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ABSTRACT. — We consider here i.i.d. variables which are distributed according to a Pareto
P(x) up to some pointe; and a ParetdP(8) (with a different parameter) after this point.
This model constitutes an approximation for estimating extreme tail probabilities, especially
for financial or insurance data. We estimate the parameters by maximizing the likelihood of the
sample, and investigate the rates of convergence and the asymptotic laws. We find here a proble
which is very close to the change point question from the point of view of limits of experiments.
Especially, the rates of convergence and the limiting law obtained here are the same as in
change point framework. Simulations are giving an illustration of the quality of the procedure.
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RESUME. — Nous considérons urréchantillon de variables aléatoires réelles qui suivent une
loi de ParetdP(«) jusqu’a un pointe1 puis une Paret®(8) aprés ce point. Ce modéle est une
approximation des modéles utilisés pour estimer des probabilités d’extrémes en particulier e
finances.

Nous considérons les estimateurs des différents paramétres qui maximisent la vraisemblan
et déterminons leur lois asymptotiques. Nous retrouvons un probléme proche du problém
de rupture de modéle du point de vue des expériences limites. En particulier, les vitesses c
convergence des estimateurs ainsi que les lois limites obtenues sont les mémes. Nous donnc
des simulations pour montrer la qualité de cette procédure.
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1. Introduction

Our aim in this paper is to analyze the likelihood process imidependent identically
variables which common law has the following distribution function

X0 “ X0 ¢ X1 p
Froxpop(x) = (1— (-) )1{xo<x<x1} + (1— <—> <—> )1{x1<x} 1)
X X1 X

for 0 < xg < x; anda, 8 > 1. We are interested in estimating the parameiers, xo, x1.
As can be seen, this distribution clearly presents two regimes, each of them is of Paret
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type. The parameter; appears as particularly challenging to estimate since it is the
point of change between the two different regimes. We show that this parameter actuall
behaves like a change point parameter, in the sense of experiments. More precisely, v
show that the likelihood process converges in the same sense and to the same limitir
process as in the case of a change point problem.

Hence, we find results which are strongly connected to Deshayes, Picard [3,4]. Th
technic of proof also follows rather closely the previous work. However, for the proof of
the tightness, we take advantage of the now classical technology of the wavelets (hel
the Ciesielski basis), and the associated spaces.

The work cited above was part of a thesis conducted with Didier Dacunha Castelle
as advisor. It was also very much inspired by the work of Lucien LeCam (see [8]) on
limits of experiments and of lldar Ibraguimov and Rafael Hasminskii (see [7]) on the
likelihood process.

However, besides this homage, we had specific motivations. A very important probler
in finance or insurance consists in estimating values at risk (VaR), or in other words
guantiles for very small (or very big) probabilities (see for instance the impressive
book of Embrecht, Klippelberg and Mikosch [5]). As we are concerned with tails,
the theorems of attraction for the maximumrotariables are generally applying, and
under assumptions which are generally fulfilled in the context of insurance, the problerr
roughly consists in estimating the tail index of a Pareto distribution. However, this
estimation has to be performed on the observations where the attraction is suppose
to be true, i.e. the ‘tail’ observations. Immediately, a very delicate problem occurs in
theory and even more in practice: how to choose the number of such observations
There obviously appears a trade off between a bias phenomenon (the attraction
reasonable only for the very last observations) and variance (the larger the number c
taken observations, the smaller is the variance). Various possibilities have been propose
let us just cite as a reference the fundamental paper of de Haan, Peng [2]. We adopt he
a rather different point of view, by trying to find this optimal number of observations
as the point of change between two regimes, where the last one obviously is a Paret
We do not give here a complete resolution of this aspect since we are only considerin
two Pareto regimes. The next step consisting in performing the procedure with a mucl
broader assumption on the first regime, will be done in a following paper.

2. Study of thelikelihood ratio process

As in the context of a change point model, one can prove here that the interesting
situation corresponds to assuming that= 8 — « (hence in faci3, — «,,) is tending to
zero whermn is tending to infinity. Lets, v, w, r be some constants and let us consider
the sequence of processes:

Ln(x0+ %,X]_‘i_ #7(1}1 + an ,En + %)

Ln(-x07 X1, Oy, ﬂn)

Fn(”y va w7 t) =

where L, (xg, x1, @, B) is the likelihood of the sampl&,, ..., X,, (i.i.d. variables of
distribution given by (1)). We obtain the following result:
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THEOREM 1. —Let0 < xg < x; be real numbers. Let us suppose that the real para-
metersy,, B, are larger thanl and are depending omin such a way thalim,,_, , . o, =
lim,_, + o B, = a* with d, = B, — a,, tending to0 andnd? tending to infinity.

Then, the sequence of proces$Es(u, v, w, 1), (u, v, w, ) € R*} weakly converges
under P s, 1O the procesqI"(u, v, w, 1), (u, v, w, t) € R*} with the topology of

X0,X1,%n,

uniform convergence on compact sets, wheis defined by
1 1
logl (u, v, w, t) = Kuél — §u2012> + (véz — §v2022>

W) — — — | Ligsw
+C( (t) 2 +wxo (E>w)

where .
e £ is a gaussian vector of medrand of variancer? = =140

— ¥
(x1/x0)"“
0(*2

e &, is a gaussian vector of mednand of variancer? =

k)

e W is a Brownian motion ofR andc¢ = (%)‘”2,

e E is an exponential variable of parametet.
Moreoveré,, &, W, E are independent.

3. Estimation

For a fixed real number, if we call Y (x) (respectivelyY (x)) the subset of the data
larger thanx (respectively smaller) and/ (x) (respectivelyn — N (x)) its cardinality,
then, the maximum likelihood estimators of the parametgrs,, «,, 8, are defined by
the following equalities:

Xo =X, 1
-1

[, 2, (5]

xl_argxe{XrPaxXn}X;x)(log<5) +@—p Iog(X ))

THEOREM 2. —Under the same hypotheses as in Theotethe maximum likelihood
estimators of the four parameters are asymptotically independent and have the followin

asymptotic distributiongunderP?; . , ,):
n(fo — XQ) — gxp(a*)
Vi@ —a,) — N@©od
nB—-p8) — N(@Ood
ndf(i1—x1) — ¢

where¢ = argmaxeg c(W (1) — ) ando2, o2, ¢ are defined in Theorerh
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Table 1
ni n2 X0 X1 o B
True 10 20 2 2
Empiricalmean 1524 1235 an21 200182 18145 20929
Empirical s.d. 00000 00068 00005 Q0042
Table 2
ni n2 X0 X1 o B
True 10 20 2 2
Empirical mean 610 213 10059 210152 20000 27930
Empirical s.d. 00000 00079 00534 178443
True 10 20 pil 2
Empirical mean 163 704 10265 199967 02938 19954
Empirical s.d. 0006 00030 00002 00053
True 10 20 pil 2
Empirical mean 60 1167 10509 199527 00757 19972
Empirical s.d. 0035 00123 00000 00044
True 10 20 2 2
Empirical mean 1520 64 10028 109994 24418 35901
Empirical s.d. 00000 10272 00320 01043

3.1. Simulation results

For each simulation, we work with = 50 samples of the data; we give the number
ny (respectivelyn,) of data falling betweeny andx; (respectively larger tham,). For
every simulation, we observe thej is the parameter which is the best estimated. It was
expected since its rate of convergence is the fastest. In the opposite, tlg iwtie
smallest one and then, the empirical variancé;df the worse one.

First, we consider a large number of data. The results are excellent (see Table 1): ot
procedure is able to detect a very small break betweandg.

Next, we consider the case whergis varying but we keep relatively large values for
ny. As expected, small values of, seriously damage the estimationagfhowever, the
other parameter are encouragingly well fitted (see Table 2). For amdhe procedure
does not detect well the change point evemifs large. In fact, we find here a problem
quite similar to the problem of the “horror plot” when we compute the Hill estimator of
the tail parameter. The likelihood (as functionxdfis very erratic for smalk and then
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Table 3

ni np X0 X1 o B
True 10 15 15 21
Empirical mean 658 55 10047 113303 30660 40971
Empirical s.d. (0000 31229 03824 Q9730
True 10 20 15 21
Empiricalmean 630 68 10065 111964 19784 29256
Empirical s.d. 0000 06113 Q0330 Q00327
True 10 50 15 21
Empiricalmean 641 83 10087 358182 14297 20191
Empirical s.d. 0000 7225523 00338 04354

x1 is always under-estimated. This problem does not appear whenlarge (even if
ny is small).

Table 3 more precisely investigates the case of smalWWe observe that results are
better whernx; — xq is large enough for the parametersindg. In the first lines, the true
parameters andg do not belong to the interval [emp.mean2emp.s.d., emp.mea#-
2emp.s.d.]. But in the last case, the change point is not well estimated (see the standa
error).

4, Proofs
4.1. Proof of Theorem 1

The proof, as usual, relies on two classical arguments. The first one consists i
proving that the finite distributions are converging. This is an elementary consequenct
of Proposition 1 (see Section 4.2).

The second argument is generally somewhat more complex. It consists in proving
the tightness of the sequence. As can be seen in Proposition 1, the log-likelihood split
into three terms. The two first ones are only involving standard arguments to prove the
tightness. For their behavior we refer to Ibragimov and Khas’minskii [7] or Deshayes
and Picard [3]. However, the last term requests a more careful attention; its behaviour i
studied in Proposition 2 (see Section 4.3).

In the sequel, we omit the parameters in the expectations and the probabilities, b
they are taken without ambiguity under the distributigy

X1,0,Bn "

4.2. Expansion of thelikelihood ratio

PROPOSITION 1. — Lett, u, v, w be some constants and assume timag . , ., nd? =
+oo andlim,_, ;. d, = 0. Then, we have
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1 1
Iog Fn(l/l, v, w, t) = [(‘”51,11 - EMZO']_Z) + (_vgz,n - §U20—22>

a?(t) o
+ <dn W, (t) - ) + wx_o + OP(l):| 1{En>w+0(1)}

2
where
1 & 1 1
n—  —~= Yi—_ 1 X w E Yi_ 1 X w 1>
51 = K aﬂ) {log(2 +5357) <Y¥; <0} ( a, ) {log(2 + 7)< <0}} {r>0}
1 & 1
T 2 Yi= o | Hogi+ )< )
1
—EBlYi— a, 1{Iog<§‘1’+,:‘71><y,\ Li<o),
1 <& 1 1
§on= N Z Kzi - /3_) <z~ E(Zi - /3_) 5 \z,-}} Lioo)
i=1 n n
1 & 1 1
+ Tn Zi— 5 Lo<zy —E| Zi — 5 Lio<ziy | Ly <0y
i=1 n n
- 1 1
W, (1) = Zi— ,3_ Lio<zi< -E{Z — ,3_ Lio<zi< i | Li=0)
i=1 n n

~2[(=-7%)

X
X0 '

-=(7-5)

o \Zf<0}] Ly <0,
n

ix

E,=nlog

The variablesY;, Z; are

Iog 1{x0<X<x1}v |09 1{x1<X} )
and

02— 1_(2% = V(1) +0(D),

o= ("1/0(% = V(&) +0(D),

o¥(t) = Mm =V (d,W,(1)) +o(1).
a” X1

Proof of Proposition 1. We only give the proof for > 0. The other case is similar,
for reason of symmetry. Léto,, h1,, 1, ands, be sequences tending to zero: in the
sequel, we omit the subscript
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The likelihood of the sample is

n

—(e+1)\ Lxg<x;<x

Ly (x0, x1, 0, B, X1, -+, Xn) = Lino<x ) XH((MSXi aT) Hosdisal
i—1

n
X H (ﬁxf_angi_(ﬁ“‘l)) Ly <x;)
i=1

whereX ) = min(X4, ..., X,). The Log-likelihood ratio splits into three terms:
L,(xo+ho,x1+hy,a+n,B+9)

log
Ln (x07 -xla a7 ﬁ)

= (T1 + T2+ T3) (1 + 109 Lo 1ho<x1)- (3)
We have

3 U ho X0 Xi
Ti=3 Ligtho<xi<u) {lOQ(l + —) + (e +n)log (1 + —) +nlog— —nlog —} ;
i=1 « X0 X1 X1

n Ca— h
= Z Tn<xi<athy {'09(1 - %) +(x+n) Iog(l + x_(?)

i=1

X0 X,‘
+nlogx—1+<ﬂ—a—n>logx—l},

" S h
T3=> Ltm<x) [|09<1+ E) +B—a+d—n) |09<1+ x—l>
i=1 1
h X X,‘
+ (a+n)log<1+ —O) — r;log—1 —Slog—}
X0 X0 X1
Let us set
I'= 1{!09(%)@@}’ J=1 k=1

(0<Z<log(1+53))’ (log(1+h)<z)°

and recall the change for variables (2):

Y = |09(X/x1)1{x0<x<x1} and Z = |Og(X/X1)1{x1<x}.

We obtain

" 1 1 1
le—nZKY,- — —)1,- —E(Y,- — —)1,-] —nnE<Y— —)1
i1 o o (04

+ {—E +Iog<l+ Q) + (¢ +1n) Iog(1+ @> — nlog(x—oﬂ Z(I,- —EIL)
o o X0 X1

i=1

+n[—2 +Iog<1+ 2) + (@ +1n) Iog<1+ @> — nlog<@>]E1,
o o X0

X1
Tzz—(a—ﬁ—i—n)g[(z _ %)Ji —E(Z,- - %)Ji] —(oz—,B—l—n)nE(Z— %)J
+ {—wﬁog(l— w> +(a+n)|og<l+i—z>
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+ nlog(i—j)] Z(J,- —EJi)+n {—a%fﬂl + Iog(l— W)
i=1

h
+(@+1) Iog<1+ —°> + nlog<@>]EJ,
X0 X1

ng—séKzi - %)K,- —E(Z,- - %)K,-] —SnIE(Z— %)K

b b) ho Xo
+ [_E + Iog<l+ E> +(B+9) Iog(1+ x—()) - nlog(x—lﬂ Z;(Ki - EK;)

+n[—% +Iog<1+ %) LB+ Iog<1+ i—ﬁ) - nlog(%’)]m.

Using the distribution function (1) oX, we easily compute the expectation of the
variables of interest

&=
~
Il
><|><
o |k
<
VR
><|><
= o
><|k‘
= o
N——
¢
|
Ll

=
>
Il

=
<~
Il
/N N N
><|><
o |k
|

><|><
o |r
&

+ =
(B

+
><|3‘
[
N—
=

o —B
B(z-5)r=(0) [oa(i+ ) (+2) )
B 0 X1 X1
- -
E(Z—E>K:<ﬂ> <1+ ﬁ) Iog<1+ —1>
IB 0 X1 X1
Replacing now
u v t
n ﬁ, S_W’ h0:;v hl:n—d,f

and assuming the conditions jm ., nd* = +o0 and lim,_, , « d, = 0, it follows

a* _ (X0\o*
@) _ Lt21 (xl)
X1 20%2

Ty =—ué, + u«/f_llogcz—()) (
1

Lo (l— (@) ) +0(1) + 0p(1),

X0 X1

1y 1
<@> ——— <@> — +0(1) +0p(2),
x1/) PBx1 dy\x1/ x1

t
T2:_dn Wn(t) - é
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=—v52—u\/_log< ><x0> lﬂ%(@) +aw<@>
x1/) \x1 282\ x1 Xo \X1

t [ Xxo “

+— (—) 1 +0(1) +0p (D).
X1

dn X1

Since lXO‘i‘hOgX(l)} =

1 x4, ,,» combining with (3), we obtain the result.
{w+o(1)<nlog W}

4.3. Convergence of the process {d, W,(t), t > 0}

Let us recall that the procesg, () is defined, for > 0, by

" 1
W, () = Z Kzi — E) Lio<z,<loga o

1
—E(Z'——>1o<z»<| 14—
= 4 /3” { XX Og( x1”d2

whereZ = log(X /x1) 1, <x) and thatV (d, W, (1)) = <x0/xl> (1+0(1)).

PROPOSITION 2. — We assume thaim,_, ;. a, = a*, lim,_ nd,;1 = +o0 and
lim,_, .~ d, =0. Let us denotdd, W, (1), t > 0} the linear interpolation ofd, W, (),
t > 0}. The process{d,W,(t), t > 0} weakly converges undeP to the process
{cW(t), t > 0} with the topology of uniform convergence on compact sets fer

a*xq
E3
(xo/x1)%

Proof of Proposition 2. The first argument of the proof consists in proving the
convergence of the finite distributions and is an elementary consequence of the centr
limit theorem.

We concentrate on proving the tightness of the sequence. Using standard argument
it is enough to prove that for @ r < 1/2, foranyT > 0, ¢ > 0, there exist\ > 0 such
that

Va1l P(|d,W,l.r=A)<e, (4)

where||.||;.7 denotes the Lipschitz-norm,

Ifller =170+ sup 0 = T ®)

x#yelo,r] 1X —yI*

To prove (4), we use an equivalent form of the Lipschitz-norm using the Ciesielski basis.
If {xjx Jj =1, keN}isthe Haar basis, we define the Ciesielski basis as follows:

t
A_10(t) = 1jo.11(2), Ago(t) = ?1[0,71(1),
%
AMﬂ=/mﬂmW,j>LkeN
0

This basis has the very useful following properties (see Ciesielski [1], and notice alsc
the use of such a property in a stochastic framework in Kerkyacharian, Roynette [6]):



1032 D. PICARD, K. TRIBOULEY / Ann. I. H. Poincaré — PR 38 (2002) 1023-1037

1. If f=3;,2;xA ;4 is @ continuous function of®, 7], its coefficients satisfy the
relations:

A_10=f(0), roo= f(T)— f(0),

= (HET) 3 () (452

2. The lip-norm introduced in (5) is equivalent to the following norm

£l = sup 27 Al (6)
Jz—4

We use the points 1 and 2 to prove (4). More precisely, if we consider:
My 0=du W, (0) =0,
Moo= dn(Wa(T) — W, (0)),
o o= ((k+1/DT dy, [~ (kT - ((k+DT
)\‘j,k —ann (T) - E (W ( 2] ) + Wn (T))v

it is enough to prove that:

Ve >0, A, P(sup2"|1,|> A,) <e. 7)
j.k

We have a slightly different strategy concerning the ‘small’ and the ‘layige’Let us
now fix A > 0 andJp such that

A 1/t
2= (o) :
6Cd, ®

for C =log(y1T + y2) wherey; > (xind?)~t andy, > (B,)~1. We obviously have:
P(sjljl{pzfu;{g >A) < D P(sup2’t 3| > A) 4+ > P(sup2’t[i | > A). (9)

i<Jo j>Jo

4.3.1. Firstcase j < Jo
We first remark that the terms corresponding t {0, 1} does not present difficulties.
For the other ones, we write:
M =Mtk (10)
wherel’; , is calculated aél’]’.,k replacingW, by W, (i.e. forgetting the interpolation),
and

lejxl <3 sup |d, W,(t) — d, W, (1)|

[0,T/x1nd?]

oo( iz =5,
g xlnd;% ,Bn

<3Cd, (11)

< 3d,




D. PICARD, K. TRIBOULEY / Ann. I. H. Poincaré — PR 38 (2002) 1023-1037 1033

for C used in the definition (8). Hence, we have:
> P(sup2T ) > A) < Y [P(sup2/t || > A/2)
<ok j<Jo
+ P(sup2’®le; | > A/2)]. (12)
k

Using (8) and (11), we observe that the second part of the sum is null. For the first part
using the definition of the coefficient ;, we have:

Vj=1, P(sup2’|1) > A/2)
k

k+1)T kT
W"(T) B W"(?)’ > A 2)

< 2P(sup2’d,| AW, (j, k)| > A/2) :== 2R (13)
k

< ZP(supzf’dn
k

where, for arbitrary;, k,

. (k+1T kT

S ({7 )r-e(a L))

llog(1-+ —£L_y) <7, <log(1+ LE0T Remembering the distribution (1) of thg'’s,
X1/ ndy X14/ ndy

elementary computation gives the variance\d?, (j, k):

forL; =1

1 * T
VAW, b)) = E(;‘—j) s (1+0). (14)

We shall now use a standard argument in the context of empirical processes (see ft
instance Pollard [9]). Let us considé¥, the sigma field generated by the variables
{AW,(j,u),u <k} fornand;j > 1 fixed. We are going to take advantage of Lemma 1
(see below). Its proof is rejected at the end of this subsection.

LEMMA 1. - For A large enough, uniformly foy > 0, on the event

. A
[AW,(j, k)| = ZjTldn’

we have
P(|AW,(j. 2 = DT) = AW, (j. | < AW, (j. k)/2/6) > 1/2.  (15)
We apply Lemma 1 by introducing the stopping time:
s=inf{k e N, |AW,(j, k)| > A2~V Dg 11

As usual, we puts = oo if the event never occurs. Since the evént= k} is &;-
measurable, the right side teriof (13) is bounded as follows:
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R< Y Ps=k= ) Ely

0<k<T2/ 0<k<T2/
<2 Z El—P(|AW,(J, (2 =1T) — AW,(j, k)| < AW, (j, k)/2|/Sk)
0<k<T2/
=2 Y ElnE[Ljaw,¢.@-vm-awGoi<iam o2/ Sl
0<k<T2/

=2 Y Elegdyaw,(.@-nr)-aw,GoI<IaW G /20
0<k<T2/

Hence, using Chebychev inequality and the bound (14) on the varianc@pfwe get:
R< ) P(AW,(j, @ = DT) = AW,(j, k)| < |AW,(j, k)/2| N's =k)

0<k<T2/
< Y. PAWL(j, @ =DT)| > A2V 24, s =k)
0<k<T2/
<P(|AW,(j, (2 = DT)| = A270™2g 1)
<cAT22/@D (16)

for ¢ = 2°(22)" L L. Combining (12), (13), (16), we get:
ST P(sup2TIi,l > A) <Ay 2D,

o<j<ho K j=0
Sincet < 1/2 and choosing\ large enough, this quantity may be bounded (indepen-
dently ofn) by an arbitrary small quantity.

4.3.2. Second case j > Jo
For this case, we follow the same steps as for the previous one, but some modificatior
are necessary:
1. First we replace as in (10), by W,. However, the error may be bounded in the
following way: we take benefit of the following remark. W, (1) = w, (4421,

thene; , =0 since thek; ;'s for j > 0 do not ‘see’ the straight lines. Moreover, we
have:
kT k+1T
dnUn<§> —dnUn<T>‘ (17)
forr = ylog(1+ T) wherey > 0 is a constant and

lejrl <7

n

Un() =Y Lio<z, <logs1/xund?)-
i=1

(18)

2. Hence we deduce, using (16) and (17):
> P(sup2’T|i | > A)
k

j>Jo
kT k+1)T

<> P(s]ljpzf’r

Jj>Jo
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+> P( Sup2”|)¥;?’k| > A/2)

j=0
Z ]P) Supzj‘rrd |AU (jyk)l - A/2 C25 222](21' 1) (19)
j>Jo k j=0

where

o (k+DT KT\
N U(T) _ Un(g) =L

for L; defined in the previous subsection.

. The next step consists in bounding the first sum. We use the same arguments :

above replacingV, by U,. Using now the definition (8) offy and thanks to the
hypotheses od,, we get

2j(=1)

nd?

n

E2/7| AU, (j. )| = (e /x0)*

(1+0(D))
<Ad/4
choosingA > [4(x1/x0)* (a*T /x1)]* (6C)*~*. This remark allows us to consider
AU, (j, k) = AU,(j, k) —E[AU,(j, k)]

and to get

P( sup 277rd,|AU,(j. k)| > AJ2) <P( sup 2/7rd,|AU(j k)| > A/b).

0k T2 0<k<rT2i

We can prove a complete analogue of Lemma 1, replatig by AU .
Using exactly the same arguments as for (16), we deduce:

P( sup 27r|AU( K| > A/4) <P(r|AUX(j, (2 — DT)| = A27072)/2)
0<k<rT2/

< C/FZA—Zz—j(l—Zr).

4.3.3. Proof of Lemma 1

AW, (j, (2 —=1T) — AW,(j, k)

2/ -1T k+1T kT
- (v (Z52)) - (m (521 - ()

n
1
(Zi - ﬁ)1{Iog(1+—<1—i>)<z,<Iog(1+ )}
1

i=

n
1 .
- (Zi B E) Logia+ -1t < 2z, <logra+ 2620y — €n (. k. T),
i=1 xqndy 1nd

n
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where

. 1
en(j k, T)=nE (Z ,3> [1{Iog(l+ (1—i))<z<|og(1+ )

1{Iog(1+ ><z<|og(1+”k+l>>}]

Let us remark that the knowledge AfW (j, k) implies the knowledge of the numbey
of variablesZ; which belong tqO, ]. Hence, conditionally te,,

2/ d2

W,(j. @ = DT) - AW, (b= > Z
i=n;+1

where the Z;'s are i.i.d. centered random variables with variance bounded with
c277d % wherec is depending off’, xo, x1, @, B (see (14)). Using Bienaymé—Chebychev
inequality, the fact that we restrict ourselves to the ey, (j, k)| > ﬁ and the
hypothesis on the sequendg we obtain

(n—n)V(Z;)
(AW, (j, k)/2)2
< C/Zj(Zr—l)A—Z.

P(|AW,(j, (2 = DT) — AW, (j, k)| = 1AW, (j, k)/2|/Sk) <

ChoosingA > (2¢')¥/? ends the proof.
4.4. Proof of Theorem 2

We only give a sketch of proof of this part. It is a consequence of Theorem 1, and
follows rather directly the arguments of Deshayes and Picard [4]. It consists in observing
that the Log likelihood process splits into four parts, each corresponding to one of the
parameterxg, x1, o, 8. The part corresponding te, is clear; the parts corresponding
to @ and g are standard and their behaviour can be handled as in Ibragimov anc
Khas’'minskii [7], for a regular parameter. The only unusual part concerns the term which
leads to the argument of the supremum of a shifted Brownian motion. Since we provec
the weak convergence with the topology of uniform convergence on compact sets, w
have to prove that the argmax inof d, W, (1) — o(t)/2 necessarily concentrates on
compact sets. A way to do that is to prove that the supremum of the process outsid
[0, To] (symmetrically[—Tp, 0]), tends to—oo. This is the purpose of the following
lines.

As o2(¢) is proportional tgz|, a way to attain our goal will be to prove that

P( sup
It|€[ T, 00l

is arbitrarily small. Of course for reason of symmetry, we will only consider
P(SUQG[TO,OO[ |dy, W, ®)/t] = e).

AW (0)| 3
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A careful look at the previous proof shows that the constants are coming from the
bounding of| Z;|, so in fact we proved that:

P(|ldy W llr.jo.r1 = A) < AT (14 log,T) A2 (20)

where nowA is an absolute constant, fax > BT*, where B is another absolute
constant. It follows from (20), using the definition of the Lipschitz norm and the fact
that W, (0) = 0:

d,W,(t d, Wy (t
IP’( sup 7()‘t>s>< Z IP’( sup ¥‘>8>
t€[Tp, 00 t |092(T0)<J 16[2]71,2]] 2
< DY PR Walle o2 > €27
log,(To)<J
< ) AU+ D22
log,(To)<J
< Ae2logy(To) T, 4727, (21)

Note here that the inequality < 1/2 was essential, for the finiteness of the serie, but
also to ensure that = £2/1=% > B2’/* and so we can apply (20). Now that we have
proved that the argument of the maximum of the process necessarily concentrates c
compact sets, it is standard to obtain the limiting result.
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