wn(t)=
n∑
i=1

[(
Zi − 1

βn

)
1{0�Zi�log(1+ t

x1nd
2
n

)} − E

(
Zi − 1

βn

)
1{0�Zi�log(1+ t

x1nd
2
n

)}
]
1{t>0}

+
n∑
i=1

[(
Zi − 1

βn

)
1{log(1+ t

x1nd
2
n

)�Zi�0} − E

(
Zi − 1

βn

)
1{log(1+ t

x1nd
2
n

)�Zi�0}
]
1{t<0},

En = n log
X(1)

x0
.

The variablesYi,Zi are

Yi = log
Xi

x1
1{x0�X�x1}, Zi = log

Xi

x1
1{x1�X} (2)

and

σ 2
1 = 1− (x1/x0)

−α∗

α∗2 = V (ξ1,n)+ o(1),

σ 2
2 = (x1/x0)

−α∗

α∗2 = V (ξ2,n)+ o(1),

σ 2(t)= (x1/x0)
−α∗

α∗x1
|t| = V

(
dnWn(t)

) + o(1).

Proof of Proposition 1. –We only give the proof fort > 0. The other case is similar,
for reason of symmetry. Leth0,n, h1,n, ηn andδn be sequences tending to zero: in the
sequel, we omit the subscriptn.
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The likelihood of the sample is

Ln(x0, x1, α,β,X1, . . . ,Xn)= 1{x0�X(1)} ×
n∏
i=1

(
αxα0X

−(α+1)
i

)1{x0�Xi�x1}

×
n∏
i=1

(
βx

β−α
1 xα0X

−(β+1)
i

)1{x1�Xi }

whereX(1) = min(X1, . . . ,Xn). The Log-likelihood ratio splits into three terms:

log
Ln(x0 + h0, x1 + h1, α + η,β + δ)

Ln(x0, x1, α,β)
= (T1 + T2 + T3) (1+ log 1{x0+h0<X(1)}). (3)

We have

T1 =
n∑
i=1

1{x0+h0�Xi�x1}
[
log

(
1+ η

α

)
+ (α + η) log

(
1+ h0

x0

)
+ η log

x0

x1
− η log

Xi

x1

]
,

T2 =
n∑
i=1

1{x1�Xi�x1+h1}
[
log

(
1− β − α − η

β

)
+ (α + η) log

(
1+ h0

x0

)

+ η log
x0

x1
+ (β − α − η) log

Xi

x1

]
,

T3 =
n∑
i=1

1{x1+h1�Xi}
[
log

(
1+ δ

β

)
+ (β − α + δ − η) log

(
1+ h1

x1

)

+ (α + η) log
(

1+ h0

x0

)
− η log

x1

x0
− δ log

Xi

x1

]
.

Let us set

I = 1{log(
x0+h0
x1

)�Y�0}, J = 1{0�Z�log(1+ h1
x1
)}, K = 1{log(1+ h1

x1
)�Z}.

and recall the change for variables (2):

Y = log(X/x1)1{x0�X�x1} and Z = log(X/x1)1{x1�X}.

We obtain

T1 = −η

n∑
i=1

[(
Yi − 1

α

)
Ii − E

(
Yi − 1

α

)
Ii

]
− ηnE

(
Y − 1

α

)
I

+
[
−η

α
+ log

(
1+ η

α

)
+ (α + η) log

(
1+ h0

x0

)
− η log

(
x0

x1

)] n∑
i=1

(Ii − EIi)

+ n

[
−η

α
+ log

(
1+ η

α

)
+ (α + η) log

(
1+ h0

x0

)
− η log

(
x0

x1

)]
EI,

T2 = −(α − β + η)

n∑
i=1

[(
Zi − 1

β

)
Ji − E

(
Zi − 1

β

)
Ji

]
− (α − β + η)nE

(
Z − 1

β

)
J

+
[
−α − β + η

β
+ log

(
1− β − α + η

β

)
+ (α + η) log

(
1+ h0

x0

)



1030 D. PICARD, K. TRIBOULEY / Ann. I. H. Poincaré – PR 38 (2002) 1023–1037

+ η log
(
x0

x1

)] n∑
i=1

(Ji − EJi)+ n

[
−α − β + η

β
+ log

(
1− β − α + η

β

)

+ (α + η) log
(

1+ h0

x0

)
+ η log

(
x0

x1

)]
EJ,

T3 = −δ

n∑
i=1

[(
Zi − 1

β

)
Ki − E

(
Zi − 1

β

)
Ki

]
− δnE

(
Z − 1

β

)
K

+
[
− δ

β
+ log

(
1+ δ

β

)
+ (β + δ) log

(
1+ h0

x0

)
− η log

(
x0

x1

)] n∑
i=1

(Ki − EKi)

+ n

[
− δ

β
+ log

(
1+ δ

β

)
+ (β + δ) log

(
1+ h0

x0

)
− η log

(
x0

x1

)]
EK.

Using the distribution function (1) ofX, we easily compute the expectation of the
variables of interest

EI =
(
x1

x0

)−α[(
x0

x1
+ h0

x1

)−α
− 1

]
,

EJ =
(
x1

x0

)−α[
1−

(
1+ h1

x1

)−β]
,

EK =
(
x1

x0

)−α(
1+ h1

x1

)−β
,

E

(
Y − 1

α

)
I = log

(
x0

x1
+ h0

x1

)(
1+ h0

x0

)−α
,

E

(
Z − 1

β

)
J =

(
x1

x0

)−α[
− log

(
1+ h1

x1

)(
1+ h1

x1

)−β]
,

E

(
Z − 1

β

)
K =

(
x1

x0

)−α(
1+ h1

x1

)−β
log

(
1+ h1

x1

)
.

Replacing now

η = u√
n
, δ = v√

n
, h0 = w

n
, h1 = t

nd2
n

and assuming the conditions limn→+∞ nd4
n = +∞ and limn→+∞ dn = 0, it follows

T1 = −uξ1,n + u
√
n log

(
x0

x1

)(
x0

x1

)α∗

− u2
1− ( x0

x1
)α

∗

2α∗2

+ α∗w
x0

(
1−

(
x0

x1

)α∗)
+ o(1)+ oP (1),

T2 = −dnWn(t)− t

2

(
x0

x1

)α∗
1

βx1
− t

dn

(
x0

x1

)α∗
1

x1
+ o(1)+ oP (1),
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T3 = −vξ2 − u
√
n log

(
x0

x1

)(
x0

x1

)α∗

− v2 1

2β2

(
x0

x1

)α∗

+ α∗w
x0

(
x0

x1

)α∗

+ t

dn

(
x0

x1

)α∗
1

x1
+ o(1)+ oP (1).

Since 1{x0+h0�X(1)} = 1{w+o(1)�n log
X(1)
x0

}, combining with (3), we obtain the result.

4.3. Convergence of the process {dnWn(t), t > 0}
Let us recall that the processWn(t) is defined, fort > 0, by

Wn(t)=
n∑
i=1

[(
Zi − 1

βn

)
1{0�Zi�log(1+ t

x1nd
2
n

)} −E

(
Zi − 1

βn

)
1{0�Zi�log(1+ t

x1nd
2
n

)}
]

whereZ = log(X/x1)1{x1�X} and thatV (dnWn(t))= t (x0/x1)
α∗

α∗ (1+ o(1)).

PROPOSITION 2. – We assume thatlimn→+∞ αn = α∗, limn→+∞ nd4
n = +∞ and

limn→+∞ dn = 0. Let us denote{dnW̃n(t), t > 0} the linear interpolation of{dnWn(t),

t > 0}. The process{dnW̃n(t), t > 0} weakly converges underP to the process
{cW(t), t > 0} with the topology of uniform convergence on compact sets forc =√

α∗x1
(x0/x1)

α∗ .

Proof of Proposition 2. –The first argument of the proof consists in proving the
convergence of the finite distributions and is an elementary consequence of the central
limit theorem.

We concentrate on proving the tightness of the sequence. Using standard arguments,
it is enough to prove that for 0< τ < 1/2, for anyT > 0, ε > 0, there exists,> 0 such
that

∀n� 1, P
(‖dnW̃n‖τ,T �,

)
� ε, (4)

where‖.‖τ,T denotes the Lipschitz-norm,

‖f ‖τ,T = |f (0)| + sup
x �=y∈[0,T ]

|f (x)− f (y)|
|x − y|τ . (5)

To prove (4), we use an equivalent form of the Lipschitz-norm using the Ciesielski basis.
If {χj,k, j � 1, k ∈ N} is the Haar basis, we define the Ciesielski basis as follows:

2−10(t)= 1[0,T ](t), 200(t)= t

T
1[0,T ](t),

2jk(t)=
t
T∫

0

χj,k(u) du, j � 1, k ∈ N.

This basis has the very useful following properties (see Ciesielski [1], and notice also
the use of such a property in a stochastic framework in Kerkyacharian, Roynette [6]):
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1. If f = ∑
j,k λj,k2j,k is a continuous function on[0, T ], its coefficients satisfy the

relations:

λ−1,0 = f (0), λ0,0 = f (T )− f (0),

λj,k = f

(
(k + 1/2)T

2j

)
− 1

2

[
f

(
kT

2j

)
+ f

(
(k + 1)T

2j

)]
.

2. The lip-norm introduced in (5) is equivalent to the following norm

‖f ‖′
τ,T = sup

j�−1,k
2jτ |λjk|. (6)

We use the points 1 and 2 to prove (4). More precisely, if we consider:

λ̃n−1,0 = dnW̃n(0)= 0,

λ̃n0,0 = dn
(
W̃n(T )− W̃n(0)

)
,

λ̃nj,k = dnW̃n

(
(k + 1/2)T

2j

)
− dn

2

(
W̃n

(
kT

2j

)
+ W̃n

(
(k + 1)T

2j

))
,

it is enough to prove that:

∀ε > 0, ∃,ε, P
(
sup
j,k

2jτ |λ̃nj,k|>,ε

)
� ε. (7)

We have a slightly different strategy concerning the ‘small’ and the ‘large’j ’s. Let us
now fix,> 0 andJ0 such that

2J0 =
(

,

6Cdn

)1/τ

(8)

for C = log(γ1T + γ2) whereγ1 � (x1nd
2
n)

−1 andγ2 � (βn)
−1. We obviously have:

P
(
sup
j,k

2jτ |λ̃nj,k|>,
)
�

∑
j�J0

P
(
sup
k

2jτ |λ̃nj,k|>,
) + ∑

j>J0

P
(
sup
k

2jτ |λ̃nj,k|>,
)
. (9)

4.3.1. First case: j � J0

We first remark that the terms corresponding toj ∈ {0,1} does not present difficulties.
For the other ones, we write:

λ̃nj,k = λnj,k + εj,k (10)

whereλnj,k is calculated as̃λnj,k replacingW̃n by Wn (i.e. forgetting the interpolation),
and

|εj,k| � 3 sup
[0,T /x1nd

2
n ]

∣∣dnW̃n(t)− dnWn(t)
∣∣

� 3dn

∣∣∣∣log
(

T

x1nd
2
n

− 1

βn

)∣∣∣∣
� 3Cdn (11)
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for C used in the definition (8). Hence, we have:∑
j�J0

P
(
sup
k

2jτ |λ̃nj,k|>,
)
�

∑
j�J0

[
P

(
sup
k

2jτ |λnj,k|>,/2
)

+ P
(
sup
k

2jτ |εj,k|>,/2
)]
. (12)

Using (8) and (11), we observe that the second part of the sum is null. For the first part,
using the definition of the coefficientsλnj,k , we have:

∀j � 1, P
(
sup
k

2jτ |λnj,k|>,/2
)

� 2P

(
sup
k

2jτ dn

∣∣∣∣Wn

(
(k + 1)T

2j

)
−Wn

(
kT

2j

)∣∣∣∣>,/2
)

� 2P
(
sup
k

2jτ dn|2Wn(j, k)|>,/2
) := 2R (13)

where, for arbitraryj, k,

2Wn(j, k)=Wn

(
(k + 1)T

2j

)
−Wn

(
kT

2j

)

=
n∑
i=1

[(
Zi − 1

βn

)
Li − E

(
Zi − 1

βn

)
Li

]

for Li = 1{log(1+ kT

x12j nd2
n

)�Zi�log(1+ (k+1)T

x12j nd2
n

)}. Remembering the distribution (1) of theXi ’s,

elementary computation gives the variance of2Wn(j, k):

V
[
2Wn(j, k)

] = 1

βn

(
x0

x1

)α
T

x12j d2
n

(
1+ o(1)

)
. (14)

We shall now use a standard argument in the context of empirical processes (see for
instance Pollard [9]). Let us considerSk the sigma field generated by the variables
{2Wn(j,u), u� k} for n andj � 1 fixed. We are going to take advantage of Lemma 1
(see below). Its proof is rejected at the end of this subsection.

LEMMA 1. – For , large enough, uniformly forj � 0, on the event

|2Wn(j, k)| � ,

2jτ+1dn
,

we have

P
(∣∣2Wn

(
j, (2j − 1)T

) −2Wn(j, k)
∣∣ � |2Wn(j, k)/2|/Sk

)
� 1/2. (15)

We apply Lemma 1 by introducing the stopping time:

s = inf
{
k ∈ N, |2Wn(j, k)|>,2−(jτ+1)d−1

n

}
.

As usual, we puts = ∞ if the event never occurs. Since the event{s = k} is Sk-
measurable, the right side termR of (13) is bounded as follows:
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R �
∑

0�k<T 2j

P(s = k)= ∑
0�k<T 2j

E1{s=k}

� 2
∑

0�k<T 2j

E1{s=k}P
(∣∣2Wn

(
j, (2j − 1)T

) −2Wn(j, k)
∣∣ � |2Wn(j, k)/2|/Sk

)

= 2
∑

0�k<T 2j

E1{s=k}E
[
1{|2Wn(j,(2j−1)T )−2Wn(j,k)|�|2Wn(j,k)/2|}/Sk

]

= 2
∑

0�k<T 2j

E1{s=k}1{|2Wn(j,(2j−1)T )−2Wn(j,k)|�|2Wn(j,k)/2|}.

Hence, using Chebychev inequality and the bound (14) on the variance of2Wn, we get:

R �
∑

0�k<T 2j

P
(∣∣2Wn

(
j, (2j − 1)T

) −2Wn(j, k)
∣∣ � |2Wn(j, k)/2| ∩ s = k

)

�
∑

0�k<T 2j

P
(∣∣2Wn

(
j, (2j − 1)T

)∣∣ �,2−(jτ+2)d−1
n ∩ s = k

)

� P
(∣∣2Wn

(
j, (2j − 1)T

)∣∣ �,2−(jτ+2)d−1
n

)
� c,−22j (2τ−1) (16)

for c = 25( x0
x1
)α

∗ 1
α∗

T
x1

. Combining (12), (13), (16), we get:
∑

0�j�J0

P
(
sup
k

2jτ |λ̃nj,k|>,
)
� c,−2

∑
j�0

2j (2τ−1).

Sinceτ < 1/2 and choosing, large enough, this quantity may be bounded (indepen-
dently ofn) by an arbitrary small quantity.

4.3.2. Second case j > J0

For this case, we follow the same steps as for the previous one, but some modifications
are necessary:

1. First we replace as in (10),̃Wn by Wn. However, the error may be bounded in the
following way: we take benefit of the following remark. IfWn(

kT

2j )=Wn(
(k+1)T

2j ),

thenεj,k = 0 since theλj,k ’s for j > 0 do not ‘see’ the straight lines. Moreover, we
have:

|εj,k| � r

∣∣∣∣dnUn

(
kT

2j

)
− dnUn

(
(k + 1)T

2j

)∣∣∣∣ (17)

for r = γ log(1+ T ) whereγ > 0 is a constant and

Un(t)=
n∑
i=1

1{0�Zi�log(1+t/x1nd
2
n)}. (18)

2. Hence we deduce, using (16) and (17):∑
j>J0

P
(
sup
k

2jτ |λ̃nj,k|>,
)

�
∑
j>J0

P

(
sup
k

2jτ r
∣∣∣∣dnUn

(
kT

2j

)
− dnUn

(
(k + 1)T

2j

)∣∣∣∣>,/2
)
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+ ∑
j�0

P
(
sup
k

2jτ |λnj,k|>,/2
)

�
∑
j>J0

P
(
sup
k

2jτ rdn|2Un(j, k)|>,/2
) + c25,−2

∑
j�0

2j (2τ−1), (19)

where

2Un(j, k)=Un

(
(k + 1)T

2j

)
−Un

(
kT

2j

)
=

n∑
i=1

Li

for Li defined in the previous subsection.
3. The next step consists in bounding the first sum. We use the same arguments as

above replacingWn by Un. Using now the definition (8) ofJ0 and thanks to the
hypotheses ondn, we get

E2jτ |2Un(j, k)| = (x1/x0)
α∗ α∗T

x1

2j (τ−1)

nd2
n

(
1+ o(1)

)

�,d−1
n /4

choosing,� [4(x1/x0)
α∗
(α∗T /x1)]τ (6C)1−τ . This remark allows us to consider

2U ∗
n (j, k)=2Un(j, k)− E[2Un(j, k)]

and to get

P
(

sup
0�k�T 2j

2jτ rdn|2Un(j, k)|>,/2
)
� P

(
sup

0�k�rT 2j
2jτ rdn

∣∣2U ∗
n (j, k)

∣∣>,/4
)
.

4. We can prove a complete analogue of Lemma 1, replacing2Wn by2U ∗
n .

5. Using exactly the same arguments as for (16), we deduce:

P
(

sup
0�k�rT 2j

2jτ r
∣∣2U ∗

n (j, k)
∣∣>,/4

)
� P

(
r
∣∣2U ∗

n

(
j, (2j − 1)T

)∣∣ �,2−(jτ+2)/2
)

� c′r2,−22−j (1−2τ ).

4.3.3. Proof of Lemma 1

2Wn

(
j, (2j − 1)T

) −2Wn(j, k)

=
(
Wn(T )−Wn

(
(2j − 1)T

2j

))
−

(
Wn

(
(k + 1)T

2j

)
−Wn

(
kT

2j

))

=
n∑
i=1

(
Zi − 1

β

)
1{log(1+ T

x1nd
2
n

(1− 1
2j
))�Zi�log(1+ T

x1nd
2
n

)}

−
n∑
i=1

(
Zi − 1

β

)
1{log(1+ T k

x1nd
2
n

)�Zi�log(1+ T (k+1)

x1nd
2
n

)} − en(j, k, T ),
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where

en(j, k, T )= nE

(
Z − 1

β

)[
1{log(1+ T

x1nd
2
n

(1− 1
2j
))�Z�log(1+ T

x1nd
2
n

)}

− 1{log(1+ T k

x1nd
2
n

)�Z�log(1+ T (k+1)

x1nd
2
n

)}
]
.

Let us remark that the knowledge of2Wn(j, k) implies the knowledge of the numbernz
of variablesZi which belong to[0, T k

x12j nd2
n
]. Hence, conditionally toSk ,

2Wn

(
j, (2j − 1)T

) −2Wn(j, k)=
n∑

i=nz+1

Z̃i

where the Z̃i ’s are i.i.d. centered random variables with variance bounded with
c2−j d−2

n wherec is depending onT , x0, x1, α,β (see (14)). Using Bienaymé–Chebychev
inequality, the fact that we restrict ourselves to the event|2Wn(j, k)| � ,

2jτ+1dn
and the

hypothesis on the sequencedn, we obtain

P
(∣∣2Wn

(
j, (2j − 1)T

) −2Wn(j, k)
∣∣ � |2Wn(j, k)/2|/Sk

)
� (n− nz)V (Z̃i)

(2Wn(j, k)/2)2

� c′2j (2τ−1),−2.

Choosing,� (2c′)1/2 ends the proof.

4.4. Proof of Theorem 2

We only give a sketch of proof of this part. It is a consequence of Theorem 1, and
follows rather directly the arguments of Deshayes and Picard [4]. It consists in observing
that the Log likelihood process splits into four parts, each corresponding to one of the
parameterx0, x1, α,β. The part corresponding tox0 is clear; the parts corresponding
to α and β are standard and their behaviour can be handled as in Ibragimov and
Khas’minskii [7], for a regular parameter. The only unusual part concerns the term which
leads to the argument of the supremum of a shifted Brownian motion. Since we proved
the weak convergence with the topology of uniform convergence on compact sets, we
have to prove that the arg max int of dnWn(t) − σ 2(t)/2 necessarily concentrates on
compact sets. A way to do that is to prove that the supremum of the process outside
[0, T0] (symmetrically [−T0,0]), tends to−∞. This is the purpose of the following
lines.

As σ 2(t) is proportional to|t|, a way to attain our goal will be to prove that

P

(
sup

|t |∈[T0,∞[

∣∣∣∣dnWn(t)

t

∣∣∣∣ � ε

)

is arbitrarily small. Of course for reason of symmetry, we will only consider
P(supt∈[T0,∞[ |dnWn(t)/t| � ε).
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A careful look at the previous proof shows that the constants are coming from the
bounding of|Zi |, so in fact we proved that:

P
(‖dnWn‖τ,[0,T ] �,

)
�AT (1+ log2T ),

−2 (20)

where nowA is an absolute constant, for, � BT τ , whereB is another absolute
constant. It follows from (20), using the definition of the Lipschitz norm and the fact
thatWn(0)= 0:

P

(
sup

t∈[T0,∞[

∣∣∣∣dnWn(t)

t

∣∣∣∣t � ε

)
�

∑
log2(T0)�J

P

(
sup

t∈[2J−1,2J ]

∣∣∣∣dnWn(t)

2J

∣∣∣∣ � ε

)

�
∑

log2(T0)�J

P
(
2J τ‖dnWn‖τ,[0,2J ] � ε2J

)

�
∑

log2(T0)�J

A(J + 1)2−J (1−2τ )ε−2

�A′ε−2 log2(T0)T
−(1−2τ )
0 . (21)

Note here that the inequalityτ < 1/2 was essential, for the finiteness of the serie, but
also to ensure that, = ε2J (1−τ ) � B2J τ and so we can apply (20). Now that we have
proved that the argument of the maximum of the process necessarily concentrates on
compact sets, it is standard to obtain the limiting result.
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