Ann. I. H. Poincaré – PR 38, 2 (2002) 155–192 © 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved S0246-0203(01)01091-3/FLA

FINITE RANK TRANSFORMATION AND WEAK CLOSURE THEOREM

Jan KWIATKOWSKI^a, Yves LACROIX^b

^a Wydział Matematyki i Informatyki, U. M. K., ul. Chopina 12/18, 87-100 Toruń, Poland ^b U.P.J.V., Lamfa, 33 rue St Leu, 80000 Amiens, France

Received 7 December 1999, revised 26 February 2001

En mémoire d'Anzelm Iwanik

ABSTRACT. – We introduce a new class of cocycles which provides examples of measure preserving dynamical systems (X, \mathcal{B}, μ, T) , such that given positive integers $r \ge 2$ and $m \ge 1$, possibly infinite, with $(r, m) \ne (\infty, \infty)$, the rank is r and the order of the quotient group in the measure-theoretic centralizer, $\#\frac{C(T)}{\operatorname{wcl}\{T^n; n \in \mathbb{Z}\}}$, is m. Moreover, wcl $\{T^n; n \in \mathbb{Z}\}$ is uncountable. For the case $(r, m) = (\infty, \infty)$, we produce a mixing T. This completes the weak closure theorem of Jonathan King. © 2002 Éditions scientifiques et médicales Elsevier SAS

AMS classification: 28D; 47A

Keywords: Rank; Measure-theoretic centralizer; Weak closure Theorem

RÉSUMÉ. – Nous introduisons une nouvelle classe de cocycles qui permet d'obtenir des exemples de flots (*X*, *B*, μ , *T*), tels qu'étant donnés deux entiers *r* ≥ 2 et *m* ≥ 1, éventuellement infinis, avec (*r*, *m*) ≠ (∞, ∞), le rang soit *r* et l'ordre du groupe quotient dans le centralisateur, $\# \frac{C(T)}{\text{wcl}\{T^n; n \in \mathbb{Z}\}}$, soit *m*. En outre ces exemples sont tels que wcl{*Tⁿ*; *n* ∈ \mathbb{Z} } est non dénombrable. Pour (*r*, *m*) = (∞, ∞), nous construisons un exemple avec *T* mélangeant. Ceci en particulier complète le Théorème de Clôture Faible de Jonathan King. © 2002 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Let (X, \mathcal{B}, μ, T) be an ergodic dynamical system and let C(T) be the measuretheoretic centralizer of T. The Weak Closure Theorem [10] asserts that C(T) coincides with the weak closure of the set of powers of T, denoted wcl{ $T^n, n \in \mathbb{Z}$ }, whenever r(T) = 1, where r(T) is the rank of T.

Hence the question of the existence of a relationship between r(T) and the cardinality q(T) of the quotient group $\frac{C(T)}{\operatorname{wcl}\{T^n; n \in \mathbb{Z}\}}$ in the general case naturally arises.

E-mail addresses: jkwiat@mat.uni.torun.pl (J. Kwiatkowski), yves.lacroix@u-picardie.fr (Y. Lacroix).

For mixing T it follows from [11] that $q(T) \leq r(T)$. It is not difficult to show that the same inequality holds for T's defined in [2] – generalized Morse flows, for which q(T) = 2 and r(T) can be arbitrarily large.

Each automorphism T in [2] has a partially discrete spectrum whence the two kinds of automorphisms previously described are rather far from each other.

However for both cases wcl{ T^n , $n \in \mathbb{Z}$ } = { T^n , $n \in Z$ }. Therefore an interesting additional feature is to construct arbitrary pairs (q(T), r(T)) with an uncountable wcl{ T^n , $n \in Z$ }.

In this paper we shall introduce some new classes of cocycles, which define flows that are ergodic group extensions of rank 1 systems, and are tractable enough to allow an exact computation of both r(T) and q(T).

We shall pick within these classes, for each possible pair (q, r), examples of ergodic automorphisms T such that (q(T), r(T)) = (q, r). Moreover, for $(q, r) \neq (\infty, \infty)$, our examples produce an uncountable wcl{ T^n , $n \in Z$ }.

The difficulty lies both in the proposition of a good candidate, and in the computation of the rank and the order of the quotient group. For $(r, m) \neq (\infty, \infty)$, our examples lie in the class of group extensions determined by *r*-Toeplitz sequences. For the (∞, ∞) case, the example is mixing: it is a weakly mixing extension of a rank 1 mixing transformation [1].

From these examples, it now follows that in its generality, the weak closure theorem is the only one for limitations concerning the coexistence of the measure-theoretic invariants q(T) and r(T).

The investigations of ergodicity and that of the measure-theoretic centralizer both rely on Newton's functional equation [21] and are carried out partially on a measure-theoretic group extension representation of the system.

Investigating the rank (and partly the centralizer too) we use a shift representation of those extensions.

2. Preliminaries

2.1. Notations and definitions

Let (X, \mathcal{B}, μ) be a Lebesgue space and T a measure-preserving invertible ergodic transformation of (X, \mathcal{B}, μ) . By the centralizer (measure-theoretic) of T we mean the set of all measure-preserving automorphisms of (X, \mathcal{B}, μ) which commute with T and we denote it by C(T). Then C(T) is a topological group with the standard operation of composition of transformations and with a topology (called the weak topology) defined as follows: $\{S_n\}_{n\in\mathbb{N}} \in C(T)$ converges to $S \in C(T)$ if for every $A \in \mathcal{B}$

$$\mu(S_n A \triangle S A) \longrightarrow 0.$$

We shall indicate this convergence by $S_n \rightarrow S$. With this topology, C(T) is metric, complete. By wcl{ T^n , $n \in \mathbb{Z}$ } we mean the weak closure of the powers of T in C(T).

We say that a sequence of sets $A_1, \ldots, A_k \in \mathcal{B}$ is a *T*-stack if these sets are pairwise disjoint and $TA_i = A_{i+1}, i = 1, \ldots, k-1$.

If we are given a collection of *r* measurable subsets F_i of *X*, and *r* positive integers h_i , such that $C := \{T^l F_i : 1 \le i \le r, 0 \le l < h_i\}$ is a collection of disjoint sets (a union of *r* disjoint *T*-stacks), setting $Y = X \setminus (\bigcup_{C \in C} C)$, this union of *r* disjoint *T*-stacks defines a partition $\tilde{C} := C \cup \{Y\}$, and a σ -algebra $\sigma(\tilde{C})$.

The rank of *T* is the smallest integer *r* such that given $\varepsilon > 0$, there exists a union of *r* disjoint *T*-stacks C, such that for any measurable $A \in \mathcal{B}$, there exists $B \in \sigma(\tilde{C})$ with $\mu(A \Delta B) < \varepsilon$. If such a positive integer does not exist then we say that $r(T) = \infty$.

We shall give a symbolic version for the definition of the rank in 2.2. and 4., which are shown to be equivalent to the one above in [3] and [20]. We reffer the interested reader to [5-7] for more on rank and partitions.

Suppose now that *G* is a compact metric abelian group and $\varphi: X \longrightarrow G$ is a measurable function which we will call a cocycle. The *G*-extension of (X, \mathcal{B}, μ, T) given by the cocycle φ is the dynamical system $\mathcal{X}_{\varphi} = (X \times G, \mathcal{B} \times \mathcal{B}_G, \mu \times \nu, T_{\varphi})$, where \mathcal{B}_G is the Borel σ -algebra in *G*, ν is the normalized Haar measure on *G* and

$$T_{\varphi}(x,g) = (Tx,g + \varphi(x))$$

for $x \in X$, $g \in G$. It is well known [22] that for ergodic (X, \mathcal{B}, μ, T) the following theorem is true.

THEOREM A. – T_{φ} is ergodic iff the functional equation

$$\frac{f(Tx)}{f(x)} = \gamma\left(\varphi(x)\right) \tag{1}$$

has no measurable solutions $f: X \longrightarrow K$ for any nontrivial character γ of G (K is the unit complex circle).

It is known (see [21] for the definition) that if (X, \mathcal{B}, μ, T) is a canonical factor of T_{φ} (for example if *T* is with discrete spectrum) then, assuming that T_{φ} is ergodic, $C(T_{\varphi})$ is given by the triples (S, f, τ) , where $S \in C(T)$, $f: X \to G$ is measurable and τ is a group automorphism of *G* such that

$$f(Tx) - f(x) = \varphi(Sx) - \tau(\varphi(x)).$$
⁽²⁾

This means that every element $R \in C(T_{\omega})$ is of a form

$$R(x,g) = (Sx,\tau(g) + f(x)).$$
(3)

In such a case we write $R \sim (S, f, \tau)$. The following property is proved in [17] and [18], using Theorem A.

THEOREM B. – If R_n , $R \in C(T_{\varphi})$ and $R_n \sim (S_n, f_n, id)$, $R \sim (S, f, id)$ then $R_n \rightarrow R$ iff $S_n \rightarrow S$ and $f_n \longrightarrow f$ in measure μ .

Let $\sigma_a: X \times G \longrightarrow X \times G$ be given by the formula

$$\sigma_a(x,g) = (x,g+a), \quad a \in G.$$
(4)

Then $\sigma_a \in C(T_{\omega}), \sigma_a \sim (id, a, id)$. For every integer n, $(T_{\omega})^n$ is given by the formula

$$(T_{\varphi})^{n}(x,g) = (T^{n}x, g + \varphi^{(n)}(x)),$$
 (5)

where

$$\varphi^{(n)}(x) = \begin{cases} \varphi(x) + \dots + \varphi(T^{n-1}x), & \text{if } n \ge 0, \\ -\varphi(T^{-1}x) - \dots - \varphi(T^nx), & \text{if } n < 0. \end{cases}$$
(6)

Then it follows from Theorem B that

COROLLARY 1. $-(T_{\varphi})^{n_k} \rightharpoonup \sigma_a$ in $C(T_{\varphi})$ iff $T^{n_k} \rightharpoonup id$ in C(T) and $\varphi^{(n_k)} \longrightarrow a$ in measure.

2.2. Sequences and blocks

A finite sequence B = (B[0], ..., B[k-1]), $B[i] \in G$, $0 \le i \le k-1$, $k \ge 1$, is called a block over *G*. The number *k* is called the length of *B* and is denoted by |B|. If C = (C[0], ..., C[n-1]) is another block then the concatenation of *B* and *C* is the block

$$BC = (B[0], \dots, B[k-1], C[0], \dots, C[n-1]).$$

Inductively we define the concatenation of an arbitrary number of blocks. By B_g , $g \in G$, we will denote the block

$$B_g = (B[0] + g, \dots, B[k-1] + g)$$

and by $B[i, s](0 \le i \le s \le k - 1)$ the block

$$B[i,s] = (B[i],\ldots,B[s]).$$

Assume that

$$B = B(0) \dots B(r-1)$$

is a concatenation of r blocks $B(0), \ldots, B(r-1)$ having the same lengths and

$$C = C[0] \dots C[rm-1]$$

for some $m \ge 1$. We define the product $B \xrightarrow{r} C$ of B and C as follows:

$$B \times C = B_{C[0]}(0) \dots B_{C[r-1]}(r-1) B_{C[r]}(0) \dots$$

$$B_{C[2r-1]}(r-1) B_{C[r(m-1)]}(0) \dots B_{C[rm-1]}(r-1).$$
(7)

Then

$$|B \stackrel{r}{\times} C| = \frac{|B||C|}{r} = |B(i)|rm$$
, for every $i = 0, \dots, r-1$.

Let Ω by the space of all bi-infinite sequences over G. If $\omega \in \Omega$ or ω is a onesided infinite sequence over G then $\omega[i, s]$, $i \leq s$, denotes the block $(\omega[i], \dots, \omega[s])$. A block *B* is said to occur at place *i* in ω (resp. in a block *C*, |C| = n, if $|B| \leq n$) if $\omega[i, i + |B| - 1] = B$ (resp. C[i, i + |B| - 1] = B). The frequencies of *B* in *C* or ω are the numbers

$$fr(B, C) = |C|^{-1} #\{0 \le i \le |C| - |B|; B \text{ occurs at place } i \text{ in } C\},\$$

$$\operatorname{fr}(B,\omega) = \lim_{s \to \infty} \operatorname{fr}(B,\omega[0,s-1]),$$

if this limit exists.

For an infinite subsequence of ω , $E = \{\omega[n], n \in I \subset \mathbb{Z}\}$ (resp. $E = \{\omega[n], n \in I \subset \mathbb{N}\}$), we call the density of *E* the density of the set *I* in \mathbb{Z} (resp. in \mathbb{N}), whenever it exists. Let $\delta > 0$. We say that *B* δ -occurs at place *i* in *C* (resp. in ω) if

$$d(B, C[i, i + |B| - 1]) < \delta$$
 (resp. $d(B, \omega[i, i + |B| - 1]) < \delta$),

where

$$d((x_1,...,x_n),(y_1,...,y_n)) = n^{-1} \#\{i; x_i \neq y_i\}$$

(*d* is called the normalized Hamming distance or *d*-bar distance between sequences). We will say also that $B\delta$ -occurs on the fragment $\omega[i, i + |B| - 1]$ of ω .

We will use the following elementary properties of the distance *d*;

$$d\left(B \stackrel{r}{\times} C, B \stackrel{r}{\times} D\right) = d(C, D) \quad (\text{see (7)}), \tag{8}$$

$$d(B_g, C_g) = d(B, C), \tag{9}$$

$$d(A_1A_2, B_1B_2) = \frac{|A_1|}{|A_1| + |A_2|} d(A_1, B_1) + \frac{|A_2|}{|A_1| + |A_2|} d(A_2, B_2),$$
(10)

where $|A_1| = |B_1|$, $|A_2| = |B_2|$.

If $D_1 \subset D(D_1$ is a subblock of D) and $C_1 \subset C$, $|D_1| = |C_1|$, both appearing in the corresponding same positions, then

$$d(D,C) \ge \frac{|D_1|}{|D|} d(D_1,C_1).$$
(11)

$$d(A_1 A_2 \dots A_s, B_1 B_2 \dots B_s) = \frac{1}{s} \sum_{i=1}^s d(A_i, B_i)$$
(12)

if $|A_1| = |A_2| = \dots = |A_s| = |B_1| = \dots = |B_s|$.

By T_{σ} we denote the left shift homeomorphism of Ω . If $\omega \in \Omega$ then $O(\omega)$ denotes the T_{σ} -orbit of ω and Ω_{ω} the T_{σ} -orbit closure of ω in Ω . The T_{σ} -orbit closure Ω_{ω} is well-defined if ω is a one-sided sequence. Namely, we first let $\diamondsuit \notin G$ be an additional symbol. Then we let ω^{\diamondsuit} denote the bi-infinite sequence which agrees with ω at positive coordinates and has only squares appearing at the negative ones. Then we say that a bi-infinite y belongs to Ω_{ω} if there exists $n_i \to +\infty$ such that $T_{\sigma}^{n_i} \omega \to y$ in Ω (the convergence is for all coordinates of y, and the limiting element y does not contain any more squares). The topological flow $(\Omega_{\omega}, T_{\sigma})$ is called minimal if there is no non trivial closed and T_{σ} -invariant subset of Ω_{ω} . We say that $(\Omega_{\omega}, T_{\sigma})$ is uniquely ergodic if there is a unique borelian normalized T_{σ} -invariant measure μ_{ω} on Ω_{ω} . Then $(\Omega_{\omega}, T_{\sigma})$ is said to be strictly ergodic if it is minimal and uniquely ergodic. Suppose $(\Omega_{\omega}, T_{\sigma})$ is strictly ergodic. The unique T_{σ} -invariant measure μ_{ω} is determined by the condition

$$\mu_{\omega}(B) = \operatorname{fr}(B, \omega)$$

for each block B. In the case of a discrete group G, the definition of the rank has the following symbolic transcription.

The system $(\Omega_{\omega}, T_{\sigma}, \mu_{\omega})$ is of rank at most *r* if for any $\delta > 0$ and every *n*, there exist *r* blocks $B_1, \ldots, B_r, |B_i| \ge n$, such that for all *N* large enough, for any $s \in \mathbb{N}$, the fragment $\omega[s, s + N - 1]$ has a form

$$\omega[s, s+N-1] = \varepsilon_1 W_1 \varepsilon_2 W_2 \cdots \varepsilon_k W_k \varepsilon_{k+1},$$

where $|\varepsilon_1| + \cdots + |\varepsilon_k| + |\varepsilon_{k+1}| < \delta N$ and the distance *d* between W_j and some B_m , $j = 1, \ldots, k, 1 \le m \le r$, is less than δ . The system $(\Omega_{\omega}, T_{\sigma}, \mu_{\omega})$ is of rank *r* if it is of rank at most *r* and not of rank at most r - 1.

2.3. Adding machines and r-Toeplitz cocycles

Now, let $T: (X, \mathcal{B}, \mu) \longrightarrow (X, \mathcal{B}, \mu)$ be a $\{p_t\}$ -adic adding machine i.e.

$$p_{t+1} = \lambda_{t+1} p_t, \quad \lambda_0 = p_0, \quad \lambda_t \ge 2 \text{ for } t \ge 0,$$

$$X = \left\{ x = \sum_{t=0}^{\infty} q_t p_{t-1}; \ 0 \leqslant q_t \leqslant \lambda_t - 1, \ p_{-1} = 1 \right\}$$

is the group of $\{p_t\}$ -adic integers and $Tx = x + \hat{1}$, where

$$\hat{1} = 1 + 0p_1 + 0p_2 + \cdots$$

The space *X* has a standard sequence $\{\xi_t\}_{t \ge 0}$ of *T*-stacks. Namely

$$\xi_t = \left(D_0^t, \ldots, D_{p_t-1}^t\right),$$

where

$$D_0^t = \{x \in X; q_0 = \dots = q_t = 0\}, \qquad D_s^t = T^s(D_0^t)$$

for $s = 1, ..., p_t - 1$. We have

$$X = \bigcup_{i=0}^{p_t - 1} D_i^t$$

Then ξ_{t+1} refines ξ_t and the sequence of partitions $\{\xi_t\}_{t\geq 0}$ converges to the point partition.

We will define a special class of cocycles $\varphi : X \longrightarrow G$ that are determined by Toeplitz sequences over *G*.

Let $r \ge 2$ be an integer, and assume that b^0, b^1, \ldots are finite blocks over G with $|b^t| = \lambda_t r, \lambda_t \ge 2$, such that

$$b^{t}[0, r-1] = (\underbrace{0, \dots, 0}_{r \text{ times}}).$$

We shall introduce a particular sequence (p_t) , and some new blocks (B^t) .

We can write

$$b^{t} = b^{t}(0) \dots b^{t}(r-1), \quad |b^{t}(i)| = \lambda_{t}, \ i = 0, \dots, r-1.$$
 (13)

Define another sequence of blocks $\{B^t\}$ letting

$$B^{0} = b^{0}, \quad B^{t+1} = B^{t} \stackrel{r}{\times} b^{t+1}, \quad t \ge 0.$$
 (14)

Then we have

$$|B^t| = rm_t = p_t, \quad m_t = \lambda_0 \cdots \lambda_t, \tag{15}$$

and we can represent B^t as

$$B^{t} = B^{t}(0) \cdots B^{t}(r-1), \quad |B^{t}(i)| = m_{t}, \ i = 0, \dots, r-1.$$
 (16)

Moreover

$$B^{t+1}[0, p_t - 1] = B^t.$$
(17)

Now we can define a cocycle φ by

$$\varphi(x) = B^{t}[i+1] - B^{t}[i]$$
(18)

if $x \in D_i^t$ except of $i = m_t - 1, 2m_t - 1, ..., p_t - 1$. Let us observe that φ is well defined. Such a cocycle is called *r*-Toeplitz cocycle. For every $t \ge 0, \varphi$ is constant on the levels of ξ_t except of *r* levels.

The sequence $\{B^t\}_{t \ge 0}$ determines a one-sided sequence ω as follows:

$$\omega[0, p_t - 1] = B^t, \quad t = 0, 1, \dots$$
(19)

The condition (17) guarantees that ω is well defined.

It is not hard to show that the condition

$$\operatorname{fr}(g, b^t) \ge \rho > 0$$
 (if G is finite) (20)

for every $g \in G$ and t = 0, 1, ..., implies that the system $(\Omega_{\omega}, T_{\sigma})$ is strictly ergodic. Then using (19), (20), and arguments as in [16], we deduce that the dynamical systems $(\Omega_{\omega}, T_{\sigma}, \mu_{\omega})$ and $(X \times G, T_{\varphi}, \mu \times \nu)$ are measure-theoretically isomorphic when T_{φ} is ergodic. The group extensions defined by r-Toeplitz cocycles shall be called r-Toeplitz extensions.

In the sequel we will write

$$\omega = b^0 \stackrel{r}{\times} b^1 \stackrel{r}{\times} b^2 \stackrel{r}{\times} \cdots$$

Except of ω we need the sequences ω_t , $t \ge 0$, defined by

$$\omega_t = b^t \stackrel{r}{\times} b^{t+1} \stackrel{r}{\times} \cdots . \tag{21}$$

3. Examples of *r*-Toeplitz extensions

In this part, given $r \ge 2$ and $m \ge 1$, we define *r*-Toeplitz group extensions having cardinality of the quotient group $C(T_{\varphi})/\operatorname{wcl}\{T_{\varphi}^n; n \in \mathbb{Z}\}$ equal to *m*.

3.1. The case $r \ge 2$, $m \ge 2$

Let $G = \mathbb{Z}/m\mathbb{Z} = \{0, \dots, m-1\}$. Define $F^{(i)} = \overbrace{00\dots0}^{r(2^{i+2}-1)} \underbrace{0\dots0}_{i+1}^r \underbrace{0\dots0}_{i+1}, \quad i = 0, \dots, r-1;$ $H^{(i)} = F_0^{(i)} F_1^{(i)} \dots F_{m-1}^{(i)}.$

We have $|H^{(i)}| = mr2^{i+2}$. Next define

$$b^{t}(0) = \underbrace{H^{(0)}H^{(0)}\dots H^{(0)}}_{x_{0} \text{ times}}$$
$$b^{t}(1) = \underbrace{H^{(1)}H^{(1)}\dots H^{(1)}}_{x_{1} \text{ times}}$$

:
$$b^{t}(r-1) = \underbrace{H^{(r-1)}H^{(r-1)}\dots H^{(r-1)}}_{x_{r-1} \text{ times}}$$

where

$$x_i = 2^{t+r-1-i}, \quad 0 \leq i \leq r-1,$$

and

$$b^t = b^t(0) \dots b^t(r-1), \quad t \ge 0.$$

Then we have

$$\lambda_t = |b^t(i)| = mr2^{t+r+1}, \text{ for } i = 0, \dots, r-1 \text{ (see (13))}$$

and

$$\left|b^{t}\right| = mr^{2}2^{t+r+1}.$$

Now define the blocks B^t , $t \ge 0$, by (14) and the cocycle φ by (18). Then from (15)

$$p_t = |B^t| = m^{t+1}r^{2t}2^{r+1}(2^{t+1}-1), \quad t \ge 0.$$

3.2. The case $r \ge 2$, m = 1

Let $G = \mathbb{Z}/n\mathbb{Z} = \{0, \dots, n-1\}, n \ge 4$. Then define

$$F^{(i)} = \overbrace{00...0}^{3r} \overbrace{0...1}^{r} \overbrace{0...0}^{n},$$
$$H^{(i)} = F_0^{(i)} F_1^{(i)} \dots F_{n-1}^{(i)},$$

and

$$b^{t}(i) = \underbrace{H^{(i)}H^{(i)}\dots H^{(i)}}_{x \text{ times}}, \quad x = 2^{t}.$$

Next set

$$b^{t} = b^{t}(0) \dots b^{t}(r-1),$$

$$B^{t} = b^{0} \stackrel{r}{\times} b^{1} \stackrel{r}{\times} \dots \stackrel{r}{\times} b^{t}, \quad t \ge 0,$$

and define φ by (18). In this case we have

$$\lambda_t = rn2^{t+2} = |b^t(i)|, \quad |b^t| = r^2 n2^{t+2}, \text{ for } i = 0, 1, \dots, r-1 \text{ and } t \ge 0.$$

3.3. Ergodicity and the measure-theoretic centralizer

THEOREM 1. – T_{ω} is ergodic.

Proof. – We will prove ergodicity of T_{φ} in both cases 3.1 and 3.2. Assume that there exists a measurable function $f: X \longrightarrow K$ satisfying (1). Then (see (5), (6))

$$\frac{f(T^n x)}{f(x)} = \gamma\left(\varphi^{(n)}(x)\right) \tag{22}$$

for μ -a.e. $x \in X$ and every $n \in \mathbb{Z}$.

In particular (22) holds for $n = p_t$, t = 0, 1, ... The measurability of f and the fact that $\xi_t \longrightarrow \varepsilon$ (the partition into points) in X imply

$$\gamma\left(\varphi^{(p_t)}(x)\right) = 1 \tag{23}$$

except of a subset of measure ε_t and $\varepsilon_t \longrightarrow 0$.

Let $x \in D_j^{t+1}$, $0 \le j \le p_{t+1} - 1$. We can represent j as

$$j = up_t + vm_t + \rho, \tag{24}$$

where $0 \leq u \leq \lambda_{t+1} - 1$, $0 \leq v \leq r - 1$, $0 \leq \rho \leq m_t - 1$ (see (15)).

It follows from (18) (with t := t + 1) that

$$\varphi^{(p_t)}(x) = B^{t+1}[j+p_t] - B^{t+1}[j]$$
(25)

except *j* for which $u = u_1 = \frac{\lambda}{r} - 1, \dots, u = u_r = \frac{r\lambda}{r} - 1 = \lambda - 1, \lambda = \lambda_{t+1}$. At the same time we have

$$B^{t+1}[j] = b[ur + v] + B^{t}(v)[\rho], \quad b = b^{t+1} \quad (\text{see (14), (16)}).$$

Then (25) can be rewritten as

$$\varphi^{(p_t)}(x) = b[(u+1)r + v] - b[ur + v], \quad u \neq u_1, \dots, u_r.$$
(26)

The last equality and (23) imply that

$$\gamma(c[q]) = 1 \quad (q = ur + v) \tag{27}$$

for $q \in V_t \subset \{0, 1, \dots, r\lambda_{t+1} - 1\}$, $\frac{\#V_t}{r\lambda_{t+1}} \ge 1 - \varepsilon_t - \frac{2}{\lambda_{t+1}}$, where $c = c^t$ is given by

$$c[q] := b[q+r] - b[q], \quad q = 0, \dots, r\lambda - r - 1$$

Further the blocks $c = c^t$ have the following forms:

$$c = \underbrace{E^{(0)} \dots E^{(0)}}_{(0)} L^{(0)} \underbrace{E^{(1)} \dots E^{(1)}}_{(0)} L^{(1)} \dots \underbrace{E^{(r-1)} \dots E^{(r-1)}}_{(r-1)} \underbrace{E^{(r-1)} \dots E^{(r-1)}}_{(28)}$$

where

$$E^{(0)} = \underbrace{\overbrace{0...0}^{2r}}_{r} \underbrace{[c_{r}^{r}]_{r}}_{r} \underbrace{[c_{r}^{r}]_{r}}_{r} [L^{0}] = r,$$

$$E^{(1)} = \underbrace{\overbrace{0...0}^{6r}}_{r} \underbrace{[c_{r}^{r}]_{r}}_{r} \underbrace{[c_{r}^{r}]_{r}}_{r} [L^{1}] = r,$$

$$\vdots$$

$$E^{(r-1)} = \underbrace{\overbrace{0...0}^{(2^{r+1}-2)r}}_{0...0} \underbrace{[c_{r}^{r}]_{r}}_{r} \underbrace{[c_{r}^{r}]_{r}}_{r} [L^{(r-2)}] = r$$

in the case 3.1. In the case 3.2 we have

$$c = \underbrace{E^{(0)} \dots E^{(0)}}_{(n \times -1) \text{ times}} L^{(0)} \underbrace{E^{(1)} \dots E^{(1)}}_{(n \times -1) \text{ times}} L^{(1)} \dots \underbrace{E^{(n \times -1)}}_{(n \times -1) \text{ times}} L^{(n \times -1) \text{ times}}$$
(29)

where

$$E^{(0)} = \underbrace{\overbrace{0...0}^{2r}}_{10...0} \underbrace{\overbrace{10...0}^{r}}_{10...0} \underbrace{[L^{0}]}_{10...1} = r,$$

$$E^{(1)} = \underbrace{\overbrace{0...0}^{2r}}_{10...0} \underbrace{\overbrace{101...1}^{r}}_{101...1}, \quad |L^{1}| = r,$$

$$E^{(r-1)} = \underbrace{0 \dots 0}^{2r} \underbrace{0 \dots 0}^{r} \underbrace{1 \dots 10}_{r}, \quad |L^{(r-2)}| = r.$$

In both cases 1 appears in c with frequency $> \frac{1}{r^{2^{r+2}}}$ for each $t \ge 0$. Then (27) implies $\gamma(1) = 1$ so γ is trivial. We have proved that T_{φ} is ergodic. \Box

3.4. The centralizer of T_{ω}

The p_t -adic adding machine (X, \mathcal{B}, μ, T) is a canonical factor of the group extension $(X \times G, \mathcal{B} \times \mathcal{B}_G, \mu \times \nu, T_{\varphi})$. Then $C(T_{\varphi})$ is described in 2.1. We can distinguish the following subgroups of $C(T_{\varphi})$:

$$C_1 = \operatorname{wcl} \{ T_{\varphi}^n; \ n \in \mathbb{Z} \},$$

$$C_2 = \{ \sigma_a \circ \widetilde{S}; \ \widetilde{S} \in C_1 \text{ and } a \in G \},$$

$$C_3 = \{ R \sim (S, f, \tau); \ \tau = \operatorname{id} \}.$$

Of course C_1, C_2, C_3 are closed subgroups of $C(T_{\varphi})$ and

$$C_1 \subset C_2 \subset C_3 \subset C(T_{\varphi}).$$

We prove in Lemmas 1 and 2 that $C(T_{\varphi})$ reduces to C_2 when φ is the *r*-Toeplitz cocycle defined in 3.1 or in 3.2.

In the sequel *n* means the same *n* as the one defined in 3.2 if this case is considered, and n := m if the case 3.1 is considered.

LEMMA $1. - C(T_{\varphi}) = C_3.$

Proof. – Take R as in (3). Then the triple (S, f, τ) satisfies (2). Putting $x := Tx, \ldots, T^{p_l-1}x$ in (2) and summing we obtain

$$f(T^{p_t}x) - f(x) = \varphi^{(p_t)}(Sx) - \tau(\varphi^{(p_t)}(x))$$
(30)

for μ -a.e. $x \in X$ and each $t \ge 0$. Using the same arguments as in the proof of Theorem 1 we get from (30)

$$\varphi^{(p_t)}(Sx) - \tau(\varphi^{(p_t)}(x)) = 0 \tag{31}$$

for $x \in X_t$ and $\mu(X_t) \longrightarrow 1$.

Further we know [21] that there exists $q_0 \in X$ such that

$$S(x) = x + g_0, \quad x \in X.$$

Let

$$g_0 = \sum_{t=0}^{\infty} u_t p_{t-1}, \quad 0 \leq u_t \leq \lambda_t - 1, t \geq 1 \text{ and } 0 \leq u_0 \leq \lambda_0 r - 1.$$

Fix t and consider (31) on the stack ξ_{t+1} . Let

$$j_t = \sum_{j=0}^t u_j p_{j-1}$$

Then (see (24))

$$j_t = v_0 m_t + \rho_0, \qquad j_{t+1} = u_0 p_t + v_0 m_t + \rho_0, \qquad u_0 = u_{t+1}.$$

If $x \in D_j^{t+1}$, $0 \leq j \leq p_{t+1} - 1$, then $Sx \in D_{j+j_{t+1}}^{t+1}$, where $j + j_{t+1}$ is taken mod p_{t+1} . We can write

$$j+j_{t+1}=\bar{u}p_t+\bar{v}m_t+\bar{\rho},\quad 0\leqslant\bar{u}\leqslant\lambda-1,\ 0\leqslant\bar{v}\leqslant r-1,\ 0\leqslant\bar{\rho}\leqslant m_t-1.$$

Let us denote (use (24) for j)

$$q_0 = \begin{cases} u_0 r + v_0 & \text{if } \rho = 0, \dots, m_t - \rho_0 - 1, \\ u_0 r + v_0 + 1 & \text{if } \rho = m_t - \rho_0, \dots, m_t - 1, \end{cases}$$

and q = ur + v, $\bar{q} = \bar{u}r + \bar{v}$. Then $\bar{q} = q + q_0 \pmod{r\lambda_{t+1}}$. Thus (26) and (31) give

$$c[q+q_0] = \tau(c[q]) \quad \text{if } q \in V_t \subset \{0, 1, \dots, r\lambda_{t+1} - 1\}$$
(32)

and $\frac{1}{\lambda_{t+1}} \# V_t \longrightarrow 1$. Analysing the sequences (28) and (29) it is easy to observe that they do not satisfy (32) with any q_0 whenever $\tau \neq id$ (i.e., $\tau(1) \neq 1$). The lemma is proved. \Box

LEMMA 2. – $C(T_{\omega}) = C_2$.

Proof. – Let $R \sim (S, f, id) \in C_3$. Then (32) means

$$c[q+q_0] = c[q], \quad q \in V_t.$$

The last condition implies

$$q_0(t) = q_0 = 2^{r+1} rmw, \quad w = w_t,$$
(33)

in the case 3.1 and

$$q_0(t) = q_0 = 4rnw, \quad w = w_t,$$
 (34)

in the case 3.2, where $0 \le w \le r2^{t+1} - 1$ (see again (28) and (29)). Moreover

$$\min\left(\frac{q_0(t)}{\lambda_{t+1}}, 1 - \frac{q_0(t)}{\lambda_{t+1}}\right) \longrightarrow 0$$

The above condition implies

$$\min\left(\frac{j_t}{p_t}, 1-\frac{j_t}{p_t}\right) \longrightarrow 0.$$

Assume that $j_t/p_t \longrightarrow 0$ along some subsequence of t. It follows from the definition of the p_t -adic adding machine that

$$T^{j_t} \rightarrow S.$$
 (35)

Now we will prove that there exists $a \in G$ such that

$$\varphi^{(j_t)} \longrightarrow f + a \tag{36}$$

in measure μ .

The function f satisfies the condition (see (2) with $\tau = id$)

$$f(Tx) - f(x) = \varphi(Sx) - \varphi(x).$$

The measurability of f and $\xi_t \longrightarrow \varepsilon$ imply that there exists $a_t \in G$ such that the functions f_t defined by

$$f_t(y) = a_t + \varphi^{(i)}(Sx) - \varphi^{(i)}(x), \quad y \in D_i^t, \ y = T^i x, \ x \in D_0^t,$$
(37)
$$i = 0, \dots, p_t - 1,$$

satisfy the condition

$$f_t \longrightarrow f$$
 in measure μ .

We can assume that $a_t = b$. We can rewrite (37) as

$$f_t(y) = b + \varphi^{(i)}(Sx) - \varphi^{(i)}(T^{j_t}x) + \varphi^{(i)}(T^{j_t}x) - \varphi^{(i)}(x).$$

Further we have (see (6))

$$\varphi^{(i)}(T^{j_t}x) - \varphi^{(i)}(x) = \varphi^{(j_t)}(T^{i_t}x) - \varphi^{(j_t)}(x).$$
(38)

Because of $j_t < m_t$ then $\varphi^{(j_t)}(x) = b_t$ for all $x \in D_0^t$. Assuming again $b_t = b_1$ we can write (38) as

$$\varphi^{(i)}(T^{j_t}x) - \varphi^{(i)}(x) = \varphi^{(j_t)}(y) - b_1$$

and (37) as

$$f_t(y) = b_2 + \varphi^{(j_t)}(y) + \varphi^{(i)}(Sx) - \varphi^{(i)}(T^{j_t}x).$$
(39)

Assume that

$$x \in D_{up_t}^{t+1}, \quad 0 \leqslant u \leqslant \lambda_{t+1} - 1.$$

Then

$$T^{j_t} x \in D^{t+1}_{up_t+j_t}$$
 and $Sx \in D^{t+1}_{(u+u_0)p_t+j_t}$

where $u_0 = q_0/r$.

For $i \leq p_t - j_t - 1$, $i = vm_t + \rho$ and $u \neq u_1, \dots, u_r$ we have

$$\varphi^{(i)}(T^{j_t}x) = B^{t+1}[up_t + j_t + i] - B^{t+1}[up_t + j_t] = b^{t+1}[ur + v] - b^{t+1}[ur]$$

and

$$\varphi^{(i)}(Sx) = B^{t+1}[(u+u_0)p_t + j_t + i] - B^{t+1}[(u+u_0)p_t + j_t]$$

= $b^{t+1}[(u+u_0)r + v] - b^{t+1}[(u+u_0)r].$

Thus

$$\varphi^{(i)}(Sx) - \varphi^{(i)}(T^{j_t}x) = (b[q+q_0] - b[q]) - (b[ur+q_0] - b[ur]), \quad q = ur + v.$$

Then (33) and (34) imply

$$\varphi^{(i)}(Sx) - \varphi^{(i)}(T^{j_i}x) = 0$$
(40)

except of a set of measure $\leq (r/\lambda_t) + (j_t/p_t)$.

Now (39) and (40) imply (36) with $a = -b_2$. Notice that (35) and (36) and Theorem B imply

$$T_{\varphi}^{j_t} \rightharpoonup R \circ \sigma_a$$

This proves the lemma. \Box

To prove that

$$\# \frac{C(T_{\varphi})}{\operatorname{wcl}\{T_{\varphi}^{n}; n \in \mathbb{Z}\}} = m$$

in case 3.1 it is sufficient to show that $\sigma_a \notin C_1$ whenever $a \in \mathbb{Z}_m$, $a \neq 0$. In the case 3.2 we will prove that $\sigma_a \in C_1$ for every $a \in \mathbb{Z}_n$ what implies

$$#\frac{C(T_{\varphi})}{\operatorname{wcl}\{T_{\varphi}^{n}; n \in \mathbb{Z}\}} = 1.$$

To do this we need estimations of the *d*-distance between blocks occurring in ω and $\omega_t, t \ge 0$.

3.5. *d*-bar distance between blocks

The sequence $\omega = b^0 \stackrel{r}{\times} b^1 \stackrel{r}{\times} \cdots$ is a concatenation of the blocks of the form

$$E_k(t) = B^t \stackrel{r}{\times} \bar{e}_k, \quad E_k^{(s)}(t) = B^t \stackrel{r}{\times} \bar{e}_k^{(s)}, \quad k \in \mathbb{Z}_n, \ s = 0, \dots, r-1,$$

where

$$\bar{e}_k = (\overbrace{k, \dots, k}^r), \quad \bar{e}_k^{(s)} = (\overbrace{k, \dots, k, \underbrace{k+1}_{s \text{ th place}}, k, \dots, k}^r).$$

The sequence $\omega_t = b^t \times b^{t+1} \times \cdots$ is a concatenation of the blocks of the form

$$e_k(t) = b^t \stackrel{r}{\times} \overline{e}_k, \qquad e_k^{(s)}(t) = b^t \stackrel{r}{\times} \overline{e}_k^{(s)}.$$

168

The blocks $E_k = E_k(t)$, $E_k^{(s)} = E_k^{(s)}(t)$ are called *t*-symbols and the blocks $e_k = e_k(t)$, $e_k^{(s)} = e_k^{(s)}(t)$ are called "small" *t*-symbols. Each fragment $\omega[kp_t, (k+1)p_t - 1]$ of $\omega, k \in \mathbb{Z}$, is a *t*-symbol, and $\omega_t[k\lambda_t r, (k+1)\lambda_t r - 1]$ is a "small" *t*-symbol. The positions $[kp_t, (k+1)p_t - 1]$ and $[k\lambda_t r, (k+1)\lambda_t r - 1]$ will be called the natural positions in ω and ω_t respectively.

We will examine d-bar distance between the blocks mentioned above or between their special fragments. In particular, we will examine the pairs

$$b_k(i)b_k(i+1), b_k(i)b_{k+1}(i+1), b_{k+1}(i)b_k(i+1),$$

for $i = 0, \ldots, r - 2$ and $k \in \mathbb{Z}_n$ and

$$b_k(r-1)b_k(0), b_k(r-1)b_{k+1}(0).$$

PROPOSITION 1. – Let

$$\begin{cases} I = b_0^t(i)[0, \lambda_t - j - 1], & j \leq \frac{1}{2}\lambda_t, \\ II = b_k^t(i')[j, \lambda_t - 1], & k \in \mathbb{Z}_n, \ i, i' = 0, \dots, r - 1, \ t \ge 0. \end{cases}$$
(41)

If

$$d(I, II) < \frac{1}{r2^{r+2}}$$
(42)

then i' = i and

$$j = (n-k)r2^{i+2} + anr2^{i+2}, \quad a \ge 0, \quad \text{if 3.1 holds,}$$
 (43)

$$j = (n - k)r4 + anr4, \quad a \ge 0, \quad if 3.2 \ holds.$$
 (44)

Proof. – It is easy to observe that if $i' \neq i$ or i' = i and (43) (or (44) in the case 3.2) does not hold then every subblock $F_k^{(i)}$ of I differs from the corresponding fragment in II at least in one position. Since $j \leq \frac{1}{2\lambda_i}$, this would imply the converse inequality in (42). \Box

In Propositions 2–6 the blocks $b_k^t(i) = b_k(i)$, $k \in \mathbb{Z}_n$, $0 \le i < r$, are those defined in 3.1.

PROPOSITION 2. – Let

$$I = b_0(0) \dots b_0(r-1)[0, r\lambda_t - j - 1],$$

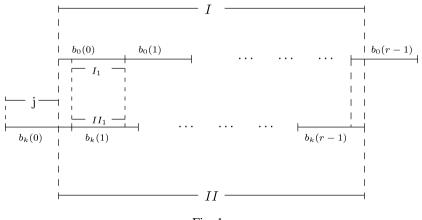
$$II = b_k(0) \dots b_k(r-1)[j, r\lambda_t - 1], \quad j \leq \frac{1}{2}r\lambda_t, \quad k \in \mathbb{Z}_n.$$

If

$$d(I, II) < \frac{1}{r^2 2^{r+3}} \tag{45}$$

then $j \leq \frac{1}{2}\lambda_t$, k = 0, and

$$j \equiv 0 \pmod{nr2^{r+1}}.$$
(46)



Proof. – If $j > \frac{1}{2}\lambda_t$ then we can find subblocks I_1 of I and II_1 of II such that II_1 is under I_1 (see Fig. 1) having the form (41) with different j's and with $i' \neq i$. It follows from Proposition 1 that $d(I_1, II_1) \ge \frac{1}{r^{2r+2}}$ and using (11) we obtain

$$d(I,II) \geqslant \frac{\frac{1}{2}\lambda_t}{r\lambda_t} d(I_1.II_1) \geqslant \frac{1}{r^2 2^{r+3}}$$

in spite of (45). Therefore $j \leq \frac{1}{2}\lambda_t$.

It follows from (11) and (45) that

$$d(I_i, II_i) < \frac{1}{r2^{r+2}}$$
 for $i = 0, \dots, r-1$, (47)

where

$$I_i = b_0(i)[0, \lambda_t - j - 1], \quad II_i = b_k(i)[j, \lambda_t - 1].$$

Then (47) implies (43) to hold for each i = 0, ..., r - 1. In particular taking i = 0, 1we get

$$-kr4 + 2kr4 = a_1nr4.$$

Thus k = 0 in \mathbb{Z}_n . The proposition is proved. \Box

PROPOSITION 3. – Let

$$I = b_k(i)b_{k+1}(i+1)[0, 2\lambda - j - 1], \quad j \leq \frac{1}{2}\lambda; \ \lambda = \lambda_t,$$

 $II = b_{k_1}(i)b_{k_2}(i+1)[j, 2\lambda - 1], \quad i = 0, \dots, r-2, k, k_1, k_2 \in \mathbb{Z}_n$ and $k_2 = k_1 + 1$ or $k_2 = k_1 - 1$. If

$$d(I, II) < \frac{1}{r2^{r+4}}$$
(48)

then

$$(k_1k_2) = (k, k+1)$$
 or $(k_1k_2) = (k+4, k+3)$ if $n \ge 3$ (49)

and

$$(k_1k_2) = (k, k+1)$$
 if $n = 2.$ (50)

$$d(I_1, II_1) < \frac{1}{r2^{r+2}}$$

and

$$d(I_2, II_2) < \frac{1}{r2^{r+2}},$$

where

$$I_1 = b_k(i)[0, \lambda - j - 1], \quad II_1 = b_{k_1}(i)[j, \lambda - 1],$$

$$I_2 = b_{k+1}(i+1)[0, \lambda - j - 1], \quad II_2 = b_{k_2}(i+1)[j, \lambda - 1].$$

Now, we apply Proposition 1. It follows from (43) that

$$k - k_1 = 2(k + 1 - k_2) \pmod{n}$$
.

The above condition implies (49) and (50). $\hfill\square$

PROPOSITION 4. – Let

$$I_k = b_k(r-1)b_k(0)[0, 2\lambda - j - 1] \quad or \quad I'_k = b_k(r-1)b_{k+1}(0)[0, 2\lambda - j - 1],$$

$$II = b_{k_1}(r-1)b_{k_2}(0)[j, 2\lambda - 1], \quad k, k_1, k_2 \in \mathbb{Z}_n, \ j \leq \frac{1}{2}\lambda_t,$$

and

$$k_2 = k_1 \quad or \quad k_2 = k_1 + 1.$$
 (51)

1

If

$$d(I, II) < \frac{1}{r2^{r+4}}, \quad I = I_k \text{ or } I'_k,$$

then

$$k_1 = k_2 = k$$
 if $I = I_k$ and $k_1 = k, k_2 = k + 1$ if $I = I'_k$ (52)

whenever

$$(2^{r-1} - 1, n) > 1, (53)$$

and there is a unique $l \in \mathbb{Z}_n$ such that

$$\begin{cases} (k_1k_2) = (kk) \quad or \quad (k_1k_2) = (l, l+1) \text{ and } l \text{ satisfies} \\ l(2^{r-1}-1) = (2^{r-1}-1)k+1 \text{ in } \mathbb{Z}_n \quad \text{if } I = I_k, \\ and \qquad (54) \\ (k_1k_2) = (k, k+1) \quad or \quad (k_1k_2) = (ll) \text{ and } l \text{ satisfies} \\ l(2^{r-1}-1) = (2^{r-1}-1)k-1 \text{ in } \mathbb{Z}_n \quad \text{if } I = I'_k, \end{cases}$$

whenever

$$(2^{r-1} - 1, n) = 1.$$
⁽⁵⁵⁾

Proof. – Using the same arguments as in the proof of Proposition 3 we obtain from (43)

$$(k_1 - k)2^{r-1} = k - k_2 \pmod{n}$$
 if $I = I_k$

and

$$(k_1 - k)2^{r-1} = k - k_2 + 1 \pmod{n}$$
 if $I = I'_k$.

The above, (51), (53) and (55) imply (52) and (54) respectively. \Box

The next proposition is an easy consequence of (9) and the definition of the blocks $b(0), \ldots, b(r-1)$.

PROPOSITION 5. – Let

$$I_l = b_l(i)[0, \lambda_t - j - 1], \quad II_k = b_k(i)[j, \lambda_t - 1],$$

$$j \leq \frac{1}{2}\lambda_t, \ k, l \in \mathbb{Z}_n, \ 0 \leq i \leq r - 1.$$

If $j \equiv 0 \pmod{nr2^{r+1}}$ and $k \neq l$ then

$$d(I_l, II_k) = 1.$$

PROPOSITION 6. – Let

$$I = b^t \stackrel{r}{\times} C, \quad II = b^t \stackrel{r}{\times} D[j, j + \lambda_t | D| - 1], \quad 0 \leq j \leq r\lambda_t - 1,$$

where $|C| \ge 3r$, |D| = |C| + r, $C, D \subset \omega_{t+1}$ (see (21)) and $C = \omega_{t+1}[pr, pr + |C| - 1]$, $D = \omega_{t+1}[qr, qr + |D| - 1]$. If

$$d(I,II) < \delta, \quad \delta < \frac{1}{3r^2 2^{r+3}},\tag{56}$$

then either

$$j < \delta r 2^{r+1} \lambda_t \quad and \quad d(C, D_1) < \delta \tag{57}$$

or

$$r\lambda_t - \delta r 2^{r+1}\lambda_t < j \leqslant r\lambda_t \quad and \quad d(C, D_1) < \delta,$$
(58)

where

$$D_1 = D[0, |D| - r - 1] \quad \text{if } j \leq \frac{1}{2} r \lambda_t,$$
$$D_1 = D[r, |D| - 1] \quad \text{if } j > \frac{1}{2} r \lambda_t.$$

Proof. – We can represent C and D as

$$C = C_1 C_2 \dots C_s, \qquad D = D_1 D_2 \dots D_s D_{s+1},$$

where

$$|C_1| = \dots = |C_s| = |D_1| = \dots = |D_s| = |D_{s+1}| = r, \ s \ge 3,$$

and every $C_1, \ldots, C_s, D_1, \ldots, D_{s+1}$ is equal to one of the blocks $\bar{e}_k, \bar{e}_k^{(v)}, k \in \mathbb{Z}_n, v = 0, \ldots, r-1$ (see 3.5). Assume that $j \leq \frac{1}{2}r\lambda_t$. Using (12) we get

$$d(I, II) = \frac{1}{s} \sum_{p=1}^{s} (b \times C_p, A_p),$$
(59)

where

$$A_p = (b \stackrel{r}{\times} D_p) (b \stackrel{r}{\times} D_{p+1}) [j, j+r\lambda_t - 1].$$

Then (56) implies that

$$d\left(b \stackrel{r}{\times} C_p, A_p\right) < \frac{1}{3r^2 2^{r+3}}$$

for at least one *p*. Using the same arguments as in the proof of Proposition 2 we obtain $j \leq \frac{1}{2}\lambda_t$.

Let

$$Q = \{1 \leq p \leq s, C_p \text{ and } D_p \text{ are equal } \bar{e}_k, \bar{e}_l \text{ for some } k, l \in \mathbb{Z}_n\}.$$

It follows from the definitions of ω , ω_t and b^t 's that

$$\#Q \geqslant \frac{1}{3}s.$$

This inequality, (56), and (59), imply

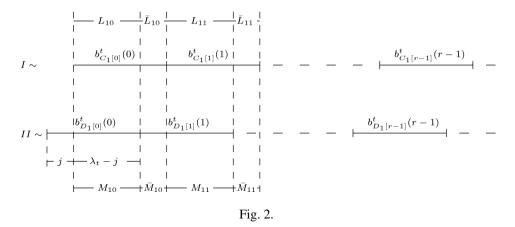
$$\frac{1}{|\mathcal{Q}|}\sum_{p\in\mathcal{Q}}d\left(b\stackrel{r}{\times}C_{p},A_{p}\right)<\frac{1}{r^{2}2^{r+3}}.$$

Now we conclude that there is at least one $p \in Q$ such that

$$d(b \stackrel{r}{\times} C_p, A_p) < \frac{1}{r^2 2^{r+3}}.$$

It follows from Proposition 2 that $j \equiv 0 \pmod{nr2^{r+1}}$.

174 J. KWIATKOWSKI, Y. LACROIX / Ann. I. H. Poincaré – PR 38 (2002) 155–192



Now, using (10) and (12) again we get (see Fig. 2)

$$d(I,II) = \frac{1}{r} \sum_{i=0}^{r-1} \frac{1}{s} \left(\left(1 - \frac{j}{\lambda_t} \right) \sum_{u=1}^s d(L_{ui}, M_{ui}) + \frac{j}{\lambda_t} \sum_{u=1}^s d(\bar{L}_{ui}, \bar{M}_{ui}) \right), \quad (60)$$

where

$$L_{ui} = b_{C_u[i]}^t(i)[0, \lambda_t - j - 1], \quad M_{ui} = b_{D_u[i]}^t(i)[j, \lambda_t - 1],$$

$$\bar{L}_{ui} = b_{C_u[i]}^t(i)[\lambda_t - j, \lambda_t - 1], \quad \bar{M}_{ui} = b_{D_u[i]}^t(i + 1)[0, j - 1].$$

It is not hard to remark that if $j \neq 0$

$$d(\bar{L}_{ui}, \bar{M}_{ui}) \geqslant \frac{1}{r2^{r+1}} \tag{61}$$

for every *u* and *i*, $1 \le u \le s$, $0 \le i \le r - 1$. Let

$$a = \# \{ 0 \leq k \leq |C| - 1, C[k] \neq D[k] \}.$$

Then using Proposition 5, (60) and (61) we get

$$\delta > d(I, II) \ge \frac{a}{|C|} \left(1 - \frac{j}{\lambda_t} + \frac{j}{\lambda_t} \frac{1}{r2^{r+1}}\right).$$
(62)

The above gives

$$\delta > \frac{a}{|C|} \left(1 - \frac{j}{\lambda_t}\right) \ge \frac{a}{|C|} \frac{1}{2}$$

and then $\frac{a}{|C|} < 2\delta$. This inequality, (56) and (62) imply

$$\delta > \frac{a}{|C|} + \frac{j}{\lambda_t} \left(\frac{1}{r2^{r+1}} - \frac{a}{|C|} \right) > \frac{a}{|C|} + \frac{j}{\lambda_t} \left(\frac{1}{r2^{r+1}} - 2\delta \right) > \frac{a}{|C|} = d(C, D_1).$$

We have obtained the second inequality of (57). To get the first inequality of (57) we use (62) to obtain

$$\delta > \frac{j}{\lambda_t} \frac{1}{r2^{r+1}}.$$

This implies (57). We have proved the proposition if $j \leq \frac{1}{2}r\lambda_t$. The case $\frac{1}{2}r\lambda_t < j < r\lambda_t$ leads to (58) in a similar way. The proposition is proved. \Box

PROPOSITION 7. – Let

$$I = B^t \stackrel{r}{\times} C, \quad II = B^t \stackrel{r}{\times} D[j, j + m_t | D| - 1], \quad 0 \leq j \leq p_t - 1,$$

where C and D satisfy the same conditions as in Proposition 6. If

$$d(I,II) < \delta, \quad \delta < \frac{1}{3r^2 2^{r+3}},$$

then either

$$j < \delta r 2^{r+} p_t$$
 and $d(C, D_1) < \delta$

or

$$p_t - \delta r 2^{r+1} p_t < j < p_t \quad and \quad d(C, D_1) < \delta,$$

where

$$D_1 = D[0, |D| - r - 1]$$
 if $j \leq \frac{1}{2}p_t$,

and

$$D_1 = D[r, |D| - 1]$$
 if $r > \frac{1}{2}p_t$.

Proof. – We use an induction argument and can repeat the proof of Lemma 3 from [8, p. 198], using (8), (9), and also using Proposition 6 instead of using a Lemma 2 as in [8, p. 196]. \Box

3.6. *d*-bar distance between blocks – the case 3.2

Using the same methods as in 3.5 we can estimate the distance between blocks $b_k^t(i)$ and $B_k^t(i)$, i = 0, ..., r - 1, $k \in \mathbb{Z}_n$, $t \ge 0$, defined in the case 3.2.

As an easy consequence of Proposition 1 we get

PROPOSITION 8. – Let

$$I_l = b_{l_0}(0) \dots b_{l_{r-1}}(r-1)[0, r\lambda_t - j - 1],$$

$$II_k = b_{k_0}(0) \dots b_{k_{r-1}}(r-1)[j, r\lambda_t - 1],$$

 $j \leq \frac{1}{2}r\lambda_t$, where (l_0, \ldots, l_{r-1}) (resp. (k_0, \ldots, k_{r-1})) is of the form \bar{e}_l or $\bar{e}_l^{(v)}$ (resp. \bar{e}_k or $\bar{e}_k^{(v')}$), $k, l \in \mathbb{Z}_n$ and $v, v' = 0, \ldots, r-1$. If

$$d(I_l, II_k) < \frac{1}{r^2 2^{r+3}}$$

then $j \leq \frac{1}{2}\lambda_t$ and there is a unique $s \in \mathbb{Z}_n$, s = s(t), such that $l_i = k_i + s$ for every i = 0, ..., r - 1. Moreover j has a form

$$j = (n-s)r4 + anr4, \quad a \ge 0.$$

As an analogue of Proposition 5 we obtain

PROPOSITION 9. – Let I_l , II_k be as in Proposition 5,

$$j \leq \frac{1}{2}\lambda_t$$
 and $j \equiv (n-s) \pmod{4rn}$

for some $s \in \mathbb{Z}_n$. Then

$$d(I_l, II_k) = 1$$
 whenever $k - l \neq s$.

Then using Propositions 8 and 9 we have

PROPOSITION 10. – Let I and II be as in Proposition 6 and

$$|C| \ge r, \quad |D| = |C| + r, \quad C, D \subset \omega_{t+1},$$

 $C = \omega_{t+1}[pr, pr + |C| - 1], \quad D = \omega_{t+1}[qr, qr + |D| - 1].$

If

$$d(I,II) < \delta, \quad \delta < \frac{1}{3r^2 2^{r+3}},$$

then there is an unique $s \in \mathbb{Z}_n$, s = s(t), such that

$$j < \delta r 2^{r+1} \lambda_t$$
 and $d(C, D_1) < \delta$

or

$$r\lambda_t - \delta r 2^{r+1}\lambda_t < j \leq r\lambda_t$$
 and $d(C, D_1) < \delta$

where $D_1 = D[0, |D| - r - 1] = C + s$ if $j \leq \frac{1}{2}\lambda_t r$, and $D_1 = D[r, |D| - 1] = C + s$ if $j > \frac{1}{2}r\lambda_t$.

Using arguments as in Lemma 3 in [8] and Proposition 10 we get

PROPOSITION 11. – Let I and II be as in the Proposition 7 and C, D satisfy the same conditions as in Proposition 10.

If

$$d(I,II) < \delta, \quad \delta < \frac{1}{3r^2 2^{r+3}},$$

there exists an unique $s \in \mathbb{Z}_n$, s = s(t), such that either

$$j < \delta r 2^{r+1} p_t$$
 and $d(C, D_1) < \delta$

or

$$p_t \delta r 2^{r+1} p_t < j < p_t \quad and \quad d(C, D_1) < \delta_j$$

where

$$D_1 = D[0, |D| - r - 1] + s$$
 if $j \leq \frac{1}{2}p_t$

and

$$D_1 = D[r, |D| - 1] + s$$
 if $j > \frac{1}{2}p_t$

3.7. The centralizer of T_{φ} (continuation)

In 3.4 we have proved that $C(T_{\varphi})$ consists of the elements $R \circ \sigma_a$, where *R* is a limit of powers of T_{φ} and σ_a is defined by (4), $a \in \mathbb{Z}_n$. Now we are in a position to show that

$$#\frac{C(T_{\varphi})}{\operatorname{wcl}\{T_{\varphi}^{n}; n \in \mathbb{Z}\}} = \begin{cases} n & \text{in the case 3.1,} \\ 1 & \text{in the case 3.2.} \end{cases}$$

LEMMA 3. – If the case 3.1 holds and $\sigma_a \in C_1$ then a = 0.

Proof. – Let us suppose that $T_{\varphi}^{n_s} \rightharpoonup \sigma_a$, $a \in \mathbb{Z}_n$. Then Corollary 1 says that $\varphi^{(n_s)} \longrightarrow a$ in measure. Let

$$\varepsilon_s = \mu \{ x \in X; \ \varphi^{(n_s)}(x) \neq a \}.$$
(63)

We have $\varepsilon_s \longrightarrow 0$. Now for every s find t_s such that

$$\frac{n_s}{p_{t_s}} < \frac{\varepsilon_s}{r}.$$
(64)

To shorten notation we let $t := t_s + 1$, $\overline{t} := t_s$. Take $x \in D_i^t$. Then using (18) we get

$$\varphi^{(n_s)}(x) = B^t[j + n_s] - B^t[j]$$
(65)

except of j's satisfying $m_t - 1 - n_s \leq j \leq m_t - 1$, $2m_t - 1 - n_s \leq j \leq 2m_t - 1$, ..., $p_t - 1 - n_s \leq j \leq p_t - 1$. Then (63) and (64) imply

$$\frac{1}{p_t} \# \{ 0 \leq j \leq p_t - 1, B^t[j + n_s] - B^t[j] \neq a \} < \varepsilon_s + \varepsilon_s = 2\varepsilon_s.$$

This means that

$$d(B^{t}[0, p_{t} - n_{s} - 1], B^{t}_{-a}[n_{s}, p_{t} - 1]) < 2\varepsilon_{s}.$$

We can write

$$B^{t} = B^{\bar{t}} \stackrel{r}{\times} b^{t}, \qquad B^{t}_{-a} = B^{\bar{t}} \stackrel{r}{\times} b^{t}_{-a}$$

If $\varepsilon_s < \frac{1}{6r^2 2^{r+3}}$ then we apply Proposition 7 to the blocks $I = B^{\bar{t}} \times b^t$ and $II = B^{\bar{t}} \times b^t_{-a}$. As a consequence we obtain

$$d(b^t, b^t_{-a}) < 2\varepsilon_s$$

This equality implies (Proposition 2) a = 0. The lemma is proved. \Box

From Lemmas 2 and 3 we obtain

Theorem 2. -

$$#\frac{C(T_{\varphi})}{\operatorname{wcl}\{T_{\varphi}^{n}, n \in \mathbb{Z}\}} = n$$

if the case 3.1 holds.

Now, we examine the case 3.2. It follows from the definition of the blocks $b_0(i) = b_0^t(i), i = 0, ..., r - 1, a \in \mathbb{Z}_n$ that

$$b(i)[(n-a)4r, \lambda - 1] = b_a(i)[0, \lambda - (n-a)4r - 1],$$
(66)

for every $i = 0, \dots, r - 1$. Set $n_t = (n - a)4rp_{t-1}$. Then (66) implies

$$B^{t}(i)[j+n_{t}] - B^{t}(i)[j] = a$$

for $j = 0, ..., p_t - n_t - 1$, and i = 0, ..., r - 1. (65) and the above imply $\varphi^{(n_t)}(x) = a$ except of a set of measure $< r \frac{n_t}{n_t} \leq \frac{4r^2n}{\lambda_t}$.

Hence $\varphi^{(n_l)} \longrightarrow a$ in measure which implies that $T_{\varphi}^{n_l} \rightharpoonup \sigma_a$, $a \in \mathbb{Z}_n$. We have shown that $\sigma_a \in C_1$ for every $a \in \mathbb{Z}_n$ and as a consequence of Lemma 2 we get

Theorem 3. –

$$#\frac{C(T_{\varphi})}{\operatorname{wcl}\{T_{\varphi}^{n}; n \in \mathbb{Z}\}} = 1$$

if the case 3.2 holds.

THEOREM 3'. – wcl{ T_{α}^n , $n \in Z$ } is uncountable.

Proof. – Let

$$g_0 = \sum_{0}^{\infty} u_t p_{t-1}, \quad u_t = w_t (rm2^{r+1})$$

in the case (3.1) and $u_t = w_t(4rn)$ in the case (3.2) $0 \le u_t \le r\lambda_t - 1$ and assume that

$$\sum_{t=0}^{\infty} \min\left(\frac{w_t}{r2^t}, 1-\frac{w_t}{r2^t}\right) < \infty.$$

Repeating the same arguments as in Lemma 4 of [9] we can construct a measurable function $f: X \longrightarrow G$ such that

$$f(Tx) - f(x) = \varphi(Sx) - \varphi(x), \text{ for a.e. } x \in X.$$

Thus the triple $R = (S, f, id) \in C(T_{\varphi})$. Of course, there is a continuum of g_0 's in X satisfying the above conditions. Hence $C(T_{\varphi})$ is uncountable. Then Theorem 2 and 3 imply wcl{ $T_{\varphi}^n, n \in Z$ } is uncountable. \Box

4. Rank of T_{ω} is r

In this section we use the shift representation $(\Omega_{\omega}, T_{\sigma})$ of $(X \times \mathbb{Z}_n, T\varphi)$ (see 2.3) and the definition of rank given at the end of 2.2.

We will also require the notion of δ -cover: let \mathcal{A} be a (finite) family of blocks and B a block such that $|B| \in \{|A|: A \in \mathcal{A}\}$, we let

$$d(B, \mathcal{A}) = \min\{d(B, A): A \in \mathcal{A}, |A| = |B|\}.$$

If $\mathcal{A} = \{A_1, \dots, A_k\}$, *C* is a block, and $\delta > 0$, we define

$$t_{\delta}(\mathcal{A}, C) = t_{\delta}(A_1, \dots, A_k, C) = \max\left\{\frac{|C_1| + \dots + |C_p|}{|C|}\right\},\$$

where the maximum is taken over all concatenations of the form

$$C = \epsilon_1 C_1 \epsilon_2 \dots \epsilon_p C_p \epsilon_{p+1}$$

for which $d(C_i, A) < \delta$, $1 \le i \le p$. Then we define, for a strictly ergodic one-sided sequence ω ,

$$t_{\delta}(\mathcal{A},\omega) = \liminf_{N \to \infty} t_{\delta}(\mathcal{A},\omega[0,N]) \left(= \lim_{N \to \infty} t_{\delta}(\mathcal{A},\omega[0,N])\right)$$

In particular, $t_{\delta}(A, \omega)$ is defined for a single block A, or if $\omega = C$ is finite.

It is known ([3,20]) that in the case under consideration the rank of $(\Omega_{\omega}, S, \mu_{\omega})$ is at most r if for any $\delta > 0$ and any $N \in \mathbb{N}$, there exists \mathcal{A} of cardinality r such that $|A| \ge N$, $A \in \mathcal{A}$, and

$$t_{\delta}(\mathcal{A},\omega) \ge 1-\delta.$$

This definition agrees with that of sub-section 2.2.

Given a one-sided η , some $\delta > 0$, and a family \mathcal{A} of blocks, we will say that the subsequence $\tilde{\eta}$ of η (finite or infinite) is δ -covered by \mathcal{A} if $t_{\delta}(\tilde{\eta}, \mathcal{A}) \ge 1 - \delta$.

4.1. The frequencies of *t*-symbols and an estimation of the rank

Let $Fr(E, \omega)$ be the average frequency of a *t*-symbol *E* (see 3.5) appearing in ω at natural positions. Similarly, let $Fr(e, \omega_t)$ denote the average frequency of a "small" *t*-symbol *e* appearing in ω_t at natural positions. It is easy to get the following equalities;

$$\begin{aligned} \operatorname{Fr}(E_k, \omega) &= \operatorname{Fr}(e_k, \omega_t) = \frac{1}{rn} \sum_{i=0}^{r-1} \left(1 - \frac{1}{2^{i+2}} \right) = \frac{1}{n} \left[1 - \frac{1}{r} \sum_{i=0}^{r-1} \frac{1}{2^{i+2}} \right] \\ \text{and} \\ \operatorname{Fr}(E_k^{(s)}, \omega) &= \operatorname{Fr}(e_k^{(s)}, \omega_t) = \frac{1}{rn2^{s+2}}, \quad s = 0, \dots, r-1, \ k \in \mathbb{Z}_n, \end{aligned}$$
(67)

if the case 3.1 holds. In the case 3.2 we have

$$\begin{cases} \operatorname{Fr}(E_k,\omega) = \operatorname{Fr}(e_k,\omega_t) = \frac{3}{4n}, \\ \operatorname{Fr}(E_k^{(s)},\omega) = \operatorname{Fr}(e_k^{(s)},\omega_t) = \frac{1}{4nr}, \quad k \in \mathbb{Z}_n, s = 0, \dots, r-1. \end{cases}$$
(68)

PROPOSITION 12. $-r(T_{\varphi}) \leq r$.

Proof. - Consider the blocks

$$L_k^{(s)} = L_k^{(s)}(t) = B^t \stackrel{r}{\times} b_k^{t+1}(s), \quad s = 0, \dots, r-1, \ t \ge 0, \ k \in \mathbb{Z}_n$$

We have

$$E_k = L_k^{(0)} \dots L_k^{(r-1)}, \qquad E_k^{(s)} = L_k^{(0)} \dots L_k^{(s-1)} L_{k+1}^{(s)} L_k^{(s+1)} \dots L_k^{(r-1)}$$

for every $k \in \mathbb{Z}_n$ and $s = 0, \ldots, r - 1$.

Because the blocks $E_k, E_k^{(s)}$ cover completely the sequence ω then the blocks $L_k^{(0)} \dots L_k^{(r-1)}, k \in \mathbb{Z}_n$, also cover ω .

We know that

$$b^{t+1}(s) [0, \lambda_{t+1} - knr2^{r+1}] = b^{t+1}_{-k}(0) [knr2^{r+1}, \lambda_{t+1} - 1],$$

 $k \in \mathbb{Z}_n, \quad s = 0, \dots, r-1, \quad \text{if 3.1 holds,}$

and

$$b^{t+1}(s)[0, \lambda_{t+1} - knr4] = b^{t+1}_{-k}(0)[knr4, \lambda_{t+1} - 1],$$

 $k \in \mathbb{Z}_n, \quad s = 0, \dots, r-1, \quad \text{if 3.2 holds.}$

The last equalities imply that the block $L_0^{(s)}$ cover each block $L_k^{(s)}$, $k \in \mathbb{Z}_n$, except of a part with the length $\leq n^{2}2^{r+1}p_t$ in the case 3.1 and $\leq n^{2}4p_t$ in the case 3.2, for $s = 0, \ldots, r-1$. Thus the blocks $L_0^{(0)}, \ldots, L_0^{(r-1)}$ cover the sequence ω except of a part with the density $\leq n^{2}2^{r+1}/\lambda_{t+1}$ if 3.1 holds and $\leq n^{2}4/\lambda_{t+1}$ if 3.2 holds. Simultaneously $|L_0^{(s)}(t)| \xrightarrow{t \to \infty} \infty$. According to the definition of the rank (see 2.2) we have $r(T_{\varphi}) \leq r$. \Box

4.2. Special subblocks of ω_t

Fix $t \ge 0$. We distinguish special subblocks C of ω_t of the form $b^t \times \overline{C}$, where \overline{C} is a strict subblock of one of the following blocks (cf. 3.5)

$$\begin{cases} e_k e_k, e_k e_k^{(s)}, e_k^{(s)} e_{k+1}, & k \in \mathbb{Z}_n, s = 0, \dots, r-1, \\ \text{where } e_k = e_k(t+1), e_k^{(s)} = e_k^{(s)}(t+1), \\ \text{if the case 3.2 is considered,} \end{cases}$$
(69)

$$\begin{cases} e_k e_k e_k e_k, e_k e_k e_k e_k^{(s)}, e_k e_k e_k^{(s)} e_{k+1}, e_k e_k^{(s)} e_{k+1} e_{k+1}, e_k^{(s)} e_{k+1} e_{k+1} e_{k+1}, \\ k \in \mathbb{Z}_n, s = 0, \dots, r-1, \\ \text{if the case 3.1 is considered.} \end{cases}$$
(70)

Notice that blocks (69) are all pairs of "small" (t + 1)-symbols appearing in ω_{t+1} , as well as the blocks (70) are all possible quadruples of "small" (t + 1)-symbols appearing in ω_{t+1} . Let us list the different cases we shall deal with afterwards:

(A) $\overline{C} \subset b_{k_0}^{t+1}(i_0)$ for some $k_0 \in \mathbb{Z}_n$ and $i_0 = 0, \dots, r-1$ (cases 3.1 or 3.2);

(B) (the case 3.2) $\bar{C} = b_{k_{i_0}}(i_0) \dots b_{k_{r-1}}(r-1) \mid b_{l_0} \dots b_{l_{i_1}}(i_1)$ where $b(i) = b^{t+1}(i)$, $i_0 > 0, i_1 < r-1$.

 $E := (k_{i_0} \dots k_{r-1} l_0 \dots l_{i_1})$ is contained in one of the following blocks;

$$\bar{e}_k \bar{e}_k, \ \bar{e}_k \bar{e}_k^{(s)}, \ \bar{e}_k^{(s)} \bar{e}_{k+1}, \quad k \in \mathbb{Z}_n, s = 0, \dots, r-1,$$
(71)

and $2 \leq |E| < 2r$;

(B') (the case 3.1) $\bar{C} = b_{k_{i_0}}(i_0)..b_{k_{r-1}}(r-1) | b_{u_0}(0)..b_{u_{r-1}}(r-1) | b_{v_0}(0)..b_{v_{r-1}}(r-1) | b_{l_0}(0)..b_{l_{i_1}}(i_1)$ and $E = (k_{i_0}...k_{r-1} | u_0...u_{r-1} | v_0...v_{r-1} | l_0...l_{i_1}), 2 \leq |E| < 4r, i_0 > 0, i_1 < r-1$, is contained in one of the blocks

$$\bar{e}_{k}\bar{e}_{k}\bar{e}_{k}\bar{e}_{k}, \bar{e}_{k}\bar{e}_{k}\bar{e}_{k}\bar{e}_{k}\bar{e}_{k}^{(s)}, \ \bar{e}_{k}\bar{e}_{k}\bar{e}_{k}^{(s)}\bar{e}_{k+1}, \ \bar{e}_{k}\bar{e}_{k}^{(s)}\bar{e}_{k+1}\bar{e}_{k+1}, \ \bar{e}_{k}^{(s)}\bar{e}_{k+1}\bar{e}_{k+1}\bar{e}_{k+1}\bar{e}_{k+1}.$$
(72)

In general we can write

$$\bar{C} = \bar{C}_1 \bar{C}_2 \bar{C}_3 \tag{73}$$

where \bar{C}_2 is as in (A) or as in (B) (the case 3.2) or (B') (the case 3.1), and

$$\begin{cases} \bar{C}_1 = b_{k'}^{t+1}(i_0 - 1)[l_1r, \lambda - 1], & \bar{C}_3 = b_{k''}^{t+1}(i_1 + 1)[0, l_2r - 1], \\ 0 < l_1 \le \lambda - 1, & 0 < l_2 \le \lambda - 1, & \lambda = \lambda_{t+1}, \end{cases}$$
(74)

and k'Ek'' is contained in one of the blocks (71) or (72) respectively (*E* is defined by \overline{C}_2).

Then we can distinguish the next special kinds of blocks (73) for given $\delta > 0$:

- (G1) $|\bar{C}_1|/|\bar{C}| > \delta$ and $|\bar{C}_3|/|\bar{C}| > \delta$, (G2) $|\bar{C}_1|/|\bar{C}| > \delta$ and $|\bar{C}_3|/|\bar{C}| \le \delta$, (G3) $|\bar{C}_1|/|\bar{C}| \le \delta$ and $|\bar{C}_3|/|\bar{C}| > \delta$,
- (G4) $|\bar{C}_1|/|\bar{C}| \leq \delta$ and $|\bar{C}_3|/|\bar{C}| \leq \delta$.

4.3. $r(T_{\varphi}) = r$: the case 3.2

Take $0 < \delta^2 < 1/(r^2 2^{2r+3})$.

PROPOSITION 13. – Assume that \overline{C} is as in (B) and let $d(C, D) < \delta^2$, $D \subset \omega_t$. Then D has a form

$$D = (b^{t} \times \bar{D})[j, j + |D| - 1], \quad where \ \bar{D} \subset \omega_{t+1}$$
(75)

and

$$\begin{cases} \bar{D} = b_{k'_{i_0}}^{t+1}(i_0) \dots b_{k'_{r-1}}^{t+1}(r-1) \mid b_{l'_0}^{t+1}(0) \dots b_{l'_{i_1}}^{t+1}(i_1) b_{l'_{i_1+1}}^{t+1}(i_1+1),\\ and \ j < \delta^2 r 2^{r+1} \lambda_{t+1}, \ l'_{i_1+1} \in \mathbb{Z}_n \end{cases}$$
(76)

or

$$\begin{cases} \bar{D} \text{ is as in (76) and} \\ j > r\lambda_{t+1} - \delta^2 r 2^{r+1} \lambda_{t+1}. \end{cases}$$
(77)

Moreover, there is a unique $s_0 \in \mathbb{Z}_n$ *such that*

$$(k'_0 \dots k'_{r-1} \mid l'_0 \dots l'_{i_1}) = (k_0 \dots k_{r-1} \mid l_0 \dots l_{i_1}) + s_0$$

if (76) holds and

$$(k'_1 \dots k'_{r-1} \mid l'_0 \dots l'_{i_1+1}) = (k_0 \dots k_{r-1} \mid l_0 \dots l_{i_1}) + s_0$$

if (77) holds.

Proof. – The proposition is an easy consequence of the Proposition 10 where *t* is taken instead of t + 1 ($\delta^2 < 1/(r^2 2^{2r+3}) < 1/(3r^2 2^{r+3})$). \Box

Given a block $A \subset \omega$ or ω_t , $A = \omega[l, l + |A| - 1]$ we define $A(\delta)$ as $A(\delta) = \omega[l - \delta|A|, l + |A| + \delta|A| - 1], \delta > 0$. The next proposition says that if *C* is as in (G1), (G2), (G3), or (G4), there is a block $C' = b^t \times \widetilde{C}$ such that \widetilde{C} is as in (B) and either \widetilde{C} contains \overline{C} or \overline{C} is contained in $\widetilde{C}(\delta_1)$, where $\delta_1 < \delta^2 r 2^{r+1}$.

PROPOSITION 14. – Let $C = b^t \times^r \overline{C}$ and let \overline{C} be as in (G1), (G2), (G3) or (G4). Assume that

$$d(C, \omega_t[l, l+|C|-1]) < \frac{\delta^2}{3}.$$
(78)

Then

$$d(C', \omega_t[l', l' + |C'| - 1]) < \delta^2$$

where $C' = b^{t} \stackrel{r}{\times} \widetilde{C}, \widetilde{C} \subset \omega_{t+1}$ and (g1) $\widetilde{C} = b^{t+1}_{k'}(i_{0}-1)\overline{C}_{2}b^{t+1}_{k''}(i_{1}+1), l' = l - l_{1}r$ (cf. (73), (74)), if (G1) holds, (g2) $\widetilde{C} = b^{t+1}_{k'}(i_{0}-1)\overline{C}_{2}, l' = l - l_{1}r$, if (G2) holds, (g3) $\widetilde{C} = \overline{C}_{2}b^{t+1}_{k''}(i_{1}+1), l' = l$, if (G3) holds, (g4) $\widetilde{C} = \overline{C}_{2}, l' = l$, if (G4) holds.

Proof. – Consider the case (G2). Then (11) and (78) imply $(C_2 = b^t \times \overline{C}_2)$

$$d(b^{t} \times \bar{C}_{2}, \omega_{t}[\bar{l}_{2}, \bar{l}_{2} + |C_{2}| - 1]) < \delta^{2}$$

where $\bar{l_2} = l + |b^t \times \bar{C_1}|$.

It follows from Proposition 13 that $\omega_t[\bar{l_2}, \bar{l_2} + |C_2| - 1]$ is of the form (75). Assume that the case (76) holds. Set

$$\widetilde{C}_1 = \overline{C}_1[0, |\overline{C}_1| - j - 1],$$

$$\widetilde{D_1} = \omega_{t+1} \left[\frac{1}{\lambda_t} (l-j), \frac{1}{\lambda_t} (l-j) + |\widetilde{C_1}| - 1 \right] \quad \text{(see Fig. 3)}.$$

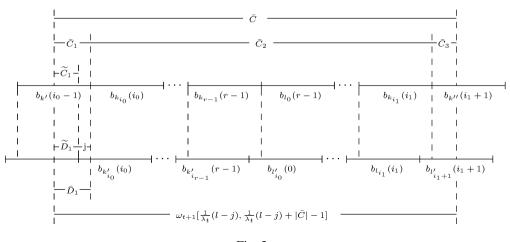


Fig. 3.

If follows from Proposition 8 that

$$j \equiv (n - s_0)r4 \pmod{4nr}.$$
(79)

The fragment of ω_{t+1} from the left side of $b_{k'_0}^{t+1}(i_0)$ having the length λ_{t+1} is of a form $b_u^{t+1}(i_0-1)$ and either $u = k' + s_0$ or $u = k' + s_0 + 1$. Assume that $u = k' + s_0 + 1$. Then Proposition 9 implies

$$d(\widetilde{C}_1, \widetilde{D}_1) = 1. \tag{80}$$

Let \bar{D}_1 denote the block $\omega_{t+1}[\frac{1}{\lambda_t}(l-j), \frac{1}{\lambda_t}(l-j) + |\bar{C}_1| - 1]$ (see Fig. 3). Obviously we have

$$\frac{|\bar{C}_1|}{|C|}d(\bar{C}_1,\bar{D}_1) \overset{(11),(8)}{\leqslant} d(C,\omega_t[l,l+|C|-1]) < \delta^2.$$

Further

$$\begin{split} \delta^{2} &> \frac{|\bar{C}_{1}|}{|\bar{C}|} d(\bar{C}_{1}, \bar{D}_{1}) > \delta d(\bar{C}_{1}, \bar{D}_{1}) \stackrel{(11)}{\geqslant} \frac{|\tilde{C}_{1}|}{|\bar{C}_{1}|} \delta d(\tilde{C}_{1}, \bar{D}_{1}) \stackrel{(80)}{=} \frac{|\bar{C}_{1}| - j}{|\bar{C}_{1}|} \delta \\ &= \delta \left(1 - \frac{j}{|\bar{C}_{1}|}\right) \stackrel{(62)}{\geqslant} \delta \left(1 - \frac{j}{\delta|\bar{C}|}\right) \stackrel{(76)}{\geqslant} \delta \left(1 - \frac{\delta^{2} r 2^{r+1} \lambda_{t+1}}{\delta|\bar{C}|}\right) \geqslant \delta (1 - \delta r 2^{r+1}), \end{split}$$

because $|\bar{C}| \ge \lambda_{t+1}$.

Thus

 $1 - \delta r 2^{r+1} < \delta$

which is in contradiction with the inequality $\delta^2 < 1/(r^2 2^{2r+3})$. We have shown $u - k' = s_0 = k'_0 - k_0$.

Now, using (79) and the definition of $b_{k'}(i_0 - 1)$ and $b_u(i_0 - 1)$ we obtain $C[v] = \omega_t[l' + v]$ for each $v = 0, \ldots, |\bar{C}_1| - 1, l' = l - l_1 r$ (see (74)). This last equality implies (g2). The proofs of the remaining cases are similar. \Box

PROPOSITION 15. – Assume that $\mathcal{F} = \{C_1, \ldots, C_d\}, d \leq r - 1$, is a family of subblocks of ω_t such that

$$C_j = b^t \stackrel{r}{\times} \bar{C}_j$$
 and each \bar{C}_j is as in (B). (81)

Let $\omega_t(\mathcal{F})$ be the maximal subsequence of ω_t that can be δ^2 -covered by the family \mathcal{F} in a disjoint way, $\delta^2 < 1/(r^2 2^{2r+3})$, and let $\bar{\omega}_t(\mathcal{F})$ be the complementary part of ω_t . Then it is an union of at least (r-d) blocks $b^t \times b^{t+1}(i_j)$, $j = 1, \ldots, r-d$.

Proof. – Denote by \mathcal{F}_i the set of all blocks $C \in \mathcal{F}$ such that $\overline{C}\delta^2$ -covers a subblock of ω_{t+1} containing one of the form

$$b_1^{t+1}(i)b^{t+1}(i+1), \quad i=0,\ldots,r-2,$$

and by \mathcal{F}_{r-1} those *C* for which $\overline{C} \delta^2$ -covers a block containing $b^{t+1}(r-1)b^{t+1}(0)$. We show that $\mathcal{F}_i \cap \mathcal{F}_j = \emptyset$ whenever $i \neq j$. Take $C \in \mathcal{F}_i$, $D \in \mathcal{F}_j$ and let \overline{C} , \overline{D} be the blocks defined by (81), \overline{C} as in (B) and

$$\bar{D} = b_{k'_{i'_0}}^{t+1}(i'_0) \dots b_{k'_{r-1}}^{t+1}(r-1) \mid b_{l'_0}^{t+1}(0) \dots b_{l'_{i'_1}}^{t+1}(i'_1).$$

If $(i_0 \dots (r-1) | 0 \dots i_1) \neq (i'_0 \dots (r-1) | 0 \dots i'_1)$ then $C \neq D$. If $(i_0 \dots (r-1) | 0 \dots i_1) = (i'_0 \dots (r-1) | 0 \dots i'_1)$ then using Proposition 13 we obtain

$$(k_{i_0} \dots k_{r-1} \mid l_0 \dots l_{i_1}) = (k'_{i_0} \dots k'_{r-1} \mid l'_0 \dots l'_{i_1}) + s_0$$

for some $s_0 \in \mathbb{Z}_n$. The last condition is impossible since $i \neq j$. The proposition follows because $\#\{\mathcal{F}_i; 0 \leq i < r\} = r$. \Box

THEOREM 4. $-r(T_{\varphi}) = r$.

Proof. – According to Proposition 12 it remains to show that $r(T_{\varphi}) > r - 1$. Let

$$\frac{\delta^2}{9} < \frac{1}{r^2 2^{2r+3}}$$

and let A_1, \ldots, A_x be blocks occurring in ω , $|A_i| \ge p_{t_0}$ and t_0 satisfies $r/\lambda_t < \delta^2 r 2^{r+1}$, if $t \ge t_0, x \le r-1$. For each $u = 1, \ldots, x$ there exists an unique t = t(u) such that A_u contains at least one *t*-symbol and does not contain any (t + 1)-symbol. Then A_u has a form

$$A_{u} = \widetilde{E}_{1} \left(B^{t-1} \stackrel{r}{\times} C_{u} \right) \widetilde{E}_{2}, \tag{82}$$

where $C_u \subset \omega_t$ is as in 4.2, $|C_u| = qr$, $q = q(u) \ge 1$, E_1 is a right-side part of a *t*-symbol and E_2 is a left-side part of a *t*-symbol. We divide the set $\{t(1), \ldots, t(x)\}$ by arithmetic order. More precisely, we put

$$\tau_1 = \max\{t(1), \dots, t(x)\}, \quad T_1 = \{u; t(u) = \tau_1\}, \quad d_1 = \#T_1.$$

Next we define

$$\tau_2 = \max\{t(u); u \notin T_1\}, \qquad T_2 = \{u; t(u) = \tau_2\}, \qquad d_2 = \#T_2.$$

Similarly we define sets T_3, \ldots, T_v , numbers τ_3, \ldots, τ_v and d_3, \ldots, d_v . We have

$$\tau_1 > \cdots > \tau_v, \qquad d_1 + \cdots + d_v = x.$$

Let

$$\mathcal{A}_p = \{A_u; \ u \in T_p\}, \quad p = 1, \dots, v$$

The families A_1, \ldots, A_v are pairwise disjoint and $\bigcup_{p=1}^{v} A_p = \{A_1, \ldots, A_x\}$.

Consider the family A_1 . Assume that

$$\mathcal{A}_1 = \{A_1, \ldots, A_{d_1}\}.$$

Then

 $C_u = b^t \stackrel{r}{\times} \bar{C}_u$

and

$$\bar{C}_u \subset \omega_{t+1}, \quad u \in T_1, t = \tau_1$$

If $d(A_u, \omega[\tilde{l}, \tilde{l} + |A_u| - 1]) < \delta^2/9$ then by (11), (8),

$$d(B^{t-1} \stackrel{r}{\times} C_u, \omega[l, l+m_{t-1}|C_u|-1]) < \frac{\delta^2}{3}$$
(83)

2

where $l = \tilde{l} + |\tilde{E}_1|$.

According to Proposition 11

$$d(C_u, \omega_t[l', l' + |C_u| - 1]) < \frac{\delta^2}{3}$$
(84)

for some $l' \in \mathbb{Z}$ and

$$|l - p_t l'| < \frac{1}{3} \delta^2 r 2^{r+1} p_t.$$
(85)

We can write

$$\bar{C}_{u} = \bar{C}_{u}^{(1)} \bar{C}_{u}^{(2)} \bar{C}_{u}^{(3)}$$

according to (73).

We distinguish among the blocks A_1, \ldots, A_{d_1} three types $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$, as follows;

 $A_u \in \mathcal{F}_1 \quad \text{if } C_u \text{ is as in (A) or (G4),}$ $A_u \in \mathcal{F}_2 \quad \text{if } C_u \text{ is as in (G1), (G2), or (G3),}$ $A_u \in \mathcal{F}_3 \quad \text{if } C_u \text{ is as in (B).}$ Let $d_{11} = \#\mathcal{F}_1, d_{12} = \#\mathcal{F}_2, d_{13} = \#\mathcal{F}_3$. We have

$$d_{11} + d_{12} + d_{13} = d_1.$$

Let $\omega(A_1, \ldots, A_{d_1})$ be a subsequence of ω that is $\frac{\delta^2}{9}$ -covered by the blocks A_1, \ldots, A_{d_1} in a disjoint way. By $\omega(\mathcal{F}_i)$, i = 1, 2, 3, we denote the subsequence of $\omega \frac{\delta^2}{9}$ -covered in a disjoint way by the families \mathcal{F}_i . Of course, $\omega(A_1, \ldots, A_{d_1}) \subset \omega(\mathcal{F}_1) \cup \omega(\mathcal{F}_2) \cup \omega(\mathcal{F}_3)$. Denoting by $\bar{\omega}(A_1, \ldots, A_{d_1}), \bar{\omega}(\mathcal{F}_i)$ the complementary parts of $\omega(A_1, \ldots, A_{d_1}), \omega(\mathcal{F}_i)$, i = 1, 2, 3, respectively, we have

$$\bar{\omega}(A_1,\ldots,A_{d_1})\supset \bar{\omega}(\mathcal{F}_1)\cap \bar{\omega}(\mathcal{F}_2)\cap \bar{\omega}(\mathcal{F}_3).$$

According to (83)–(85) and Proposition 15 we have that $\bar{\omega}(\mathcal{F}_3)$ is an union of at least

$$(r - d_{13})$$
 blocks $E(\delta_1)$, (86)

where

$$\begin{cases} E = B^{t} \stackrel{r}{\times} b^{t+1}(i_{j}), \quad j = 1, \dots, r - d_{13}, \text{ and} \\ \delta_{1} \leq 2\delta^{2} r 2^{r+1}, \end{cases}$$
(87)

because of

$$\frac{|\widetilde{E}_1|}{|A_u|} \stackrel{(84)}{\leqslant} \frac{p_t}{m_{t+1}} = \frac{r}{\lambda_{t+1}} < \frac{1}{2}\delta_1, \quad \text{and} \quad \frac{|\widetilde{E}_2|}{|A_u|} < \frac{1}{2}\delta_1.$$

Consider the family \mathcal{F}_2 . Let $A_u \in \mathcal{F}_2$. If $A_u \frac{\delta^2}{9}$ -covers a fragment I_u of ω then (83) and (84) imply that $\bar{C}_u \frac{\delta^2}{3}$ -covers a fragment $I_u = I_u(t)$ of ω_{t+1} and (85) implies

$$I_u \subset \left(B^t \stackrel{r}{\times} I_u(t)\right)(\delta_1).$$

It follows from Proposition 14 that there is $A_{\bar{u}}$ of a form as in \mathcal{F}_3 such that $\tilde{C}_{\bar{u}}\frac{\delta^2}{3}$ -covers another fragment $I_{\bar{u}}(t)$ of ω_{t+1} such that

$$I_u(t) \subset I_{\bar{u}}(t)(\delta).$$

Applying Proposition 15 to the family $\{A_{\bar{u}}\}$ we obtain that $\bar{\omega}(\mathcal{F}_3) \cap \bar{\omega}(\mathcal{F}_2)$ is an union of at least $(r - d_{13} - d_{12})$ blocks $E(\delta_2)$, *E* is as (87) and $\delta_2 = \max(\delta, \delta_1)$.

Each block $E(\delta_2) \in \bar{\omega}(\mathcal{F}_3) \cap \bar{\omega}(\mathcal{F}_2)$ is an union of at least $(r - d_{13} - d_{12})$ blocks of the form $B^t \times^r e_k^{(s)}, k \in \mathbb{Z}_n, s \in S, \#S = r - d_{13} - d_{12}$.

Using the same arguments as before we get that

$$\begin{cases} \bar{\omega}(\mathcal{F}_3) \cap \bar{\omega}(\mathcal{F}_2) \cap \bar{\omega}(\mathcal{F}_1) \text{ is a union} \\ \text{of at least } (r - d_{13} - d_{12} - d_{11}) \text{ blocks of the form } B^{t-1} \stackrel{r}{\times} e_k^{(s)}, \\ s \in S_1, \#S_1 = r - d_{13} - d_{12} - d_{11}. \end{cases}$$
(88)

Denoting $P(\omega_1, \omega)$ the density of a subsequence ω_1 in ω and using (69), (86), (88) we have

$$P(\bar{\omega}(A_1,\ldots,A_{d_1}),\omega) \ge P(\bar{\omega}(\mathcal{F}_3) \cap \bar{\omega}(\mathcal{F}_2) \cap \bar{\omega}(\mathcal{F}_1),\omega)$$
$$\ge \left(1 - \frac{d_{13} + d_{12}}{r}\right) \left(1 - \frac{d_{11}}{r}\right) \left(\frac{1}{4nr}\right)^2 (1 - \delta_2)$$
$$\ge \left(1 - \frac{1}{r}\right)^2 \left(\frac{1}{4nr}\right)^2 (1 - \delta_2) \ge \left(1 - \frac{1}{r}\right)^2 \left(\frac{1}{4nr}\right)^2 \frac{1}{2}.$$

If $T_1 \neq \{1, ..., x\}$ then we repeat the above reasoning to the subsequence $\bar{\omega}(\mathcal{F}_3) \cap \bar{\omega}(\mathcal{F}_2) \cap \bar{\omega}(\mathcal{F}_1)$ and $t = \tau_2$, and so on. As a consequence we get

$$P(\bar{\omega}(A_1,\ldots,A_x),\omega) \ge \left(1-\frac{1}{r}\right)^{2r} \frac{1}{2^r} \left(\frac{1}{4nr}\right)^{2r}.$$

This implies $r(T_{\varphi}) > r - 1$. Thus we have shown $r(T_{\varphi}) = r$. \Box

4.4. $r(T_{\varphi}) = r$: the case 3.1

To prove that $r(T_{\varphi}) = r$ in the case 3.1 we can repeat the same arguments an in 4.3. Similarly as in the Theorem 4 we consider blocks $A_u, u = 1, ..., x, x \leq r - 1$, and A_u are as in (82), $C_u = b^t \times \bar{C}_u$ but \bar{C}_u are as in (A), (B') and (G1), (G2), (G3), (G4).

As an analogue of Propositions 13-15 and Theorem 4 we obtain

PROPOSITION 13'. – Assume that C is as in (B') and let $d(C, D) < \delta^2$, $D \subset \omega_t$. Then D has a form (75), and

$$\bar{D} = b_{k'_{i_0}}(i_0) .. b_{k'_{r-1}}(r-1) \mid b_{u'_0}(0) .. b_{u'_{r-1}}(r-1) \mid b'_{v_0}(0) .. b_{v'_{r-1}}(r-1) \mid b_{l'_0}(0) .. b_{l'_{i_1}}(i_1),$$

 $b_k(i) = b_k^{t+1}(i)$, and *j* satisfies either (76) or (77).

PROPOSITION 14'. – Let C be as in Proposition 14, \overline{C} is as in (73) and \overline{C}_2 is as in (B'). Then we get (g1), (g2), (g3) or (g4).

The proofs of Propositions 13' and 14' are similar to the proofs of Propositions 13 and 14.

PROPOSITION 15'. – Let $\mathcal{F} = \{C_1, \ldots, C_d\}, d \leq r - 1, C_j = b^t \times \overline{C}, and C_j are as$ in (B'). Then we have the same thesis as in Proposition 15.

Proof. – Let $\mathcal{F}_{i,k}$, $i = 0, ..., r - 2, k \in \mathbb{Z}_n$, be the set of all blocks $C \in \mathcal{F}$ such that $\overline{C}(C = b^t \times \overline{C})\delta^2$ -covers a subblock of ω_{t+1} containing one of the form $b_k^{t+1}(i)b_{k+1}^{t+1}(i + 1)$. By $\mathcal{F}_{r-1,k}^{(1)}, \mathcal{F}_{r-1,k}^{(2)}$ we denote those $C \in \mathcal{F}$ such that \overline{C} does so for the pairs $b_k^{t+1}(r-1)b_k^{t+1}(0)$ or $b_k^{t+1}(r-1)b_{k+1}^{t+1}(0)$ respectively.

188 J. KWIATKOWSKI, Y. LACROIX / Ann. I. H. Poincaré – PR 38 (2002) 155–192

Using Propositions 3 and 7 we get that

$$\begin{cases} \text{if } C \in \mathcal{F}_{i,k} \text{ then } \bar{C}\delta^2 \text{-covers (up to } \delta r^2 2^{r+3}\lambda_{t+1}) \text{ only those} \\ \text{fragments of } \omega_{t+1} \text{ containing blocks of the form} \\ (89') \ b^{t+1} \stackrel{r}{\times} \bar{e}_k^{(i+1)} \text{ or } b^{t+1} \stackrel{r}{\times} \bar{e}_{k+4}^{(i)}, \text{ if } n \ge 3, \\ \text{and} \\ (89'') \ b^{t+1} \stackrel{r}{\times} \bar{e}_k^{(i+1)} \text{ if } n = 2, \end{cases}$$

whenever $i = 0, ..., r - 2, k \in \mathbb{Z}_n$. Using Propositions 4 and 7 we get that

$$\begin{cases} \text{if } C \in \mathcal{F}_{r-1,k}^{(1)} \text{ then } \bar{C}\delta^2 \text{-covers only those fragments} \\ \text{of } \omega_{t+1} \text{ containing blocks of the form} \\ (90') \ b_k^{t+1}(r-1)b_k^{t+1}(0) \text{ or } b_l^{t+1}(r-1)b_{l+1}^{t+1}(0), \\ l \text{ satisfies (54),} \end{cases}$$
(90)

and

$$\begin{cases} \text{if } C \in \mathcal{F}_{r-1,k}^{(2)} \text{ then } \bar{C}\delta^2 \text{-covers only those fragments} \\ \text{of } \omega_{t+1} \text{ containing blocks of the form} \\ (91') \ b_k^{t+1}(r-1)b_{k+1}^{t+1}(0) \text{ or } b_l^{t+1}(r-1)b_l^{t+1}(0), \\ l \text{ satisfies (54).} \end{cases}$$
(91)

Now notice that each two blocks $b^{t+1} \stackrel{r}{\times} e_k^{(i)}$ and $b^{t+1} \stackrel{r}{\times} e_{k'}^{(i)}$, $k' \in \mathbb{Z}_n$, $k \neq k'$, appearing in ω_{t+1} are separated by at least three blocks of the form $b^{t+1} \stackrel{r}{\times} e_{k+1}$. This, (89) and the condition |E| < 4r (see (B')) imply that $\mathcal{F}_{i,k} \cap \mathcal{F}_{i,k'} = \emptyset$, if $k \neq k', i = 0, \ldots, r-2$. Similarly $\mathcal{F}_{r-1,k}^{(1)} \cap \mathcal{F}_{r-1,k'}^{(1)} = \emptyset$ and $\mathcal{F}_{r-1,k}^{(2)} \cap \mathcal{F}_{r-1,k'}^{(2)} = \emptyset$, if $k \neq k'$.

Further (89) implies that if $C \in \mathcal{F}_{i,k} \cap \mathcal{F}_{i',k'}$ then i' = i + 1, k' = k + 4 if $n \ge 3$ ((89')) and i' = i, k' = k if n = 2 ((89")), $i = 0, \ldots, r - 2$. (90) implies that if $C \in \mathcal{F}_{r-1,k}^{(1)} \cap \mathcal{F}_{r-1,k'}^{(2)}$ then k' = l, l satisfying (54). Combining the above arguments we get that there is at least $\frac{rn}{2} - d$ fragments of ω_{t+1} of the form (89') and (90) or (91) that are not covered by the family \mathcal{F} . The Proposition follows because $\frac{rn}{2} \ge r$. \Box

THEOREM 4'. $-r(T_{\varphi}) = r$.

Proof. – We repeat the same reasoning as in the proof of Theorem 4 using blocks A_1, \ldots, A_x of the form (82) with $q \ge 3$. We use Proposition 7 instead of Proposition 11 and the Propositions 14' and 15' instead of Propositions 14 and 15. Then using (67) instead of (68) we get

$$P(\bar{\omega}(A_1,\ldots,A_x),\omega) \ge \left(1-\frac{1}{r}\right)^{2r} \frac{1}{2^r} \left(\frac{1}{rn2^{r+1}}\right)^{2r},$$

what implies $r(T_{\varphi}) > r - 1$ and by Proposition 12 we have $r(T_{\varphi}) = r$. \Box

5. Pairs (r, ∞) or (∞, m)

In this part we construct group extensions $(X \times G, T_{\omega})$ such that $r(T_{\omega}) = r, q(T_{\omega}) = r$ $\infty, 2 \leq r < \infty$ or $r(T_{\omega}) = \infty, q(T_{\omega}) = m, 1 \leq m < \infty$.

5.1. The case (r, ∞)

Take a sequence $\{s_t\}_{t=0}^{\infty}, s_{t+1} = \mu_{t+1}s_t, s_0 = \mu_0, \mu_t \ge 2$ for $t \ge 0$ and let G be the group of $\{s_t\}$ -adic integers. Let $e = 1 + 0s_1 + 0p_2 + \cdots$. The set of all $\{s_t\}$ -adic rational integers of G coincides with the set $\{e_n, n \in Z\}$, where $e_n = ne$. Similarly as in the case 3.1 we define an adding machine (X, \mathcal{B}, μ, T) and a cocycle $\varphi: X \longrightarrow G$. To do this we define blocks $F^{(0)}, F^{(1)}, \dots, F^{(r-1)}$ ($r \ge 2$ is given) over G. Put

$$F^{(i)}(t) = F^{(i)} = \overbrace{0...0}^{r(2^{i+1}-1)} \overbrace{0...0e0...0}^{r}, \quad i = 0, ..., r-1,$$
$$H^{(i)} = F^{(i)} F_e^{(i)} \dots F_{(s_\ell-1)e}^{(i)}.$$

Then $|H^{(i)}| = s_t r 2^{t+1}$. Next define $b^t(0), \ldots, b^t(r-1)$ as in 3.1 and $b^t = b^t(0) \ldots b^t(r-1)$ 1). $t \ge 0$. We have

$$\lambda_t = |b^t(i)| = s_t r 2^{r+t+1}, \quad i = 0, \dots, r-1$$

and

$$|b^t| = s_t r^2 2^{r+t+1}$$

Then we define the blocks B^t , $t \ge 0$, by (14). We have $p_t = |B^t| = s_0 \dots s_t r^{2t} 2^{r+1} (2^{t+1} - 1)^{t+1}$ 1). Let (X, \mathcal{B}, μ, T) be the $\{p_t\}$ -adic adding machine and define a cocycle $\varphi: X \longrightarrow G$ by (18).

THEOREM 5. $-r(T\varphi) = r$ and $q(T_{\varphi}) = \infty$

Proof. – Let $\Pi_t: G \longrightarrow Z/s_t Z$ be the natural group homomophism. We can define cocycles $\varphi_t: X \longrightarrow Z/s_t Z$ by $\varphi_t = \varphi \circ \Pi_t$. It is evident that φ_t is a r-Toeplitz cocycle as in 3.1 defined by the blocks $\Pi_t(B_k), u \ge 0$. According to Theorems 2 and 4 we have $r(T_{\varphi_t}) = r$ and $q(T_{\varphi_t}) = s_t$. It follows from the definitions of φ and φ_t that the dynamical system $(X \times G, T_{\varphi})$ is the inverse limit of the systems $(X \times Z/s_t Z, T_{\varphi_t})$. Then from the definition of the rank we obtain $r(T_{\varphi}) = r$. It is proved in Theorem 2 that $\sigma_{je} \notin \operatorname{wcl}\{T_{\omega_i}^n, n \in Z\}$ if $j = 0, \ldots, s_t - 1, t \ge 0$. This means that $\sigma_{je} \notin \operatorname{wcl}\{T_{\omega_i}^n, n \in Z\}$ for every $j \in Z$, $j \neq 0$ which implies $q(T_{\varphi}) = \infty$. \Box

5.2. The case (∞, m)

First consider the case $m \ge 2$. Let $r_t = 2^{t+1}$, $t \ge 0$, and define blocks $F^{(i)} = F^{(i)}(t)$ over G = Z/mZ, $i = 0, \ldots, r_{r+1} - 1$, as follows:

$$vF^{(i)} = \overbrace{0...0}^{2^{i+1}r_t} \overbrace{0...0}^{r_{t+1}} \overbrace{1}^{r_{t+1}} 0...0,$$

$$H^{(i)} = F_0^{(i)} F_1^{(i)} \dots F_{m-1}^{(i)}, \quad i = 0, \dots, r_{t+1} - 1.$$

We have $|H^{(i)}| = mr_t 2^{i+3}$. Next define $b^t(0), ..., b^t(r_{t+1}-1), b^t, B^t$ by putting

$$b^{t}(i) = \overbrace{H^{(i)}H^{(i)}\dots H^{(i)}}^{x}, \quad x = 2^{t+r_{t+1}-i-1}$$

$$b^{t} = b^{t}(0)b^{t}(1)\dots b^{t}(r_{t+1}-1), \quad \text{and}$$

$$B^{t} = b^{0} \stackrel{r_{0}}{\times} b^{1} \stackrel{r_{1}}{\times} \dots \stackrel{r_{i-1}}{\times} b^{t}.$$

Then $\lambda_t = |b^t(i)| = m2^{2t+\rho+2}$, $\rho = r_{t+1}$ and $p_t = m_t r_{t+1}$, $m_t = \lambda_0 \cdots \lambda_t$. We define a cocycle $\varphi : X \longrightarrow G$ by

$$\varphi(x) = B^t[j+1] - b^t[j]$$

if $x \in D_j^t$ except if $j = m_t - 1, ..., p_t - 1$. The cocycle φ is constant on the levels D_j^t except of r_{t+1} consecutive levels.

In a similar way we construct a cocycle φ if m = 1. Take *n* as in the case 3.2 and define

$$F^{(i)}(t) = F^{(i)} = \underbrace{\overbrace{0...0}^{2r_t}}_{i+1} \underbrace{0...0}_{i+1} \underbrace{0...0}_{i+1}, \quad i = 0, 1, \dots, r_{t+1} - 1$$

The next steps of the definition φ are the same as in the case $m \ge 2$.

THEOREM 6. $-r(T_{\omega}) = \infty$, $q(T_{\omega}) = m$ and wel{ $T_{\omega}^n, n \in z$ } is uncountable.

Proof. – For the dynamical system $(X \times G, T_{\varphi})$ we can use the same arguments as in the parts 3 and 4 taking r_t instead of r. Theorems 2, 3 and 3' are valid. To estimate the rank of T_{φ} we use the shift representations $(\Omega \omega, T_{\sigma})$ of $(X \times G, T_{\varphi})$ where $\omega = b^0 \stackrel{r_0}{\times} b^1 \stackrel{r_1}{\times} \cdots$. Repeating the proof of Theorem 4 and 4' we get $r(T_{\varphi}) > r_t - 1$ for every $t \ge 0$. Thus $r(T_{\varphi}) = \infty$. \Box

6. The pair (∞, ∞)

This case is easy to handle: first let (Y, S, v) be the rank 1 mixing staircase transformation [1]. Then let G denote the group of dyadic integers, and let m_G denote its normalized Haar measure.

Then consider a *Morse cocycle* [23] $\phi: Y \to G$, that is a measurable map which is constant on the levels of the stacks defining the rank 1 *S*, except the top level, at each step.

To select a ϕ such that the system $(Y \times G, S_{\phi}, \nu \otimes m_G)$ is mixing, where

$$S_{\phi}(y,g) = (Sy,g + \phi(y)),$$

we proceed as follows.

The system is the inverse limit of the sequence of systems $(Y \times Z/2^t Z, S_{\phi_t}, \nu \otimes m_t)$ where m_t is Haar measure on $Z/2^t Z$ and $\phi_t = \pi_t \circ \phi$.

Therefore [13] enough is to make sure that ϕ is such that each S_{ϕ_t} is mixing. Using [24], sufficient is that each ϕ_t is a weakly-mixing cocycle. This in turn is easy to ensure using [14, Theorems 3, 4].

So we take a ϕ such that S_{ϕ} is mixing. Now because S_{ϕ_t} is a factor of S_{ϕ} , we have the inequality $r(S_{\phi_t}) \leq r(S_{\phi})$.

But since S_{ϕ_t} is mixing, using [12], it follows that $r(S_{\phi_t}) = 2^t$. Whence $r(S_{\phi}) = \infty$.

Now S_{ϕ} is mixing therefore $\{S_{\phi}^{n}: n \in Z\} = \operatorname{wcl}\{S_{\phi}^{n}: n \in Z\}$. Else for each $g \in G$, $\sigma_{g} \in C(S_{\phi})$, and G is uncountable.

We deduce that $q(S_{\phi}) = \infty$.

REFERENCES

- Adams T., Smorodinsky's conjecture on rank 1 mixing, Proc. Amer. Math. Soc. 126 (1998) 739–744.
- [2] Christol G., Kamae T., Mendès France M., Rauzy G., Suites algébriques, automates et substitutions, Bull. Soc. Math. France 108 (1980) 401–419.
- [3] del Junco A., A transformation with simple spectrum which is not rank one, Canad. J. Math. 29 (1977) 655–663.
- [4] Ferenczi S., Systèmes localement de rang un, Ann. Inst. Henri Poincaré, Probab. Stat. 20 (1984) 35–51.
- [5] Ferenczi S., Systèmes de rang un gauche, Ann. Inst. Henri Poincaré, Probab. Stat. 21 (1985) 177–186.
- [6] Ferenczi S., Systems of finite rank, Colloq. Math. 73 (1) (1997) 35-65.
- [7] Ferenczi S., Kwiatkowski J., Rank and spectral multiplicity, Stud. Math. 102 (2) (1992) 121–144.
- [8] Filipowicz I., Kwiatkowski J., Rank, covering number and simple spectrum, J. d'Analyse Math. 66 (1995) 185–216.
- [9] Goodson G., Kwiatkowski J., Liardet P., Lemanczyk M., On the multiplicity function of ergodic group extensions of rotations, Studia Math. 102 (1992) 157–174.
- [10] King J., The commutant is the weak closure of the powers, for rank-1 transformations, Ergodic Theory Dynam. Systems 6 (1986) 363–385.
- [11] King J., Joining rank and the structure of finite rank mixing transformations, J. d'Analyse Math. 51 (1988) 182–227.
- [12] King J., A lower bound for the rank of mixing transformations, Israel J. Math. 59 (1987) 377–380.
- [13] Kwiatkowski J., Inverse limit of *M*-cocycles and applications, Funda. Math. 157 (1998) 261–276.
- [14] Kwiatkowski J., Lacroix Y., Morse extensions of rank 1 systems, Prepint, U.B.O. No 04-1998, http://gauss.univ-brest.fr/recherche/prepub/1998.html.
- [15] Kwiatkowski J., Lemańczyk M, On the multiplicity function of ergodic group extensions, Studia Math. 116 (1995) 207–215.
- [16] Lemańczyk M., Toeplitz Z₂-extensions, Ann. Inst. Henri Poincaré 24 (1988) 1–43.
- [17] Lemańczyk M., Liardet P., Coalescence of Anzai skew product, unpublished preprint.
- [18] Lemańczyk M., Liardet P., Thouvenot J.P., Coalescence of circle extensions of measurepreserving transformations, Ergodic Theory Dynam. Systems 12 (1992) 769–789.

192 J. KWIATKOWSKI, Y. LACROIX / Ann. I. H. Poincaré – PR 38 (2002) 155–192

- [19] Lemańczyk M., Mentzen M., Compact subgroups in the centralizer of natural factors of an ergodic group extension of a rotation determine all factors, Ergodic Theory Dynam. Systems 10 (1990) 763–776.
- [20] Mentzen M., Thesis, Preprint no 2/89, Nicholas Copernicus University, Toruń (1989).
- [21] Newton D., On canonical factors of ergodic dynamical systems, J. London Math. Soc. 2 19 (1979) 129–136.
- [22] Parry W., Compact abelian group extensions of discrete dynamical systems, Z. Wahr. Verv. Geb. 13 (1969) 95–113.
- [23] Rojek T., On metric isomorphism of Morse dynamical systems, Studia Math. 84 (1986) 247–267.
- [24] Rudolph D.J., *K*-fold mixing lifts to weakly mixing isometric extensions, Ergodic Theory Dynam. Systems 5 (1985) 445–447.