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ABSTRACT. – We introduce a new class of cocycles which provides examples of measure
preserving dynamical systems(X,B,µ,T ), such that given positive integersr � 2 andm � 1,
possibly infinite, with(r,m) �= (∞,∞), the rank isr and the order of the quotient group in the
measure-theoretic centralizer, # C(T )

wcl{T n; n∈Z} , ism. Moreover, wcl{T n; n ∈ Z} is uncountable. For
the case(r,m)= (∞,∞), we produce a mixingT . This completes the weak closure theorem of
Jonathan King. 2002 Éditions scientifiques et médicales Elsevier SAS

AMS classification:28D; 47A

Keywords:Rank; Measure-theoretic centralizer; Weak closure Theorem

RÉSUMÉ. – Nous introduisons une nouvelle classe de cocycles qui permet d’obtenir des
exemples de flots(X,B,µ,T ), tels qu’étant donnés deux entiersr � 2 etm� 1, éventuellement
infinis, avec(r,m) �= (∞,∞), le rang soitr et l’ordre du groupe quotient dans le centralisateur,
# C(T )

wcl{T n; n∈Z} , soitm. En outre ces exemples sont tels que wcl{T n; n ∈ Z} est non dénombrable.
Pour(r,m) = (∞,∞), nous construisons un exemple avecT mélangeant. Ceci en particulier
complète le Théorème de Clôture Faible de Jonathan King. 2002 Éditions scientifiques et
médicales Elsevier SAS

1. Introduction

Let (X,B,µ,T ) be an ergodic dynamical system and letC(T ) be the measure-
theoretic centralizer ofT . The Weak Closure Theorem [10] asserts thatC(T ) coincides
with the weak closure of the set of powers ofT , denoted wcl{T n, n ∈ Z}, whenever
r(T )= 1, wherer(T ) is the rank ofT .

Hence the question of the existence of a relationship betweenr(T ) and the cardinality
q(T ) of the quotient group C(T )

wcl{T n; n∈Z} in the general case naturally arises.
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For mixing T it follows from [11] thatq(T ) � r(T ). It is not difficult to show that
the same inequality holds forT ’s defined in [2] – generalized Morse flows, for which
q(T )= 2 andr(T ) can be arbitrarily large.

Each automorphismT in [2] has a partially discrete spectrum whence the two kinds
of automorphisms previously described are rather far from each other.

However for both cases wcl{T n, n ∈ Z} = {T n, n ∈ Z}. Therefore an interesting
additional feature is to construct arbitrary pairs(q(T ), r(T )) with an uncountable
wcl{T n, n ∈Z}.

In this paper we shall introduce some new classes of cocycles, which define flows that
are ergodic group extensions of rank 1 systems, and are tractable enough to allow an
exact computation of bothr(T ) andq(T ).

We shall pick within these classes, for each possible pair(q, r), examples of ergodic
automorphismsT such that(q(T ), r(T ))= (q, r). Moreover, for(q, r) �= (∞,∞), our
examples produce an uncountable wcl{T n, n ∈Z}.

The difficulty lies both in the proposition of a good candidate, and in the computation
of the rank and the order of the quotient group. For(r,m) �= (∞,∞), our examples lie
in the class of group extensions determined byr-Toeplitz sequences. For the(∞,∞)

case, the example is mixing: it is a weakly mixing extension of a rank 1 mixing
transformation [1].

From these examples, it now follows that in its generality, the weak closure theorem
is the only one for limitations concerning the coexistence of the measure-theoretic
invariantsq(T ) andr(T ).

The investigations of ergodicity and that of the measure-theoretic centralizer both rely
on Newton’s functional equation [21] and are carried out partially on a measure-theoretic
group extension representation of the system.

Investigating the rank (and partly the centralizer too) we use a shift representation of
those extensions.

2. Preliminaries

2.1. Notations and definitions

Let (X,B,µ) be a Lebesgue space andT a measure-preserving invertible ergodic
transformation of(X,B,µ). By the centralizer (measure-theoretic) ofT we mean the
set of all measure-preserving automorphisms of(X,B,µ) which commute withT and
we denote it byC(T ). ThenC(T ) is a topological group with the standard operation of
composition of transformations and with a topology (called the weak topology) defined
as follows:{Sn}n∈N ∈ C(T ) converges toS ∈C(T ) if for everyA ∈ B

µ(SnA�SA)−→ 0.

We shall indicate this convergence bySn ⇀ S. With this topology,C(T ) is metric,
complete. By wcl{T n, n ∈ Z} we mean the weak closure of the powers ofT in C(T ).

We say that a sequence of setsA1, . . . ,Ak ∈ B is aT -stack if these sets are pairwise
disjoint andTAi =Ai+1, i = 1, . . . , k − 1.
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If we are given a collection ofr measurable subsetsFi of X, andr positive integers
hi, such thatC := {T lFi : 1� i � r, 0� l < hi} is a collection of disjoint sets (a union of
r disjoint T -stacks), settingY =X \ (⋃C∈C C), this union ofr disjoint T -stacks defines
a partitionC̃ := C ∪ {Y }, and aσ -algebraσ (C̃).

The rank ofT is the smallest integerr such that givenε > 0, there exists a union of
r disjoint T -stacksC, such that for any measurableA ∈ B, there existsB ∈ σ (C̃) with
µ(A�B) < ε. If such a positive integer does not exist then we say thatr(T )=∞.

We shall give a symbolic version for the definition of the rank in 2.2. and 4., which are
shown to be equivalent to the one above in [3] and [20]. We reffer the interested reader
to [5–7] for more on rank and partitions.

Suppose now thatG is a compact metric abelian group andϕ :X −→ G is a
measurable function which we will call a cocycle. TheG-extension of(X,B,µ,T )
given by the cocycleϕ is the dynamical systemXϕ = (X × G,B × BG,µ × ν, Tϕ),
whereBG is the Borelσ -algebra inG, ν is the normalized Haar measure onG and

Tϕ(x, g)= (
T x, g + ϕ(x)

)
for x ∈ X, g ∈ G. It is well known [22] that for ergodic(X,B,µ,T ) the following
theorem is true.

THEOREM A. – Tϕ is ergodic iff the functional equation

f (T x)

f (x)
= γ

(
ϕ(x)

)
(1)

has no measurable solutionsf :X−→K for any nontrivial characterγ of G (K is the
unit complex circle).

It is known (see [21] for the definition) that if(X,B,µ,T ) is a canonical factor ofTϕ
(for example ifT is with discrete spectrum) then, assuming thatTϕ is ergodic,C(Tϕ)
is given by the triples(S, f, τ), whereS ∈ C(T ), f :X→ G is measurable andτ is a
group automorphism ofG such that

f (T x)− f (x)= ϕ(Sx)− τ
(
ϕ(x)

)
. (2)

This means that every elementR ∈C(Tϕ) is of a form

R(x, g)= (
Sx, τ(g)+ f (x)

)
. (3)

In such a case we writeR ∼ (S, f, τ). The following property is proved in [17] and [18],
using Theorem A.

THEOREM B. – If Rn,R ∈ C(Tϕ) andRn ∼ (Sn, fn, id),R ∼ (S, f, id) thenRn ⇀ R

iff Sn ⇀ S andfn −→ f in measureµ.

Let σa :X×G−→X×G be given by the formula

σa(x, g)= (x, g + a), a ∈G. (4)
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Thenσa ∈ C(Tϕ), σa ∼ (id, a, id). For every integern, (Tϕ)n is given by the formula

(Tϕ)
n(x, g)= (

T nx, g + ϕ(n)(x)
)
, (5)

where

ϕ(n)(x)=
{
ϕ(x)+ · · · + ϕ(T n−1x), if n � 0,
−ϕ(T −1x)− · · · − ϕ(T nx), if n < 0.

(6)

Then it follows from Theorem B that

COROLLARY 1. – (Tϕ)nk ⇀ σa in C(Tϕ) iff T nk ⇀ id in C(T ) and ϕ(nk) −→ a in
measure.

2.2. Sequences and blocks

A finite sequenceB = (B[0], . . . ,B[k − 1]), B[i] ∈ G, 0 � i � k − 1, k � 1, is
called a block overG. The numberk is called the length ofB and is denoted by|B|.
If C = (C[0], . . . ,C[n− 1]) is another block then the concatenation ofB andC is the
block

BC = (
B[0], . . . ,B[k − 1],C[0], . . . ,C[n− 1]).

Inductively we define the concatenation of an arbitrary number of blocks. ByBg, g ∈G,
we will denote the block

Bg = (
B[0] + g, . . . ,B[k − 1] + g

)
and byB[i, s](0 � i � s � k − 1) the block

B[i, s] = (
B[i], . . . ,B[s]).

Assume that

B = B(0) . . .B(r − 1)

is a concatenation ofr blocksB(0), . . . ,B(r − 1) having the same lengths and

C = C[0] . . .C[rm− 1]

for somem � 1. We define the productB
r×C of B andC as follows:

B
r×C =BC[0](0) . . .BC[r−1](r − 1)BC[r](0) . . . (7)

BC[2r−1](r − 1)BC[r(m−1)](0) . . .BC[rm−1](r − 1).

Then ∣∣B r×C
∣∣= |B||C|

r
= ∣∣B(i)∣∣rm, for everyi = 0, . . . , r − 1.

Let ) by the space of all bi-infinite sequences overG. If ω ∈ ) or ω is a one-
sided infinite sequence overG thenω[i, s], i � s, denotes the block(ω[i], . . . ,ω[s]).
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A block B is said to occur at placei in ω (resp. in a blockC, |C| = n, if |B| � n) if
ω[i, i + |B| − 1] = B (resp.C[i, i + |B| − 1] = B). The frequencies ofB in C or ω are
the numbers

fr(B,C)= |C|−1#
{
0� i � |C| − |B|;B occurs at placei in C

}
,

fr(B,ω)= lim
s→∞ fr

(
B,ω[0, s − 1]),

if this limit exists.
For an infinite subsequence ofω, E = {ω[n], n ∈ I ⊂ Z} (resp.E = {ω[n], n ∈ I ⊂

N}), we call the density ofE the density of the setI in Z (resp. inN), whenever it exists.
Let δ > 0. We say thatB δ-occurs at placei in C (resp. inω) if

d
(
B,C[i, i + |B| − 1])< δ

(
resp.d

(
B,ω[i, i + |B| − 1])< δ

)
,

where

d
(
(x1, . . . , xn), (y1, . . . , yn)

)= n−1#{i;xi �= yi}
(d is called the normalized Hamming distance ord-bar distance between sequences).
We will say also thatBδ-occurs on the fragmentω[i, i + |B| − 1] of ω.

We will use the following elementary properties of the distanced;

d
(
B

r× C,B
r×D

)= d(C,D) (see (7)), (8)

d(Bg,Cg)= d(B,C), (9)

d(A1A2,B1B2)= |A1|
|A1| + |A2|d(A1,B1)+ |A2|

|A1| + |A2|d(A2,B2), (10)

where|A1| = |B1|, |A2| = |B2|.
If D1 ⊂ D(D1 is a subblock ofD) andC1 ⊂ C, |D1| = |C1|, both appearing in the

corresponding same positions, then

d(D,C)� |D1|
|D| d(D1,C1). (11)

d(A1A2 . . .As,B1B2 . . .Bs)= 1

s

s∑
i=1

d(Ai,Bi) (12)

if |A1| = |A2| = · · · = |As | = |B1| = · · · = |Bs|.
By Tσ we denote the left shift homeomorphism of). If ω ∈ ) thenO(ω) denotes

the Tσ -orbit of ω and)ω the Tσ -orbit closure ofω in ). TheTσ -orbit closure)ω is
well-defined ifω is a one-sided sequence. Namely, we first let♦ /∈G be an additional
symbol. Then we letω♦ denote the bi-infinite sequence which agrees withω at positive
coordinates and has only squares appearing at the negative ones. Then we say that a
bi-infinite y belongs to)ω if there existsni →+∞ such thatT ni

σ ω→ y in ) (the
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convergence is for all coordinates ofy, and the limiting elementy does not contain any
more squares). The topological flow()ω,Tσ ) is called minimal if there is no non trivial
closed andTσ -invariant subset of)ω. We say that()ω,Tσ ) is uniquely ergodic if there
is a unique borelian normalizedTσ -invariant measureµω on)ω. Then()ω,Tσ ) is said
to be strictly ergodic if it is minimal and uniquely ergodic. Suppose()ω,Tσ ) is strictly
ergodic. The uniqueTσ -invariant measureµω is determined by the condition

µω(B)= fr(B,ω)

for each blockB. In the case of a discrete groupG, the definition of the rank has the
following symbolic transcription.

The system()ω,Tσ ,µω) is of rank at mostr if for any δ > 0 and everyn, there existr
blocksB1, . . . ,Br, |Bi|� n, such that for allN large enough, for anys ∈N, the fragment
ω[s, s +N − 1] has a form

ω[s, s +N − 1] = ε1W1ε2W2 · · ·εkWkεk+1,

where |ε1| + · · · + |εk| + |εk+1| < δN and the distanced betweenWj and some
Bm, j = 1, . . . , k,1 � m � r , is less thanδ. The system()ω,Tσ ,µω) is of rank r if
it is of rank at mostr and not of rank at mostr − 1.

2.3. Adding machines and r-Toeplitz cocycles

Now, letT : (X,B,µ)−→ (X,B,µ) be a{pt}-adic adding machine i.e.

pt+1= λt+1pt, λ0= p0, λt � 2 for t � 0,

X=
{
x =

∞∑
t=0

qtpt−1; 0� qt � λt − 1, p−1= 1

}

is the group of{pt}-adic integers andT x = x + 1̂, where

1̂= 1+ 0p1+ 0p2+ · · · .
The spaceX has a standard sequence{ξt}t�0 of T -stacks. Namely

ξt = (
Dt

0, . . . ,D
t
pt−1

)
,

where

Dt
0= {x ∈X;q0= · · · = qt = 0}, Dt

s = T s
(
Dt

0

)
for s = 1, . . . , pt − 1. We have

X=
pt−1⋃
i=0

Dt
i .

Then ξt+1 refines ξt and the sequence of partitions{ξt}t�0 converges to the point
partition.



J. KWIATKOWSKI, Y. LACROIX / Ann. I. H. Poincaré – PR 38 (2002) 155–192 161

We will define a special class of cocyclesϕ :X −→G that are determined by Toeplitz
sequences overG.

Let r � 2 be an integer, and assume thatb0, b1, . . . are finite blocks overG with
|bt | = λtr, λt � 2, such that

bt [0, r − 1] = (0, . . . ,0︸ ︷︷ ︸
r times

).

We shall introduce a particular sequence(pt), and some new blocks(Bt).
We can write

bt = bt (0) . . . bt (r − 1),
∣∣bt (i)∣∣= λt, i = 0, . . . , r − 1. (13)

Define another sequence of blocks{Bt} letting

B0= b0, Bt+1= Bt
r× bt+1, t � 0. (14)

Then we have ∣∣Bt
∣∣= rmt = pt, mt = λ0 · · ·λt, (15)

and we can representBt as

Bt =Bt(0) · · ·Bt(r − 1),
∣∣Bt(i)

∣∣=mt, i = 0, . . . , r − 1. (16)

Moreover

Bt+1[0,pt − 1] = Bt. (17)

Now we can define a cocycleϕ by

ϕ(x)= Bt [i + 1] −Bt [i] (18)

if x ∈Dt
i except ofi =mt−1,2mt −1, . . . , pt −1. Let us observe thatϕ is well defined.

Such a cocycle is calledr-Toeplitz cocycle. For everyt � 0, ϕ is constant on the levels
of ξt except ofr levels.

The sequence{Bt }t�0 determines a one-sided sequenceω as follows:

ω[0,pt − 1] = Bt, t = 0,1, . . . . (19)

The condition (17) guarantees thatω is well defined.
It is not hard to show that the condition

fr
(
g, bt

)
� ρ > 0 (if G is finite) (20)

for everyg ∈ G and t = 0,1. . . . , implies that the system()ω,Tσ ) is strictly ergodic.
Then using (19), (20), and arguments as in [16], we deduce that the dynamical systems
()ω,Tσ ,µω) and(X ×G,Tϕ,µ× ν) are measure-theoretically isomorphic whenTϕ is
ergodic.
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The group extensions defined byr-Toeplitz cocycles shall be calledr-Toeplitz
extensions.

In the sequel we will write

ω= b0 r× b1 r× b2 r× · · · .
Except ofω we need the sequencesωt, t � 0, defined by

ωt = bt
r× bt+1 r× · · · . (21)

3. Examples of r-Toeplitz extensions

In this part, givenr � 2 andm � 1, we definer-Toeplitz group extensions having
cardinality of the quotient groupC(Tϕ)/wcl{T n

ϕ ; n ∈ Z} equal tom.

3.1. The case r � 2,m � 2

LetG= Z/mZ= {0, . . . ,m− 1}. Define

F (i)=
r(2i+2−1)︷ ︸︸ ︷
00. . .0

r︷ ︸︸ ︷
0. . .0 1︸︷︷︸

i+1

0. . .0, i = 0, . . . , r − 1;

H(i)=F
(i)
0 F

(i)
1 . . .F

(i)
m−1.

We have|H(i)| =mr2i+2. Next define

bt (0)=H(0)H (0) . . .H (0)︸ ︷︷ ︸
x0 times

bt (1)=H(1)H (1) . . .H (1)︸ ︷︷ ︸
x1 times

...

bt (r − 1)=H(r−1)H (r−1) . . .H (r−1)︸ ︷︷ ︸
xr−1 times

where

xi = 2t+r−1−i , 0 � i � r − 1,

and

bt = bt (0) . . . bt (r − 1), t � 0.

Then we have

λt =
∣∣bt(i)∣∣=mr2t+r+1, for i = 0, . . . , r − 1 (see (13))

and ∣∣bt ∣∣=mr22t+r+1.
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Now define the blocksBt, t � 0, by (14) and the cocycleϕ by (18). Then from (15)

pt =
∣∣Bt

∣∣=mt+1r2t2r+1(2t+1− 1
)
, t � 0.

3.2. The case r � 2,m = 1

LetG= Z/nZ= {0, . . . , n− 1}, n� 4. Then define

F (i)=
3r︷ ︸︸ ︷

00. . .0

r︷ ︸︸ ︷
0. . . 1︸︷︷︸

i+1

0. . .0,

H (i)=F
(i)
0 F

(i)
1 . . .F

(i)
n−1,

and

bt(i)=H(i)H (i) . . .H (i)︸ ︷︷ ︸
x times

, x = 2t .

Next set

bt = bt (0) . . . bt (r − 1),

Bt = b0 r× b1 r× · · · r× bt , t � 0,

and defineϕ by (18). In this case we have

λt = rn2t+2= ∣∣bt(i)∣∣, |bt | = r2n2t+2, for i = 0,1, . . . , r − 1 andt � 0.

3.3. Ergodicity and the measure-theoretic centralizer

THEOREM 1. –Tϕ is ergodic.

Proof. –We will prove ergodicity ofTϕ in both cases 3.1 and 3.2. Assume that there
exists a measurable functionf :X −→K satisfying (1). Then (see (5), (6))

f (T nx)

f (x)
= γ

(
ϕ(n)(x)

)
(22)

for µ-a.e.x ∈X and everyn ∈ Z.

In particular (22) holds forn= pt, t = 0,1, . . . . The measurability off and the fact
thatξt −→ ε (the partition into points) inX imply

γ
(
ϕ(pt )(x)

)= 1 (23)

except of a subset of measureεt andεt −→ 0.
Let x ∈Dt+1

j , 0 � j � pt+1− 1. We can representj as

j = upt + vmt + ρ, (24)

where 0� u� λt+1− 1, 0 � v � r − 1, 0 � ρ � mt − 1 (see (15)).
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It follows from (18) (with t := t + 1) that

ϕ(pt)(x)= Bt+1[j + pt ] −Bt+1[j ] (25)

exceptj for whichu= u1= λ
r
− 1, . . . , u= ur = rλ

r
− 1= λ− 1, λ= λt+1. At the same

time we have

Bt+1[j ] = b[ur + v] +Bt(v)[ρ], b= bt+1 (see (14), (16)).

Then (25) can be rewritten as

ϕ(pt)(x)= b
[
(u+ 1)r + v

]− b[ur + v], u �= u1, . . . , ur . (26)

The last equality and (23) imply that

γ
(
c[q])= 1 (q = ur + v) (27)

for q ∈ Vt ⊂ {0,1, . . . , rλt+1− 1}, #Vt
rλt+1

� 1− εt − 2
λt+1

, wherec= ct is given by

c[q] := b[q + r] − b[q], q = 0, . . . , rλ− r − 1.

Further the blocksc= ct have the following forms:

c=
(mx0−1) times︷ ︸︸ ︷
E(0) . . .E(0) L(0)

(mx1−1) times︷ ︸︸ ︷
E(1) . . .E(1) L(1) . . .

(mxr−1−1) times︷ ︸︸ ︷
E(r−1) . . .E(r−1) (28)

where

E(0)=
2r︷ ︸︸ ︷

0. . .0

r︷ ︸︸ ︷
10. . .0

r︷ ︸︸ ︷
01. . .1,

∣∣L0∣∣= r,

E(1)=
6r︷ ︸︸ ︷

0. . .0

r︷ ︸︸ ︷
010. . .0

r︷ ︸︸ ︷
101. . .1,

∣∣L1∣∣= r,

...

E(r−1)=
(2r+1−2)r︷ ︸︸ ︷
0. . .0

r︷ ︸︸ ︷
0. . .01

r︷ ︸︸ ︷
1. . .10,

∣∣L(r−2)∣∣= r,

in the case 3.1. In the case 3.2 we have

c=
(nx−1) times︷ ︸︸ ︷
E(0) . . .E(0) L(0)

(nx−1) times︷ ︸︸ ︷
E(1) . . .E(1) L(1) . . .

(nx−1) times︷ ︸︸ ︷
E(r−1) . . .E(r−1) (29)

where

E(0)=
2r︷ ︸︸ ︷

0. . .0

r︷ ︸︸ ︷
10. . .0

r︷ ︸︸ ︷
01. . .1,

∣∣L0∣∣= r,

E(1)=
2r︷ ︸︸ ︷

0. . .0

r︷ ︸︸ ︷
010. . .0

r︷ ︸︸ ︷
101. . .1,

∣∣L1∣∣= r,
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...

E(r−1)=
2r︷ ︸︸ ︷

0. . .0

r︷ ︸︸ ︷
0. . .01

r︷ ︸︸ ︷
1. . .10,

∣∣L(r−2)∣∣= r.

In both cases 1 appears inc with frequency> 1
r2r+2 for eacht � 0. Then (27) implies

γ (1)= 1 soγ is trivial. We have proved thatTϕ is ergodic. ✷
3.4. The centralizer of Tϕ

Thept -adic adding machine(X,B,µ,T ) is a canonical factor of the group extension
(X ×G,B × BG,µ × ν, Tϕ). ThenC(Tϕ) is described in 2.1. We can distinguish the
following subgroups ofC(Tϕ):

C1=wcl
{
T n
ϕ ; n ∈ Z

}
,

C2= {
σa ◦ S̃; S̃ ∈ C1 anda ∈G

}
,

C3= {
R ∼ (S, f, τ); τ = id

}
.

Of courseC1,C2,C3 are closed subgroups ofC(Tϕ) and

C1⊂ C2⊂ C3⊂ C(Tϕ).

We prove in Lemmas 1 and 2 thatC(Tϕ) reduces toC2 when ϕ is the r-Toeplitz
cocycle defined in 3.1 or in 3.2.

In the sequeln means the samen as the one defined in 3.2 if this case is considered,
andn :=m if the case 3.1 is considered.

LEMMA 1. –C(Tϕ)= C3.

Proof. –Take R as in (3). Then the triple(S, f, τ) satisfies (2). Puttingx :=
T x, . . . , T pt−1x in (2) and summing we obtain

f
(
T pt x

)− f (x)= ϕ(pt)(Sx)− τ
(
ϕ(pt )(x)

)
(30)

for µ-a.e.x ∈X and eacht � 0. Using the same arguments as in the proof of Theorem 1
we get from (30)

ϕ(pt )(Sx)− τ
(
ϕ(pt)(x)

)= 0 (31)

for x ∈Xt andµ(Xt)−→ 1.
Further we know [21] that there existsq0 ∈X such that

S(x)= x + g0, x ∈X.

Let

g0=
∞∑
t=0

utpt−1, 0� ut � λt − 1, t � 1 and 0� u0 � λ0r − 1.
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Fix t and consider (31) on the stackξt+1. Let

jt =
t∑

j=0

ujpj−1.

Then (see (24))

jt = v0mt + ρ0, jt+1= u0pt + v0mt + ρ0, u0= ut+1.

If x ∈Dt+1
j , 0� j � pt+1− 1, thenSx ∈Dt+1

j+jt+1
, wherej + jt+1 is taken modpt+1.

We can write

j + jt+1= ūpt + v̄mt + ρ̄, 0 � ū � λ− 1, 0 � v̄ � r − 1, 0� ρ̄ �mt − 1.

Let us denote (use (24) forj )

q0=
{
u0r + v0 if ρ = 0, . . . ,mt − ρ0− 1,
u0r + v0+ 1 if ρ =mt − ρ0, . . . ,mt − 1,

andq = ur + v, q̄ = ūr + v̄. Thenq̄ = q + q0(modrλt+1). Thus (26) and (31) give

c[q + q0] = τ
(
c[q]) if q ∈ Vt ⊂ {0,1, . . . , rλt+1− 1} (32)

and 1
λt+1

#Vt −→ 1. Analysing the sequences (28) and (29) it is easy to observe that
they do not satisfy (32) with anyq0 wheneverτ �= id (i.e., τ(1) �= 1). The lemma is
proved. ✷

LEMMA 2. –C(Tϕ)= C2.

Proof. –Let R ∼ (S, f, id) ∈ C3. Then (32) means

c[q + q0] = c[q], q ∈ Vt.

The last condition implies

q0(t)= q0= 2r+1rmw, w =wt, (33)

in the case 3.1 and

q0(t)= q0= 4rnw, w =wt, (34)

in the case 3.2, where 0� w � r2t+1− 1 (see again (28) and (29)). Moreover

min
(
q0(t)

λt+1
,1− q0(t)

λt+1

)
−→ 0.

The above condition implies

min
(
jt

pt

,1− jt

pt

)
−→ 0.
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Assume thatjt/pt −→ 0 along some subsequence oft . It follows from the definition
of thept -adic adding machine that

T jt ⇀ S. (35)

Now we will prove that there existsa ∈G such that

ϕ(jt ) −→ f + a (36)

in measureµ.
The function f satisfies the condition (see (2) withτ = id)

f (T x)− f (x)= ϕ(Sx)− ϕ(x).

The measurability off andξt −→ ε imply that there existsat ∈G such that the functions
ft defined by

ft (y)= at + ϕ(i)(Sx)− ϕ(i)(x), y ∈Dt
i , y = T ix, x ∈Dt

0, (37)

i = 0, . . . , pt − 1,

satisfy the condition

ft −→ f in measureµ.

We can assume thatat = b. We can rewrite (37) as

ft(y)= b+ ϕ(i)(Sx)− ϕ(i)
(
T jt x

)+ ϕ(i)
(
T jt x

)− ϕ(i)(x).

Further we have (see (6))

ϕ(i)
(
T jt x

)− ϕ(i)(x)= ϕ(jt )
(
T ix

)− ϕ(jt )(x). (38)

Because ofjt < mt thenϕ(jt )(x)= bt for all x ∈Dt
0. Assuming againbt = b1 we can

write (38) as

ϕ(i)
(
T jt x

)− ϕ(i)(x)= ϕ(jt )(y)− b1

and (37) as

ft(y)= b2+ ϕ(jt )(y)+ ϕ(i)(Sx)− ϕ(i)
(
T jt x

)
. (39)

Assume that

x ∈Dt+1
upt

, 0� u� λt+1− 1.

Then

T jt x ∈Dt+1
upt+jt and Sx ∈Dt+1

(u+u0)pt+jt ,

whereu0= q0/r.

For i � pt − jt − 1, i = vmt + ρ andu �= u1, . . . , ur we have

ϕ(i)
(
T jt x

)= Bt+1[upt + jt + i] −Bt+1[upt + jt ] = bt+1[ur + v] − bt+1[ur]
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and

ϕ(i)(Sx)=Bt+1[(u+ u0)pt + jt + i
]−Bt+1[(u+ u0)pt + jt

]
= bt+1[(u+ u0)r + v

]− bt+1[(u+ u0)r
]
.

Thus

ϕ(i)(Sx)− ϕ(i)
(
T jt x

)= (
b[q + q0] − b[q])− (

b[ur + q0] − b[ur]), q = ur + v.

Then (33) and (34) imply

ϕ(i)(Sx)− ϕ(i)
(
T jt x

)= 0 (40)

except of a set of measure� (r/λt)+ (jt/pt).

Now (39) and (40) imply (36) witha =−b2. Notice that (35) and (36) and Theorem
B imply

T jt
ϕ ⇀ R ◦ σa.

This proves the lemma.✷
To prove that

#
C(Tϕ)

wcl{T n
ϕ ; n ∈ Z} =m

in case 3.1 it is sufficient to show thatσa /∈ C1 whenevera ∈ Zm, a �= 0. In the case 3.2
we will prove thatσa ∈ C1 for everya ∈ Zn what implies

#
C(Tϕ)

wcl{T n
ϕ ; n ∈ Z} = 1.

To do this we need estimations of thed-distance between blocks occurring inω and
ωt, t � 0.

3.5. d-bar distance between blocks

The sequenceω = b0
r× b1

r× · · · is a concatenation of the blocks of the form

Ek(t)= Bt
r× ēk, E

(s)
k (t)= Bt

r× ē
(s)
k , k ∈ Zn, s = 0, . . . , r − 1,

where

ēk = (

r︷ ︸︸ ︷
k, . . . , k), ē

(s)
k = (

r︷ ︸︸ ︷
k, . . . , k, k+ 1︸ ︷︷ ︸

sth place

, k, . . . , k).

The sequenceωt = bt
r× bt+1

r× · · · is a concatenation of the blocks of the form

ek(t)= bt
r× ēk, e

(s)
k (t)= bt

r× ē
(s)
k .
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The blocksEk = Ek(t),E
(s)
k = E

(s)
k (t) are calledt-symbols and the blocksek =

ek(t), e
(s)
k = e

(s)
k (t) are called “small”t-symbols. Each fragmentω[kpt , (k+1)pt −1] of

ω,k ∈ Z, is at-symbol, andωt [kλt r, (k+1)λt r−1] is a “small” t-symbol. The positions
[kpt , (k + 1)pt − 1] and[kλtr, (k + 1)λt r − 1] will be called the natural positions inω
andωt respectively.

We will examined-bar distance between the blocks mentioned above or between their
special fragments. In particular, we will examine the pairs

bk(i)bk(i + 1), bk(i)bk+1(i + 1), bk+1(i)bk(i + 1),

for i = 0, . . . , r − 2 andk ∈ Zn and

bk(r − 1)bk(0), bk(r − 1)bk+1(0).

PROPOSITION 1. –Let{
I = bt0(i)[0, λt − j − 1], j � 1

2λt ,

II = btk(i
′)[j, λt − 1], k ∈ Zn, i, i

′ = 0, . . . , r − 1, t � 0.
(41)

If

d(I, II ) <
1

r2r+2
(42)

theni′ = i and

j = (n− k)r2i+2+ anr2i+2, a � 0, if 3.1 holds, (43)

j = (n− k)r4+ anr4, a � 0, if 3.2 holds. (44)

Proof. –It is easy to observe that ifi′ �= i or i′ = i and (43) (or (44) in the case 3.2)
does not hold then every subblockF (i)

k of I differs from the corresponding fragment
in II at least in one position. Sincej � 1

2λt
, this would imply the converse inequality

in (42). ✷
In Propositions 2–6 the blocksbtk(i) = bk(i), k ∈ Zn, 0 � i < r, are those defined

in 3.1.

PROPOSITION 2. –Let

I = b0(0) . . . b0(r − 1)[0, rλt − j − 1],
II = bk(0) . . . bk(r − 1)[j, rλt − 1], j � 1

2
rλt , k ∈ Zn.

If

d(I, II ) <
1

r22r+3
(45)

thenj � 1
2λt, k = 0, and

j ≡ 0
(
modnr2r+1). (46)
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Fig. 1.

Proof. –If j > 1
2λt then we can find subblocksI1 of I and II 1 of II such thatII 1 is

underI1 (see Fig. 1) having the form (41) with differentj ′s and withi′ �= i.

It follows from Proposition 1 thatd(I1, II 1) � 1
r2r+2 and using (11) we obtain

d(I, II )�
1
2λt

rλt
d(I1.II 1) � 1

r22r+3
.

in spite of (45). Thereforej � 1
2λt .

It follows from (11) and (45) that

d(Ii, II i) <
1

r2r+2
for i = 0, . . . , r − 1, (47)

where

Ii = b0(i)[0, λt − j − 1], II i = bk(i)[j, λt − 1].
Then (47) implies (43) to hold for eachi = 0, . . . , r − 1. In particular takingi = 0,1

we get

−kr4+ 2kr4= a1nr4.

Thusk = 0 in Zn. The proposition is proved.✷
PROPOSITION 3. –Let

I = bk(i)bk+1(i + 1)[0,2λ− j − 1], j � 1

2
λ; λ= λt,

II = bk1(i)bk2(i + 1)[j,2λ− 1], i = 0, . . . , r − 2, k, k1, k2 ∈ Zn

andk2= k1+ 1 or k2= k1− 1.
If

d(I, II ) <
1

r2r+4
(48)
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then

(k1k2)= (k, k+ 1) or (k1k2)= (k+ 4, k+ 3) if n � 3 (49)

and

(k1k2)= (k, k+ 1) if n= 2. (50)

Proof. –It follows from (48) and (11) that

d(I1, II 1) <
1

r2r+2

and

d(I2, II 2) <
1

r2r+2
,

where

I1= bk(i)[0, λ− j − 1], II 1= bk1(i)[j, λ− 1],

I2= bk+1(i + 1)[0, λ− j − 1], II 2= bk2(i + 1)[j, λ− 1].
Now, we apply Proposition 1. It follows from (43) that

k − k1= 2(k + 1− k2) (modn).

The above condition implies (49) and (50).✷
PROPOSITION 4. –Let

Ik = bk(r − 1)bk(0)[0,2λ− j − 1] or I ′k = bk(r − 1)bk+1(0)[0,2λ− j − 1],

II = bk1(r − 1)bk2(0)[j,2λ− 1], k, k1, k2 ∈ Zn, j � 1

2
λt ,

and

k2= k1 or k2= k1+ 1. (51)

If

d(I, II ) <
1

r2r+4
, I = Ik or I ′k,

then

k1= k2= k if I = Ik and k1= k, k2= k + 1 if I = I ′k (52)

whenever (
2r−1− 1, n

)
> 1, (53)
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and there is a uniquel ∈ Zn such that
(k1k2)= (kk) or (k1k2)= (l, l + 1) and l satisfies
l(2r−1− 1)= (2r−1− 1)k+ 1 in Zn if I = Ik,

and

(k1k2)= (k, k+ 1) or (k1k2)= (ll) and l satisfies
l(2r−1− 1)= (2r−1− 1)k− 1 in Zn if I = I ′k,

(54)

whenever (
2r−1− 1, n

)= 1. (55)

Proof. –Using the same arguments as in the proof of Proposition 3 we obtain
from (43)

(k1− k)2r−1= k− k2 (modn) if I = Ik

and

(k1− k)2r−1= k− k2+ 1 (modn) if I = I ′k.

The above, (51), (53) and (55) imply (52) and (54) respectively.✷
The next proposition is an easy consequence of (9) and the definition of the blocks

b(0), . . . , b(r − 1).

PROPOSITION 5. –Let

Il = bl(i)[0, λt − j − 1], II k = bk(i)[j, λt − 1],
j � 1

2
λt, k, l ∈ Zn, 0 � i � r − 1.

If j ≡ 0 (modnr2r+1) andk �= l then

d(Il, II k)= 1.

PROPOSITION 6. –Let

I = bt
r×C, II = bt

r×D[j, j + λt |D| − 1], 0� j � rλt − 1,

where|C| � 3r, |D| = |C| + r, C,D ⊂ ωt+1 (see(21)) andC = ωt+1[pr,pr + |C| −
1], D = ωt+1[qr, qr + |D| − 1]. If

d(I, II ) < δ, δ <
1

3r22r+3
, (56)

then either

j < δr2r+1λt and d(C,D1) < δ (57)

or

rλt − δr2r+1λt < j � rλt and d(C,D1) < δ, (58)
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where

D1=D[0, |D| − r − 1] if j � 1

2
rλt ,

D1=D[r, |D| − 1] if j >
1

2
rλt .

Proof. –We can representC andD as

C = C1C2 . . .Cs, D =D1D2 . . .DsDs+1,

where

|C1| = · · · = |Cs| = |D1| = · · · = |Ds| = |Ds+1| = r, s � 3,

and everyC1, . . . ,Cs,D1, . . . ,Ds+1 is equal to one of the blocks̄ek, ē
(v)
k , k ∈ Zn, v =

0, . . . , r − 1 (see 3.5). Assume thatj � 1
2rλt . Using (12) we get

d(I, II )= 1

s

s∑
p=1

(
b

r×Cp,Ap

)
, (59)

where

Ap = (
b

r×Dp

)(
b

r×Dp+1
)[j, j + rλt − 1].

Then (56) implies that

d
(
b

r×Cp,Ap

)
<

1

3r22r+3

for at least onep. Using the same arguments as in the proof of Proposition 2 we obtain
j � 1

2λt .

Let

Q= {1� p � s, Cp andDp are equal̄ek, ēl for somek, l ∈ Zn}.
It follows from the definitions ofω,ωt andbt ’ s that

#Q � 1

3
s.

This inequality, (56), and (59), imply

1

|Q|
∑
p∈Q

d
(
b

r×Cp,Ap

)
<

1

r22r+3
.

Now we conclude that there is at least onep ∈Q such that

d
(
b

r×Cp,Ap

)
<

1

r22r+3
.

It follows from Proposition 2 thatj ≡ 0 (modnr2r+1).
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Fig. 2.

Now, using (10) and (12) again we get (see Fig. 2)

d(I, II )= 1

r

r−1∑
i=0

1

s

((
1− j

λt

) s∑
u=1

d(Lui,Mui)+ j

λt

s∑
u=1

d
(
L̄ui, M̄ui

))
, (60)

where

Lui = btCu[i](i)[0, λt − j − 1], Mui = btDu[i](i)[j, λt − 1],
L̄ui = btCu[i](i)[λt − j, λt − 1], M̄ui = btDu[i](i + 1)[0, j − 1].

It is not hard to remark that ifj �= 0

d
(
L̄ui, M̄ui

)
� 1

r2r+1
(61)

for everyu andi, 1� u� s, 0� i � r − 1. Let

a = #
{
0 � k � |C| − 1,C[k] �=D[k]}.

Then using Proposition 5, (60) and (61) we get

δ > d(I, II ) � a

|C|
(

1− j

λt
+ j

λt

1

r2r+1

)
. (62)

The above gives

δ >
a

|C|
(

1− j

λt

)
� a

|C|
1

2

and then a
|C| < 2δ. This inequality, (56) and (62) imply

δ >
a

|C| +
j

λt

(
1

r2r+1
− a

|C|
)
>

a

|C| +
j

λt

(
1

r2r+1
− 2δ

)
>

a

|C| = d(C,D1).
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We have obtained the second inequality of (57). To get the first inequality of (57) we
use (62) to obtain

δ >
j

λt

1

r2r+1
.

This implies (57). We have proved the proposition ifj � 1
2rλt . The case1

2rλt < j < rλt
leads to (58) in a similar way. The proposition is proved.✷

PROPOSITION 7. –Let

I = Bt
r× C, II = Bt

r×D[j, j +mt |D| − 1], 0� j � pt − 1,

whereC andD satisfy the same conditions as in Proposition6. If

d(I, II ) < δ, δ <
1

3r22r+3
,

then either

j < δr2r+pt and d(C,D1) < δ

or

pt − δr2r+1pt < j < pt and d(C,D1) < δ,

where

D1=D[0, |D| − r − 1] if j � 1

2
pt ,

and

D1=D[r, |D| − 1] if r >
1

2
pt .

Proof. –We use an induction argument and can repeat the proof of Lemma 3 from [8,
p. 198], using (8), (9), and also using Proposition 6 instead of using a Lemma 2 as in [8,
p. 196]. ✷
3.6. d-bar distance between blocks – the case 3.2

Using the same methods as in 3.5 we can estimate the distance between blocksbtk(i)

andBt
k(i), i = 0, . . . , r − 1, k ∈ Zn, t � 0, defined in the case 3.2.

As an easy consequence of Proposition 1 we get

PROPOSITION 8. –Let

Il = bl0(0) . . . blr−1(r − 1)[0, rλt − j − 1],
II k = bk0(0) . . . bkr−1(r − 1)[j, rλt − 1],

j � 1
2rλt , where(l0, . . . , lr−1) (resp.(k0, . . . , kr−1)) is of the formēl or ē(v)l (resp.ēk or

ē
(v′)
k ), k, l ∈ Zn andv, v′ = 0, . . . , r − 1. If

d(Il, II k) <
1

r22r+3
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then j � 1
2λt and there is a uniques ∈ Zn, s = s(t), such thatli = ki + s for every

i = 0, . . . , r − 1. Moreoverj has a form

j = (n− s)r4+ anr4, a � 0.

As an analogue of Proposition 5 we obtain

PROPOSITION 9. –Let Il, II k be as in Proposition5,

j � 1

2
λt and j ≡ (n− s) (mod 4rn)

for somes ∈ Zn. Then

d(Il, II k)= 1 wheneverk− l �= s.

Then using Propositions 8 and 9 we have

PROPOSITION 10. –Let I and II be as in Proposition6 and

|C|� r, |D| = |C| + r, C,D ⊂ ωt+1,

C = ωt+1[pr,pr + |C| − 1], D = ωt+1[qr, qr + |D| − 1].
If

d(I, II ) < δ, δ <
1

3r22r+3
,

then there is an uniques ∈ Zn, s = s(t), such that

j < δr2r+1λt and d(C,D1) < δ

or

rλt − δr2r+1λt < j � rλt and d(C,D1) < δ,

whereD1=D[0, |D| − r − 1] = C + s if j � 1
2λtr, andD1=D[r, |D| − 1] = C + s if

j > 1
2rλt .

Using arguments as in Lemma 3 in [8] and Proposition 10 we get

PROPOSITION 11. –LetI and II be as in the Proposition7 andC,D satisfy the same
conditions as in Proposition10.

If

d(I, II ) < δ, δ <
1

3r22r+3
,

there exists an uniques ∈ Zn, s = s(t), such that either

j < δr2r+1pt and d(C,D1) < δ

or

ptδr2
r+1pt < j < pt and d(C,D1) < δ,
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where

D1=D[0, |D| − r − 1] + s if j � 1

2
pt

and

D1=D[r, |D| − 1] + s if j >
1

2
pt .

3.7. The centralizer of Tϕ (continuation)

In 3.4 we have proved thatC(Tϕ) consists of the elementsR ◦ σa, whereR is a limit
of powers ofTϕ andσa is defined by (4),a ∈ Zn. Now we are in a position to show that

#
C(Tϕ)

wcl{T n
ϕ ; n ∈ Z} =

{
n in the case 3.1,
1 in the case 3.2.

LEMMA 3. – If the case3.1 holds andσa ∈C1 thena = 0.

Proof. –Let us suppose thatT ns
ϕ ⇀ σa, a ∈ Zn. Then Corollary 1 says thatϕ(ns) −→ a

in measure. Let

εs =µ
{
x ∈X; ϕ(ns)(x) �= a

}
. (63)

We haveεs −→ 0. Now for everys find ts such that

ns

pts

<
εs

r
. (64)

To shorten notation we lett := ts + 1, t̄ := ts . Takex ∈Dt
j . Then using (18) we get

ϕ(ns)(x)= Bt [j + ns] −Bt [j ] (65)

except of j ’s satisfying mt − 1 − ns � j � mt − 1, 2mt − 1 − ns � j � 2mt −
1, . . . , pt − 1− ns � j � pt − 1. Then (63) and (64) imply

1

pt

#
{
0� j � pt − 1,Bt [j + ns] −Bt [j ] �= a

}
< εs + εs = 2εs.

This means that

d
(
Bt [0,pt − ns − 1],Bt

−a[ns,pt − 1])< 2εs.

We can write

Bt = Bt̄
r× bt , Bt

−a =Bt̄
r× bt−a.

If εs <
1

6r22r+3 then we apply Proposition 7 to the blocksI = Bt̄
r× bt andII = Bt̄

r× bt−a .
As a consequence we obtain

d
(
bt , bt−a

)
< 2εs .

This equality implies (Proposition 2)a = 0. The lemma is proved. ✷
From Lemmas 2 and 3 we obtain
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THEOREM 2. –

#
C(Tϕ)

wcl{T n
ϕ , n ∈ Z} = n

if the case3.1 holds.

Now, we examine the case 3.2. It follows from the definition of the blocksb0(i) =
bt0(i), i = 0, . . . , r − 1, a ∈ Zn that

b(i)[(n− a)4r, λ− 1] = ba(i)[0, λ− (n− a)4r − 1], (66)

for everyi = 0, . . . , r − 1.
Setnt = (n− a)4rpt−1. Then (66) implies

Bt(i)[j + nt ] −Bt(i)[j ] = a

for j = 0, . . . , pt − nt − 1, andi = 0, . . . , r − 1. (65) and the above implyϕ(nt )(x)= a

except of a set of measure< r nt
pt

� 4r2n
λt

.

Henceϕ(nt ) −→ a in measure which implies thatT nt
ϕ ⇀ σa, a ∈ Zn. We have shown

thatσa ∈ C1 for everya ∈ Zn and as a consequence of Lemma 2 we get

THEOREM 3. –

#
C(Tϕ)

wcl{T n
ϕ ; n ∈ Z} = 1

if the case3.2 holds.

THEOREM 3′. – wcl{T n
ϕ , n ∈Z} is uncountable.

Proof. –Let

g0=
∞∑
0

utpt−1, ut =wt

(
rm2r+1)

in the case (3.1) andut =wt(4rn) in the case (3.2) 0� ut � rλt − 1 and assume that

∞∑
t=0

min
(
wt

r2t
,1− wt

r2t

)
<∞.

Repeating the same arguments as in Lemma 4 of [9] we can construct a measurable
functionf :X −→G such that

f (T x)− f (x)= ϕ(Sx)− ϕ(x), for a.e.x ∈X.

Thus the tripleR = (S, f, id) ∈ C(Tϕ). Of course, there is a continuum ofg0’s in X

satisfying the above conditions. HenceC(Tϕ) is uncountable. Then Theorem 2 and 3
imply wcl{T n

ϕ , n ∈Z} is uncountable. ✷
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4. Rank of Tϕ is r

In this section we use the shift representation()ω,Tσ ) of (X×Zn, T ϕ) (see 2.3) and
the definition of rank given at the end of 2.2.

We will also require the notion ofδ-cover: letA be a (finite) family of blocks andB
a block such that|B| ∈ {|A|: A ∈A}, we let

d(B,A)=min
{
d(B,A): A ∈A, |A| = |B|}.

If A= {A1, . . . ,Ak}, C is a block, andδ > 0, we define

tδ(A,C)= tδ(A1, . . . ,Ak,C)=max
{ |C1| + · · · + |Cp|

|C|
}
,

where the maximum is taken over all concatenations of the form

C = ε1C1ε2 . . . εpCpεp+1

for which d(Ci,A) < δ, 1 � i � p. Then we define, for a strictly ergodic one-sided
sequenceω,

tδ(A,ω)= lim inf
N→∞ tδ

(
A,ω[0,N]) (= lim

N→∞ tδ
(
A,ω[0,N])).

In particular,tδ(A,ω) is defined for a single blockA, or if ω= C is finite.
It is known ([3,20]) that in the case under consideration therank of ()ω,S,µω) is at

mostr if for any δ > 0 and anyN ∈N, there existsA of cardinalityr such that|A|� N ,
A ∈A, and

tδ(A,ω)� 1− δ.

This definition agrees with that of sub-section 2.2.
Given a one-sidedη, someδ > 0, and a familyA of blocks, we will say thatthe

subsequencẽη of η (finite or infinite) is δ-covered byA if tδ(η̃,A)� 1− δ.

4.1. The frequencies of t-symbols and an estimation of the rank

Let Fr(E,ω) be the average frequency of at-symbolE (see 3.5) appearing inω at
natural positions. Similarly, let Fr(e,ωt) denote the average frequency of a “small”t-
symbole appearing inωt at natural positions. It is easy to get the following equalities;


Fr(Ek,ω)= Fr(ek,ωt)= 1

rn

r−1∑
i=0

(
1− 1

2i+2

)
= 1

n

[
1− 1

r

r−1∑
i=0

1

2i+2

]
and

Fr
(
E

(s)
k ,ω

)= Fr
(
e
(s)
k ,ωt

)= 1

rn2s+2
, s = 0, . . . , r − 1, k ∈ Zn,

(67)
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if the case 3.1 holds. In the case 3.2 we have
Fr(Ek,ω)= Fr(ek,ωt)= 3

4n
,

Fr
(
E

(s)
k ,ω

)= Fr
(
e
(s)
k ,ωt

)= 1

4nr
, k ∈ Zn, s = 0, . . . , r − 1.

(68)

PROPOSITION 12. –r(Tϕ) � r.

Proof. –Consider the blocks

L
(s)
k = L

(s)
k (t)= Bt

r× bt+1
k (s), s = 0, . . . , r − 1, t � 0, k ∈ Zn.

We have

Ek =L
(0)
k . . .L

(r−1)
k , E

(s)
k = L

(0)
k . . .L

(s−1)
k L

(s)
k+1L

(s+1)
k . . .L

(r−1)
k

for everyk ∈ Zn ands = 0, . . . , r − 1.
Because the blocksEk,E

(s)
k cover completely the sequenceω then the blocks

L
(0)
k . . .L

(r−1)
k , k ∈ Zn, also coverω.

We know that

bt+1(s)
[
0, λt+1− knr2r+1]= bt+1

−k (0)
[
knr2r+1, λt+1− 1

]
,

k ∈ Zn, s = 0, . . . , r − 1, if 3.1 holds,

and

bt+1(s)[0, λt+1− knr4] = bt+1
−k (0)[knr4, λt+1− 1],

k ∈ Zn, s = 0, . . . , r − 1, if 3.2 holds.

The last equalities imply that the blockL(s)
0 cover each blockL(s)

k , k ∈ Zn, except
of a part with the length� n22r+1pt in the case 3.1 and� n24pt in the case 3.2, for
s = 0, . . . , r − 1. Thus the blocksL(0)

0 , . . . ,L
(r−1)
0 cover the sequenceω except of a part

with the density� n22r+1/λt+1 if 3.1 holds and� n24/λt+1 if 3.2 holds. Simultaneously
|L(s)

0 (t)| t→∞−→∞. According to the definition of the rank (see 2.2) we haver(Tϕ) � r. ✷
4.2. Special subblocks of ωt

Fix t � 0. We distinguish special subblocksC of ωt of the formbt
r× C̄, whereC̄ is a

strict subblock of one of the following blocks (cf. 3.5)
ekek, eke

(s)
k , e

(s)
k ek+1, k ∈ Zn, s = 0, . . . , r − 1,

whereek = ek(t + 1), e(s)k = e
(s)
k (t + 1),

if the case 3.2 is considered,

(69)

or 
ekekekek, ekekeke

(s)
k , ekeke

(s)
k ek+1, eke

(s)
k ek+1ek+1, e

(s)
k ek+1ek+1ek+1,

k ∈ Zn, s = 0, . . . , r − 1,

if the case 3.1 is considered.

(70)
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Notice that blocks (69) are all pairs of “small”(t + 1)-symbols appearing inωt+1, as
well as the blocks (70) are all possible quadruples of “small”(t + 1)-symbols appearing
in ωt+1. Let us list the different cases we shall deal with afterwards:

(A) C̄ ⊂ bt+1
k0

(i0) for somek0 ∈ Zn andi0= 0, . . . , r − 1 (cases 3.1 or 3.2);
(B) (the case 3.2)̄C = bki0 (i0) . . . bkr−1(r − 1) | bl0 . . . bli1(i1) whereb(i) = bt+1(i),

i0 > 0, i1 < r − 1.
E := (ki0 . . . kr−1l0 . . . li1) is contained in one of the following blocks;

ēk ēk, ēk ē
(s)
k , ē

(s)
k ēk+1, k ∈ Zn, s = 0, . . . , r − 1, (71)

and 2� |E|< 2r ;
(B′) (the case 3.1)̄C = bki0 (i0)..bkr−1(r − 1) | bu0(0)..bur−1(r − 1) | bv0(0)..bvr−1(r −

1) | bl0(0)..bli1 (i1) andE = (ki0 . . . kr−1 | u0 . . . ur−1 | v0 . . . vr−1 | l0 . . . li1), 2 � |E| <
4r, i0 > 0, i1 < r − 1, is contained in one of the blocks

ēk ēkēkēk, ēkēkēkē
(s)
k , ēk ēkē

(s)
k ēk+1, ēk ē

(s)
k ēk+1ēk+1, ē

(s)
k ēk+1ēk+1ēk+1. (72)

In general we can write

C̄ = C̄1C̄2C̄3 (73)

whereC̄2 is as in (A) or as in (B) (the case 3.2) or (B′) (the case 3.1), and{
C̄1= bt+1

k′ (i0− 1)[l1r, λ− 1], C̄3= bt+1
k′′ (i1+ 1)[0, l2r − 1],

0< l1 � λ− 1, 0< l2 � λ− 1, λ= λt+1,
(74)

and k′Ek′′ is contained in one of the blocks (71) or (72) respectively (E is defined
by C̄2).

Then we can distinguish the next special kinds of blocks (73) for givenδ > 0:
(G1) |C̄1|/|C̄|> δ and|C̄3|/|C̄|> δ,

(G2) |C̄1|/|C̄|> δ and|C̄3|/|C̄|� δ,

(G3) |C̄1|/|C̄|� δ and|C̄3|/|C̄|> δ,

(G4) |C̄1|/|C̄|� δ and|C̄3|/|C̄|� δ.

4.3. r(Tϕ) = r: the case 3.2

Take 0< δ2 < 1/(r222r+3).

PROPOSITION 13. –Assume that̄C is as in(B) and letd(C,D) < δ2, D ⊂ ωt. Then
D has a form

D = (
bt

r× D̄
)[j, j + |D| − 1], whereD̄ ⊂ ωt+1 (75)

and {
D̄ = bt+1

k′
i0
(i0) . . . b

t+1
k′
r−1

(r − 1) | bt+1
l′0

(0) . . . bt+1
l′
i1

(i1)b
t+1
l′
i1+1

(i1+ 1),

andj < δ2r2r+1λt+1, l
′
i1+1 ∈ Zn

(76)
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or {
D̄ is as in(76) and
j > rλt+1− δ2r2r+1λt+1.

(77)

Moreover, there is a uniques0 ∈ Zn such that

(k′0 . . . k
′
r−1 | l′0 . . . l′i1)= (k0 . . . kr−1 | l0 . . . li1)+ s0

if (76) holds and

(k′1 . . . k
′
r−1 | l′0 . . . l′i1+1)= (k0 . . . kr−1 | l0 . . . li1)+ s0

if (77) holds.

Proof. –The proposition is an easy consequence of the Proposition 10 wheret is taken
instead oft + 1 (δ2 < 1/(r222r+3) < 1/(3r22r+3)). ✷

Given a blockA ⊂ ω or ωt, A = ω[l, l + |A| − 1] we defineA(δ) as A(δ) =
ω[l − δ|A|, l + |A| + δ|A| − 1], δ > 0. The next proposition says that ifC is as in (G1),

(G2), (G3), or (G4), there is a blockC ′ = bt
r× C̃ such thatC̃ is as in (B) and either̃C

containsC̄ or C̄ is contained inC̃(δ1), whereδ1 < δ2r2r+1.

PROPOSITION 14. –Let C = bt
r× C̄ and let C̄ be as in(G1), (G2), (G3) or (G4).

Assume that

d
(
C,ωt [l, l + |C| − 1])< δ2

3
. (78)

Then

d
(
C ′,ωt[l′, l′ + |C ′| − 1])< δ2

whereC ′ = bt
r× C̃, C̃ ⊂ ωt+1 and

(g1) C̃ = bt+1
k′ (i0− 1)C̄2b

t+1
k′′ (i1+ 1), l′ = l − l1r (cf. (73), (74)), if (G1)holds,

(g2) C̃ = bt+1
k′ (i0− 1)C̄2, l

′ = l − l1r , if (G2) holds,
(g3) C̃ = C̄2b

t+1
k′′ (i1+ 1), l′ = l, if (G3) holds,

(g4) C̃ = C̄2, l
′ = l, if (G4)holds.

Proof. –Consider the case (G2). Then (11) and (78) imply(C2= bt
r× C̄2)

d
(
bt

r× C̄2,ωt[l̄2, l̄2+ |C2| − 1])< δ2

wherel̄2= l + |bt r× C̄1|.
It follows from Proposition 13 thatωt [l̄2, l̄2+ |C2| − 1] is of the form (75). Assume

that the case (76) holds. Set

C̃1= C̄1[0, |C̄1| − j − 1],

D̃1= ωt+1

[
1

λt
(l − j),

1

λt
(l − j)+ |C̃1| − 1

]
(see Fig. 3).
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Fig. 3.

If follows from Proposition 8 that

j ≡ (n− s0)r4 (mod 4nr). (79)

The fragment ofωt+1 from the left side ofbt+1
k′0

(i0) having the lengthλt+1 is of a form

bt+1
u (i0−1) and eitheru= k′ + s0 or u= k′ + s0+1. Assume thatu= k′ + s0+1. Then

Proposition 9 implies

d(C̃1, D̃1)= 1. (80)

Let D̄1 denote the blockωt+1[ 1
λt
(l− j), 1

λt
(l− j)+ |C̄1| −1] (see Fig. 3). Obviously we

have

|C̄1|
|C| d(C̄1, D̄1)

(11),(8)
� d

(
C,ωt [l, l + |C| − 1])< δ2.

Further

δ2 >
|C̄1|
|C̄| d(C̄1, D̄1) > δd(C̄1, D̄1)

(11)
� |C̃1|
|C̄1|δd(C̃1, D̃1)

(80)= |C̄1| − j

|C̄1| δ

= δ

(
1− j

|C̄1|
)

(G2)
� δ

(
1− j

δ|C̄|
)

(76)
� δ

(
1− δ2r2r+1λt+1

δ|C̄|
)

� δ
(
1− δr2r+1),

because|C̄|� λt+1.

Thus

1− δr2r+1 < δ

which is in contradiction with the inequalityδ2 < 1/(r222r+3). We have shownu− k′ =
s0= k′0− k0.

Now, using (79) and the definition ofbk′(i0 − 1) andbu(i0 − 1) we obtainC[v] =
ωt [l′ + v] for eachv = 0, . . . , |C̄1| − 1, l′ = l − l1r (see (74)). This last equality implies
(g2). The proofs of the remaining cases are similar.✷
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PROPOSITION 15. –Assume thatF = {C1, . . . ,Cd}, d � r − 1, is a family of
subblocks ofωt such that

Cj = bt
r× C̄j and eachC̄j is as in(B). (81)

Letωt(F) be the maximal subsequence ofωt that can beδ2-covered by the familyF in
a disjoint way,δ2 < 1/(r222r+3), and letω̄t (F) be the complementary part ofωt. Then

it is an union of at least(r − d) blocksbt
r× bt+1(ij ), j = 1, . . . , r − d.

Proof. –Denote byFi the set of all blocksC ∈F such thatC̄δ2-covers a subblock of
ωt+1 containing one of the form

bt+1
1 (i)bt+1(i + 1), i = 0, . . . , r − 2,

and byFr−1 thoseC for which C̄ δ2-covers a block containingbt+1(r − 1)bt+1(0). We
show thatFi ∩Fj =∅ wheneveri �= j. TakeC ∈Fi ,D ∈ Fj and letC̄, D̄ be the blocks
defined by (81),C̄ as in (B) and

D̄ = bt+1
k′
i′
0

(i′0) . . . b
t+1
k′
r−1

(r − 1) | bt+1
l′0

(0) . . . bt+1
l′
i′
1

(i′1).

If (i0 . . . (r − 1) | 0. . . i1) �= (i′0 . . . (r − 1) | 0. . . i′1) thenC �= D. If (i0 . . . (r − 1) |
0. . . i1)= (i′0 . . . (r − 1) | 0. . . i′1) then using Proposition 13 we obtain

(ki0 . . . kr−1 | l0 . . . li1)= (k′i0 . . . k
′
r−1 | l′0 . . . l′i1)+ s0

for somes0 ∈ Zn. The last condition is impossible sincei �= j . The proposition follows
because #{Fi; 0 � i < r} = r . ✷

THEOREM 4. – r(Tϕ)= r.

Proof. –According to Proposition 12 it remains to show thatr(Tϕ) > r − 1. Let

δ2

9
<

1

r222r+3

and letA1, . . . ,Ax be blocks occurring inω, |Ai |� pt0 andt0 satisfiesr/λt < δ2r2r+1,

if t � t0, x � r − 1. For eachu= 1, . . . , x there exists an uniquet = t (u) such thatAu

contains at least onet-symbol and does not contain any(t + 1)-symbol. ThenAu has a
form

Au = Ẽ1
(
Bt−1 r× Cu

)
Ẽ2, (82)

whereCu ⊂ ωt is as in 4.2,|Cu| = qr, q = q(u) � 1,E1 is a right-side part of at-symbol
andE2 is a left-side part of at-symbol. We divide the set{t (1), . . . , t (x)} by arithmetic
order. More precisely, we put

τ1=max
{
t (1), . . . , t (x)

}
, T1= {

u; t (u)= τ1
}
, d1= #T1.
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Next we define

τ2=max
{
t (u); u /∈ T1

}
, T2= {

u; t (u)= τ2
}
, d2= #T2.

Similarly we define setsT3, . . . , Tv, numbersτ3, . . . , τv andd3, . . . , dv. We have

τ1 > · · ·> τv, d1+ · · · + dv = x.

Let

Ap = {Au; u ∈ Tp}, p = 1, . . . , v.

The familiesA1, . . . ,Av are pairwise disjoint and
⋃v

p=1Ap = {A1, . . . ,Ax}.
Consider the familyA1. Assume that

A1= {A1, . . . ,Ad1}.

Then

Cu = bt
r× C̄u

and

C̄u ⊂ ωt+1, u ∈ T1, t = τ1.

If d(Au,ω[l̃, l̃ + |Au| − 1]) < δ2/9 then by (11), (8),

d
(
Bt−1 r×Cu,ω[l, l+mt−1|Cu| − 1])< δ2

3
(83)

wherel = l̃ + |Ẽ1|.
According to Proposition 11

d
(
Cu,ωt[l′, l′ + |Cu| − 1])< δ2

3
(84)

for somel′ ∈ Z and

|l − pt l
′|< 1

3
δ2r2r+1pt . (85)

We can write

C̄u = C̄u
(1)
C̄u

(2)
C̄u

(3)

according to (73).
We distinguish among the blocksA1, . . . ,Ad1 three typesF1,F2,F3, as follows;

Au ∈F1 if Cu is as in (A) or (G4),

Au ∈F2 if Cu is as in (G1), (G2), or (G3),

Au ∈F3 if Cu is as in (B).
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Let d11= #F1, d12= #F2, d13= #F3. We have

d11+ d12+ d13= d1.

Let ω(A1, . . . ,Ad1) be a subsequence ofω that is δ2

9 -covered by the blocksA1, . . . ,Ad1

in a disjoint way. Byω(Fi), i = 1,2,3, we denote the subsequence ofωδ2

9 -covered in a
disjoint way by the familiesFi . Of course,ω(A1, . . . ,Ad1)⊂ ω(F1)∪ ω(F2)∪ ω(F3).

Denoting byω̄(A1, . . . ,Ad1), ω̄(Fi ) the complementary parts ofω(A1, . . . ,Ad1),ω(Fi),

i = 1,2,3, respectively, we have

ω̄(A1, . . . ,Ad1)⊃ ω̄(F1)∩ ω̄(F2)∩ ω̄(F3).

According to (83)–(85) and Proposition 15 we have thatω̄(F3) is an union of at least

(r − d13) blocksE(δ1), (86)

where {
E =Bt

r× bt+1(ij ), j = 1, . . . , r − d13, and
δ1 � 2δ2r2r+1,

(87)

because of

|Ẽ1|
|Au|

(84)
� pt

mt+1
= r

λt+1
<

1

2
δ1, and

|Ẽ2|
|Au| <

1

2
δ1.

Consider the familyF2. LetAu ∈F2. If Au
δ2

9 -covers a fragmentIu of ω then (83) and

(84) imply thatC̄u
δ2

3 -covers a fragmentIu = Iu(t) of ωt+1 and (85) implies

Iu ⊂ (
Bt

r× Iu(t)
)
(δ1).

It follows from Proposition 14 that there isAū of a form as inF3 such thatC̃ū
δ2

3 -covers
another fragmentIū(t) of ωt+1 such that

Iu(t)⊂ Iū(t)(δ).

Applying Proposition 15 to the family{Aū} we obtain that̄ω(F3)∩ ω̄(F2) is an union of
at least(r − d13− d12) blocksE(δ2),E is as (87) andδ2=max(δ, δ1).

Each blockE(δ2) ∈ ω̄(F3) ∩ ω̄(F2) is an union of at least(r − d13− d12) blocks of

the formBt
r× e

(s)
k , k ∈ Zn, s ∈ S,#S = r − d13− d12.

Using the same arguments as before we get that
ω̄(F3)∩ ω̄(F2)∩ ω̄(F1) is a union

of at least(r − d13− d12− d11) blocks of the formBt−1
r× e

(s)
k ,

s ∈ S1,#S1= r − d13− d12− d11.

(88)

DenotingP(ω1,ω) the density of a subsequenceω1 in ω and using (69), (86), (88) we
have



J. KWIATKOWSKI, Y. LACROIX / Ann. I. H. Poincaré – PR 38 (2002) 155–192 187

P
(
ω̄(A1, . . . ,Ad1),ω

)
�P

(
ω̄(F3)∩ ω̄(F2)∩ ω̄(F1),ω

)
�
(

1− d13+ d12

r

)(
1− d11

r

)(
1

4nr

)2

(1− δ2)

�
(

1− 1

r

)2( 1

4nr

)2

(1− δ2) �
(

1− 1

r

)2( 1

4nr

)21

2
.

If T1 �= {1, . . . , x} then we repeat the above reasoning to the subsequenceω̄(F3) ∩
ω̄(F2)∩ ω̄(F1) andt = τ2, and so on. As a consequence we get

P
(
ω̄(A1, . . . ,Ax),ω

)
�

(
1− 1

r

)2r 1

2r

(
1

4nr

)2r

.

This impliesr(Tϕ) > r − 1. Thus we have shownr(Tϕ)= r. ✷
4.4. r(Tϕ) = r: the case 3.1

To prove thatr(Tϕ) = r in the case 3.1 we can repeat the same arguments an in 4.3.
Similarly as in the Theorem 4 we consider blocksAu,u= 1, . . . , x, x � r − 1, andAu

are as in (82),Cu = bt
r× C̄u but C̄u are as in (A), (B′) and (G1), (G2), (G3), (G4).

As an analogue of Propositions 13–15 and Theorem 4 we obtain

PROPOSITION13′. – Assume thatC is as in(B′) and letd(C,D) < δ2,D ⊂ ωt. Then
D has a form(75), and

D̄ = bk′
i0
(i0)..bk′

r−1
(r − 1) | bu′0(0)..bu′r−1

(r − 1) | b′v0
(0)..bv′

r−1
(r − 1) | bl′0(0)..bl′i1 (i1),

bk(i)= bt+1
k (i), andj satisfies either(76) or (77).

PROPOSITION 14′. – Let C be as in Proposition14, C̄ is as in(73) and C̄2 is as in
(B′). Then we get(g1), (g2), (g3)or (g4).

The proofs of Propositions 13′ and 14′ are similar to the proofs of Propositions 13
and 14.

PROPOSITION15′. – LetF = {C1, . . . ,Cd}, d � r − 1, Cj = bt
r× C̄, andCj are as

in (B′). Then we have the same thesis as in Proposition15.

Proof. –Let Fi,k, i = 0, . . . , r − 2, k ∈ Zn, be the set of all blocksC ∈ F such that

C̄(C = bt
r× C̄)δ2-covers a subblock ofωt+1 containing one of the formbt+1

k (i)bt+1
k+1(i+

1). By F (1)
r−1,k,F

(2)
r−1,k we denote thoseC ∈ F such thatC̄ does so for the pairs

bt+1
k (r − 1)bt+1

k (0) or bt+1
k (r − 1)bt+1

k+1(0) respectively.
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Using Propositions 3 and 7 we get that

if C ∈Fi,k thenC̄δ2-covers (up toδr22r+3λt+1) only those

fragments ofωt+1 containing blocks of the form

(89′) bt+1
r× ē

(i+1)
k or bt+1

r× ē
(i)
k+4, if n� 3,

and

(89′′) bt+1
r× ē

(i+1)
k if n= 2,

(89)

wheneveri = 0, . . . , r − 2, k ∈ Zn. Using Propositions 4 and 7 we get that
if C ∈F (1)

r−1,k thenC̄δ2-covers only those fragments

of ωt+1 containing blocks of the form

(90′) bt+1
k (r − 1)bt+1

k (0) or bt+1
l (r − 1)bt+1

l+1(0),

l satisfies (54),

(90)

and 
if C ∈F (2)

r−1,k thenC̄δ2-covers only those fragments

of ωt+1 containing blocks of the form

(91′) bt+1
k (r − 1)bt+1

k+1(0) or bt+1
l (r − 1)bt+1

l (0),

l satisfies (54).

(91)

Now notice that each two blocksbt+1
r× e

(i)
k andbt+1

r× e
(i)
k′ , k

′ ∈ Zn, k �= k′, appearing
in ωt+1 are separated by at least three blocks of the form

bt+1
r× ek+1. This, (89) and the condition|E|< 4r (see (B′)) imply thatFi,k ∩Fi,k′ = ∅,

if k �= k′, i = 0, . . . , r − 2. Similarly F (1)
r−1,k ∩ F (1)

r−1,k′ = ∅ andF (2)
r−1,k ∩ F (2)

r−1,k′ = ∅, if
k �= k′.

Further (89) implies that ifC ∈ Fi,k ∩ Fi′,k′ then i′ = i + 1, k′ = k + 4 if n � 3
((89′)) and i′ = i, k′ = k if n = 2 ((89′′)), i = 0, . . . , r − 2. (90) implies that ifC ∈
F (1)

r−1,k ∩ F (2)
r−1,k′ thenk′ = l, l satisfying (54). Combining the above arguments we get

that there is at leastrn2 − d fragments ofωt+1 of the form(89′) and (90) or (91) that are
not covered by the familyF . The Proposition follows becausern2 � r. ✷

THEOREM 4′. – r(Tϕ)= r.

Proof. –We repeat the same reasoning as in the proof of Theorem 4 using blocks
A1, . . . ,Ax of the form (82) withq � 3. We use Proposition 7 instead of Proposition 11
and the Propositions 14′ and 15′ instead of Propositions 14 and 15. Then using (67)
instead of (68) we get

P
(
ω̄(A1, . . . ,Ax),ω

)
�

(
1− 1

r

)2r 1

2r

(
1

rn2r+1

)2r

,

what impliesr(Tϕ) > r − 1 and by Proposition 12 we haver(Tϕ)= r. ✷
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5. Pairs (r,∞) or (∞,m)

In this part we construct group extensions(X ×G,Tϕ) such thatr(Tϕ)= r, q(Tϕ)=
∞,2� r <∞ or r(Tϕ)=∞, q(Tϕ)=m,1� m<∞.

5.1. The case (r,∞)

Take a sequence{st}∞t=0, st+1 = µt+1st , s0 = µ0, µt � 2 for t � 0 and letG be the
group of{st }-adic integers. Lete= 1+ 0s1+ 0p2+ · · · . The set of all{st}-adic rational
integers ofG coincides with the set{en, n ∈Z}, whereen = ne. Similarly as in the case
3.1 we define an adding machine(X,B,µ,T ) and a cocycleϕ :X−→G. To do this we
define blocksF (0), F (1), . . . , F (r−1) (r � 2 is given) overG.
Put

F (i)(t)=F (i) =
r(2i+1−1)︷ ︸︸ ︷
0. . .0

r︷ ︸︸ ︷
0. . .0e0. . .0, i = 0, . . . , r − 1,

H (i)=F (i)F (i)
e . . .F

(i)
(st−1)e.

Then|H(i)| = st r2t+1. Next definebt(0), . . . , bt (r−1) as in 3.1 andbt = bt (0) . . . bt (r−
1), t � 0.
We have

λt =
∣∣bt (i)∣∣= st r2

r+t+1, i = 0, . . . , r − 1

and ∣∣bt ∣∣= st r
22r+t+1.

Then we define the blocksBt, t � 0, by (14). We havept = |Bt | = s0 . . . st r
2t2r+1(2t+1−

1). Let (X,B,µ,T ) be the{pt}-adic adding machine and define a cocycleϕ :X −→G

by (18).

THEOREM 5. – r(T ϕ)= r andq(Tϕ)=∞
Proof. –Let It :G −→ Z/stZ be the natural group homomophism. We can define

cocyclesϕt :X −→ Z/stZ by ϕt = ϕ ◦It. It is evident thatϕt is a r-Toeplitz cocycle
as in 3.1 defined by the blocksIt(Bk), u � 0. According to Theorems 2 and 4 we
haver(Tϕt ) = r and q(Tϕt ) = st . It follows from the definitions ofϕ andϕt that the
dynamical system(X × G,Tϕ) is the inverse limit of the systems(X × Z/stZ,Tϕt ).

Then from the definition of the rank we obtainr(Tϕ)= r. It is proved in Theorem 2 that
σje /∈wcl{T n

ϕt
, n ∈Z} if j = 0, . . . , st −1, t � 0. This means thatσje /∈wcl{T n

ϕ , n ∈Z}
for everyj ∈Z, j �= 0 which impliesq(Tϕ)=∞. ✷
5.2. The case (∞,m)

First consider the casem � 2. Let rt = 2t+1, t � 0, and define blocksF (i) = F (i)(t)

overG= Z/mZ, i = 0, . . . , rr+1− 1, as follows:

vF (i) =
2i+1rt︷ ︸︸ ︷

0. . .0

rt+1︷ ︸︸ ︷
0. . .0 1︸︷︷︸

i+1

0. . .0,
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H(i) = F
(i)
0 F

(i)
1 . . .F

(i)
m−1, i = 0, . . . , rt+1− 1.

We have|H(i)| =mrt2i+3. Next definebt(0), . . . , bt (rt+1− 1), bt ,Bt by putting

bt(i)=
x︷ ︸︸ ︷

H(i)H (i) . . .H (i), x = 2t+rt+1−i−1

bt = bt (0)bt (1) . . . bt (rt+1− 1), and

Bt = b0
r0× b1 r1× · · · ri−1× bt .

Thenλt = |bt(i)| = m22t+ρ+2, ρ = rt+1 andpt = mtrt+1,mt = λ0 · · ·λt . We define a
cocycleϕ :X −→G by

ϕ(x)=Bt [j + 1] − bt [j ]
if x ∈Dt

j except ifj =mt − 1, . . . , pt − 1. The cocycleϕ is constant on the levelsDt
j

except ofrt+1 consecutive levels.
In a similar way we construct a cocycleϕ if m = 1. Taken as in the case 3.2 and

define

F (i)(t)=F (i) =
2rt︷ ︸︸ ︷

0. . .0

2rt︷ ︸︸ ︷
0. . .0 1︸︷︷︸

i+1

0. . .0,

H (i)=F
(i)
0 F

(i)
1 . . .F

(i)
n−1, i = 0,1, . . . , rt+1− 1.

The next steps of the definitionϕ are the same as in the casem� 2.

THEOREM 6. – r(Tϕ)=∞, q(Tϕ)=m andwcl{T n
ϕ , n ∈ z} is uncountable.

Proof. –For the dynamical system(X × G,Tϕ) we can use the same arguments
as in the parts 3 and 4 takingrt instead ofr . Theorems 2, 3 and 3′ are valid. To
estimate the rank ofTϕ we use the shift representations()ω,Tσ ) of (X×G,Tϕ) where

ω = b0
r0× b1

r1× · · · . Repeating the proof of Theorem 4 and 4′ we getr(Tϕ) > rt − 1 for
everyt � 0. Thusr(Tϕ)=∞. ✷

6. The pair (∞,∞)

This case is easy to handle: first let(Y, S, ν) be the rank 1 mixing staircase
transformation [1]. Then letG denote the group of dyadic integers, and letmG denote
its normalized Haar measure.

Then consider aMorse cocycle[23] φ :Y → G, that is a measurable map which is
constant on the levels of the stacks defining the rank 1S, except the top level, at each
step.

To select aφ such that the system(Y ×G,Sφ, ν ⊗mG) is mixing, where

Sφ(y, g)= (
Sy, g + φ(y)

)
,

we proceed as follows.
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The system is the inverse limit of the sequence of systems(Y ×Z/2tZ, Sφt , ν ⊗mt)

wheremt is Haar measure onZ/2tZ andφt = πt ◦ φ.
Therefore [13] enough is to make sure thatφ is such that eachSφt is mixing.

Using [24], sufficient is that eachφt is a weakly-mixing cocycle. This in turn is easy
to ensure using [14, Theorems 3, 4].

So we take aφ such thatSφ is mixing. Now becauseSφt is a factor ofSφ , we have the
inequalityr(Sφt ) � r(Sφ).

But sinceSφt is mixing, using [12], it follows thatr(Sφt )= 2t . Whencer(Sφ)=∞.
Now Sφ is mixing therefore{Sn

φ: n ∈ Z} = wcl{Sn
φ: n ∈ Z}. Else for eachg ∈ G,

σg ∈ C(Sφ), andG is uncountable.
We deduce thatq(Sφ)=∞.

REFERENCES

[1] Adams T., Smorodinsky’s conjecture on rank 1 mixing, Proc. Amer. Math. Soc. 126 (1998)
739–744.

[2] Christol G., Kamae T., Mendès France M., Rauzy G., Suites algébriques, automates et
substitutions, Bull. Soc. Math. France 108 (1980) 401–419.

[3] del Junco A., A transformation with simple spectrum which is not rank one, Canad. J.
Math. 29 (1977) 655–663.

[4] Ferenczi S., Systèmes localement de rang un, Ann. Inst. Henri Poincaré, Probab. Stat. 20
(1984) 35–51.

[5] Ferenczi S., Systèmes de rang un gauche, Ann. Inst. Henri Poincaré, Probab. Stat. 21 (1985)
177–186.

[6] Ferenczi S., Systems of finite rank, Colloq. Math. 73 (1) (1997) 35–65.
[7] Ferenczi S., Kwiatkowski J., Rank and spectral multiplicity, Stud. Math. 102 (2) (1992)

121–144.
[8] Filipowicz I., Kwiatkowski J., Rank, covering number and simple spectrum, J. d’Analyse

Math. 66 (1995) 185–216.
[9] Goodson G., Kwiatkowski J., Liardet P., Lemaǹczyk M., On the multiplicity function of
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