FINITE RANK TRANSFORMATION AND WEAK CLOSURE THEOREM

Jan KWIATKOWSKI ${ }^{\text {a }}$, Yves LACROIX ${ }^{\text {b }}$
${ }^{\text {a }}$ Wydziat Matematyki i Informatyki, U. M. K., ul. Chopina 12/18, 87-100 Toruń, Poland
${ }^{\mathrm{b}}$ U.P.J.V., Lamfa, 33 rue St Leu, 80000 Amiens, France
Received 7 December 1999, revised 26 February 2001

En mémoire d’Anzelm Iwanik

Abstract. - We introduce a new class of cocycles which provides examples of measure preserving dynamical systems (X, \mathcal{B}, μ, T), such that given positive integers $r \geqslant 2$ and $m \geqslant 1$, possibly infinite, with $(r, m) \neq(\infty, \infty)$, the rank is r and the order of the quotient group in the measure-theoretic centralizer, $\# \frac{C(T)}{\operatorname{wcl}\left\{T^{n} ; n \in \mathbb{Z}\right\}}$, is m. Moreover, $\operatorname{wcl}\left\{T^{n} ; n \in \mathbb{Z}\right\}$ is uncountable. For the case $(r, m)=(\infty, \infty)$, we produce a mixing T. This completes the weak closure theorem of Jonathan King. © 2002 Éditions scientifiques et médicales Elsevier SAS
AMS classification: 28D; 47A
Keywords: Rank; Measure-theoretic centralizer; Weak closure Theorem
Résumé. - Nous introduisons une nouvelle classe de cocycles qui permet d'obtenir des exemples de flots (X, \mathcal{B}, μ, T), tels qu'étant donnés deux entiers $r \geqslant 2$ et $m \geqslant 1$, éventuellement infinis, avec $(r, m) \neq(\infty, \infty)$, le rang soit r et l'ordre du groupe quotient dans le centralisateur, $\# \frac{C(T)}{\mathrm{wcl}\left\{T^{n} ; n \in \mathbb{Z}\right\}}$, soit m. En outre ces exemples sont tels que wcl $\left\{T^{n} ; n \in \mathbb{Z}\right\}$ est non dénombrable. Pour $(r, m)=(\infty, \infty)$, nous construisons un exemple avec T mélangeant. Ceci en particulier complète le Théorème de Clôture Faible de Jonathan King. © 2002 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Let (X, \mathcal{B}, μ, T) be an ergodic dynamical system and let $C(T)$ be the measuretheoretic centralizer of T. The Weak Closure Theorem [10] asserts that $C(T)$ coincides with the weak closure of the set of powers of T, denoted wcl $\left\{T^{n}, n \in \mathbb{Z}\right\}$, whenever $r(T)=1$, where $r(T)$ is the rank of T.

Hence the question of the existence of a relationship between $r(T)$ and the cardinality $q(T)$ of the quotient group $\frac{C(T)}{\mathrm{wcl}\left\{T^{n} ; n \in \mathbb{Z}\right\}}$ in the general case naturally arises.

[^0]For mixing T it follows from [11] that $q(T) \leqslant r(T)$. It is not difficult to show that the same inequality holds for T 's defined in [2] - generalized Morse flows, for which $q(T)=2$ and $r(T)$ can be arbitrarily large.

Each automorphism T in [2] has a partially discrete spectrum whence the two kinds of automorphisms previously described are rather far from each other.

However for both cases $\operatorname{wcl}\left\{T^{n}, n \in \mathbb{Z}\right\}=\left\{T^{n}, n \in Z\right\}$. Therefore an interesting additional feature is to construct arbitrary pairs $(q(T), r(T))$ with an uncountable $\operatorname{wcl}\left\{T^{n}, n \in Z\right\}$.

In this paper we shall introduce some new classes of cocycles, which define flows that are ergodic group extensions of rank 1 systems, and are tractable enough to allow an exact computation of both $r(T)$ and $q(T)$.

We shall pick within these classes, for each possible pair (q, r), examples of ergodic automorphisms T such that $(q(T), r(T))=(q, r)$. Moreover, for $(q, r) \neq(\infty, \infty)$, our examples produce an uncountable $\operatorname{wcl}\left\{T^{n}, n \in Z\right\}$.

The difficulty lies both in the proposition of a good candidate, and in the computation of the rank and the order of the quotient group. For $(r, m) \neq(\infty, \infty)$, our examples lie in the class of group extensions determined by r-Toeplitz sequences. For the (∞, ∞) case, the example is mixing: it is a weakly mixing extension of a rank 1 mixing transformation [1].

From these examples, it now follows that in its generality, the weak closure theorem is the only one for limitations concerning the coexistence of the measure-theoretic invariants $q(T)$ and $r(T)$.

The investigations of ergodicity and that of the measure-theoretic centralizer both rely on Newton's functional equation [21] and are carried out partially on a measure-theoretic group extension representation of the system.

Investigating the rank (and partly the centralizer too) we use a shift representation of those extensions.

2. Preliminaries

2.1. Notations and definitions

Let (X, \mathcal{B}, μ) be a Lebesgue space and T a measure-preserving invertible ergodic transformation of (X, \mathcal{B}, μ). By the centralizer (measure-theoretic) of T we mean the set of all measure-preserving automorphisms of (X, \mathcal{B}, μ) which commute with T and we denote it by $C(T)$. Then $C(T)$ is a topological group with the standard operation of composition of transformations and with a topology (called the weak topology) defined as follows: $\left\{S_{n}\right\}_{n \in \mathbb{N}} \in C(T)$ converges to $S \in C(T)$ if for every $A \in \mathcal{B}$

$$
\mu\left(S_{n} A \triangle S A\right) \longrightarrow 0
$$

We shall indicate this convergence by $S_{n} \rightharpoonup S$. With this topology, $C(T)$ is metric, complete. By wcl $\left\{T^{n}, n \in \mathbb{Z}\right\}$ we mean the weak closure of the powers of T in $C(T)$.

We say that a sequence of sets $A_{1}, \ldots, A_{k} \in \mathcal{B}$ is a T-stack if these sets are pairwise disjoint and $T A_{i}=A_{i+1}, i=1, \ldots, k-1$.

If we are given a collection of r measurable subsets F_{i} of X, and r positive integers h_{i}, such that $\mathcal{C}:=\left\{T^{l} F_{i}: 1 \leqslant i \leqslant r, 0 \leqslant l<h_{i}\right\}$ is a collection of disjoint sets (a union of r disjoint T-stacks), setting $Y=X \backslash\left(\bigcup_{C \in \mathcal{C}} C\right)$, this union of r disjoint T-stacks defines a partition $\tilde{\mathcal{C}}:=\mathcal{C} \cup\{Y\}$, and a σ-algebra $\sigma(\tilde{\mathcal{C}})$.

The rank of T is the smallest integer r such that given $\varepsilon>0$, there exists a union of r disjoint T-stacks \mathcal{C}, such that for any measurable $A \in \mathcal{B}$, there exists $B \in \sigma(\tilde{\mathcal{C}})$ with $\mu(A \Delta B)<\varepsilon$. If such a positive integer does not exist then we say that $r(T)=\infty$.

We shall give a symbolic version for the definition of the rank in 2.2. and 4., which are shown to be equivalent to the one above in [3] and [20]. We reffer the interested reader to [5-7] for more on rank and partitions.

Suppose now that G is a compact metric abelian group and $\varphi: X \longrightarrow G$ is a measurable function which we will call a cocycle. The G-extension of (X, \mathcal{B}, μ, T) given by the cocycle φ is the dynamical system $\mathcal{X}_{\varphi}=\left(X \times G, \mathcal{B} \times \mathcal{B}_{G}, \mu \times v, T_{\varphi}\right)$, where \mathcal{B}_{G} is the Borel σ-algebra in G, v is the normalized Haar measure on G and

$$
T_{\varphi}(x, g)=(T x, g+\varphi(x))
$$

for $x \in X, g \in G$. It is well known [22] that for $\operatorname{ergodic}(X, \mathcal{B}, \mu, T)$ the following theorem is true.

THEOREM A. $-T_{\varphi}$ is ergodic iff the functional equation

$$
\begin{equation*}
\frac{f(T x)}{f(x)}=\gamma(\varphi(x)) \tag{1}
\end{equation*}
$$

has no measurable solutions $f: X \longrightarrow K$ for any nontrivial character γ of G (K is the unit complex circle).

It is known (see [21] for the definition) that if (X, \mathcal{B}, μ, T) is a canonical factor of T_{φ} (for example if T is with discrete spectrum) then, assuming that T_{φ} is ergodic, $C\left(T_{\varphi}\right)$ is given by the triples (S, f, τ), where $S \in C(T), f: X \rightarrow G$ is measurable and τ is a group automorphism of G such that

$$
\begin{equation*}
f(T x)-f(x)=\varphi(S x)-\tau(\varphi(x)) \tag{2}
\end{equation*}
$$

This means that every element $R \in C\left(T_{\varphi}\right)$ is of a form

$$
\begin{equation*}
R(x, g)=(S x, \tau(g)+f(x)) \tag{3}
\end{equation*}
$$

In such a case we write $R \sim(S, f, \tau)$. The following property is proved in [17] and [18], using Theorem A.

THEOREM B. - If $R_{n}, R \in C\left(T_{\varphi}\right)$ and $R_{n} \sim\left(S_{n}, f_{n}, \mathrm{id}\right), R \sim(S, f, \mathrm{id})$ then $R_{n} \rightharpoonup R$ iff $S_{n} \rightharpoonup S$ and $f_{n} \longrightarrow f$ in measure μ.

Let $\sigma_{a}: X \times G \longrightarrow X \times G$ be given by the formula

$$
\begin{equation*}
\sigma_{a}(x, g)=(x, g+a), \quad a \in G \tag{4}
\end{equation*}
$$

Then $\sigma_{a} \in C\left(T_{\varphi}\right), \sigma_{a} \sim(\mathrm{id}, a, \mathrm{id})$. For every integer $n,\left(T_{\varphi}\right)^{n}$ is given by the formula

$$
\begin{equation*}
\left(T_{\varphi}\right)^{n}(x, g)=\left(T^{n} x, g+\varphi^{(n)}(x)\right) \tag{5}
\end{equation*}
$$

where

$$
\varphi^{(n)}(x)= \begin{cases}\varphi(x)+\cdots+\varphi\left(T^{n-1} x\right), & \text { if } n \geqslant 0 \tag{6}\\ -\varphi\left(T^{-1} x\right)-\cdots-\varphi\left(T^{n} x\right), & \text { if } n<0\end{cases}
$$

Then it follows from Theorem B that
Corollary 1. $-\left(T_{\varphi}\right)^{n_{k}} \rightharpoonup \sigma_{a}$ in $C\left(T_{\varphi}\right)$ iff $T^{n_{k}} \rightharpoonup \mathrm{id}$ in $C(T)$ and $\varphi^{\left(n_{k}\right)} \longrightarrow a$ in measure.

2.2. Sequences and blocks

A finite sequence $B=(B[0], \ldots, B[k-1]), B[i] \in G, 0 \leqslant i \leqslant k-1, k \geqslant 1$, is called a block over G. The number k is called the length of B and is denoted by $|B|$. If $C=(C[0], \ldots, C[n-1])$ is another block then the concatenation of B and C is the block

$$
B C=(B[0], \ldots, B[k-1], C[0], \ldots, C[n-1]) .
$$

Inductively we define the concatenation of an arbitrary number of blocks. By $B_{g}, g \in G$, we will denote the block

$$
B_{g}=(B[0]+g, \ldots, B[k-1]+g)
$$

and by $B[i, s](0 \leqslant i \leqslant s \leqslant k-1)$ the block

$$
B[i, s]=(B[i], \ldots, B[s])
$$

Assume that

$$
B=B(0) \ldots B(r-1)
$$

is a concatenation of r blocks $B(0), \ldots, B(r-1)$ having the same lengths and

$$
C=C[0] \ldots C[r m-1]
$$

for some $m \geqslant 1$. We define the product $B \stackrel{r}{\times} C$ of B and C as follows:

$$
\begin{align*}
B \stackrel{r}{\times} C= & B_{C[0]}(0) \ldots B_{C[r-1]}(r-1) B_{C[r]}(0) \ldots \tag{7}\\
& B_{C[2 r-1]}(r-1) B_{C[r(m-1)]}(0) \ldots B_{C[r m-1]}(r-1)
\end{align*}
$$

Then

$$
|B \stackrel{r}{\times} C|=\frac{|B||C|}{r}=|B(i)| r m, \quad \text { for every } i=0, \ldots, r-1
$$

Let Ω by the space of all bi-infinite sequences over G. If $\omega \in \Omega$ or ω is a onesided infinite sequence over G then $\omega[i, s], i \leqslant s$, denotes the block $(\omega[i], \ldots, \omega[s])$.

A block B is said to occur at place i in ω (resp. in a block $C,|C|=n$, if $|B| \leqslant n$) if $\omega[i, i+|B|-1]=B$ (resp. $C[i, i+|B|-1]=B)$. The frequencies of B in C or ω are the numbers

$$
\begin{gathered}
\operatorname{fr}(B, C)=|C|^{-1} \#\{0 \leqslant i \leqslant|C|-|B| ; B \text { occurs at place } i \text { in } C\}, \\
\operatorname{fr}(B, \omega)=\lim _{s \rightarrow \infty} \operatorname{fr}(B, \omega[0, s-1])
\end{gathered}
$$

if this limit exists.
For an infinite subsequence of $\omega, E=\{\omega[n], n \in I \subset \mathbb{Z}\}$ (resp. $E=\{\omega[n], n \in I \subset$ \mathbb{N}), we call the density of E the density of the set I in \mathbb{Z} (resp. in \mathbb{N}), whenever it exists. Let $\delta>0$. We say that $B \delta$-occurs at place i in C (resp. in ω) if

$$
d(B, C[i, i+|B|-1])<\delta \quad(\text { resp. } d(B, \omega[i, i+|B|-1])<\delta)
$$

where

$$
d\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=n^{-1} \#\left\{i ; x_{i} \neq y_{i}\right\}
$$

(d is called the normalized Hamming distance or d-bar distance between sequences). We will say also that $B \delta$-occurs on the fragment $\omega[i, i+|B|-1]$ of ω.

We will use the following elementary properties of the distance d;

$$
\begin{gather*}
d(B \stackrel{r}{\times} C, B \stackrel{r}{\times} D)=d(C, D) \quad(\text { see }(7)), \tag{8}\\
d\left(B_{g}, C_{g}\right)=d(B, C), \tag{9}\\
d\left(A_{1} A_{2}, B_{1} B_{2}\right)=\frac{\left|A_{1}\right|}{\left|A_{1}\right|+\left|A_{2}\right|} d\left(A_{1}, B_{1}\right)+\frac{\left|A_{2}\right|}{\left|A_{1}\right|+\left|A_{2}\right|} d\left(A_{2}, B_{2}\right), \tag{10}
\end{gather*}
$$

where $\left|A_{1}\right|=\left|B_{1}\right|,\left|A_{2}\right|=\left|B_{2}\right|$.
If $D_{1} \subset D\left(D_{1}\right.$ is a subblock of $\left.D\right)$ and $C_{1} \subset C,\left|D_{1}\right|=\left|C_{1}\right|$, both appearing in the corresponding same positions, then

$$
\begin{gather*}
d(D, C) \geqslant \frac{\left|D_{1}\right|}{|D|} d\left(D_{1}, C_{1}\right) \\
d\left(A_{1} A_{2} \ldots A_{s}, B_{1} B_{2} \ldots B_{s}\right)=\frac{1}{s} \sum_{i=1}^{s} d\left(A_{i}, B_{i}\right) \tag{12}
\end{gather*}
$$

if $\left|A_{1}\right|=\left|A_{2}\right|=\cdots=\left|A_{s}\right|=\left|B_{1}\right|=\cdots=\left|B_{s}\right|$.
By T_{σ} we denote the left shift homeomorphism of Ω. If $\omega \in \Omega$ then $O(\omega)$ denotes the T_{σ}-orbit of ω and Ω_{ω} the T_{σ}-orbit closure of ω in Ω. The T_{σ}-orbit closure Ω_{ω} is well-defined if ω is a one-sided sequence. Namely, we first let $\diamond \notin G$ be an additional symbol. Then we let ω^{\diamond} denote the bi-infinite sequence which agrees with ω at positive coordinates and has only squares appearing at the negative ones. Then we say that a bi-infinite y belongs to Ω_{ω} if there exists $n_{i} \rightarrow+\infty$ such that $T_{\sigma}^{n_{i}} \omega \rightarrow y$ in Ω (the
convergence is for all coordinates of y, and the limiting element y does not contain any more squares). The topological flow $\left(\Omega_{\omega}, T_{\sigma}\right)$ is called minimal if there is no non trivial closed and T_{σ}-invariant subset of Ω_{ω}. We say that $\left(\Omega_{\omega}, T_{\sigma}\right)$ is uniquely ergodic if there is a unique borelian normalized T_{σ}-invariant measure μ_{ω} on Ω_{ω}. Then $\left(\Omega_{\omega}, T_{\sigma}\right)$ is said to be strictly ergodic if it is minimal and uniquely ergodic. Suppose $\left(\Omega_{\omega}, T_{\sigma}\right)$ is strictly ergodic. The unique T_{σ}-invariant measure μ_{ω} is determined by the condition

$$
\mu_{\omega}(B)=\operatorname{fr}(B, \omega)
$$

for each block B. In the case of a discrete group G, the definition of the rank has the following symbolic transcription.

The system $\left(\Omega_{\omega}, T_{\sigma}, \mu_{\omega}\right)$ is of rank at most r if for any $\delta>0$ and every n, there exist r blocks $B_{1}, \ldots, B_{r},\left|B_{i}\right| \geqslant n$, such that for all N large enough, for any $s \in \mathbb{N}$, the fragment $\omega[s, s+N-1]$ has a form

$$
\omega[s, s+N-1]=\varepsilon_{1} W_{1} \varepsilon_{2} W_{2} \cdots \varepsilon_{k} W_{k} \varepsilon_{k+1}
$$

where $\left|\varepsilon_{1}\right|+\cdots+\left|\varepsilon_{k}\right|+\left|\varepsilon_{k+1}\right|<\delta N$ and the distance d between W_{j} and some $B_{m}, j=1, \ldots, k, 1 \leqslant m \leqslant r$, is less than δ. The system $\left(\Omega_{\omega}, T_{\sigma}, \mu_{\omega}\right)$ is of rank r if it is of rank at most r and not of rank at most $r-1$.

2.3. Adding machines and \boldsymbol{r}-Toeplitz cocycles

Now, let $T:(X, \mathcal{B}, \mu) \longrightarrow(X, \mathcal{B}, \mu)$ be a $\left\{p_{t}\right\}$-adic adding machine i.e.

$$
\begin{gathered}
p_{t+1}=\lambda_{t+1} p_{t}, \quad \lambda_{0}=p_{0}, \quad \lambda_{t} \geqslant 2 \text { for } t \geqslant 0 \\
X=\left\{x=\sum_{t=0}^{\infty} q_{t} p_{t-1} ; 0 \leqslant q_{t} \leqslant \lambda_{t}-1, \quad p_{-1}=1\right\}
\end{gathered}
$$

is the group of $\left\{p_{t}\right\}$-adic integers and $T x=x+\hat{1}$, where

$$
\hat{\imath}=1+0 p_{1}+0 p_{2}+\cdots .
$$

The space X has a standard sequence $\left\{\xi_{t}\right\}_{t \geqslant 0}$ of T-stacks. Namely

$$
\xi_{t}=\left(D_{0}^{t}, \ldots, D_{p_{t}-1}^{t}\right)
$$

where

$$
D_{0}^{t}=\left\{x \in X ; q_{0}=\cdots=q_{t}=0\right\}, \quad D_{s}^{t}=T^{s}\left(D_{0}^{t}\right)
$$

for $s=1, \ldots, p_{t}-1$. We have

$$
X=\bigcup_{i=0}^{p_{t}-1} D_{i}^{t}
$$

Then ξ_{t+1} refines ξ_{t} and the sequence of partitions $\left\{\xi_{t}\right\}_{t \geqslant 0}$ converges to the point partition.

We will define a special class of cocycles $\varphi: X \longrightarrow G$ that are determined by Toeplitz sequences over G.

Let $r \geqslant 2$ be an integer, and assume that b^{0}, b^{1}, \ldots are finite blocks over G with $\left|b^{t}\right|=\lambda_{t} r, \lambda_{t} \geqslant 2$, such that

$$
b^{t}[0, r-1]=(\underbrace{0, \ldots, 0}_{r \text { times }}) \text {. }
$$

We shall introduce a particular sequence $\left(p_{t}\right)$, and some new blocks $\left(B^{t}\right)$.
We can write

$$
\begin{equation*}
b^{t}=b^{t}(0) \ldots b^{t}(r-1), \quad\left|b^{t}(i)\right|=\lambda_{t}, i=0, \ldots, r-1 \tag{13}
\end{equation*}
$$

Define another sequence of blocks $\left\{B^{t}\right\}$ letting

$$
\begin{equation*}
B^{0}=b^{0}, \quad B^{t+1}=B^{t} \stackrel{r}{\times} b^{t+1}, \quad t \geqslant 0 \tag{14}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\left|B^{t}\right|=r m_{t}=p_{t}, \quad m_{t}=\lambda_{0} \cdots \lambda_{t} \tag{15}
\end{equation*}
$$

and we can represent B^{t} as

$$
\begin{equation*}
B^{t}=B^{t}(0) \cdots B^{t}(r-1), \quad\left|B^{t}(i)\right|=m_{t}, i=0, \ldots, r-1 \tag{16}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
B^{t+1}\left[0, p_{t}-1\right]=B^{t} \tag{17}
\end{equation*}
$$

Now we can define a cocycle φ by

$$
\begin{equation*}
\varphi(x)=B^{t}[i+1]-B^{t}[i] \tag{18}
\end{equation*}
$$

if $x \in D_{i}^{t}$ except of $i=m_{t}-1,2 m_{t}-1, \ldots, p_{t}-1$. Let us observe that φ is well defined. Such a cocycle is called r-Toeplitz cocycle. For every $t \geqslant 0, \varphi$ is constant on the levels of ξ_{t} except of r levels.

The sequence $\left\{B^{t}\right\}_{t \geqslant 0}$ determines a one-sided sequence ω as follows:

$$
\begin{equation*}
\omega\left[0, p_{t}-1\right]=B^{t}, \quad t=0,1, \ldots \tag{19}
\end{equation*}
$$

The condition (17) guarantees that ω is well defined.
It is not hard to show that the condition

$$
\begin{equation*}
\operatorname{fr}\left(g, b^{t}\right) \geqslant \rho>0 \quad \text { (if } G \text { is finite) } \tag{20}
\end{equation*}
$$

for every $g \in G$ and $t=0,1 \ldots$, implies that the system $\left(\Omega_{\omega}, T_{\sigma}\right)$ is strictly ergodic. Then using (19), (20), and arguments as in [16], we deduce that the dynamical systems $\left(\Omega_{\omega}, T_{\sigma}, \mu_{\omega}\right)$ and $\left(X \times G, T_{\varphi}, \mu \times v\right)$ are measure-theoretically isomorphic when T_{φ} is ergodic.

The group extensions defined by r-Toeplitz cocycles shall be called r-Toeplitz extensions.

In the sequel we will write

$$
\omega=b^{0} \stackrel{r}{\times} b^{1} \stackrel{r}{\times} b^{2} \stackrel{r}{\times} \cdots
$$

Except of ω we need the sequences $\omega_{t}, t \geqslant 0$, defined by

$$
\begin{equation*}
\omega_{t}=b^{t} \stackrel{r}{\times} b^{t+1} \stackrel{r}{\times} \cdots \tag{21}
\end{equation*}
$$

3. Examples of \boldsymbol{r}-Toeplitz extensions

In this part, given $r \geqslant 2$ and $m \geqslant 1$, we define r-Toeplitz group extensions having cardinality of the quotient group $C\left(T_{\varphi}\right) / \operatorname{wcl}\left\{T_{\varphi}^{n} ; n \in \mathbb{Z}\right\}$ equal to m.

3.1. The case $r \geqslant 2, m \geqslant 2$

Let $G=\mathbb{Z} / m \mathbb{Z}=\{0, \ldots, m-1\}$. Define

$$
\begin{aligned}
F^{(i)} & =\overbrace{00 \ldots 0}^{r\left(2^{i+2}-1\right)} \overbrace{0 \ldots 0 \underbrace{1}_{i+1} 0 \ldots 0}^{r}, \quad i=0, \ldots, r-1
\end{aligned}, \begin{aligned}
& H^{(i)}=F_{0}^{(i)} F_{1}^{(i)} \ldots F_{m-1}^{(i)} .
\end{aligned}
$$

We have $\left|H^{(i)}\right|=m r 2^{i+2}$. Next define

$$
\begin{aligned}
b^{t}(0)= & \underbrace{H^{(0)} H^{(0)} \ldots H^{(0)}}_{x_{0} \text { times }} \\
b^{t}(1)= & \underbrace{H^{(1)} H^{(1)} \ldots H^{(1)}}_{x_{1} \text { times }} \\
& \vdots \\
b^{t}(r-1)= & \underbrace{H^{(r-1)} H^{(r-1)} \ldots H^{(r-1)}}_{x_{r-1} \text { times }}
\end{aligned}
$$

where

$$
x_{i}=2^{t+r-1-i}, \quad 0 \leqslant i \leqslant r-1
$$

and

$$
b^{t}=b^{t}(0) \ldots b^{t}(r-1), \quad t \geqslant 0
$$

Then we have

$$
\lambda_{t}=\left|b^{t}(i)\right|=m r 2^{t+r+1}, \quad \text { for } i=0, \ldots, r-1 \quad(\text { see }(13))
$$

and

$$
\left|b^{t}\right|=m r^{2} 2^{t+r+1}
$$

Now define the blocks $B^{t}, t \geqslant 0$, by (14) and the cocycle φ by (18). Then from (15)

$$
p_{t}=\left|B^{t}\right|=m^{t+1} r^{2 t} 2^{r+1}\left(2^{t+1}-1\right), \quad t \geqslant 0
$$

3.2. The case $r \geqslant 2, m=1$

Let $G=\mathbb{Z} / n \mathbb{Z}=\{0, \ldots, n-1\}, n \geqslant 4$. Then define

$$
\begin{aligned}
& F^{(i)}=\overbrace{00 \ldots 0}^{3 r} \overbrace{0 \ldots \underbrace{1}_{i+1} 0 \ldots 0}^{r} 0 \\
& H^{(i)}=F_{0}^{(i)} F_{1}^{(i)} \ldots F_{n-1}^{(i)},
\end{aligned}
$$

and

$$
b^{t}(i)=\underbrace{H^{(i)} H^{(i)} \ldots H^{(i)}}_{x \text { times }}, \quad x=2^{t} .
$$

Next set

$$
\begin{aligned}
b^{t} & =b^{t}(0) \ldots b^{t}(r-1) \\
B^{t} & =b^{0} \stackrel{r}{\times} b^{1} \stackrel{r}{\times} \cdots \stackrel{r}{\times} b^{t}, \quad t \geqslant 0
\end{aligned}
$$

and define φ by (18). In this case we have

$$
\lambda_{t}=r n 2^{t+2}=\left|b^{t}(i)\right|, \quad\left|b^{t}\right|=r^{2} n 2^{t+2}, \text { for } i=0,1, \ldots, r-1 \text { and } t \geqslant 0
$$

3.3. Ergodicity and the measure-theoretic centralizer

THEOREM 1. $-T_{\varphi}$ is ergodic.
Proof. - We will prove ergodicity of T_{φ} in both cases 3.1 and 3.2. Assume that there exists a measurable function $f: X \longrightarrow K$ satisfying (1). Then (see (5), (6))

$$
\begin{equation*}
\frac{f\left(T^{n} x\right)}{f(x)}=\gamma\left(\varphi^{(n)}(x)\right) \tag{22}
\end{equation*}
$$

for μ-a.e. $x \in X$ and every $n \in \mathbb{Z}$.
In particular (22) holds for $n=p_{t}, t=0,1, \ldots$. The measurability of f and the fact that $\xi_{t} \longrightarrow \varepsilon$ (the partition into points) in X imply

$$
\begin{equation*}
\gamma\left(\varphi^{\left(p_{t}\right)}(x)\right)=1 \tag{23}
\end{equation*}
$$

except of a subset of measure ε_{t} and $\varepsilon_{t} \longrightarrow 0$.
Let $x \in D_{j}^{t+1}, 0 \leqslant j \leqslant p_{t+1}-1$. We can represent j as

$$
\begin{equation*}
j=u p_{t}+v m_{t}+\rho, \tag{24}
\end{equation*}
$$

where $0 \leqslant u \leqslant \lambda_{t+1}-1,0 \leqslant v \leqslant r-1,0 \leqslant \rho \leqslant m_{t}-1$ (see (15)).

It follows from (18) (with $t:=t+1$) that

$$
\begin{equation*}
\varphi^{\left(p_{t}\right)}(x)=B^{t+1}\left[j+p_{t}\right]-B^{t+1}[j] \tag{25}
\end{equation*}
$$

except j for which $u=u_{1}=\frac{\lambda}{r}-1, \ldots, u=u_{r}=\frac{r \lambda}{r}-1=\lambda-1, \lambda=\lambda_{t+1}$. At the same time we have

$$
B^{t+1}[j]=b[u r+v]+B^{t}(v)[\rho], \quad b=b^{t+1} \quad(\text { see }(14),(16))
$$

Then (25) can be rewritten as

$$
\begin{equation*}
\varphi^{\left(p_{t}\right)}(x)=b[(u+1) r+v]-b[u r+v], \quad u \neq u_{1}, \ldots, u_{r} \tag{26}
\end{equation*}
$$

The last equality and (23) imply that

$$
\begin{equation*}
\gamma(c[q])=1 \quad(q=u r+v) \tag{27}
\end{equation*}
$$

for $q \in V_{t} \subset\left\{0,1, \ldots, r \lambda_{t+1}-1\right\}, \frac{\# V_{t}}{r \lambda_{t+1}} \geqslant 1-\varepsilon_{t}-\frac{2}{\lambda_{t+1}}$, where $c=c^{t}$ is given by

$$
c[q]:=b[q+r]-b[q], \quad q=0, \ldots, r \lambda-r-1
$$

Further the blocks $c=c^{t}$ have the following forms:

$$
\begin{equation*}
c=\overbrace{E^{(0)} \ldots E^{(0)}}^{\left(m x_{0}-1\right) \text { times }} L^{(0)} \overbrace{E^{(1)} \ldots E^{(1)}}^{\left(m x_{1}-1\right) \text { times }} L^{(1)} \ldots \overbrace{E^{(r-1)} \ldots E^{(r-1)}}^{\left(m x_{r-1}-1\right) \text { times }} \tag{28}
\end{equation*}
$$

where

$$
\begin{aligned}
E^{(0)} & =\overbrace{0 \ldots 0}^{2 r} \overbrace{10 \ldots 0}^{r} \overbrace{01 \ldots 1}^{r}, \quad\left|L^{0}\right|=r, \\
E^{(1)} & =\overbrace{0 \ldots 0}^{6 r} \overbrace{010 \ldots 0}^{r} \overbrace{101 \ldots 1}^{r}, \quad\left|L^{1}\right|=r, \\
& \vdots \\
E^{(r-1)} & =\overbrace{0 \ldots 0}^{\left(2^{r+1}-2\right) r} \overbrace{0 \ldots 01}^{r} \overbrace{1 \ldots 10}^{r}, \quad\left|L^{(r-2)}\right|=r,
\end{aligned}
$$

in the case 3.1. In the case 3.2 we have

$$
\begin{equation*}
c=\overbrace{E^{(0)} \ldots E^{(0)}}^{(n x-1) \text { times }} L^{(0)} \overbrace{E^{(1)} \ldots E^{(1)}}^{(n x-1) \text { times }} L^{(1)} \ldots \overbrace{E^{(r-1)} \ldots E^{(r-1)}}^{(n x-1) \text { times }} \tag{29}
\end{equation*}
$$

where

$$
\begin{aligned}
E^{(0)} & =\overbrace{0 \ldots 0}^{2 r} \overbrace{10 \ldots 0}^{r} \overbrace{01 \ldots 1}^{r}, \quad\left|L^{0}\right|=r, \\
E^{(1)} & =\overbrace{0 \ldots 0}^{2 r} \overbrace{010 \ldots 0}^{r} \overbrace{101 \ldots 1}^{r}, \quad\left|L^{1}\right|=r,
\end{aligned}
$$

$$
E^{(r-1)}=\overbrace{0 \ldots 0}^{2 r} \overbrace{0 \ldots 01}^{r} \overbrace{1 \ldots 10}^{r}, \quad\left|L^{(r-2)}\right|=r .
$$

In both cases 1 appears in c with frequency $>\frac{1}{r r^{2+2}}$ for each $t \geqslant 0$. Then (27) implies $\gamma(1)=1$ so γ is trivial. We have proved that T_{φ} is ergodic.

3.4. The centralizer of \boldsymbol{T}_{φ}

The p_{t}-adic adding machine (X, \mathcal{B}, μ, T) is a canonical factor of the group extension $\left(X \times G, \mathcal{B} \times \mathcal{B}_{G}, \mu \times \nu, T_{\varphi}\right)$. Then $C\left(T_{\varphi}\right)$ is described in 2.1. We can distinguish the following subgroups of $C\left(T_{\varphi}\right)$:

$$
\begin{aligned}
& C_{1}=\operatorname{wcl}\left\{T_{\varphi}^{n} ; n \in \mathbb{Z}\right\}, \\
& C_{2}=\left\{\sigma_{a} \circ \widetilde{S} ; \widetilde{S} \in C_{1} \text { and } a \in G\right\}, \\
& C_{3}=\{R \sim(S, f, \tau) ; \tau=\mathrm{id}\} .
\end{aligned}
$$

Of course C_{1}, C_{2}, C_{3} are closed subgroups of $C\left(T_{\varphi}\right)$ and

$$
C_{1} \subset C_{2} \subset C_{3} \subset C\left(T_{\varphi}\right) .
$$

We prove in Lemmas 1 and 2 that $C\left(T_{\varphi}\right)$ reduces to C_{2} when φ is the r-Toeplitz cocycle defined in 3.1 or in 3.2.

In the sequel n means the same n as the one defined in 3.2 if this case is considered, and $n:=m$ if the case 3.1 is considered.

Lemma 1. $-C\left(T_{\varphi}\right)=C_{3}$.
Proof. - Take R as in (3). Then the triple (S, f, τ) satisfies (2). Putting $x:=$ $T x, \ldots, T^{p_{t}-1} x$ in (2) and summing we obtain

$$
\begin{equation*}
f\left(T^{p_{t}} x\right)-f(x)=\varphi^{\left(p_{t}\right)}(S x)-\tau\left(\varphi^{\left(p_{t}\right)}(x)\right) \tag{30}
\end{equation*}
$$

for μ-a.e. $x \in X$ and each $t \geqslant 0$. Using the same arguments as in the proof of Theorem 1 we get from (30)

$$
\begin{equation*}
\varphi^{\left(p_{t}\right)}(S x)-\tau\left(\varphi^{\left(p_{t}\right)}(x)\right)=0 \tag{31}
\end{equation*}
$$

for $x \in X_{t}$ and $\mu\left(X_{t}\right) \longrightarrow 1$.
Further we know [21] that there exists $q_{0} \in X$ such that

$$
S(x)=x+g_{0}, \quad x \in X .
$$

Let

$$
g_{0}=\sum_{t=0}^{\infty} u_{t} p_{t-1}, \quad 0 \leqslant u_{t} \leqslant \lambda_{t}-1, t \geqslant 1 \text { and } 0 \leqslant u_{0} \leqslant \lambda_{0} r-1 .
$$

Fix t and consider (31) on the stack ξ_{t+1}. Let

$$
j_{t}=\sum_{j=0}^{t} u_{j} p_{j-1} .
$$

Then (see (24))

$$
j_{t}=v_{0} m_{t}+\rho_{0}, \quad j_{t+1}=u_{0} p_{t}+v_{0} m_{t}+\rho_{0}, \quad u_{0}=u_{t+1} .
$$

If $x \in D_{j}^{t+1}, 0 \leqslant j \leqslant p_{t+1}-1$, then $S x \in D_{j+j_{t+1}}^{t+1}$, where $j+j_{t+1}$ is taken $\bmod p_{t+1}$. We can write

$$
j+j_{t+1}=\bar{u} p_{t}+\bar{v} m_{t}+\bar{\rho}, \quad 0 \leqslant \bar{u} \leqslant \lambda-1,0 \leqslant \bar{v} \leqslant r-1,0 \leqslant \bar{\rho} \leqslant m_{t}-1 .
$$

Let us denote (use (24) for j)

$$
q_{0}= \begin{cases}u_{0} r+v_{0} & \text { if } \rho=0, \ldots, m_{t}-\rho_{0}-1, \\ u_{0} r+v_{0}+1 & \text { if } \rho=m_{t}-\rho_{0}, \ldots, m_{t}-1,\end{cases}
$$

and $q=u r+v, \bar{q}=\bar{u} r+\bar{v}$. Then $\bar{q}=q+q_{0}\left(\bmod r \lambda_{t+1}\right)$. Thus (26) and (31) give

$$
\begin{equation*}
c\left[q+q_{0}\right]=\tau(c[q]) \quad \text { if } q \in V_{t} \subset\left\{0,1, \ldots, r \lambda_{t+1}-1\right\} \tag{32}
\end{equation*}
$$

and $\frac{1}{\lambda_{t+1}} \# V_{t} \longrightarrow 1$. Analysing the sequences (28) and (29) it is easy to observe that they do not satisfy (32) with any q_{0} whenever $\tau \neq$ id (i.e., $\tau(1) \neq 1$). The lemma is proved.

Lemma 2. - $C\left(T_{\varphi}\right)=C_{2}$.
Proof. - Let $R \sim(S, f, \mathrm{id}) \in C_{3}$. Then (32) means

$$
c\left[q+q_{0}\right]=c[q], \quad q \in V_{t} .
$$

The last condition implies

$$
\begin{equation*}
q_{0}(t)=q_{0}=2^{r+1} r m w, \quad w=w_{t}, \tag{33}
\end{equation*}
$$

in the case 3.1 and

$$
\begin{equation*}
q_{0}(t)=q_{0}=4 r n w, \quad w=w_{t}, \tag{34}
\end{equation*}
$$

in the case 3.2 , where $0 \leqslant w \leqslant r 2^{t+1}-1$ (see again (28) and (29)). Moreover

$$
\min \left(\frac{q_{0}(t)}{\lambda_{t+1}}, 1-\frac{q_{0}(t)}{\lambda_{t+1}}\right) \longrightarrow 0 .
$$

The above condition implies

$$
\min \left(\frac{j_{t}}{p_{t}}, 1-\frac{j_{t}}{p_{t}}\right) \longrightarrow 0
$$

Assume that $j_{t} / p_{t} \longrightarrow 0$ along some subsequence of t. It follows from the definition of the p_{t}-adic adding machine that

$$
\begin{equation*}
T^{j_{t}} \rightharpoonup S \tag{35}
\end{equation*}
$$

Now we will prove that there exists $a \in G$ such that

$$
\begin{equation*}
\varphi^{\left(j_{t}\right)} \longrightarrow f+a \tag{36}
\end{equation*}
$$

in measure μ.
The function f satisfies the condition (see (2) with $\tau=\mathrm{id}$)

$$
f(T x)-f(x)=\varphi(S x)-\varphi(x)
$$

The measurability of f and $\xi_{t} \longrightarrow \varepsilon$ imply that there exists $a_{t} \in G$ such that the functions f_{t} defined by

$$
\begin{align*}
& f_{t}(y)=a_{t}+\varphi^{(i)}(S x)-\varphi^{(i)}(x), \quad y \in D_{i}^{t}, y=T^{i} x, x \in D_{0}^{t} \tag{37}\\
& \quad i=0, \ldots, p_{t}-1
\end{align*}
$$

satisfy the condition

$$
f_{t} \longrightarrow f \text { in measure } \mu
$$

We can assume that $a_{t}=b$. We can rewrite (37) as

$$
f_{t}(y)=b+\varphi^{(i)}(S x)-\varphi^{(i)}\left(T^{j_{t}} x\right)+\varphi^{(i)}\left(T^{j_{t}} x\right)-\varphi^{(i)}(x)
$$

Further we have (see (6))

$$
\begin{equation*}
\varphi^{(i)}\left(T^{j_{t}} x\right)-\varphi^{(i)}(x)=\varphi^{\left(j_{t}\right)}\left(T^{i} x\right)-\varphi^{\left(j_{t}\right)}(x) \tag{38}
\end{equation*}
$$

Because of $j_{t}<m_{t}$ then $\varphi^{\left(j_{t}\right)}(x)=b_{t}$ for all $x \in D_{0}^{t}$. Assuming again $b_{t}=b_{1}$ we can write (38) as

$$
\varphi^{(i)}\left(T^{j_{t}} x\right)-\varphi^{(i)}(x)=\varphi^{\left(j_{t}\right)}(y)-b_{1}
$$

and (37) as

$$
\begin{equation*}
f_{t}(y)=b_{2}+\varphi^{\left(j_{t}\right)}(y)+\varphi^{(i)}(S x)-\varphi^{(i)}\left(T^{j_{t}} x\right) \tag{39}
\end{equation*}
$$

Assume that

$$
x \in D_{u p_{t}}^{t+1}, \quad 0 \leqslant u \leqslant \lambda_{t+1}-1
$$

Then

$$
T^{j_{t}} x \in D_{u p_{t}+j_{t}}^{t+1} \quad \text { and } \quad S x \in D_{\left(u+u_{0}\right) p_{t}+j_{t}}^{t+1}
$$

where $u_{0}=q_{0} / r$.
For $i \leqslant p_{t}-j_{t}-1, i=v m_{t}+\rho$ and $u \neq u_{1}, \ldots, u_{r}$ we have

$$
\varphi^{(i)}\left(T^{j_{t}} x\right)=B^{t+1}\left[u p_{t}+j_{t}+i\right]-B^{t+1}\left[u p_{t}+j_{t}\right]=b^{t+1}[u r+v]-b^{t+1}[u r]
$$

and

$$
\begin{aligned}
\varphi^{(i)}(S x) & =B^{t+1}\left[\left(u+u_{0}\right) p_{t}+j_{t}+i\right]-B^{t+1}\left[\left(u+u_{0}\right) p_{t}+j_{t}\right] \\
& =b^{t+1}\left[\left(u+u_{0}\right) r+v\right]-b^{t+1}\left[\left(u+u_{0}\right) r\right]
\end{aligned}
$$

Thus

$$
\varphi^{(i)}(S x)-\varphi^{(i)}\left(T^{j_{t}} x\right)=\left(b\left[q+q_{0}\right]-b[q]\right)-\left(b\left[u r+q_{0}\right]-b[u r]\right), \quad q=u r+v
$$

Then (33) and (34) imply

$$
\begin{equation*}
\varphi^{(i)}(S x)-\varphi^{(i)}\left(T^{j_{t}} x\right)=0 \tag{40}
\end{equation*}
$$

except of a set of measure $\leqslant\left(r / \lambda_{t}\right)+\left(j_{t} / p_{t}\right)$.
Now (39) and (40) imply (36) with $a=-b_{2}$. Notice that (35) and (36) and Theorem B imply

$$
T_{\varphi}^{j_{t}} \rightharpoonup R \circ \sigma_{a}
$$

This proves the lemma.
To prove that

$$
\# \frac{C\left(T_{\varphi}\right)}{\operatorname{wcl}\left\{T_{\varphi}^{n} ; n \in \mathbb{Z}\right\}}=m
$$

in case 3.1 it is sufficient to show that $\sigma_{a} \notin C_{1}$ whenever $a \in \mathbb{Z}_{m}, a \neq 0$. In the case 3.2 we will prove that $\sigma_{a} \in C_{1}$ for every $a \in \mathbb{Z}_{n}$ what implies

$$
\# \frac{C\left(T_{\varphi}\right)}{\operatorname{wcl}\left\{T_{\varphi}^{n} ; n \in \mathbb{Z}\right\}}=1
$$

To do this we need estimations of the d-distance between blocks occurring in ω and $\omega_{t}, t \geqslant 0$.

3.5. d-bar distance between blocks

The sequence $\omega=b^{0} \stackrel{r}{\times} b^{1} \stackrel{r}{\times} \cdots$ is a concatenation of the blocks of the form

$$
E_{k}(t)=B^{t} \stackrel{r}{\times} \bar{e}_{k}, \quad E_{k}^{(s)}(t)=B^{t} \stackrel{r}{\times} \bar{e}_{k}^{(s)}, \quad k \in \mathbb{Z}_{n}, s=0, \ldots, r-1
$$

where

$$
\bar{e}_{k}=(\overbrace{k, \ldots, k}^{r}), \quad \bar{e}_{k}^{(s)}=(\overbrace{k, \ldots, k, \underbrace{k+1}_{s \text { th place }}, k, \ldots, k}^{r}) .
$$

The sequence $\omega_{t}=b^{t} \stackrel{r}{\times} b^{t+1} \stackrel{r}{\times} \cdots$ is a concatenation of the blocks of the form

$$
e_{k}(t)=b^{t} \stackrel{r}{\times} \bar{e}_{k}, \quad e_{k}^{(s)}(t)=b^{t} \stackrel{r}{\times} \bar{e}_{k}^{(s)}
$$

The blocks $E_{k}=E_{k}(t), E_{k}^{(s)}=E_{k}^{(s)}(t)$ are called t-symbols and the blocks $e_{k}=$ $e_{k}(t), e_{k}^{(s)}=e_{k}^{(s)}(t)$ are called "small" t-symbols. Each fragment $\omega\left[k p_{t},(k+1) p_{t}-1\right]$ of $\omega, k \in \mathbb{Z}$, is a t-symbol, and $\omega_{t}\left[k \lambda_{t} r,(k+1) \lambda_{t} r-1\right]$ is a "small" t-symbol. The positions $\left[k p_{t},(k+1) p_{t}-1\right]$ and $\left[k \lambda_{t} r,(k+1) \lambda_{t} r-1\right]$ will be called the natural positions in ω and ω_{t} respectively.

We will examine d-bar distance between the blocks mentioned above or between their special fragments. In particular, we will examine the pairs

$$
b_{k}(i) b_{k}(i+1), b_{k}(i) b_{k+1}(i+1), b_{k+1}(i) b_{k}(i+1)
$$

for $i=0, \ldots, r-2$ and $k \in \mathbb{Z}_{n}$ and

$$
b_{k}(r-1) b_{k}(0), b_{k}(r-1) b_{k+1}(0)
$$

Proposition 1.-Let

$$
\begin{cases}I=b_{0}^{t}(i)\left[0, \lambda_{t}-j-1\right], & j \leqslant \frac{1}{2} \lambda_{t} \tag{41}\\ I I=b_{k}^{t}\left(i^{\prime}\right)\left[j, \lambda_{t}-1\right], & k \in \mathbb{Z}_{n}, i, i^{\prime}=0, \ldots, r-1, t \geqslant 0\end{cases}
$$

If

$$
\begin{equation*}
d(I, I I)<\frac{1}{r 2^{r+2}} \tag{42}
\end{equation*}
$$

then $i^{\prime}=i$ and

$$
\begin{gather*}
j=(n-k) r 2^{i+2}+a n r 2^{i+2}, \quad a \geqslant 0, \quad \text { if } 3.1 \text { holds }, \tag{43}\\
j=(n-k) r 4+a n r 4, \quad a \geqslant 0, \quad \text { if } 3.2 \text { holds } \tag{44}
\end{gather*}
$$

Proof. - It is easy to observe that if $i^{\prime} \neq i$ or $i^{\prime}=i$ and (43) (or (44) in the case 3.2) does not hold then every subblock $F_{k}^{(i)}$ of I differs from the corresponding fragment in $I I$ at least in one position. Since $j \leqslant \frac{1}{2 \lambda_{t}}$, this would imply the converse inequality in (42).

In Propositions 2-6 the blocks $b_{k}^{t}(i)=b_{k}(i), k \in \mathbb{Z}_{n}, 0 \leqslant i<r$, are those defined in 3.1.

PROPOSITION 2. - Let

$$
\begin{aligned}
& I=b_{0}(0) \ldots b_{0}(r-1)\left[0, r \lambda_{t}-j-1\right] \\
& I I=b_{k}(0) \ldots b_{k}(r-1)\left[j, r \lambda_{t}-1\right], \quad j \leqslant \frac{1}{2} r \lambda_{t}, \quad k \in \mathbb{Z}_{n}
\end{aligned}
$$

If

$$
\begin{equation*}
d(I, I I)<\frac{1}{r^{2} 2^{r+3}} \tag{45}
\end{equation*}
$$

then $j \leqslant \frac{1}{2} \lambda_{t}, k=0$, and

$$
\begin{equation*}
j \equiv 0\left(\bmod n r 2^{r+1}\right) \tag{46}
\end{equation*}
$$

Fig. 1.
Proof. - If $j>\frac{1}{2} \lambda_{t}$ then we can find subblocks I_{1} of I and $I I_{l}$ of $I I$ such that $I I_{1}$ is under I_{1} (see Fig. 1) having the form (41) with different $j^{\prime} s$ and with $i^{\prime} \neq i$.

It follows from Proposition 1 that $d\left(I_{1}, I I_{1}\right) \geqslant \frac{1}{r 2^{r+2}}$ and using (11) we obtain

$$
d(I, I I) \geqslant \frac{\frac{1}{2} \lambda_{t}}{r \lambda_{t}} d\left(I_{1} \cdot I I_{1}\right) \geqslant \frac{1}{r^{2} 2^{r+3}}
$$

in spite of (45). Therefore $j \leqslant \frac{1}{2} \lambda_{t}$.
It follows from (11) and (45) that

$$
\begin{equation*}
d\left(I_{i}, I I_{i}\right)<\frac{1}{r 2^{r+2}} \quad \text { for } i=0, \ldots, r-1 \tag{47}
\end{equation*}
$$

where

$$
I_{i}=b_{0}(i)\left[0, \lambda_{t}-j-1\right], \quad I I_{i}=b_{k}(i)\left[j, \lambda_{t}-1\right]
$$

Then (47) implies (43) to hold for each $i=0, \ldots, r-1$. In particular taking $i=0,1$ we get

$$
-k r 4+2 k r 4=a_{1} n r 4
$$

Thus $k=0$ in \mathbb{Z}_{n}. The proposition is proved.
Proposition 3.-Let

$$
\begin{gathered}
I=b_{k}(i) b_{k+1}(i+1)[0,2 \lambda-j-1], \quad j \leqslant \frac{1}{2} \lambda ; \lambda=\lambda_{t} \\
I I=b_{k_{1}}(i) b_{k_{2}}(i+1)[j, 2 \lambda-1], \quad i=0, \ldots, r-2, k, k_{1}, k_{2} \in \mathbb{Z}_{n}
\end{gathered}
$$

and $k_{2}=k_{1}+1$ or $k_{2}=k_{1}-1$.
If

$$
\begin{equation*}
d(I, I I)<\frac{1}{r 2^{r+4}} \tag{48}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(k_{1} k_{2}\right)=(k, k+1) \quad \text { or } \quad\left(k_{1} k_{2}\right)=(k+4, k+3) \quad \text { if } n \geqslant 3 \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(k_{1} k_{2}\right)=(k, k+1) \quad \text { if } n=2 \tag{50}
\end{equation*}
$$

Proof. - It follows from (48) and (11) that

$$
d\left(I_{1}, I I_{1}\right)<\frac{1}{r 2^{r+2}}
$$

and

$$
d\left(I_{2}, I I_{2}\right)<\frac{1}{r 2^{r+2}}
$$

where

$$
\begin{gathered}
I_{1}=b_{k}(i)[0, \lambda-j-1], \quad I I_{1}=b_{k_{1}}(i)[j, \lambda-1], \\
I_{2}=b_{k+1}(i+1)[0, \lambda-j-1], \quad I I_{2}=b_{k_{2}}(i+1)[j, \lambda-1] .
\end{gathered}
$$

Now, we apply Proposition 1. It follows from (43) that

$$
k-k_{1}=2\left(k+1-k_{2}\right)(\bmod n)
$$

The above condition implies (49) and (50).
Proposition 4.-Let

$$
\begin{gathered}
I_{k}=b_{k}(r-1) b_{k}(0)[0,2 \lambda-j-1] \quad \text { or } \quad I_{k}^{\prime}=b_{k}(r-1) b_{k+1}(0)[0,2 \lambda-j-1], \\
I I=b_{k_{1}}(r-1) b_{k_{2}}(0)[j, 2 \lambda-1], \quad k, k_{1}, k_{2} \in \mathbb{Z}_{n}, j \leqslant \frac{1}{2} \lambda_{t},
\end{gathered}
$$

and

$$
\begin{equation*}
k_{2}=k_{1} \quad \text { or } \quad k_{2}=k_{1}+1 \tag{51}
\end{equation*}
$$

If

$$
d(I, I I)<\frac{1}{r 2^{r+4}}, \quad I=I_{k} \text { or } I_{k}^{\prime}
$$

then

$$
\begin{equation*}
k_{1}=k_{2}=k \quad \text { if } I=I_{k} \quad \text { and } \quad k_{1}=k, k_{2}=k+1 \quad \text { if } I=I_{k}^{\prime} \tag{52}
\end{equation*}
$$

whenever

$$
\begin{equation*}
\left(2^{r-1}-1, n\right)>1, \tag{53}
\end{equation*}
$$

and there is a unique $l \in \mathbb{Z}_{n}$ such that

$$
\left\{\begin{array}{l}
\left(k_{1} k_{2}\right)=(k k) \quad \text { or } \quad\left(k_{1} k_{2}\right)=(l, l+1) \text { and } l \text { satisfies } \tag{54}\\
l\left(2^{r-1}-1\right)=\left(2^{r-1}-1\right) k+1 \text { in } \mathbb{Z}_{n} \quad \text { if } I=I_{k} \\
\text { and } \\
\left(k_{1} k_{2}\right)=(k, k+1) \quad \text { or } \quad\left(k_{1} k_{2}\right)=(l l) \text { and } l \text { satisfies } \\
l\left(2^{r-1}-1\right)=\left(2^{r-1}-1\right) k-1 \text { in } \mathbb{Z}_{n} \quad \text { if } I=I_{k}^{\prime}
\end{array}\right.
$$

whenever

$$
\begin{equation*}
\left(2^{r-1}-1, n\right)=1 \tag{55}
\end{equation*}
$$

Proof. - Using the same arguments as in the proof of Proposition 3 we obtain from (43)

$$
\left(k_{1}-k\right) 2^{r-1}=k-k_{2}(\bmod n) \quad \text { if } I=I_{k}
$$

and

$$
\left(k_{1}-k\right) 2^{r-1}=k-k_{2}+1(\bmod n) \quad \text { if } I=I_{k}^{\prime}
$$

The above, (51), (53) and (55) imply (52) and (54) respectively.
The next proposition is an easy consequence of (9) and the definition of the blocks $b(0), \ldots, b(r-1)$.

Proposition 5.-Let

$$
\begin{aligned}
& I_{l}=b_{l}(i)\left[0, \lambda_{t}-j-1\right], \quad I I_{k}=b_{k}(i)\left[j, \lambda_{t}-1\right] \\
& \quad j \leqslant \frac{1}{2} \lambda_{t}, k, l \in \mathbb{Z}_{n}, 0 \leqslant i \leqslant r-1 .
\end{aligned}
$$

If $j \equiv 0\left(\bmod n r 2^{r+1}\right)$ and $k \neq l$ then

$$
d\left(I_{l}, I I_{k}\right)=1
$$

Proposition 6. - Let

$$
I=b^{t} \stackrel{r}{\times} C, \quad I I=b^{t} \stackrel{r}{\times} D\left[j, j+\lambda_{t}|D|-1\right], \quad 0 \leqslant j \leqslant r \lambda_{t}-1
$$

where $|C| \geqslant 3 r,|D|=|C|+r, C, D \subset \omega_{t+1}$ (see (21)) and $C=\omega_{t+1}[p r, p r+|C|-$ 1], $D=\omega_{t+1}[q r, q r+|D|-1]$. If

$$
\begin{equation*}
d(I, I I)<\delta, \quad \delta<\frac{1}{3 r^{2} 2^{r+3}} \tag{56}
\end{equation*}
$$

then either

$$
\begin{equation*}
j<\delta r 2^{r+1} \lambda_{t} \quad \text { and } \quad d\left(C, D_{1}\right)<\delta \tag{57}
\end{equation*}
$$

or

$$
\begin{equation*}
r \lambda_{t}-\delta r 2^{r+1} \lambda_{t}<j \leqslant r \lambda_{t} \quad \text { and } \quad d\left(C, D_{1}\right)<\delta \tag{58}
\end{equation*}
$$

where

$$
\begin{aligned}
& D_{1}=D[0,|D|-r-1] \quad \text { if } j \leqslant \frac{1}{2} r \lambda_{t} \\
& D_{1}=D[r,|D|-1] \quad \text { if } j>\frac{1}{2} r \lambda_{t} .
\end{aligned}
$$

Proof. - We can represent C and D as

$$
C=C_{1} C_{2} \ldots C_{s}, \quad D=D_{1} D_{2} \ldots D_{s} D_{s+1}
$$

where

$$
\left|C_{1}\right|=\cdots=\left|C_{s}\right|=\left|D_{1}\right|=\cdots=\left|D_{s}\right|=\left|D_{s+1}\right|=r, s \geqslant 3
$$

and every $C_{1}, \ldots, C_{s}, D_{1}, \ldots, D_{s+1}$ is equal to one of the blocks $\bar{e}_{k}, \bar{e}_{k}^{(v)}, k \in \mathbb{Z}_{n}, v=$ $0, \ldots, r-1$ (see 3.5). Assume that $j \leqslant \frac{1}{2} r \lambda_{t}$. Using (12) we get

$$
\begin{equation*}
d(I, I I)=\frac{1}{s} \sum_{p=1}^{s}\left(b \stackrel{r}{\times} C_{p}, A_{p}\right), \tag{59}
\end{equation*}
$$

where

$$
A_{p}=\left(b \stackrel{r}{\times} D_{p}\right)\left(b \stackrel{r}{\times} D_{p+1}\right)\left[j, j+r \lambda_{t}-1\right]
$$

Then (56) implies that

$$
d\left(b \stackrel{r}{\times} C_{p}, A_{p}\right)<\frac{1}{3 r^{2} 2^{r+3}}
$$

for at least one p. Using the same arguments as in the proof of Proposition 2 we obtain $j \leqslant \frac{1}{2} \lambda_{t}$.

Let

$$
Q=\left\{1 \leqslant p \leqslant s, C_{p} \text { and } D_{p} \text { are equal } \bar{e}_{k}, \bar{e}_{l} \text { for some } k, l \in \mathbb{Z}_{n}\right\}
$$

It follows from the definitions of ω, ω_{t} and b^{t}, s that

$$
\# Q \geqslant \frac{1}{3} s
$$

This inequality, (56), and (59), imply

$$
\frac{1}{|Q|} \sum_{p \in Q} d\left(b \stackrel{r}{\times} C_{p}, A_{p}\right)<\frac{1}{r^{2} 2^{r+3}}
$$

Now we conclude that there is at least one $p \in Q$ such that

$$
d\left(b \stackrel{r}{\times} C_{p}, A_{p}\right)<\frac{1}{r^{2} 2^{r+3}} .
$$

It follows from Proposition 2 that $j \equiv 0\left(\bmod n r 2^{r+1}\right)$.

Fig. 2.

Now, using (10) and (12) again we get (see Fig. 2)

$$
\begin{equation*}
d(I, I I)=\frac{1}{r} \sum_{i=0}^{r-1} \frac{1}{s}\left(\left(1-\frac{j}{\lambda_{t}}\right) \sum_{u=1}^{s} d\left(L_{u i}, M_{u i}\right)+\frac{j}{\lambda_{t}} \sum_{u=1}^{s} d\left(\bar{L}_{u i}, \bar{M}_{u i}\right)\right), \tag{60}
\end{equation*}
$$

where

$$
\begin{array}{ll}
L_{u i}=b_{C_{u}[i]}^{t}(i)\left[0, \lambda_{t}-j-1\right], & M_{u i}=b_{D_{u}[i]}^{t}(i)\left[j, \lambda_{t}-1\right], \\
\bar{L}_{u i}=b_{C_{u}[i]}^{t}(i)\left[\lambda_{t}-j, \lambda_{t}-1\right], & \bar{M}_{u i}=b_{D_{u}[i]}^{t}(i+1)[0, j-1] .
\end{array}
$$

It is not hard to remark that if $j \neq 0$

$$
\begin{equation*}
d\left(\bar{L}_{u i}, \bar{M}_{u i}\right) \geqslant \frac{1}{r 2^{r+1}} \tag{61}
\end{equation*}
$$

for every u and $i, 1 \leqslant u \leqslant s, 0 \leqslant i \leqslant r-1$. Let

$$
a=\#\{0 \leqslant k \leqslant|C|-1, C[k] \neq D[k]\} .
$$

Then using Proposition 5, (60) and (61) we get

$$
\begin{equation*}
\delta>d(I, I I) \geqslant \frac{a}{|C|}\left(1-\frac{j}{\lambda_{t}}+\frac{j}{\lambda_{t}} \frac{1}{r 2^{r+1}}\right) . \tag{62}
\end{equation*}
$$

The above gives

$$
\delta>\frac{a}{|C|}\left(1-\frac{j}{\lambda_{t}}\right) \geqslant \frac{a}{|C|} \frac{1}{2}
$$

and then $\frac{a}{|C|}<2 \delta$. This inequality, (56) and (62) imply

$$
\delta>\frac{a}{|C|}+\frac{j}{\lambda_{t}}\left(\frac{1}{r 2^{r+1}}-\frac{a}{|C|}\right)>\frac{a}{|C|}+\frac{j}{\lambda_{t}}\left(\frac{1}{r 2^{r+1}}-2 \delta\right)>\frac{a}{|C|}=d\left(C, D_{1}\right) .
$$

We have obtained the second inequality of (57). To get the first inequality of (57) we use (62) to obtain

$$
\delta>\frac{j}{\lambda_{t}} \frac{1}{r 2^{r+1}}
$$

This implies (57). We have proved the proposition if $j \leqslant \frac{1}{2} r \lambda_{t}$. The case $\frac{1}{2} r \lambda_{t}<j<r \lambda_{t}$ leads to (58) in a similar way. The proposition is proved.

Proposition 7. - Let

$$
I=B^{t} \stackrel{r}{\times} C, \quad I I=B^{t} \stackrel{r}{\times} D\left[j, j+m_{t}|D|-1\right], \quad 0 \leqslant j \leqslant p_{t}-1,
$$

where C and D satisfy the same conditions as in Proposition 6. If

$$
d(I, I I)<\delta, \quad \delta<\frac{1}{3 r^{2} 2^{r+3}}
$$

then either

$$
j<\delta r 2^{r+} p_{t} \quad \text { and } \quad d\left(C, D_{1}\right)<\delta
$$

or

$$
p_{t}-\delta r 2^{r+1} p_{t}<j<p_{t} \quad \text { and } \quad d\left(C, D_{1}\right)<\delta,
$$

where

$$
D_{1}=D[0,|D|-r-1] \quad \text { if } j \leqslant \frac{1}{2} p_{t}
$$

and

$$
D_{1}=D[r,|D|-1] \quad \text { if } r>\frac{1}{2} p_{t} .
$$

Proof. - We use an induction argument and can repeat the proof of Lemma 3 from [8, p. 198], using (8), (9), and also using Proposition 6 instead of using a Lemma 2 as in [8, p. 196].

3.6. d-bar distance between blocks - the case 3.2

Using the same methods as in 3.5 we can estimate the distance between blocks $b_{k}^{t}(i)$ and $B_{k}^{t}(i), i=0, \ldots, r-1, k \in \mathbb{Z}_{n}, t \geqslant 0$, defined in the case 3.2.

As an easy consequence of Proposition 1 we get
Proposition 8.-Let

$$
\begin{aligned}
I_{l} & =b_{l_{0}}(0) \ldots b_{l_{r-1}}(r-1)\left[0, r \lambda_{t}-j-1\right], \\
I I_{k} & =b_{k_{0}}(0) \ldots b_{k_{r-1}}(r-1)\left[j, r \lambda_{t}-1\right]
\end{aligned}
$$

$j \leqslant \frac{1}{2} r \lambda_{t}$, where $\left(l_{0}, \ldots, l_{r-1}\right)$ (resp. $\left.\left(k_{0}, \ldots, k_{r-1}\right)\right)$ is of the form \bar{e}_{l} or $\bar{e}_{l}^{(v)}$ (resp. \bar{e}_{k} or $\left.\bar{e}_{k}^{\left(v^{\prime}\right)}\right), k, l \in \mathbb{Z}_{n}$ and $v, v^{\prime}=0, \ldots, r-1$. If

$$
d\left(I_{l}, I I_{k}\right)<\frac{1}{r^{2} 2^{r+3}}
$$

then $j \leqslant \frac{1}{2} \lambda_{t}$ and there is a unique $s \in \mathbb{Z}_{n}, s=s(t)$, such that $l_{i}=k_{i}+s$ for every $i=0, \ldots, r-1$. Moreover j has a form

$$
j=(n-s) r 4+a n r 4, \quad a \geqslant 0
$$

As an analogue of Proposition 5 we obtain
PROPOSITION 9. - Let $I_{l}, I I_{k}$ be as in Proposition 5,

$$
j \leqslant \frac{1}{2} \lambda_{t} \quad \text { and } \quad j \equiv(n-s)(\bmod 4 r n)
$$

for some $s \in \mathbb{Z}_{n}$. Then

$$
d\left(I_{l}, I I_{k}\right)=1 \quad \text { whenever } k-l \neq s
$$

Then using Propositions 8 and 9 we have
Proposition 10. - Let I and II be as in Proposition 6 and

$$
\begin{aligned}
& |C| \geqslant r, \quad|D|=|C|+r, \quad C, D \subset \omega_{t+1} \\
& C=\omega_{t+1}[p r, p r+|C|-1], \quad D=\omega_{t+1}[q r, q r+|D|-1]
\end{aligned}
$$

If

$$
d(I, I I)<\delta, \quad \delta<\frac{1}{3 r^{2} 2^{r+3}}
$$

then there is an unique $s \in \mathbb{Z}_{n}, s=s(t)$, such that

$$
j<\delta r 2^{r+1} \lambda_{t} \quad \text { and } \quad d\left(C, D_{1}\right)<\delta
$$

or

$$
r \lambda_{t}-\delta r 2^{r+1} \lambda_{t}<j \leqslant r \lambda_{t} \quad \text { and } \quad d\left(C, D_{1}\right)<\delta
$$

where $D_{1}=D[0,|D|-r-1]=C+s$ if $j \leqslant \frac{1}{2} \lambda_{t} r$, and $D_{1}=D[r,|D|-1]=C+s$ if $j>\frac{1}{2} r \lambda_{t}$.

Using arguments as in Lemma 3 in [8] and Proposition 10 we get
Proposition 11. - Let I and II be as in the Proposition 7 and C, D satisfy the same conditions as in Proposition 10.

If

$$
d(I, I I)<\delta, \quad \delta<\frac{1}{3 r^{2} 2^{r+3}}
$$

there exists an unique $s \in \mathbb{Z}_{n}$, $s=s(t)$, such that either

$$
j<\delta r 2^{r+1} p_{t} \quad \text { and } \quad d\left(C, D_{1}\right)<\delta
$$

or

$$
p_{t} \delta r 2^{r+1} p_{t}<j<p_{t} \quad \text { and } \quad d\left(C, D_{1}\right)<\delta,
$$

where

$$
D_{1}=D[0,|D|-r-1]+s \quad \text { if } j \leqslant \frac{1}{2} p_{t}
$$

and

$$
D_{1}=D[r,|D|-1]+s \quad \text { if } j>\frac{1}{2} p_{t} .
$$

3.7. The centralizer of \boldsymbol{T}_{φ} (continuation)

In 3.4 we have proved that $C\left(T_{\varphi}\right)$ consists of the elements $R \circ \sigma_{a}$, where R is a limit of powers of T_{φ} and σ_{a} is defined by (4), $a \in \mathbb{Z}_{n}$. Now we are in a position to show that

$$
\# \frac{C\left(T_{\varphi}\right)}{\operatorname{wcl}\left\{T_{\varphi}^{n} ; n \in \mathbb{Z}\right\}}= \begin{cases}n & \text { in the case 3.1 } \\ 1 & \text { in the case 3.2 }\end{cases}
$$

Lemma 3. - If the case 3.1 holds and $\sigma_{a} \in C_{1}$ then $a=0$.
Proof. - Let us suppose that $T_{\varphi}^{n_{s}} \rightharpoonup \sigma_{a}, a \in \mathbb{Z}_{n}$. Then Corollary 1 says that $\varphi^{\left(n_{s}\right)} \longrightarrow a$ in measure. Let

$$
\begin{equation*}
\varepsilon_{s}=\mu\left\{x \in X ; \varphi^{\left(n_{s}\right)}(x) \neq a\right\} . \tag{63}
\end{equation*}
$$

We have $\varepsilon_{s} \longrightarrow 0$. Now for every s find t_{s} such that

$$
\begin{equation*}
\frac{n_{s}}{p_{t_{s}}}<\frac{\varepsilon_{s}}{r} . \tag{64}
\end{equation*}
$$

To shorten notation we let $t:=t_{s}+1, \bar{t}:=t_{s}$. Take $x \in D_{j}^{t}$. Then using (18) we get

$$
\begin{equation*}
\varphi^{\left(n_{s}\right)}(x)=B^{t}\left[j+n_{s}\right]-B^{t}[j] \tag{65}
\end{equation*}
$$

except of j 's satisfying $m_{t}-1-n_{s} \leqslant j \leqslant m_{t}-1,2 m_{t}-1-n_{s} \leqslant j \leqslant 2 m_{t}-$ $1, \ldots, p_{t}-1-n_{s} \leqslant j \leqslant p_{t}-1$. Then (63) and (64) imply

$$
\frac{1}{p_{t}} \#\left\{0 \leqslant j \leqslant p_{t}-1, B^{t}\left[j+n_{s}\right]-B^{t}[j] \neq a\right\}<\varepsilon_{s}+\varepsilon_{s}=2 \varepsilon_{s} .
$$

This means that

$$
d\left(B^{t}\left[0, p_{t}-n_{s}-1\right], B_{-a}^{t}\left[n_{s}, p_{t}-1\right]\right)<2 \varepsilon_{s}
$$

We can write

$$
B^{t}=B^{\bar{t}} \stackrel{r}{\times} b^{t}, \quad B_{-a}^{t}=B^{\bar{t}} \stackrel{r}{\times} b_{-a}^{t} .
$$

If $\varepsilon_{s}<\frac{1}{6 r^{2} 2^{r+3}}$ then we apply Proposition 7 to the blocks $I=B^{\bar{t}} \stackrel{r}{\times} b^{t}$ and $I I=B^{\bar{t}} \stackrel{r}{\times} b_{-a}^{t}$. As a consequence we obtain

$$
d\left(b^{t}, b_{-a}^{t}\right)<2 \varepsilon_{s}
$$

This equality implies (Proposition 2) $a=0$. The lemma is proved.
From Lemmas 2 and 3 we obtain

THEOREM 2. -

$$
\# \frac{C\left(T_{\varphi}\right)}{\operatorname{wcl}\left\{T_{\varphi}^{n}, n \in \mathbb{Z}\right\}}=n
$$

if the case 3.1 holds.
Now, we examine the case 3.2. It follows from the definition of the blocks $b_{0}(i)=$ $b_{0}^{t}(i), i=0, \ldots, r-1, a \in \mathbb{Z}_{n}$ that

$$
\begin{equation*}
b(i)[(n-a) 4 r, \lambda-1]=b_{a}(i)[0, \lambda-(n-a) 4 r-1], \tag{66}
\end{equation*}
$$

for every $i=0, \ldots, r-1$.
Set $n_{t}=(n-a) 4 r p_{t-1}$. Then (66) implies

$$
B^{t}(i)\left[j+n_{t}\right]-B^{t}(i)[j]=a
$$

for $j=0, \ldots, p_{t}-n_{t}-1$, and $i=0, \ldots, r-1$. (65) and the above imply $\varphi^{\left(n_{t}\right)}(x)=a$ except of a set of measure $<r \frac{n_{t}}{p_{t}} \leqslant \frac{4 r^{2} n}{\lambda_{t}}$.

Hence $\varphi^{\left(n_{t}\right)} \longrightarrow a$ in measure which implies that $T_{\varphi}^{n_{t}} \rightharpoonup \sigma_{a}, a \in \mathbb{Z}_{n}$. We have shown that $\sigma_{a} \in C_{1}$ for every $a \in \mathbb{Z}_{n}$ and as a consequence of Lemma 2 we get

THEOREM 3.-

$$
\# \frac{C\left(T_{\varphi}\right)}{\operatorname{wcl}\left\{T_{\varphi}^{n} ; n \in \mathbb{Z}\right\}}=1
$$

if the case 3.2 holds.
THEOREM $3^{\prime} .-\operatorname{wcl}\left\{T_{\varphi}^{n}, n \in Z\right\}$ is uncountable.
Proof. - Let

$$
g_{0}=\sum_{0}^{\infty} u_{t} p_{t-1}, \quad u_{t}=w_{t}\left(r m 2^{r+1}\right)
$$

in the case (3.1) and $u_{t}=w_{t}(4 r n)$ in the case (3.2) $0 \leqslant u_{t} \leqslant r \lambda_{t}-1$ and assume that

$$
\sum_{t=0}^{\infty} \min \left(\frac{w_{t}}{r 2^{t}}, 1-\frac{w_{t}}{r 2^{t}}\right)<\infty
$$

Repeating the same arguments as in Lemma 4 of [9] we can construct a measurable function $f: X \longrightarrow G$ such that

$$
f(T x)-f(x)=\varphi(S x)-\varphi(x), \quad \text { for a.e. } x \in X
$$

Thus the triple $R=(S, f, \mathrm{id}) \in C\left(T_{\varphi}\right)$. Of course, there is a continuum of g_{0} 's in X satisfying the above conditions. Hence $C\left(T_{\varphi}\right)$ is uncountable. Then Theorem 2 and 3 imply $\operatorname{wcl}\left\{T_{\varphi}^{n}, n \in Z\right\}$ is uncountable.

4. Rank of \boldsymbol{T}_{φ} is \boldsymbol{r}

In this section we use the shift representation $\left(\Omega_{\omega}, T_{\sigma}\right)$ of $\left(X \times \mathbb{Z}_{n}, T \varphi\right)$ (see 2.3) and the definition of rank given at the end of 2.2.

We will also require the notion of δ-cover: let \mathcal{A} be a (finite) family of blocks and B a block such that $|B| \in\{|A|: A \in \mathcal{A}\}$, we let

$$
d(B, \mathcal{A})=\min \{d(B, A): A \in \mathcal{A},|A|=|B|\}
$$

If $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}, C$ is a block, and $\delta>0$, we define

$$
t_{\delta}(\mathcal{A}, C)=t_{\delta}\left(A_{1}, \ldots, A_{k}, C\right)=\max \left\{\frac{\left|C_{1}\right|+\cdots+\left|C_{p}\right|}{|C|}\right\}
$$

where the maximum is taken over all concatenations of the form

$$
C=\epsilon_{1} C_{1} \epsilon_{2} \ldots \epsilon_{p} C_{p} \epsilon_{p+1}
$$

for which $d\left(C_{i}, \mathcal{A}\right)<\delta, 1 \leqslant i \leqslant p$. Then we define, for a strictly ergodic one-sided sequence ω,

$$
t_{\delta}(\mathcal{A}, \omega)=\liminf _{N \rightarrow \infty} t_{\delta}(\mathcal{A}, \omega[0, N])\left(=\lim _{N \rightarrow \infty} t_{\delta}(\mathcal{A}, \omega[0, N])\right)
$$

In particular, $t_{\delta}(A, \omega)$ is defined for a single block A, or if $\omega=C$ is finite.
It is known ($[3,20]$) that in the case under consideration the rank of $\left(\Omega_{\omega}, S, \mu_{\omega}\right)$ is at most r if for any $\delta>0$ and any $N \in \mathbb{N}$, there exists \mathcal{A} of cardinality r such that $|A| \geqslant N$, $A \in \mathcal{A}$, and

$$
t_{\delta}(\mathcal{A}, \omega) \geqslant 1-\delta
$$

This definition agrees with that of sub-section 2.2.
Given a one-sided η, some $\delta>0$, and a family \mathcal{A} of blocks, we will say that the subsequence $\tilde{\eta}$ of η (finite or infinite) is δ-covered by \mathcal{A} if $t_{\delta}(\tilde{\eta}, \mathcal{A}) \geqslant 1-\delta$.

4.1. The frequencies of \boldsymbol{t}-symbols and an estimation of the rank

Let $\operatorname{Fr}(E, \omega)$ be the average frequency of a t-symbol E (see 3.5) appearing in ω at natural positions. Similarly, let $\operatorname{Fr}\left(e, \omega_{t}\right)$ denote the average frequency of a "small" t symbol e appearing in ω_{t} at natural positions. It is easy to get the following equalities;

$$
\left\{\begin{array}{l}
\operatorname{Fr}\left(E_{k}, \omega\right)=\operatorname{Fr}\left(e_{k}, \omega_{t}\right)=\frac{1}{r n} \sum_{i=0}^{r-1}\left(1-\frac{1}{2^{i+2}}\right)=\frac{1}{n}\left[1-\frac{1}{r} \sum_{i=0}^{r-1} \frac{1}{2^{i+2}}\right] \tag{67}\\
\text { and } \\
\operatorname{Fr}\left(E_{k}^{(s)}, \omega\right)=\operatorname{Fr}\left(e_{k}^{(s)}, \omega_{t}\right)=\frac{1}{r n 2^{s+2}}, \quad s=0, \ldots, r-1, k \in \mathbb{Z}_{n}
\end{array}\right.
$$

if the case 3.1 holds. In the case 3.2 we have

$$
\left\{\begin{array}{l}
\operatorname{Fr}\left(E_{k}, \omega\right)=\operatorname{Fr}\left(e_{k}, \omega_{t}\right)=\frac{3}{4 n} \tag{68}\\
\operatorname{Fr}\left(E_{k}^{(s)}, \omega\right)=\operatorname{Fr}\left(e_{k}^{(s)}, \omega_{t}\right)=\frac{1}{4 n r}, \quad k \in \mathbb{Z}_{n}, s=0, \ldots, r-1
\end{array}\right.
$$

PROPOSITION 12. $-r\left(T_{\varphi}\right) \leqslant r$.
Proof. - Consider the blocks

$$
L_{k}^{(s)}=L_{k}^{(s)}(t)=B^{t} \stackrel{r}{\times} b_{k}^{t+1}(s), \quad s=0, \ldots, r-1, t \geqslant 0, k \in \mathbb{Z}_{n}
$$

We have

$$
E_{k}=L_{k}^{(0)} \ldots L_{k}^{(r-1)}, \quad E_{k}^{(s)}=L_{k}^{(0)} \ldots L_{k}^{(s-1)} L_{k+1}^{(s)} L_{k}^{(s+1)} \ldots L_{k}^{(r-1)}
$$

for every $k \in \mathbb{Z}_{n}$ and $s=0, \ldots, r-1$.
Because the blocks $E_{k}, E_{k}^{(s)}$ cover completely the sequence ω then the blocks $L_{k}^{(0)} \ldots L_{k}^{(r-1)}, k \in \mathbb{Z}_{n}$, also cover ω.

We know that

$$
\begin{aligned}
& b^{t+1}(s)\left[0, \lambda_{t+1}-k n r 2^{r+1}\right]=b_{-k}^{t+1}(0)\left[k n r 2^{r+1}, \lambda_{t+1}-1\right] \\
& \quad k \in \mathbb{Z}_{n}, \quad s=0, \ldots, r-1, \quad \text { if } 3.1 \text { holds }
\end{aligned}
$$

and

$$
\begin{aligned}
& b^{t+1}(s)\left[0, \lambda_{t+1}-k n r 4\right]=b_{-k}^{t+1}(0)\left[k n r 4, \lambda_{t+1}-1\right] \\
& \quad k \in \mathbb{Z}_{n}, \quad s=0, \ldots, r-1, \quad \text { if } 3.2 \text { holds }
\end{aligned}
$$

The last equalities imply that the block $L_{0}^{(s)}$ cover each block $L_{k}^{(s)}, k \in \mathbb{Z}_{n}$, except of a part with the length $\leqslant n^{2} 2^{r+1} p_{t}$ in the case 3.1 and $\leqslant n^{2} 4 p_{t}$ in the case 3.2, for $s=0, \ldots, r-1$. Thus the blocks $L_{0}^{(0)}, \ldots, L_{0}^{(r-1)}$ cover the sequence ω except of a part with the density $\leqslant n^{2} 2^{r+1} / \lambda_{t+1}$ if 3.1 holds and $\leqslant n^{2} 4 / \lambda_{t+1}$ if 3.2 holds. Simultaneously $\left|L_{0}^{(s)}(t)\right| \xrightarrow{t \rightarrow \infty} \infty$. According to the definition of the rank (see 2.2) we have $r\left(T_{\varphi}\right) \leqslant r$.

4.2. Special subblocks of ω_{t}

Fix $t \geqslant 0$. We distinguish special subblocks C of ω_{t} of the form $b^{t} \stackrel{r}{\times} \bar{C}$, where \bar{C} is a strict subblock of one of the following blocks (cf. 3.5)

$$
\left\{\begin{array}{l}
e_{k} e_{k}, e_{k} e_{k}^{(s)}, e_{k}^{(s)} e_{k+1}, \quad k \in \mathbb{Z}_{n}, s=0, \ldots, r-1 \tag{69}\\
\quad \text { where } e_{k}=e_{k}(t+1), e_{k}^{(s)}=e_{k}^{(s)}(t+1) \\
\quad \text { if the case } 3.2 \text { is considered }
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
e_{k} e_{k} e_{k} e_{k}, e_{k} e_{k} e_{k} e_{k}^{(s)}, e_{k} e_{k} e_{k}^{(s)} e_{k+1}, e_{k} e_{k}^{(s)} e_{k+1} e_{k+1}, e_{k}^{(s)} e_{k+1} e_{k+1} e_{k+1} \tag{70}\\
\quad k \in \mathbb{Z}_{n}, s=0, \ldots, r-1 \\
\quad \text { if the case 3.1 is considered. }
\end{array}\right.
$$

Notice that blocks (69) are all pairs of "small" $(t+1)$-symbols appearing in ω_{t+1}, as well as the blocks (70) are all possible quadruples of "small" $(t+1)$-symbols appearing in ω_{t+1}. Let us list the different cases we shall deal with afterwards:
(A) $\bar{C} \subset b_{k_{0}}^{t+1}\left(i_{0}\right)$ for some $k_{0} \in \mathbb{Z}_{n}$ and $i_{0}=0, \ldots, r-1$ (cases 3.1 or 3.2);
(B) (the case 3.2) $\bar{C}=b_{k_{i_{0}}}\left(i_{0}\right) \ldots b_{k_{r-1}}(r-1) \mid b_{l_{0}} \ldots b_{l_{i_{1}}}\left(i_{1}\right)$ where $b(i)=b^{t+1}(i)$, $i_{0}>0, i_{1}<r-1$.
$E:=\left(k_{i_{0}} \ldots k_{r-1} l_{0} \ldots l_{i_{1}}\right)$ is contained in one of the following blocks;

$$
\begin{equation*}
\bar{e}_{k} \bar{e}_{k}, \bar{e}_{k} \bar{e}_{k}^{(s)}, \bar{e}_{k}^{(s)} \bar{e}_{k+1}, \quad k \in \mathbb{Z}_{n}, s=0, \ldots, r-1 \tag{71}
\end{equation*}
$$

and $2 \leqslant|E|<2 r$;
($\left.\mathrm{B}^{\prime}\right)$ (the case 3.1) $\bar{C}=b_{k_{i_{0}}}\left(i_{0}\right) . . b_{k_{r-1}}(r-1)\left|b_{u_{0}}(0) . . b_{u_{r-1}}(r-1)\right| b_{v_{0}}(0) . . b_{v_{r-1}}(r-$ 1) $\mid b_{l_{0}}(0) . . b_{l_{i_{1}}}\left(i_{1}\right)$ and $E=\left(k_{i_{0}} \ldots k_{r-1}\left|u_{0} \ldots u_{r-1}\right| v_{0} \ldots v_{r-1} \mid l_{0} \ldots l_{i_{1}}\right), 2 \leqslant|E|<$ $4 r, i_{0}>0, i_{1}<r-1$, is contained in one of the blocks

$$
\begin{equation*}
\bar{e}_{k} \bar{e}_{k} \bar{e}_{k} \bar{e}_{k}, \bar{e}_{k} \bar{e}_{k} \bar{e}_{k} \bar{e}_{k}^{(s)}, \bar{e}_{k} \bar{e}_{k} \bar{e}_{k}^{(s)} \bar{e}_{k+1}, \bar{e}_{k} \bar{e}_{k}^{(s)} \bar{e}_{k+1} \bar{e}_{k+1}, \bar{e}_{k}^{(s)} \bar{e}_{k+1} \bar{e}_{k+1} \bar{e}_{k+1} \tag{72}
\end{equation*}
$$

In general we can write

$$
\begin{equation*}
\bar{C}=\bar{C}_{1} \bar{C}_{2} \bar{C}_{3} \tag{73}
\end{equation*}
$$

where \bar{C}_{2} is as in (A) or as in (B) (the case 3.2) or (B^{\prime}) (the case 3.1), and

$$
\left\{\begin{array}{l}
\bar{C}_{1}=b_{k^{\prime}}^{t+1}\left(i_{0}-1\right)\left[l_{1} r, \lambda-1\right], \quad \bar{C}_{3}=b_{k^{\prime \prime}}^{t+1}\left(i_{1}+1\right)\left[0, l_{2} r-1\right] \tag{74}\\
0<l_{1} \leqslant \lambda-1,0<l_{2} \leqslant \lambda-1, \lambda=\lambda_{t+1}
\end{array}\right.
$$

and $k^{\prime} E k^{\prime \prime}$ is contained in one of the blocks (71) or (72) respectively (E is defined by \bar{C}_{2}).

Then we can distinguish the next special kinds of blocks (73) for given $\delta>0$:
(G1) $\left|\bar{C}_{1}\right| /|\bar{C}|>\delta$ and $\left|\bar{C}_{3}\right| /|\bar{C}|>\delta$,
(G2) $\left|\bar{C}_{1}\right| /|\bar{C}|>\delta$ and $\left|\bar{C}_{3}\right| /|\bar{C}| \leqslant \delta$,
(G3) $\left|\bar{C}_{1}\right| /|\bar{C}| \leqslant \delta$ and $\left|\bar{C}_{3}\right| /|\bar{C}|>\delta$,
(G4) $\left|\bar{C}_{1}\right| /|\bar{C}| \leqslant \delta$ and $\left|\bar{C}_{3}\right| /|\bar{C}| \leqslant \delta$.

4.3. $r\left(T_{\varphi}\right)=r$: the case 3.2

Take $0<\delta^{2}<1 /\left(r^{2} 2^{2 r+3}\right)$.
Proposition 13. - Assume that \bar{C} is as in (B) and let $d(C, D)<\delta^{2}, D \subset \omega_{t}$. Then D has a form

$$
\begin{equation*}
D=\left(b^{t} \stackrel{r}{\times} \bar{D}\right)[j, j+|D|-1], \quad \text { where } \bar{D} \subset \omega_{t+1} \tag{75}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\bar{D}=b_{k_{i_{0}}^{\prime}}^{t+1}\left(i_{0}\right) \ldots b_{k_{r-1}^{\prime}}^{t+1}(r-1) \mid b_{l_{0}^{\prime}}^{t+1}(0) \ldots b_{l_{i_{1}}^{\prime}}^{t+1}\left(i_{1}\right) b_{l_{i_{1}+1}^{\prime}}^{t+1}\left(i_{1}+1\right) \tag{76}\\
\quad \text { and } j<\delta^{2} r 2^{r+1} \lambda_{t+1}, l_{i_{1}+1}^{\prime} \in \mathbb{Z}_{n}
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\bar{D} \text { is as in (76) and } \tag{77}\\
j>r \lambda_{t+1}-\delta^{2} r 2^{r+1} \lambda_{t+1}
\end{array}\right.
$$

Moreover, there is a unique $s_{0} \in \mathbb{Z}_{n}$ such that

$$
\left(k_{0}^{\prime} \ldots k_{r-1}^{\prime} \mid l_{0}^{\prime} \ldots l_{i_{1}}^{\prime}\right)=\left(k_{0} \ldots k_{r-1} \mid l_{0} \ldots l_{i_{1}}\right)+s_{0}
$$

if (76) holds and

$$
\left(k_{1}^{\prime} \ldots k_{r-1}^{\prime} \mid l_{0}^{\prime} \ldots l_{i_{1}+1}^{\prime}\right)=\left(k_{0} \ldots k_{r-1} \mid l_{0} \ldots l_{i_{1}}\right)+s_{0}
$$

if (77) holds.
Proof. - The proposition is an easy consequence of the Proposition 10 where t is taken instead of $t+1\left(\delta^{2}<1 /\left(r^{2} 2^{2 r+3}\right)<1 /\left(3 r^{2} 2^{r+3}\right)\right)$.

Given a block $A \subset \omega$ or $\omega_{t}, A=\omega[l, l+|A|-1]$ we define $A(\delta)$ as $A(\delta)=$ $\omega[l-\delta|A|, l+|A|+\delta|A|-1], \delta>0$. The next proposition says that if C is as in (G1), (G2), (G3), or (G4), there is a block $C^{\prime}=b^{t} \stackrel{r}{\times} \widetilde{C}$ such that \widetilde{C} is as in (B) and either \widetilde{C} contains \bar{C} or \bar{C} is contained in $\widetilde{C}\left(\delta_{1}\right)$, where $\delta_{1}<\delta^{2} r 2^{r+1}$.

Proposition 14. - Let $C=b^{t} \stackrel{r}{\times} \bar{C}$ and let \bar{C} be as in (G1), (G2), (G3) or (G4). Assume that

$$
\begin{equation*}
d\left(C, \omega_{t}[l, l+|C|-1]\right)<\frac{\delta^{2}}{3} \tag{78}
\end{equation*}
$$

Then

$$
d\left(C^{\prime}, \omega_{t}\left[l^{\prime}, l^{\prime}+\left|C^{\prime}\right|-1\right]\right)<\delta^{2}
$$

where $C^{\prime}=b^{t} \stackrel{r}{\times} \widetilde{C}, \widetilde{C} \subset \omega_{t+1}$ and
(g1) $\widetilde{C}=b_{k^{\prime}}^{t+1}\left(i_{0}-1\right) \bar{C}_{2} b_{k^{\prime \prime}}^{t+1}\left(i_{1}+1\right), l^{\prime}=l-l_{1} r$ (cf. (73), (74)), if (G1) holds,
(g2) $\widetilde{C}=b_{k^{\prime}}^{t+1}\left(i_{0}-1\right) \bar{C}_{2}, l^{\prime}=l-l_{1} r$, if (G2) holds,
(g3) $\widetilde{C}=\bar{C}_{2} b_{k^{\prime \prime}}^{t+1}\left(i_{1}+1\right), l^{\prime}=l$, if (G3) holds,
(g4) $\widetilde{C}=\bar{C}_{2}, l^{\prime}=l$, if (G4) holds.
Proof. - Consider the case (G2). Then (11) and (78) imply ($\left.C_{2}=b^{t} \stackrel{r}{\times} \bar{C}_{2}\right)$

$$
d\left(b^{t} \stackrel{r}{\times} \bar{C}_{2}, \omega_{t}\left[\overline{l_{2}}, \overline{l_{2}}+\left|C_{2}\right|-1\right]\right)<\delta^{2}
$$

where $\overline{l_{2}}=l+\left|b^{t} \stackrel{r}{\times} \bar{C}_{1}\right|$.
It follows from Proposition 13 that $\omega_{t}\left[\overline{l_{2}}, \overline{l_{2}}+\left|C_{2}\right|-1\right]$ is of the form (75). Assume that the case (76) holds. Set

$$
\begin{gathered}
\widetilde{C_{1}}=\bar{C}_{1}\left[0,\left|\bar{C}_{1}\right|-j-1\right] \\
\widetilde{D_{1}}=\omega_{t+1}\left[\frac{1}{\lambda_{t}}(l-j), \frac{1}{\lambda_{t}}(l-j)+\left|\widetilde{C_{1}}\right|-1\right] \quad \text { (see Fig. 3). }
\end{gathered}
$$

Fig. 3.

If follows from Proposition 8 that

$$
\begin{equation*}
j \equiv\left(n-s_{0}\right) r 4(\bmod 4 n r) \tag{79}
\end{equation*}
$$

The fragment of ω_{t+1} from the left side of $b_{k_{0}^{\prime}}^{t+1}\left(i_{0}\right)$ having the length λ_{t+1} is of a form $b_{u}^{t+1}\left(i_{0}-1\right)$ and either $u=k^{\prime}+s_{0}$ or $u=k^{\prime}+s_{0}+1$. Assume that $u=k^{\prime}+s_{0}+1$. Then Proposition 9 implies

$$
\begin{equation*}
d\left(\widetilde{C_{1}}, \widetilde{D_{1}}\right)=1 \tag{80}
\end{equation*}
$$

Let \bar{D}_{1} denote the block $\omega_{t+1}\left[\frac{1}{\lambda_{t}}(l-j), \frac{1}{\lambda_{t}}(l-j)+\left|\bar{C}_{1}\right|-1\right]$ (see Fig. 3). Obviously we have

$$
\frac{\left|\bar{C}_{1}\right|}{|C|} d\left(\bar{C}_{1}, \bar{D}_{1}\right) \stackrel{(11),(8)}{\leqslant} d\left(C, \omega_{t}[l, l+|C|-1]\right)<\delta^{2}
$$

Further

$$
\begin{aligned}
\delta^{2} & >\frac{\left|\bar{C}_{1}\right|}{\left|\bar{C}^{\prime}\right|} d\left(\bar{C}_{1}, \bar{D}_{1}\right)>\delta d\left(\bar{C}_{1}, \bar{D}_{1}\right) \stackrel{(11)}{\geqslant} \frac{\left|\widetilde{C}_{1}\right|}{\left|\bar{C}_{1}\right|} \delta d\left(\widetilde{C_{1}}, \widetilde{D_{1}}\right) \stackrel{(80)}{=} \frac{\left|\bar{C}_{1}\right|-j}{\left|\bar{C}_{1}\right|} \delta \\
& =\delta\left(1-\frac{j}{\left|\bar{C}_{1}\right|}\right) \stackrel{(\mathrm{G} 2)}{\geqslant} \delta\left(1-\frac{j}{\delta|\bar{C}|}\right) \stackrel{(76)}{\geqslant} \delta\left(1-\frac{\delta^{2} r 2^{r+1} \lambda_{t+1}}{\delta|\bar{C}|}\right) \geqslant \delta\left(1-\delta r 2^{r+1}\right)
\end{aligned}
$$

because $|\bar{C}| \geqslant \lambda_{t+1}$.
Thus

$$
1-\delta r 2^{r+1}<\delta
$$

which is in contradiction with the inequality $\delta^{2}<1 /\left(r^{2} 2^{2 r+3}\right)$. We have shown $u-k^{\prime}=$ $s_{0}=k_{0}^{\prime}-k_{0}$.

Now, using (79) and the definition of $b_{k^{\prime}}\left(i_{0}-1\right)$ and $b_{u}\left(i_{0}-1\right)$ we obtain $C[v]=$ $\omega_{t}\left[l^{\prime}+v\right]$ for each $v=0, \ldots,\left|\bar{C}_{1}\right|-1, l^{\prime}=l-l_{1} r$ (see (74)). This last equality implies (g2). The proofs of the remaining cases are similar.

PROPOSITION 15. - Assume that $\mathcal{F}=\left\{C_{1}, \ldots, C_{d}\right\}, d \leqslant r-1$, is a family of subblocks of ω_{t} such that

$$
\begin{equation*}
C_{j}=b^{t} \stackrel{r}{\times} \bar{C}_{j} \quad \text { and } \quad \text { each } \bar{C}_{j} \text { is as in }(\mathrm{B}) . \tag{81}
\end{equation*}
$$

Let $\omega_{t}(\mathcal{F})$ be the maximal subsequence of ω_{t} that can be δ^{2}-covered by the family \mathcal{F} in a disjoint way, $\delta^{2}<1 /\left(r^{2} 2^{2 r+3}\right)$, and let $\bar{\omega}_{t}(\mathcal{F})$ be the complementary part of ω_{t}. Then it is an union of at least $(r-d)$ blocks $b^{t} \stackrel{r}{\times} b^{t+1}\left(i_{j}\right), j=1, \ldots, r-d$.

Proof. - Denote by \mathcal{F}_{i} the set of all blocks $C \in \mathcal{F}$ such that $\bar{C} \delta^{2}$-covers a subblock of ω_{t+1} containing one of the form

$$
b_{1}^{t+1}(i) b^{t+1}(i+1), \quad i=0, \ldots, r-2
$$

and by \mathcal{F}_{r-1} those C for which $\bar{C} \delta^{2}$-covers a block containing $b^{t+1}(r-1) b^{t+1}(0)$. We show that $\mathcal{F}_{i} \cap \mathcal{F}_{j}=\emptyset$ whenever $i \neq j$. Take $C \in \mathcal{F}_{i}, D \in \mathcal{F}_{j}$ and let \bar{C}, \bar{D} be the blocks defined by (81), \bar{C} as in (B) and

$$
\bar{D}=b_{k_{i_{0}^{\prime}}^{\prime \prime}}^{t+1}\left(i_{0}^{\prime}\right) \ldots b_{k_{r-1}^{\prime}}^{t+1}(r-1) \mid b_{l_{0}^{\prime}}^{t+1}(0) \ldots b_{l_{i_{1}^{\prime}}^{\prime \prime}}^{t+1}\left(i_{1}^{\prime}\right)
$$

If $\left(i_{0} \ldots(r-1) \mid 0 \ldots i_{1}\right) \neq\left(i_{0}^{\prime} \ldots(r-1) \mid 0 \ldots i_{1}^{\prime}\right)$ then $C \neq D$. If $\left(i_{0} \ldots(r-1) \mid\right.$ $\left.0 \ldots i_{1}\right)=\left(i_{0}^{\prime} \ldots(r-1) \mid 0 \ldots i_{1}^{\prime}\right)$ then using Proposition 13 we obtain

$$
\left(k_{i_{0}} \ldots k_{r-1} \mid l_{0} \ldots l_{i_{1}}\right)=\left(k_{i_{0}}^{\prime} \ldots k_{r-1}^{\prime} \mid l_{0}^{\prime} \ldots l_{i_{1}}^{\prime}\right)+s_{0}
$$

for some $s_{0} \in \mathbb{Z}_{n}$. The last condition is impossible since $i \neq j$. The proposition follows because $\#\left\{\mathcal{F}_{i} ; 0 \leqslant i<r\right\}=r$.

THEOREM 4. $-r\left(T_{\varphi}\right)=r$.
Proof. - According to Proposition 12 it remains to show that $r\left(T_{\varphi}\right)>r-1$. Let

$$
\frac{\delta^{2}}{9}<\frac{1}{r^{2} 2^{2 r+3}}
$$

and let A_{1}, \ldots, A_{x} be blocks occurring in $\omega,\left|A_{i}\right| \geqslant p_{t_{0}}$ and t_{0} satisfies $r / \lambda_{t}<\delta^{2} r 2^{r+1}$, if $t \geqslant t_{0}, x \leqslant r-1$. For each $u=1, \ldots, x$ there exists an unique $t=t(u)$ such that A_{u} contains at least one t-symbol and does not contain any $(t+1)$-symbol. Then A_{u} has a form

$$
\begin{equation*}
A_{u}=\widetilde{E_{1}}\left(B^{t-1} \stackrel{r}{\times} C_{u}\right) \widetilde{E_{2}} \tag{82}
\end{equation*}
$$

where $C_{u} \subset \omega_{t}$ is as in $4.2,\left|C_{u}\right|=q r, q=q(u) \geqslant 1, E_{1}$ is a right-side part of a t-symbol and E_{2} is a left-side part of a t-symbol. We divide the set $\{t(1), \ldots, t(x)\}$ by arithmetic order. More precisely, we put

$$
\tau_{1}=\max \{t(1), \ldots, t(x)\}, \quad T_{1}=\left\{u ; t(u)=\tau_{1}\right\}, \quad d_{1}=\# T_{1}
$$

Next we define

$$
\tau_{2}=\max \left\{t(u) ; u \notin T_{1}\right\}, \quad T_{2}=\left\{u ; t(u)=\tau_{2}\right\}, \quad d_{2}=\# T_{2}
$$

Similarly we define sets T_{3}, \ldots, T_{v}, numbers $\tau_{3}, \ldots, \tau_{v}$ and d_{3}, \ldots, d_{v}. We have

$$
\tau_{1}>\cdots>\tau_{v}, \quad d_{1}+\cdots+d_{v}=x
$$

Let

$$
\mathcal{A}_{p}=\left\{A_{u} ; u \in T_{p}\right\}, \quad p=1, \ldots, v
$$

The families $\mathcal{A}_{1}, \ldots, \mathcal{A}_{v}$ are pairwise disjoint and $\bigcup_{p=1}^{v} \mathcal{A}_{p}=\left\{A_{1}, \ldots, A_{x}\right\}$.
Consider the family \mathcal{A}_{1}. Assume that

$$
\mathcal{A}_{1}=\left\{A_{1}, \ldots, A_{d_{1}}\right\} .
$$

Then

$$
C_{u}=b^{t} \stackrel{r}{\times} \bar{C}_{u}
$$

and

$$
\bar{C}_{u} \subset \omega_{t+1}, \quad u \in T_{1}, t=\tau_{1} .
$$

If $d\left(A_{u}, \omega\left[\tilde{l}, \tilde{l}+\left|A_{u}\right|-1\right]\right)<\delta^{2} / 9$ then by (11), (8),

$$
\begin{equation*}
d\left(B^{t-1} \stackrel{r}{\times} C_{u}, \omega\left[l, l+m_{t-1}\left|C_{u}\right|-1\right]\right)<\frac{\delta^{2}}{3} \tag{83}
\end{equation*}
$$

where $l=\tilde{l}+\left|\widetilde{E_{1}}\right|$.
According to Proposition 11

$$
\begin{equation*}
d\left(C_{u}, \omega_{t}\left[l^{\prime}, l^{\prime}+\left|C_{u}\right|-1\right]\right)<\frac{\delta^{2}}{3} \tag{84}
\end{equation*}
$$

for some $l^{\prime} \in \mathbb{Z}$ and

$$
\begin{equation*}
\left|l-p_{t} l^{\prime}\right|<\frac{1}{3} \delta^{2} r 2^{r+1} p_{t} \tag{85}
\end{equation*}
$$

We can write

$$
\bar{C}_{u}=\bar{C}_{u}{ }^{(1)} \bar{C}_{u}{ }^{(2)} \bar{C}_{u}{ }^{(3)}
$$

according to (73).
We distinguish among the blocks $A_{1}, \ldots, A_{d_{1}}$ three types $\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}$, as follows;

$$
\begin{array}{ll}
A_{u} \in \mathcal{F}_{1} & \text { if } C_{u} \text { is as in (A) or (G4), } \\
A_{u} \in \mathcal{F}_{2} & \text { if } C_{u} \text { is as in (G1), (G2), or (G3), } \\
A_{u} \in \mathcal{F}_{3} & \text { if } C_{u} \text { is as in (B). }
\end{array}
$$

Let $d_{11}=\# \mathcal{F}_{1}, d_{12}=\# \mathcal{F}_{2}, d_{13}=\# \mathcal{F}_{3}$. We have

$$
d_{11}+d_{12}+d_{13}=d_{1}
$$

Let $\omega\left(A_{1}, \ldots, A_{d_{1}}\right)$ be a subsequence of ω that is $\frac{\delta^{2}}{9}$-covered by the blocks $A_{1}, \ldots, A_{d_{1}}$ in a disjoint way. By $\omega\left(\mathcal{F}_{i}\right), i=1,2,3$, we denote the subsequence of $\omega \frac{\delta^{2}}{9}$-covered in a disjoint way by the families \mathcal{F}_{i}. Of course, $\omega\left(A_{1}, \ldots, A_{d_{1}}\right) \subset \omega\left(\mathcal{F}_{1}\right) \cup \omega\left(\mathcal{F}_{2}\right) \cup \omega\left(\mathcal{F}_{3}\right)$. Denoting by $\bar{\omega}\left(A_{1}, \ldots, A_{d_{1}}\right), \bar{\omega}\left(\mathcal{F}_{i}\right)$ the complementary parts of $\omega\left(A_{1}, \ldots, A_{d_{1}}\right), \omega\left(\mathcal{F}_{i}\right)$, $i=1,2,3$, respectively, we have

$$
\bar{\omega}\left(A_{1}, \ldots, A_{d_{1}}\right) \supset \bar{\omega}\left(\mathcal{F}_{1}\right) \cap \bar{\omega}\left(\mathcal{F}_{2}\right) \cap \bar{\omega}\left(\mathcal{F}_{3}\right)
$$

According to (83)-(85) and Proposition 15 we have that $\bar{\omega}\left(\mathcal{F}_{3}\right)$ is an union of at least

$$
\begin{equation*}
\left(r-d_{13}\right) \text { blocks } E\left(\delta_{1}\right) \tag{86}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
E=B^{t} \stackrel{r}{\times} b^{t+1}\left(i_{j}\right), \quad j=1, \ldots, r-d_{13}, \quad \text { and } \tag{87}\\
\delta_{1} \leqslant 2 \delta^{2} r 2^{r+1}
\end{array}\right.
$$

because of

$$
\frac{\left|\widetilde{E_{1}}\right|}{\left|A_{u}\right|} \stackrel{84)}{\leqslant} \frac{p_{t}}{m_{t+1}}=\frac{r}{\lambda_{t+1}}<\frac{1}{2} \delta_{1}, \quad \text { and } \quad \frac{\left|\widetilde{E_{2}}\right|}{\left|A_{u}\right|}<\frac{1}{2} \delta_{1}
$$

Consider the family \mathcal{F}_{2}. Let $A_{u} \in \mathcal{F}_{2}$. If $A_{u} \frac{\delta^{2}}{9}$-covers a fragment I_{u} of ω then (83) and (84) imply that $\bar{C}_{u} \frac{\delta^{2}}{3}$-covers a fragment $I_{u}=I_{u}(t)$ of ω_{t+1} and (85) implies

$$
I_{u} \subset\left(B^{t} \stackrel{r}{\times} I_{u}(t)\right)\left(\delta_{1}\right)
$$

It follows from Proposition 14 that there is $A_{\bar{u}}$ of a form as in \mathcal{F}_{3} such that $\widetilde{C}_{\bar{u}} \frac{\delta^{2}}{3}$-covers another fragment $I_{\bar{u}}(t)$ of ω_{t+1} such that

$$
I_{u}(t) \subset I_{\bar{u}}(t)(\delta)
$$

Applying Proposition 15 to the family $\left\{A_{\bar{u}}\right\}$ we obtain that $\bar{\omega}\left(\mathcal{F}_{3}\right) \cap \bar{\omega}\left(\mathcal{F}_{2}\right)$ is an union of at least $\left(r-d_{13}-d_{12}\right)$ blocks $E\left(\delta_{2}\right), E$ is as (87) and $\delta_{2}=\max \left(\delta, \delta_{1}\right)$.

Each block $E\left(\delta_{2}\right) \in \bar{\omega}\left(\mathcal{F}_{3}\right) \cap \bar{\omega}\left(\mathcal{F}_{2}\right)$ is an union of at least $\left(r-d_{13}-d_{12}\right)$ blocks of the form $B^{t} \stackrel{r}{\times} e_{k}^{(s)}, k \in \mathbb{Z}_{n}, s \in S, \# S=r-d_{13}-d_{12}$.

Using the same arguments as before we get that

$$
\left\{\begin{array}{l}
\bar{\omega}\left(\mathcal{F}_{3}\right) \cap \bar{\omega}\left(\mathcal{F}_{2}\right) \cap \bar{\omega}\left(\mathcal{F}_{1}\right) \text { is a union } \tag{88}\\
\text { of at least }\left(r-d_{13}-d_{12}-d_{11}\right) \text { blocks of the form } B^{t-1} \stackrel{r}{\times} e_{k}^{(s)} \\
\quad s \in S_{1}, \# S_{1}=r-d_{13}-d_{12}-d_{11}
\end{array}\right.
$$

Denoting $P\left(\omega_{1}, \omega\right)$ the density of a subsequence ω_{1} in ω and using (69), (86), (88) we have

$$
\begin{aligned}
P\left(\bar{\omega}\left(A_{1}, \ldots, A_{d_{1}}\right), \omega\right) & \geqslant P\left(\bar{\omega}\left(\mathcal{F}_{3}\right) \cap \bar{\omega}\left(\mathcal{F}_{2}\right) \cap \bar{\omega}\left(\mathcal{F}_{1}\right), \omega\right) \\
& \geqslant\left(1-\frac{d_{13}+d_{12}}{r}\right)\left(1-\frac{d_{11}}{r}\right)\left(\frac{1}{4 n r}\right)^{2}\left(1-\delta_{2}\right) \\
& \geqslant\left(1-\frac{1}{r}\right)^{2}\left(\frac{1}{4 n r}\right)^{2}\left(1-\delta_{2}\right) \geqslant\left(1-\frac{1}{r}\right)^{2}\left(\frac{1}{4 n r}\right)^{2} \frac{1}{2}
\end{aligned}
$$

If $T_{1} \neq\{1, \ldots, x\}$ then we repeat the above reasoning to the subsequence $\bar{\omega}\left(\mathcal{F}_{3}\right) \cap$ $\bar{\omega}\left(\mathcal{F}_{2}\right) \cap \bar{\omega}\left(\mathcal{F}_{1}\right)$ and $t=\tau_{2}$, and so on. As a consequence we get

$$
P\left(\bar{\omega}\left(A_{1}, \ldots, A_{x}\right), \omega\right) \geqslant\left(1-\frac{1}{r}\right)^{2 r} \frac{1}{2^{r}}\left(\frac{1}{4 n r}\right)^{2 r}
$$

This implies $r\left(T_{\varphi}\right)>r-1$. Thus we have shown $r\left(T_{\varphi}\right)=r$.

4.4. $r\left(T_{\varphi}\right)=r$: the case 3.1

To prove that $r\left(T_{\varphi}\right)=r$ in the case 3.1 we can repeat the same arguments an in 4.3. Similarly as in the Theorem 4 we consider blocks $A_{u}, u=1, \ldots, x, x \leqslant r-1$, and A_{u} are as in (82), $C_{u}=b^{t} \stackrel{r}{\times} \bar{C}_{u}$ but \bar{C}_{u} are as in (A), (B') and (G1), (G2), (G3), (G4).

As an analogue of Propositions 13-15 and Theorem 4 we obtain
Proposition 13^{\prime}. - Assume that C is as in $\left(\mathrm{B}^{\prime}\right)$ and let $d(C, D)<\delta^{2}, D \subset \omega_{t}$. Then D has a form (75), and

$$
\bar{D}=b_{k_{i_{0}}^{\prime}}\left(i_{0}\right) . . b_{k_{r-1}^{\prime}}(r-1)\left|b_{u_{0}^{\prime}}(0) . . b_{u_{r-1}^{\prime}}(r-1)\right| b_{v_{0}}^{\prime}(0) . . b_{v_{r-1}^{\prime}}(r-1) \mid b_{l_{0}^{\prime}}(0) . . b_{l_{i_{1}}^{\prime}}\left(i_{1}\right),
$$

$b_{k}(i)=b_{k}^{t+1}(i)$, and j satisfies either (76) or (77).
Proposition 14'. - Let C be as in Proposition 14, \bar{C} is as in (73) and \bar{C}_{2} is as in $\left(\mathrm{B}^{\prime}\right)$. Then we get $(\mathrm{g} 1),(\mathrm{g} 2),(\mathrm{g} 3)$ or $(\mathrm{g} 4)$.

The proofs of Propositions 13^{\prime} and 14^{\prime} are similar to the proofs of Propositions 13 and 14 .

Proposition $15^{\prime} .-$ Let $\mathcal{F}=\left\{C_{1}, \ldots, C_{d}\right\}, d \leqslant r-1, C_{j}=b^{t} \stackrel{r}{\times} \bar{C}$, and C_{j} are as in $\left(\mathrm{B}^{\prime}\right)$. Then we have the same thesis as in Proposition 15.

Proof. - Let $\mathcal{F}_{i, k}, i=0, \ldots, r-2, k \in \mathbb{Z}_{n}$, be the set of all blocks $C \in \mathcal{F}$ such that $\bar{C}\left(C=b^{t} \stackrel{r}{\times} \bar{C}\right) \delta^{2}$-covers a subblock of ω_{t+1} containing one of the form $b_{k}^{t+1}(i) b_{k+1}^{t+1}(i+$ 1). By $\mathcal{F}_{r-1, k}^{(1)}, \mathcal{F}_{r-1, k}^{(2)}$ we denote those $C \in \mathcal{F}$ such that \bar{C} does so for the pairs $b_{k}^{t+1}(r-1) b_{k}^{t+1}(0)$ or $b_{k}^{t+1}(r-1) b_{k+1}^{t+1}(0)$ respectively.

Using Propositions 3 and 7 we get that

$$
\left\{\begin{array}{l}
\text { if } C \in \mathcal{F}_{i, k} \text { then } \bar{C} \delta^{2} \text {-covers (up to } \delta r^{2} 2^{r+3} \lambda_{t+1} \text {) only those } \tag{89}\\
\text { fragments of } \omega_{t+1} \text { containing blocks of the form } \\
\left(89^{\prime}\right) b^{t+1} \stackrel{r}{\times} \bar{e}_{k}^{-(i+1)} \text { or } b^{t+1} \stackrel{r}{\times} \bar{e}_{k+4}^{(i)}, \text { if } n \geqslant 3 \\
\text { and } \\
\left(89^{\prime \prime}\right) b^{t+1} \stackrel{r}{\times} \bar{e}_{k}^{(i+1)} \text { if } n=2,
\end{array}\right.
$$

whenever $i=0, \ldots, r-2, k \in \mathbb{Z}_{n}$. Using Propositions 4 and 7 we get that

$$
\left\{\begin{array}{l}
\text { if } C \in \mathcal{F}_{r-1, k}^{(1)} \text { then } \bar{C} \delta^{2} \text {-covers only those fragments } \tag{90}\\
\text { of } \omega_{t+1} \text { containing blocks of the form } \\
\left(90^{\prime}\right) b_{k}^{t+1}(r-1) b_{k}^{t+1}(0) \text { or } b_{l}^{t+1}(r-1) b_{l+1}^{t+1}(0) \\
l \text { satisfies }(54)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\text { if } C \in \mathcal{F}_{r-1, k}^{(2)} \text { then } \bar{C} \delta^{2} \text {-covers only those fragments } \tag{91}\\
\text { of } \omega_{t+1} \text { containing blocks of the form } \\
\left(91^{\prime}\right) b_{k}^{t+1}(r-1) b_{k+1}^{t+1}(0) \text { or } b_{l}^{t+1}(r-1) b_{l}^{t+1}(0) \\
l \text { satisfies }(54)
\end{array}\right.
$$

Now notice that each two blocks $b^{t+1} \stackrel{r}{\times} e_{k}^{(i)}$ and $b^{t+1} \stackrel{r}{\times} e_{k^{\prime}}^{(i)}, k^{\prime} \in \mathbb{Z}_{n}, k \neq k^{\prime}$, appearing in ω_{t+1} are separated by at least three blocks of the form $b^{t+1} \stackrel{r}{\times} e_{k+1}$. This, (89) and the condition $|E|<4 r$ (see ($\left.\mathrm{B}^{\prime}\right)$) imply that $\mathcal{F}_{i, k} \cap \mathcal{F}_{i, k^{\prime}}=\emptyset$, if $k \neq k^{\prime}, i=0, \ldots, r-2$. Similarly $\mathcal{F}_{r-1, k}^{(1)} \cap \mathcal{F}_{r-1, k^{\prime}}^{(1)}=\emptyset$ and $\mathcal{F}_{r-1, k}^{(2)} \cap \mathcal{F}_{r-1, k^{\prime}}^{(2)}=\emptyset$, if $k \neq k^{\prime}$ 。

Further (89) implies that if $C \in \mathcal{F}_{i, k} \cap \mathcal{F}_{i^{\prime}, k^{\prime}}$ then $i^{\prime}=i+1, k^{\prime}=k+4$ if $n \geqslant 3$ $\left(\left(89^{\prime}\right)\right)$ and $i^{\prime}=i, k^{\prime}=k$ if $n=2\left(\left(89^{\prime \prime}\right)\right), i=0, \ldots, r-2$. (90) implies that if $C \in$ $\mathcal{F}_{r-1, k}^{(1)} \cap \mathcal{F}_{r-1, k^{\prime}}^{(2)}$ then $k^{\prime}=l, l$ satisfying (54). Combining the above arguments we get that there is at least $\frac{r n}{2}-d$ fragments of ω_{t+1} of the form (89') and (90) or (91) that are not covered by the family \mathcal{F}. The Proposition follows because $\frac{r n}{2} \geqslant r$.

THEOREM $4{ }^{\prime} .-r\left(T_{\varphi}\right)=r$.
Proof. - We repeat the same reasoning as in the proof of Theorem 4 using blocks A_{1}, \ldots, A_{x} of the form (82) with $q \geqslant 3$. We use Proposition 7 instead of Proposition 11 and the Propositions 14^{\prime} and 15^{\prime} instead of Propositions 14 and 15. Then using (67) instead of (68) we get

$$
P\left(\bar{\omega}\left(A_{1}, \ldots, A_{x}\right), \omega\right) \geqslant\left(1-\frac{1}{r}\right)^{2 r} \frac{1}{2^{r}}\left(\frac{1}{r n 2^{r+1}}\right)^{2 r}
$$

what implies $r\left(T_{\varphi}\right)>r-1$ and by Proposition 12 we have $r\left(T_{\varphi}\right)=r$.

5. Pairs (r, ∞) or (∞, m)

In this part we construct group extensions $\left(X \times G, T_{\varphi}\right)$ such that $r\left(T_{\varphi}\right)=r, q\left(T_{\varphi}\right)=$ $\infty, 2 \leqslant r<\infty$ or $r\left(T_{\varphi}\right)=\infty, q\left(T_{\varphi}\right)=m, 1 \leqslant m<\infty$.

5.1. The case (r, ∞)

Take a sequence $\left\{s_{t}\right\}_{t=0}^{\infty}, s_{t+1}=\mu_{t+1} s_{t}, s_{0}=\mu_{0}, \mu_{t} \geqslant 2$ for $t \geqslant 0$ and let G be the group of $\left\{s_{t}\right\}$-adic integers. Let $e=1+0 s_{1}+0 p_{2}+\cdots$. The set of all $\left\{s_{t}\right\}$-adic rational integers of G coincides with the set $\left\{e_{n}, n \in Z\right\}$, where $e_{n}=n e$. Similarly as in the case 3.1 we define an adding machine (X, \mathcal{B}, μ, T) and a cocycle $\varphi: X \longrightarrow G$. To do this we define blocks $F^{(0)}, F^{(1)}, \ldots, F^{(r-1)}(r \geqslant 2$ is given) over G.
Put

$$
\begin{aligned}
F^{(i)}(t) & =F^{(i)}=\overbrace{0 \ldots 0}^{r\left(2^{i+1}-1\right)} \overbrace{0 \ldots 0 e 0 \ldots 0}^{r}, \quad i=0, \ldots, r-1, \\
H^{(i)} & =F^{(i)} F_{e}^{(i)} \ldots F_{\left(s_{t}-1\right) e}^{(i)} .
\end{aligned}
$$

Then $\left|H^{(i)}\right|=s_{t} r 2^{t+1}$. Next define $b^{t}(0), \ldots, b^{t}(r-1)$ as in 3.1 and $b^{t}=b^{t}(0) \ldots b^{t}(r-$ 1), $t \geqslant 0$.

We have

$$
\lambda_{t}=\left|b^{t}(i)\right|=s_{t} r 2^{r+t+1}, \quad i=0, \ldots, r-1
$$

and

$$
\left|b^{t}\right|=s_{t} r^{2} 2^{r+t+1}
$$

Then we define the blocks $B^{t}, t \geqslant 0$, by (14). We have $p_{t}=\left|B^{t}\right|=s_{0} \ldots s_{t} r^{2 t} 2^{r+1}\left(2^{t+1}-\right.$ 1). Let (X, \mathcal{B}, μ, T) be the $\left\{p_{t}\right\}$-adic adding machine and define a cocycle $\varphi: X \longrightarrow G$ by (18).

THEOREM 5. $-r(T \varphi)=r$ and $q\left(T_{\varphi}\right)=\infty$
Proof. - Let $\Pi_{t}: G \longrightarrow Z / s_{t} Z$ be the natural group homomophism. We can define cocycles $\varphi_{t}: X \longrightarrow Z / s_{t} Z$ by $\varphi_{t}=\varphi \circ \Pi_{t}$. It is evident that φ_{t} is a r-Toeplitz cocycle as in 3.1 defined by the blocks $\Pi_{t}\left(B_{k}\right), u \geqslant 0$. According to Theorems 2 and 4 we have $r\left(T_{\varphi_{t}}\right)=r$ and $q\left(T_{\varphi_{t}}\right)=s_{t}$. It follows from the definitions of φ and φ_{t} that the dynamical system $\left(X \times G, T_{\varphi}\right)$ is the inverse limit of the systems $\left(X \times Z / s_{t} Z, T_{\varphi_{t}}\right)$. Then from the definition of the rank we obtain $r\left(T_{\varphi}\right)=r$. It is proved in Theorem 2 that $\sigma_{j e} \notin \operatorname{wcl}\left\{T_{\varphi_{t}}^{n}, n \in Z\right\}$ if $j=0, \ldots, s_{t}-1, t \geqslant 0$. This means that $\sigma_{j e} \notin \operatorname{wcl}\left\{T_{\varphi}^{n}, n \in Z\right\}$ for every $j \in Z, j \neq 0$ which implies $q\left(T_{\varphi}\right)=\infty$.

5.2. The case (∞, m)

First consider the case $m \geqslant 2$. Let $r_{t}=2^{t+1}, t \geqslant 0$, and define blocks $F^{(i)}=F^{(i)}(t)$ over $G=Z / m Z, i=0, \ldots, r_{r+1}-1$, as follows:

$$
v F^{(i)}=\overbrace{0 \ldots 0}^{2^{i+1} r_{t}} \overbrace{0 \ldots 0 \underbrace{1}_{i+1} 0 \ldots 0}^{r_{t+1}} 0
$$

$$
H^{(i)}=F_{0}^{(i)} F_{1}^{(i)} \ldots F_{m-1}^{(i)}, \quad i=0, \ldots, r_{t+1}-1 .
$$

We have $\left|H^{(i)}\right|=m r_{t} 2^{i+3}$. Next define $b^{t}(0), \ldots, b^{t}\left(r_{t+1}-1\right), b^{t}, B^{t}$ by putting

$$
\begin{aligned}
b^{t}(i) & =\overbrace{H^{(i)} H^{(i)} \ldots H^{(i)}}^{x}, \quad x=2^{t+r_{t+1}-i-1} \\
b^{t} & =b^{t}(0) b^{t}(1) \ldots b^{t}\left(r_{t+1}-1\right), \quad \text { and } \\
B^{t} & =b^{0} \stackrel{r_{0}}{\times} b^{1} \stackrel{r_{1}}{\times} \times{ }^{r_{i-1}-1} \times b^{t} .
\end{aligned}
$$

Then $\lambda_{t}=\left|b^{t}(i)\right|=m 2^{2 t+\rho+2}, \rho=r_{t+1}$ and $p_{t}=m_{t} r_{t+1}, m_{t}=\lambda_{0} \cdots \lambda_{t}$. We define a cocycle $\varphi: X \longrightarrow G$ by

$$
\varphi(x)=B^{t}[j+1]-b^{t}[j]
$$

if $x \in D_{j}^{t}$ except if $j=m_{t}-1, \ldots, p_{t}-1$. The cocycle φ is constant on the levels D_{j}^{t} except of r_{t+1} consecutive levels.

In a similar way we construct a cocycle φ if $m=1$. Take n as in the case 3.2 and define

$$
\begin{aligned}
F^{(i)}(t) & =F^{(i)}=\overbrace{0 \ldots 0}^{2 r_{t}} \overbrace{0 \ldots 0 \underbrace{1}_{i+1} 0 \ldots 0}^{2 r_{t}}, \\
H^{(i)} & =F_{0}^{(i)} F_{1}^{(i)} \ldots F_{n-1}^{(i)}, \quad i=0,1, \ldots, r_{t+1}-1 .
\end{aligned}
$$

The next steps of the definition φ are the same as in the case $m \geqslant 2$.
Theorem 6. $-r\left(T_{\varphi}\right)=\infty, q\left(T_{\varphi}\right)=m$ and $\operatorname{wcl}\left\{T_{\varphi}^{n}, n \in z\right\}$ is uncountable.
Proof. - For the dynamical system ($X \times G, T_{\varphi}$) we can use the same arguments as in the parts 3 and 4 taking r_{t} instead of r. Theorems 2,3 and 3^{\prime} are valid. To estimate the rank of T_{φ} we use the shift representations $\left(\Omega \omega, T_{\sigma}\right)$ of ($X \times G, T_{\varphi}$) where $\omega=b^{0} \stackrel{r_{0}}{\times} b^{1} \stackrel{r_{1}}{\times} \cdots$. Repeating the proof of Theorem 4 and 4^{\prime} we get $r\left(T_{\varphi}\right)>r_{t}-1$ for every $t \geqslant 0$. Thus $r\left(T_{\varphi}\right)=\infty$.

6. The pair (∞, ∞)

This case is easy to handle: first let (Y, S, ν) be the rank 1 mixing staircase transformation [1]. Then let G denote the group of dyadic integers, and let m_{G} denote its normalized Haar measure.

Then consider a Morse cocycle [23] $\phi: Y \rightarrow G$, that is a measurable map which is constant on the levels of the stacks defining the rank $1 S$, except the top level, at each step.

To select a ϕ such that the system $\left(Y \times G, S_{\phi}, v \otimes m_{G}\right)$ is mixing, where

$$
S_{\phi}(y, g)=(S y, g+\phi(y)),
$$

we proceed as follows.

The system is the inverse limit of the sequence of systems $\left(Y \times Z / 2^{t} Z, S_{\phi_{t}}, v \otimes m_{t}\right)$ where m_{t} is Haar measure on $Z / 2^{t} Z$ and $\phi_{t}=\pi_{t} \circ \phi$.

Therefore [13] enough is to make sure that ϕ is such that each $S_{\phi_{t}}$ is mixing. Using [24], sufficient is that each ϕ_{t} is a weakly-mixing cocycle. This in turn is easy to ensure using [14, Theorems 3, 4].

So we take a ϕ such that S_{ϕ} is mixing. Now because $S_{\phi_{t}}$ is a factor of S_{ϕ}, we have the inequality $r\left(S_{\phi_{t}}\right) \leqslant r\left(S_{\phi}\right)$.

But since $S_{\phi_{t}}$ is mixing, using [12], it follows that $r\left(S_{\phi_{t}}\right)=2^{t}$. Whence $r\left(S_{\phi}\right)=\infty$.
Now S_{ϕ} is mixing therefore $\left\{S_{\phi}^{n}: n \in Z\right\}=\operatorname{wcl}\left\{S_{\phi}^{n}: n \in Z\right\}$. Else for each $g \in G$, $\sigma_{g} \in C\left(S_{\phi}\right)$, and G is uncountable.

We deduce that $q\left(S_{\phi}\right)=\infty$.

REFERENCES

[1] Adams T., Smorodinsky's conjecture on rank 1 mixing, Proc. Amer. Math. Soc. 126 (1998) 739-744.
[2] Christol G., Kamae T., Mendès France M., Rauzy G., Suites algébriques, automates et substitutions, Bull. Soc. Math. France 108 (1980) 401-419.
[3] del Junco A., A transformation with simple spectrum which is not rank one, Canad. J. Math. 29 (1977) 655-663.
[4] Ferenczi S., Systèmes localement de rang un, Ann. Inst. Henri Poincaré, Probab. Stat. 20 (1984) 35-51.
[5] Ferenczi S., Systèmes de rang un gauche, Ann. Inst. Henri Poincaré, Probab. Stat. 21 (1985) 177-186.
[6] Ferenczi S., Systems of finite rank, Colloq. Math. 73 (1) (1997) 35-65.
[7] Ferenczi S., Kwiatkowski J., Rank and spectral multiplicity, Stud. Math. 102 (2) (1992) 121-144.
[8] Filipowicz I., Kwiatkowski J., Rank, covering number and simple spectrum, J. d'Analyse Math. 66 (1995) 185-216.
[9] Goodson G., Kwiatkowski J., Liardet P., Lemaǹczyk M., On the multiplicity function of ergodic group extensions of rotations, Studia Math. 102 (1992) 157-174.
[10] King J., The commutant is the weak closure of the powers, for rank-1 transformations, Ergodic Theory Dynam. Systems 6 (1986) 363-385.
[11] King J., Joining - rank and the structure of finite rank mixing transformations, J. d'Analyse Math. 51 (1988) 182-227.
[12] King J., A lower bound for the rank of mixing transformations, Israel J. Math. 59 (1987) 377-380.
[13] Kwiatkowski J., Inverse limit of M-cocycles and applications, Funda. Math. 157 (1998) 261-276.
[14] Kwiatkowski J., Lacroix Y., Morse extensions of rank 1 systems, Prepint, U.B.O. No 041998, http://gauss.univ-brest.fr/recherche/prepub/1998.html.
[15] Kwiatkowski J., Lemańczyk M, On the multiplicity function of ergodic group extensions, Studia Math. 116 (1995) 207-215.
[16] Lemańczyk M., Toeplitz \mathbb{Z}_{2}-extensions, Ann. Inst. Henri Poincaré 24 (1988) 1-43.
[17] Lemańczyk M., Liardet P., Coalescence of Anzai skew product, unpublished preprint.
[18] Lemańczyk M., Liardet P., Thouvenot J.P., Coalescence of circle extensions of measurepreserving transformations, Ergodic Theory Dynam. Systems 12 (1992) 769-789.
[19] Lemańczyk M., Mentzen M., Compact subgroups in the centralizer of natural factors of an ergodic group extension of a rotation determine all factors, Ergodic Theory Dynam. Systems 10 (1990) 763-776.
[20] Mentzen M., Thesis, Preprint no 2/89, Nicholas Copernicus University, Toruń (1989).
[21] Newton D., On canonical factors of ergodic dynamical systems, J. London Math. Soc. 219 (1979) 129-136.
[22] Parry W., Compact abelian group extensions of discrete dynamical systems, Z. Wahr. Verv. Geb. 13 (1969) 95-113.
[23] Rojek T., On metric isomorphism of Morse dynamical systems, Studia Math. 84 (1986) 247-267.
[24] Rudolph D.J., K-fold mixing lifts to weakly mixing isometric extensions, Ergodic Theory Dynam. Systems 5 (1985) 445-447.

[^0]: E-mail addresses: jkwiat@mat.uni.torun.pl (J. Kwiatkowski), yves.lacroix@u-picardie.fr (Y. Lacroix).

