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RÉSUMÉ. – Dans cet article, nous donnons une méthode permettant de faire des tests
d’hypothèse sur le coefficient de diffusion d’une equation differentielle stochastique en
dimensiond, sur la base de l’observation de certaines fonctionnelles de régularisées des
solutions, obtenues par convolution avec un noyau deterministe. Les méthodes exposées
s’appliquent aussi a une classe plus générale de semimartingales continues.
 2002 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Let

Xt = x0 +
t∫

0

as dWs + Vt (1)

be an Itô semimartingale with values inRd , d a positive integer.
We use the following notation:
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W = {Ws : s � 0} = {(W 1
s , . . . ,W

d
s )

T: s � 0} is Brownian motion inRd , (.)T denotes
transposition,x0 ∈Rd , F = {Fs: s � 0} is the filtration generated byW .

as = (
aj,ks

)
j,k=1,...,d , Vs = (V j

s

)
j=1,...,d , s � 0,

are stochastic processes with continuous paths adapted toF , the first one taking values
in the real matrices ofd × d elements and the second one inRd . We assume throughout
this paper that forj = 1, . . . , d, the functions � V j

s has bounded variation in each
bounded interval[0, T ] and denote|V |j (T ) its total variation on this interval. We
denotea = {as : s � 0}, V = {Vs: s � 0}, X = {Xt : t � 0}, ‖.‖ is Euclidean norm and
sg(y)= y

‖y‖(y ∈Rd, y �= 0).
Our purpose is to study inference methods on the noise part in (1) from the observation

of a functional of a regularization of the actual pathXt during a time interval 0� t � τ .
This is done in Examples B and C below for diffusions that verify some additional
requirements. A specially interesting case is to test the hypothesis that the noise is
purely Brownian, in which explicit formulae are obtained. A well-known difficulty for
this problem is that if one considers different values ofa the induced measures on
the space of trajectories become mutually singular, so that there is no straightforward
method based on likelihood.

2. Related results

Several estimation methods for the diffusion coefficient and related problems have
been studied in the literature after the pionner work by Dacunha-Castelle and Florens-
Zmirou [4]. An example of this approach is the following [5]. Consider a solution of the
one-dimensional SDE

dXs = σ (Xs) dWs + b(Xs) ds

(b andσ satisfy certain regularity conditions and 0< k � σ (x)�K for some constants
k,K). Let us denote byTx the hitting time ofx, i.e. Tx = inf{s ∈ [0,1]: Xs = x} and
Lt(x) the local timeLt(x) = limδ→0+ 1

2δ

∫ t
0 1{|Xs−x|<δ} ds, and pick a sequencehn such

thatnhn → ∞ andnh3
n → 0. Based on the observation of(X i

n
)i�n (what we will call in

the sequeldiscrete sampling), when the trajectory of the diffusion visitsx (i.e. Tx < 1),
σ (x) is estimated by

Sn(x)=
∑n−1

i=1 1{|X i
n
−x|<hn}n(Xi+1

n
−X i

n
)2∑n−1

i=1 1{|X i
n
−x|<hn}

.

More precisely, Florens-Zmirou has shown that, conditionally on the event{Tx < 1},√
nhn((Sn(x)/σ

2(x)) − 1) converges in distribution to(L1(x))
−1/2Z, where Z is a

standard normal random variable independent ofL1(x).
Other related results and refinements can be found in the literature. See for instance [6,

7,9]. These papers deal with discrete sampling and are based on various approximations
of the local time. Azaïs [1] and Jacod [8] have obtained approximation methods for local
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times, including, in the second reference, the speed of convergence. More precisely, ifX

is a Brownian motion andh(x, y) satisfies certain boundedness conditions andθ(h) is a
suitable centering constant, Jacod [8] has shown that

n1/4

(
n−1/2

[nt ]∑
i=1

h
(√

n
(
X(i−1)

n
− x

)
,
√
n
(
X i

n
−X(i−1)

n

))− θ(h)Lt(x)

)

converges to a conditionally Gaussian martingale. This result extends to diffusion
processes and it is used in [9] for non-parametric kernel estimation of the diffusion
coefficient.

Despite the considerable amount of results on the estimation of the diffussion
coefficient, two statistical problems remained, to the best of our knowledge, without
satisfactory solutions: (a) Testing hypothesis on the diffusion coefficient functionσ .
(b) Instead of discrete sampling, using functionals defined on regularization of the
diffusion.

In this paper we present a method for hypothesis testing on the diffusion coefficient,
that is based upon the observation of functionals defined on regularizations of the path
of the underlying processX instead of the discrete sampling framework. The same
results can be applied to make inference on the variance in a continuous time regression
model but we will not pursue the subject here. Our approach is based on certain integral
functionals related to the occupation measure. Theorem 3.1 below is the key result in
order to obtain the asymptotic distribution of our estimates. In [11] a similar statement
to that of Theorem 3.1 has been proved in dimension 1. A first result in the spirit of
Theorem 3.1, valid whenX is a one-dimensional Brownian Motion, was given in [3].

On the other hand, and more important from the standpoint of applications, the
statement of Theorem 3.2 is more adequate for statistical purposes, since Theorem 3.1
explicitly involves the values of the (unknown) processX.

3. Main results

We assume the following additional hypotheses on the process{as: s � 0}:
(i) (Strong ellipticity) For eachs0 > 0, there exists a positive constantCs0 such that

for everyv ∈Rd one hasvTasa
T
s v �Cs0‖v‖2 for all s ∈ [0, s0].

(ii) For eachj, k = 1, . . . , d, s � 0, ε > 0:

ε−1/2(aj,ks+ε − aj,ks
)= (�aj,ks )TZj,ks,ε + rj,ks,ε (2)

where�aj,ks , Zj,ks,ε are random vectors with values inRd . We also put forj, k = 1, . . . , d,
Zi,j,ks,ε (respectively�ai,j,ks ) for the ith coordinate ofZj,ks,ε (respectively�aj,ks ) i = 1, . . . , d,
and

Zs,ε = (Zi,j,ks,ε

)
i,j,k=1,...,d , �as = (�ai,j,ks

)
i,j,k=1,...,d .
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rj,ks,ε is a random variable with values inR1, �aj,ks is Fs -measurable andZj,ks,ε , rj,ks,ε are
Fs+ε-measurable, and verify for almost every pairs, t, s �= t :(

Zs,ε,Zt,ε,W
ε,s
. ,Wε,t

.

)⇒ (
Zs,Zt, W̃

s
. , W̃

t
.

)= ζ(s, t) asε→ 0 (3)

where⇒ denotes weak convergence of probability measures in the space

Rd3 ×Rd3 × [C([0,+∞),Rd
)]× [C([0,+∞),Rd

)]
and, for eachε > 0, t � 0,Wε,t

. is a new Brownian motion with values inRd defined as

Wε,t
u = ε−1/2(Wt+εu −Wt), u� 0;

{W̃ t
. : t � 0} is a collection of independent Brownian motions with values inRd ; the

distribution of ζ(s, t) is symmetric, that is,ζ(s, t) and −ζ(s, t) have the same law,
ζ(s, t) is independent ofF∞ and for {s, t} ∩ {s′, t ′} = φ one hasζ(s, t) and ζ(s′, t ′)
are independent.

(iii) Finally, we assume the following boundedness properties.
First:

sup
s∈[0,T ]

sup
j,k=1,...,d

E
{∣∣rj,ks,ε ∣∣p}→ 0 asε→ 0 for everyp > 0

and second, for everyT , ε0> 0 and everyp > 0 theLp())-norms of the coordinates of:

as, �as, Zs,ε

are uniformly bounded as 0� s � T , 0< ε � ε0.

Let us check that solutions of SDE with sufficiently regular coefficients satisfy the
above hypotheses. There exist also some other general examples that we will not
consider here, as semimartingales of the form(1) such that a.s.s → as is Holder-
continuous with exponent greater than 1/2, and non-Markovian Itô integrals described
in [10, p. 106].

With the above notations, letas = σ (s,Xs) andV(.) absolutely continuous,

Vt =
t∫

0

bs ds with bs = b(s,Xs),

where

σ (s, x)= (
σ j,k(s, x)

)
j,k=1,...,d; b(s, x)= (

bj (s, x)
)
j=1,...,d , s � 0, x ∈Rd

satisfy the usual hypotheses to ensure the existence and uniqueness of strong solution of
the system of stochastic differential equations

dXt = σ (t,Xt) dWt + b(t,Xt ) dt, X0 = x0

such as Lipshitz local behaviour and degree one polynomial bound at∞.
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Furthermore we assume thatσ is of classC2
b (that isC2 with bounded derivatives)

and satisfies the strong ellipticity assumptionvTσ (s, x)σ T(s, x)v � Cs0‖v‖2 for some
Cs0 > 0 and alls ∈ [0, s0], x, v ∈Rd .

It is easy to check that (2) and the subsequent conditions hold true and more precisely,
that

ε−1/2(aj,ks+ε − aj,ks
)= (

Dxσ
j,k)(s,Xs

)
.σ (s,Xs).ε

−1/2(Ws+ε −Ws)+ oLp(1)

which means that we have (2) with:(�aj,ks )T = (
Dxσ

j,k
)
(s,Xs).σ (s,Xs), Zj,ks,ε = ε−1/2(Ws+ε −Ws)=W

ε,s
1 .

The notationAj,k(s, ε)= oLp(1) means that

sup
j,k=1,...,d

E
{

sup
0�s�T

∣∣Aj,k(s, ε)∣∣p}→ 0 asε ↓ 0.

for eachT > 0.
(3) is easily verified.
Let us now turn to the description of the general procedure that we will follow, that is,

smoothing of the paths and CLT results. Instead of observing the path of the underlying
stochastic process{Xt : 0� t � τ } during a time interval, which generally speaking is
not feasible from physical point of view, we will observe a regularization

Xε(t)=
+∞∫

−∞
ψε(t − s)Xs ds,

where X has been extended byXs = x0 for s < 0, ε > 0, and for eachx ∈ R,
ψ(x)= (ψj,k(x))j,k=1,...,d is a deterministic matrix kernel, each functionψj,k(x) being
C∞ real-valued, support contained in the interval[−1,1],

+∞∫
−∞

ψ(x) dx =
( +∞∫

−∞
ψj,k(x) dx

)
j,k=1,...,d

= I

(I denotes the identity matrixd × d) andψε(t)= ε−1ψ(ε−1t).

We also add the following technical condition. Denoteλ(x) (respectivelyλ̄(x)) the
minimal (respectively maximal) eigenvalue ofψ(x)ψT(x). We will assume that there
exists a positive constantLψ such that̄λ(x)� Lψλ(x) for all x ∈ R. This condition plays
some role only ifd > 1 and limits the anisotropy that is allowed for the regularization.

In fact we do not observe the complete smoothed path but only a functional defined
on it having the general form:

θε,τ = θε,τ (f, g)=
τ∫

0

f
(
Xε(t)

)
g
(∥∥√εX′

ε(t)
∥∥)dt (4)
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′ denotes differentiation with respect tot , f :Rd → R is of classC2
b andg :R+ → R is

of classC2, |g′(r)|�Cg(1+ rm) for somem� 1, some constantCg and all r ∈R+.
Our aim is to give a Central Limit Theorem forθε,τ as a first step to statistical inference

ona.
Two interesting functionals are: 1) (Normalized curve length) Letg(r)= r andf (.)

a C2
b - approximation of1B the indicator function of a subset inRd with a sectionally

smooth boundary. In this case, the functionalθε,τ is an approximation of
√
ε.lε(τ ;B),

lε(τ ;B) denoting the length of the part of the curvet � Xε(t) (0 � t � τ) that is
contained in the “observation window”B, a subset of the state space. In the relevant
situationslε(τ ;B) → +∞ as ε ↓ 0 andε1/2 is the appropriate renormalization of the
length to have a non-trivial limiting behaviour. 2) (Normalized kinetic energy) Let
g(r)= r2 andf (.) is as in the previous example, in which caseθε,τ is an approximation
of ε.Eε(τ ;B), Eε(τ ;B) denoting the kinetic energy of the same part of the smoothed
path.

THEOREM 3.1. – With the hypotheses above(
Wτ , ε

−1/2

[
θε,τ −

τ∫
0

f (Xt)E
{
g(‖31/2

t ξ‖)/F∞
}
dt

])
⇒ (Wτ ,W

∗
σ̄2(τ )) (5)

as ε ↓ 0 where
• ⇒ denotes weak convergence of probability measures in the space C([0,+∞),Rd)

×C([0,+∞),R),
• W ∗ denotes a new one-dimensional Wiener process independent of F∞,
• for u ∈R, 3u = ∫ 1

−1ψ(v)aua
T
uψ

T(v) dv,

• ξ is a Gaussian standard random variable with values in Rd , independent of F∞,
• σ̄ 2(τ ) = ∫ τ

0 du
∫∫ 1

−1 s(u, v, v
′) dv dv′ where

s(u, v, v′)=E
{
f 2(Xu)g

′(‖ηu,v‖)g′(‖η′
u,v′‖).(sg(ηu,v)

)T
×ψ(−v)auaT

uψ
T(−v′)sg(η′

u,v′)/F∞
}

and the conditional distribution of the pair of Rd -valued random variables
(ηu,v, η

′
u,v′) given the σ -algebra F∞ is centered Gaussian and

E
{
ηu,vη

T
u,v/F∞

}=E
{
η′
u,v′η′T

u,v′/F∞
}=3u,

E
{
ηu,vη

′T
u,v′/F∞

}=
v∧v′∫
−1

ψ(−w)auaT
uψ

T(−w+ |v′ − v|) dw.

Remark 1. – It is not possible to use for statistical purposes the above theorem as it
has been stated, since its application requires the knowledge of the path{Xt (0� t � τ)}
which can not be observed. The next theorem points to solve this problem.

Remark 2. – Note that the driftV does not appear in the statement of Theorem 3.1,
either in the centering term or in the asymptotic probability distribution. The same
happens in the statistical version below. This is of course useful to make inference ona.
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For the next theorem we will add a certain number of restrictions to the preceeding
framework. We only consider the case of diffusions with coefficients that do not
depend on time, that isas = σ (Xs), bs = b(Xs) whereσ andb satisfy the hypotheses
stated above. We will also assume thatψ(x) = ψ∗(x).I where ψ∗ is real-valued
(isotropic regularization). Then, we may replaceXt byXε(t) in the centering term which
becomes:

mε(τ)=
τ∫

0

f
(
Xε(t)

)
E
{
g
[‖ψ∗‖2

∥∥σ T(Xε(t)).ξ∥∥]/F∞
}
dt

(‖ψ∗‖2 denotes theL2-norm ot the functionψ∗) and the asymptotic law ofW ∗
σ̄2
ε (τ )

is the
same as the one ofW ∗

σ̄2(τ )
, where

σ̄ 2
ε (τ )=

τ∫
0

f 2(Xε(u))du∫ 1∫
−1

ψ∗(−v)ψ∗(−v′) dv dv′

×E
{
g′(‖ηu,v‖)g′(‖η′

u,v′‖).(sg(ηu,v)
)T
.σ
(
Xε(u)

)
.σ T(Xε(u)).(sg(η′

u,v′)
)
/F∞

}
,

3u is replaced by‖ψ∗‖2σ (Xε(u)).σ
T(Xε(u)) and E{ηu,v(η′

u,v′)T/F∞} by K(v, v′).
σ (Xε(u)).σ

T(Xε(u)) with

K(v, v′)=
v∧v′∫
−1

ψ∗(−w)ψ∗(−w+ |v− v′|) dw. (6)

THEOREM 3.2. – Under the above conditions,(
Wτ, ε

−1/2[θε,τ −mε(τ)])⇒ (
Wτ ,W

∗
σ̄2(τ )

)
as ε ↓ 0

and

σ̄ 2
ε (τ )≈ σ̄ 2(τ ),

where weak convergence, ξ , W ∗ and σ̄ 2(τ ) are as in Theorem 3.1.

4. Examples

Example A. – In Theorem 3.1 let us putd = 1 and g(r) = r. We have:3u =
|au|2‖ψ‖2

2, θε,τ = ∫ τ
0 f (Xε(t))

√
ε|X′

ε(t)|dt = √
ε
∫ +∞
−∞ f (u)NXε

u ([0, τ ]) du where for
F : I → R, NF

u (I ) denotes the number of roots of the equationF(t)= u in the interval
I. In this case, the centering term becomes

τ∫
0

f (Xt)|at |‖ψ‖2

√
2

π
dt =

√
2

π
‖ψ‖2

+∞∫
−∞

f (u)L̃Xu ([0, τ ]) du.
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HereL̃Xu ([0, τ ]) stands for the local time of the processX for the mesure having density
|at | with respect to Lebesgue measureλ. That is, if µτ(B) = ∫ τ

0 1{Xt∈B}|at |dt, then
L̃Xu ([0, τ ])= dµτ

dλ
(u).

The asymptotic variance is given by

σ̄ 2(τ )=
τ∫

0

f 2(Xu)|au|2du
∫ 1∫
−1

ψ(−v)ψ(−v′)
[
2.P (ηvηv′ > 0)− 1

]
dv dv′,

where the distribution of the random variable(ηv, ηv′)T in R2 is centered Gaussian with
covariance matrix( ‖ψ‖2

2

∫ v∧v′
−1 ψ(−w)ψ(−w+ |v − v′|) dw∫ v∧v′

−1 ψ(−w)ψ(−w+ |v− v′|) dw ‖ψ‖2
2

)
.

Summing up, the statement of Theorem 3.1 takes the form:

ε−1/2

[√
ε

+∞∫
−∞

f (u)NXε
u ([0, τ ]) du−

√
2

π
‖ψ‖2

+∞∫
−∞

f (u)L̃Xu ([0, τ ]) du
]

⇒W ∗
σ̄2(τ )

whenε ↓ 0, the convergence taking place in the spaceC([0,+∞),R).

It is known that if X is a continuous semimartingale, asε ↓ 0 the expression in
brackets tends to zero almost surely (this is essentially the result in [2]). The convergence
above is a result on the fluctuations.

Example B. – Suppose that we are in the conditions of Theorem 3.2, withd = 1 and
g(r) = r . We also assume that infx∈R σ (x) > 0. Suppose that we want to test the null
hypothesis

H0: σ (x)= σ0(x) for all x ∈R

against the alternative

Hε: σ (x)= σε(x)= σ0(x)+ √
εσ1(x)+ γ (x, ε) for all x ∈R

whereγ (x, ε) = o(
√
ε ) andDxγ (x, ε) = o(

√
ε ) asε ↓ 0, uniformly on x ∈ R. Here

σ0(.), σ1(.) and γ (., ε) are given functions of classC2
b with at most degree one

polynomial growth at∞.
The application of Theorems 3.1 and 3.2 is not straightforward under the present

conditions, since the processXt depends now onε. However, one can check that the
same proofs remain valid, replacingXt by the processXε

t , which is the solution of

dXε
t = σε

(
Xε
t

)
dWt + b

(
Xε
t

)
dt, Xε

0 = x0

and settingXε(t)= (ψε ∗Xε)(t), under the hypothesisHε, one has:



G. PERERA, M. WSCHEBOR / Ann. I. H. Poincaré – PR 38 (2002) 1009–1022 1017

ε−1/2

[√
ε

+∞∫
−∞

f (u)NXεε
u ([0, τ ]) du−

√
2

π
‖ψ‖2

τ∫
0

f
(
Xε(t)

)
σ0
(
Xε(t)

)
dt

]

≈
√

2

π
‖ψ‖2

τ∫
0

f
(
Xε(t)

)
σ1
(
Xε(t)

)
dt +W ∗

σ̄2
ε (τ )
. (7)

One should interpret (7) in the following way:
As ε ↓ 0 the law of the left-hand member converges inC([0,+∞),R) to the law of

the random process√
2

π
‖ψ‖2

τ∫
0

f
(
X(t)

)
σ1
(
X(t)

)
dt +W ∗

σ̄2
0 (τ )

andfurthermore the right-hand member in (7) converges to this process asε ↓ 0. Note
that this is well adapted to statistical purposes since both the centering term and the
asymptotic distribution in (7) can be computed from the hypotheses and from functionals
defined on the smooth path{Xε(t): 0� t � τ }.

Example C. – Suppose again that we are in the conditions of Theorem 3.2,g(r)= r

andd > 1.
Suppose that we want to test the null hypothesis

H0: >(x)= σ (x).σ T(x)= >0(x) for all x ∈Rd

against the alternative

Hε: >(x)= >0(x)+ √
ε>1(x)+ >2(x, ε) for all x ∈Rd ,

where‖>2(x, ε)‖d×d = o(
√
ε ) and ‖Dx>2(x, ε)‖ = o(

√
ε ) as ε → 0, uniformly on

x ∈ Rd. >0(.) and>1(.) are positive semidefinited × d matrices having elements that
are functions of classC2

b and at most degree two polynomial growth at∞ and‖.‖d×d is
any norm ond × d matrices. Furthermore, assume that>0(.) satisfies a strong ellipticity
condition of the typeyT>0(x)y � δ‖y‖2 for someδ > 0 and anyx, y ∈Rd .

The result takes the form that underHε:

ε−1/2

[ τ∫
0

f
(
Xε(t)

)[∥∥√εX′
ε(t)

∥∥− ‖ψ∗‖2.J0
(
>0(Xε(t))

)]
dt

]

≈ 1

2
‖ψ∗‖2

τ∫
0

f
(
Xε(t)

)
.J1
(
>0
(
Xε(t)

)
,>1

(
Xε(t)

))
dt +W ∗

σ̄2
ε (τ )
,

σ̄ 2
ε (τ )≈

τ∫
0

f 2(Xε(u))du∫ 1∫
−1

ψ∗(−v)ψ∗(−v′)J2
(
>0
(
Xε(u)

)
, K̃(v, v′)

)
dv dv′,

where forA positive definite andB,C positive semidefinited×d matrices,ξ a standard
normal random vector inRd andk a real number|k|� 1, we put:
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J0(A)=E
{(
ξTAξ

)1/2}
, J1(A,B)=E

{
ξTBξ

(ξTAξ)
1
2

}
,

J2(C, k)=E

{
ηTCη′

‖η‖‖η′‖
}
,

where η, η′ are normal centered random vectors inRd , E{η.η′} = k.C, E{η.ηT} =
E{η′.η′T} = C andK̃(v, v′)= K(v,v′)

‖ψ∗‖2
2

(see (6)).

An important case in whichJ0, J1, J2 can be computed by means of closed formulae
is >0 = I , i.e. pure Brownian noise under the null hypothesis. One obtains:

J0(I )=


(2p)!
(2pp!)2

√
8πp if d = 2p,

(2pp!)2
(2p)!

1√
2π

if d = 2p+ 1,

J1(I,B)= J0(I )

d
tr(B),

J2(I, k)= 1√
π2

d
2 −1>(d−1

2 )

+∞∫
−∞

xId(x)e
− 1

2(x− k√
1−k2

)2

dx,

Id(x)=
+∞∫
0

ρd−2√
x2 + ρ2

e− 1
2ρ

2
dρ.

5. Proofs

Proof of Theorem 3.1. – We do not perform here the detailed computations of the
proof.

Notice first that it suffices to consider convolution kernels such that supp(ψ) lies in
{t � 0}. In fact,

Xε(t)=
+1∫

−1

ψ(u)Xt−εu du=
0∫

−2

ψ(u+ 1)Xt−ε−εu du= X̃ε(t − ε)

whereX̃ε is the regularization that corresponds to the kernelψ̃(u)=ψ(u+ 1) wich has
support contained in[−2,0]. It follows that

τ+ε∫
ε

f
(
Xε(t)

)
g
(∥∥√εX′

ε(t)
∥∥)dt = τ∫

0

f
(
X̃ε(t)

)
g
(∥∥√εX̃′

ε(t)
∥∥)dt

and the study of the asymptotic behaviour ofθε,τ can be reduced to the case when the
support ofψ lies in {t � 0} if one knows that the integrals over[0, ε] and [τ, τ + ε]
can be neglected. This is easy to prove. With no loss of generality, we can assume that
supp(ψ)⊂ [−1,0].
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A localization argument shows that it suffices to prove the theorem when the
components ofa, �a andV are bounded by a non-random constant.

We introduce the following additional notation: Forγ ∈ [0,1], x, y ∈Rd we put

Gt(y, γ )=
∫
Rd

g
(‖w‖)nAt(γ )(y −w)dw=E

{
g
(∥∥y + [At(γ )]1/2ξ∥∥)/F∞

}
,

whereAt(γ ) = ∫ 1
γ ψ(−u)ataT

t ψ
T(−u)du; n3(.) is the normal density inRd with

mean 0 and variance matrix3 and ξ is a random vector inRd with standard normal
distribution,ξ independent ofF∞. One easily checks that

∂Gt

∂γ
= 1

2
tr
[
Át (γ )(DyyGt)

]; lim
γ→1−Gt(y, γ )= g(‖y‖),

where Át (γ ) denotes the derivative with respect toγ . We put X′
ε(t) = ε−1/2 ×∫ 1

0 ψ(−u)duXε,t
u where

Xε,t
u = ε−1/2(Xt+εu −Xt)=

u∫
0

at+εv dvWε,t
v + ε−1/2(Vt+εu − Vt), u� 0

and Y ε,tγ = ∫ γ
0 ψ(−u)duXε,t

u . Apply Itô’s formula to the random processηε,tγ =
Gt(Y

ε,t
γ , γ ), 0� γ � 1:

η
ε,t
1 − η

ε,t
0 = g

(∥∥√εX′
ε(t)

∥∥)−E
{
g
(∥∥[At(0)]1/2ξ∥∥)/F∞

}
=

1∫
0

(DyGt)
(
Y ε,tγ , γ

)
dγ Y

ε,t
γ +

1∫
0

(DγGt)
(
Y ε,tγ , γ

)
dγ

+ 1

2

1∫
0

(
dγ Y

ε,t
γ

)T
(DyyGt)

(
Y ε,tγ , γ

)
dγ Y

ε,t
γ . (8)

We write the left-hand side of (5) as

ε−1/2

[
θε,τ −

τ∫
0

f (Xt)E
{
g
(∥∥31/2

t ξ
∥∥)/F∞

}
dt

]

= oε(1)+ ε−1/2

τ∫
0

dt

1∫
0

f (Xt)(DyGt)
(
Y ε,tγ , γ

)
ψ(−γ )at dγWε,t

γ , (9)

where the notation oε(1) means weak convergence to 0 inC([0,+∞),R) asε→ 0.
To prove (9) we proceed in two steps:
First, we show that

ε−1/2

τ∫
0

[
f (Xε(t))− f (Xt)

]
g
(∥∥√εX′

ε(t)
∥∥)dt = oε(1). (10)
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This can be done on the basis of computations that are similar to those in [11], Step 1
and Lemma 3, c), which correspond tod = 1, g(y) = y andV absolutely continuous,
and can be adapted to our present context with some further work.

Second, inε−1/2
∫ τ

0 f (Xt)g(‖
√
εX′

ε(t)‖) dt substituteg(‖√εX′
ε(t)‖) using (8).

Then, at the cost of adding a new error termRε(τ) we can replacedγ Y ε,tγ by
ψ(−γ )at dγWε,t

γ and (
dγ Y

ε,t
γ

)T
(DyyGt)

(
Y ε,tγ , γ

)
dγ Y

ε,t
γ

by

−tr
[
Át (γ )

(
DyyGt(Y

ε,t
γ , γ )

)]
dt.

One has:Rε(τ)=A1
ε(τ )+A2

ε(τ )+A3
ε(τ ) with

A1
ε(τ )=

τ∫
0

f (Xt) dt

1∫
0

(DyGt)
(
Y ε,tγ , γ

)
ψ(−γ )ε−1/2(at+εγ − at ) dγW

ε,t
γ ,

A2
ε(τ )=

1

2

τ∫
0

f (Xt) dt

1∫
0

tr
[
ε−1/2(at+εγ aT

t+εγ − ata
T
t

)
×ψT(−γ )(DyyGt)

(
Y ε,tγ , γ

)
ψ(−γ )]dγ,

A3
ε(τ )= ε−1

τ∫
0

f (Xt) dt

1∫
0

(DyGt)
(
Y ε,tγ , γ

)
ψ(−γ ) dγ Vt+εγ .

Tightness ofA1
ε(τ ) in C([0,+∞),R) follows from the hypotheses and the fact that

(DyGt)(Y
ε,t
γ , γ ) is bounded inLp for all p > 0.

For A2
ε(τ ) proceed as follows: letH(y,3) = ∫

Rd g(‖w‖)n3(y − w)dw so that
Gt(y, γ )=H(y,At(γ )). Check that under the hypothesis we have done ong, the matrix
31/2(DyyH) has elements that are polynomially bounded functions ofy. Then, using
the strong ellipticity hypothesis onasaT

s , plus the control on the relation between the
maximal and minimal eigenvalues ofψ(x)ψT(x) and the conditions ona, one can prove
that the trace in the integrand that appears inA2

ε(τ ) is bounded by a random variable
with boundedLp-norm, times the function[∫ 1

γ λ̄(u) du]−1/2λ̄(γ ). Tightness follows now
using standard bounds on the moments of the increments ofA2

ε(τ ).

For A3
ε(τ ) assume thatτ ∈ [0, s0], 0< ε < 1 and |V |t = ∑d

j=1 |V j |t � v̄ for t ∈
[0, s0 + 1], v̄ a non-random constant. The equicontinuity in probability ofA3

ε(τ ) follows
from the equicontinuity of

Ã3
ε(τ )= ε−1

τ∫
0

[|V |t+ε − |V |t]dt.
Letη, 0< η < 1, be given and 0< τ < τ ′ < s0. If ε > τ ′−τ

η
, thenÃ3

ε(τ
′)−Ã3

ε(τ )� v̄.η. If

τ ′ −τ < ε � τ ′−τ
η

, thenÃ3
ε(τ

′)− Ã3
ε(τ )� ω|V |( τ

′−τ
η
) (ωf denotes the continuity modulus

of the functionf ). If 0 < ε < τ ′ − τ we have
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Ã3
ε(τ

′)− Ã3
ε(τ )�

τ ′∫
τ

d|V |sε−1

s∫
(s−ε)∨0

dt +
τ ′+ε∫
τ ′
d|V |sε−1

τ ′∫
(s−ε)∨0

dt

� 2ω|V |(τ ′ − τ)

and equicontinuity of̃A3
ε follows.

Weak convergence to zero ofAiε(τ) (i = 1,2,3) can be proved now in a similar way
as in [11] for the cased = 1. This finishes the proof of (9).

At this point, in the last integral in (9) make the change of variablesu = t + εγ ,
obtaining the first equality in the following chain:

ε−1/2

τ∫
0

dt

1∫
0

f (Xt)(DyGt)
(
Y ε,tγ , γ

)
ψ(−γ )at dγWε,t

γ

= ε−1

τ∫
0

f (Xt) dt

t+ε∫
t

(DyGt)

(
Y
ε,t
u−t
ε

,
u− t

ε

)
ψ

(
−u− t

ε

)
at dWu

= oε(1)+ ε−1

τ∫
ε

dWu

u∫
u−ε

f (Xt )(DyGt)

(
Y
ε,t
u−t
ε

,
u− t

ε

)
ψ

(
−u− t

ε

)
at dt

= oε(1)+
τ∫
ε

dWu

1∫
0

f (Xu−εγ )(DyGu−εγ )
(
Y ε,u−εγγ , γ

)
ψ(−γ )au−εγ dγ

= oε(1)+
τ∫
ε

f (Xu) dWu

1∫
0

(DyGu−εγ )

×
( γ∫

0

ψ(−v)au−εγ dvWε,u−εγ
v , γ

)
ψ(−γ )au dγ

= oε(1)+
τ∫

0

f (Xu)Kε(u) dWu.

The second equality follows from a Fubini-type theorem applied to the double Itô×
Lebesgue integral; for the third undo the change of variables. The other equalities are
plain.

The remaining of the proof of Theorem 3.1 consists in proving the weak convergence
of (Wτ ,

∫ τ
0 Kε(u) dWu) as ε → 0 to the limit law in the statement. This is done by

standard weak convergence arguments and the calculations are variants to those in [11]
for d = 1. Theorem 3.2 follows from Theorem 3.1 once one proves that it is possible to
replaceXt byXε(t) in the centering term. This is similar – easier – to (10).
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