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ABSTRACT. — A family of transformations of probability measures is constructed, and used
to define transformations of convolutions. The relations between moments and cumulants of
measure and its transformation are presented. For transformed classical and free convolutio
the central limit measures and the Poisson type limit measures are computed. Families c
non-commutative random variables are constructed, which are associated to these central lin
measures. They provide examples of “position operators” which act on the Interacting Fock
Spacesi 2001 Editions scientifiques et médicales Elsevier SAS

AMS classification60B10; 60E05; 60F05

REsSUME. — Une famille de transformations de mesures de probabilités est construite et utilisée
pour définir des transformations des convolutions. On présente les relations entre les moments
cumulants d’une mesure et de sa transformation. Pour les convolutions transformées classiqu
et libres les mesures limites du théoréme limite central et les mesures limites du théorém
limite Poisson sont calculées. On construit des familles de variables aléatoires non-commutative
qui sont associées a ces mesures limites. Elles sont une source d’exemples d’espaces de F
interactifs.0 2001 Editions scientifiques et médicales Elsevier SAS

1. Introduction

This paper is devoted to the study of a family of transformations of measures, which
we call t-transformations, witlr > 0. These transformations were introduced in [8],
where we described some basic properties of them. Here our main focus is on finding
realization of non-commutative random variables with distribution given by transformed
free and classical central limit theorems. We also describe moments of these central lim
measures, and compute the Poisson type limit theorems for both cases.

Through our transformation we obtain, foe 1 — % the measures
/2N —1— N2x2

1—x2

1
dvy(x) = — x
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with |x| < @ which were found by Kesten in [9] as the spectral measures of the
simple random walks on free groups dn> 2 free generators.

The z-transformation of a probability measure can be also thought of astlthe
Boolean convolution power of the measure, since it transforms the Boolean cumulants b
multiplication by the positive number This is discussed in Section 4. We also exhibit,
in Section 10, the relation between moments and cumulants for these convolutions.

In Section 6 we describe moments of the central limit measure far-ttensformed
free convolution, which turn out to be polynomials drwith coefficients taken form
the Delaney’s table For the moments of the central limit theorems fetransformed
classical convolution we show in Section 8 a combinatorial formula in whbiater
connected component$ (general) partitions play a role.

Our interest is also focused on constructing non-commutative random variables witt
distributions given by the central limit measures. In tHeee case the random variables
act on transformed full Fock space, and provide examples dftheacting Fock Spaces
introduced by Accardi, Lu and Volovich in [2], and studied in particular in [1]. Recently
Xu proved in [15] the condition for interacting Fock space equivalent to tracial property
of the vacuum state on the von Neumann algebra generated by position operators. It turi
out that our interacting Fock spaces do not satisfy this condition and, equivalently, the
vacuum state is not tracial. The associated von Neumann algebras are studied elsewhe

Finally, in Section 11, we study the Poisson type limit theorems for both types of
convolutions.

2. Cauchy transform, continued fractions and orthogonal polynomials

For a given probability measure on the real lineR , its Cauchy transfornG,, is
defined for; e C* = {z € C: Imz > 0}, by:

+oo

d
Gu(z) = / ) 2.1)

—X

—00

and, if the measurg has all moments, then by a theorem of Stieltjes (see [4]), it can be
expressed as a continued fraction:

G,(z)= : (2.2)

Z—day —
b,

z—az—
b3

Z—das—
z—a ba
— a4 —
bs
z—as— —

The real numberay, a,, ... and the non-negative numbérsg b, b3, ... come from
the recurrence formula for the polynomials orthogonal with respect to the measure
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Namely, a finite part of the continued fraction is a rational function, thus a quotient of
two polynomials:

0.(2) 1

Pn+l(Z) B bl
Z—day—

(2.3)

by

Z—az —
b3

Z—daz—
by,

=41

Z—Aag — R
These polynomials satisfy the following recurrence relations:

(x — ap41) Py(x) = Py (x) + b, P_1(x)

and

(x — an42) OQn(x) = Qpy1(x) + bpy10,-1(x)

forn > 1, with Po(x) = 1= Qo(x), P1(x) =x — a1, Q1(x) =x — a>.
The polynomials{P,: n > 0} are orthonormal with respect to the measureand
the polynomials{Q,: n > 0} are associated ones. The most famous is the example of
the Chebyshev polynomials of the first kind and of the second kind, whéte) =
+ —~— dx, and P, (x) = cogn - arccosr), @, (x) = 5 P, (x).

2r A/ 4—x2

3. t-transformation of measures

We now define a familyU,}, o of transformations, which act on probability measures
on the real line. The definition is based on properties of the Cauchy transform. For the
sake of completeness we recall here basic facts concerning this definition. More detail
can be found in [8].

Let ¢+ be a non-negative real number and jebe a probability measure on the real
line. Then the functiorG ,, (z) defined by the formula:

1 t
=—4+1- 3.4
G.@ G, +(1-0z (3.4)

turns out to be the Cauchy transform of a probability measure denotég(py := ;.
This is a consequence of the following:

THEOREM 3.1 (Nevanlinna). -A function F(z) is the reciprocal of the Cauchy
transform of a probability measure on the real line if and only if there exists a positive
measurep and a constant: such that foim(z) > 0

1+x
x_

ZZ do (). (3.5)

—+00
F(Z):a+z+/
—00
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COROLLARY 3.2. —For a pair of probability measureg and v on the real line, and
a real numbel0 < ¢ < 1 there exists a probability measugesuch that

1 t a-1

=—+
G.(z) G, G,

(3.6)

This follows directly from the Nevanlinna’s theorem. For our special choice of the
measurep = &g, We get a little more:

COROLLARY 3.3. —For a given probability measurg and a non-negative humber
t > 0, there exists &unique probability measureg:, such that

1 t
=—+1-nz. 7
G. ()G, +(1-1z (3.7)

Proof. —It follows from the Nevanlinna’s theorem, that

1+xz
xX—z

+00
+A—-t)z=tFQ)+1—-tz=ta+z+ / d(zp)(x) (3.8)

2

is the reciprocal of the Cauchy transform of a probability measure, denotggd byd

The ¢-transformation of a measure is best seen in terms of its continued fraction
representation. It just multiplies the coefficientsandb; by the positive number.

1
G, (2) = —s (3.9)

by

z—t-a1—

Z—dax—
b3

Z—as—
z—a ba
—ag,—

bs
z—as— —

so only the “first level” is multiplied by.

Example — We shall show the-transformation of a probability measure concentrated
in two points. Letu = pé, + ¢é, be the measure, with< b andp +¢g =1, p,q > 0.
Thet-transformation ofx is the measurg, = P4 + Q8 where

A:%{(aer)—(b—a) 1—4(1—I)PQ},

1 pb+qga—A
_1 _ \/f} _porga— A4
B 2{(a+b)+(b a)V1-41-1)pq P at+b_24

It follows from these formulas, that+b=A + B,anda < A < B < b, if t Z1. It
should also be understood that these formulas are trivialized=dt.



M. BOZEJKO, J. WYSOCZAISKI / Ann. I. H. Poincaré — PR 37 (2001) 737-761 741

Now we describe the change of moments, which is done by -tinensformation.
Namely, we exhibit the relation between momemts= [ x" du(x) of a measureg. and
moments, = [ x" du,(x) of its z-transformation. We have the following

PrROPOSITION 3.4. —Let 7, s > 0 be inverse of each othest = 1, then for any
po(sli'sive integern we have

by =ta, +(t =1 Y ab,y,
(2)
ay=sby+ (s = 1) > b,
3)
”ZITZ Z ajl'ajz""'ajk'(t—l)k,

k=1 ji+-+jk=n

(4)

bn — _l X Z Cl(V) . (t _ 1)jb|0CkSV)’
VeN (P

where NVC° is the set of these non-crossing partitions of the {de®, ..., n}, which
have only outer blockgthose are sometimes called “Boolean”partitigndf V =
{B1, B>, ..., By} is such partition, consisting df (outer) blocks, withg(B;) = j;, then
inour notationa(V) =aj, - --- - aj,.

Proof. —First two formulas are equivalent in an obvious way. To prove any of them
one may use relation between Cauchy transformation of a measure and the generatil

function of its moments:
1 1
G(x)=-M (—)
Z Z

Generating functionM, (z) of moments ofu, is then related to the generating function
M (z) of moments ofu by

M) =tM(z2) + (L —-1)M(2) - M,(2).
Leibniz’s formula for multiple differentiation gives then foe=0

MO0 M0

)Z k! (n—k)!

M™ (0) <”><0)
n! =!

which implies the desired formula.O
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4. t-transformation asthe Boolean convolution power

In this section we shall show that ourtransformation can be identified with
convolution power of the Boolean convolution.

A comprehensive study of Boolean convolution was done by Speicher and Woroud
in [14]. For our purpose let us recall only that the Boolean convolution cumulants’
generating functioriC, (z) = > ; K, (n) - 7", of a measure, is related to the Cauchy
transformG, (z) by the formula

72— K,(2)
As the general idea of a cumulant function is that it transforms convolution of
measures into addition of their cumulants, &h convolution power of a measure is
transformed into multiplication of its cumulants’ sequence:byherefore, we interpret
multiplication of the Boolean cumulant sequen@g, (n));2 ; by a positive real number
t as taking theth Boolean convolution power of the measure
For a probability measurg let us consider itg-transformationu,. Then, for the
Boolean cumulants we may write the formula:

1

G, (z)=——F—. 4.11
/ (2) _ ICH[ @) ( )
Comparing this with the definition aftransformation we obtain
t
17— —— =K, ). 4.12
SreE it €9 (4.12)

However, the left-hand side of the above equation is, by definition of the Boolean
cumulants, equal- I, (z). Hence we obtain

r- IC[L(Z) = IC/L; (2)- (413)

Thus the Boolean cumulants oftransformed measure are obtained by multiplying
by r the Boolean cumulants of the original measure. As we observed above, this
multiplication may be interpreted as takingh Boolean convolution power of the
original measure. Hence owtransformation turns out to be the samereisBoolean
convolution power.

5. t-transformation of convolutions

Thet-convolution®, is defined in the following way. Given two probability measures
w andv on the real line, a non-negative numbeand a convolutior® (for which the
classical convolution, free Voiculescu convolutions, Boolean free convolution, and other
convolutions may serve) one defines:

mdv=(u @& Vt)l/t :Z/[Tl (Ut(ﬂ) @ut(v))- (5.14)
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If a given convolution is associative, then alsaitsansformation is associative. In [8]
we proved central limit theorems foftransformed convolutions, and showed what was
the limit in the cases of classical, free and Boolean convolutions. Since we shall be
especially interested in thetransformed free and classical convolutions, we recall the
form of the limit measures in both cases.

Example—In the case oft-transformed classical convolution the central limit
measure has the following Cauchy transform:

1
G/,L(/) (Z) = 1 (515)

and in the case af-transformed free convolution the Cauchy transform of the central
limit measure is:

G,n(z)= (5.16)

7 — —

The second measure was first found by Kesten [9] ferl — 2N’ as the spectral measure
for the simple random walk on free group dhfree generators. In our case

dE -0+ V74
21-1n-1

G,n(z) = (5.17)

and the measure®” has absolutely continuous part of the fog?:n 1V(i’ l;‘ > dx and is

supported on the interv@d-2./7, 2/7]. Fort < 3 5 the measure has atomsﬂﬂ—
More general formula was also computed in [5] for the central I|m|t theorem for
conditionally free convolution, where our case is obtainedfer 1, 8 = /7.

6. Moments of the central limit measure for the ¢-transformed free convolution

A general result by Brejko describes moments of a measure by means of the
coefficients in its Cauchy transform. The description involves the notion of “depth” of
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blocks in non-crossing partitions. The formula may be found, for example, in [1]. It
follows from this result that in the case we consider, whgre- 0 andb, =t forn > 2,
by =1, one obtains the following formula for the moments:

ma =Cu()y= > "V (6.18)
VeNCa(2n)

wheretin()) is the number of inner blocks of a partitidhand A/C»(2n) is the set of
all non-crossing 2-partitions with two-element blocks only. For a non-crossing partition
V € NC(n) with blocks V = {By, Bz, ..., By} a block B; = {s1,s2,...,s;,} is called
outer if there are no numbers & p < g < n, both in some other block of, such
that p < s1,s2,...,s;; <q. Blocks which do not enjoy this property are callgder.
For example, the block which contains the number 1 is always outer, as well as the blocl
which contains the numbear So there is always at least one outer block in a non-crossing
partition. The trivial partition) = { B} for which B = {1, 2, ..., n} consists of one outer
block only. On the other hand, if a partition contains the outer bi®ek {1, n}, then all
other blocks are inner.

Since the considered measure is symmetric, all odd moments are zero, andhthe 2
moment is a polynomial im of degreen — 1. These polynomials, denoted By(z), are
described in the following

PROPOSITION 6.1. —The polynomial€, (¢) are given byC;(r) = 1 and

n—2
+k Tk
cn(t):1+;)zk+l.{(z+l> _ (” ' )} (6.19)

In particular, for r = 1, we obtain Catalan numbers

1 /on
cw=e=25 (7).

Proof. —The proof is based on the following recurrence formula:

Ca() =) g 171 Cok (1),

k=1

where thekth Catalan number, = #NC2(2k) is the number of non-crossing pair
partitions on a R-element set. The formula can be seen by considering sums over all 2-
partitions containing the bloci, 2k}, fork =1, 2, ..., n separately. Each such partition
containsk — 1 inner blocks inside the blodd, 2k} and there ig,_; such partitions.

This formula allows to compute the following generating function of the sequence
C,(1):

> 1 2t
Cx,nH=> C,(t) -x"= = ,
o0 ; O = St -1+ VI

whereS is the generating function of the Catalan numbers.
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By expanding the functiorC into Taylor series in the variable one gets the
coefficients as stated in the propositiort

(iin)- (")

withn > 1, 0< k <n—2, of the polynomial€, (1) form an interesting triangular table,
calledDelaney’s table

The coefficients

1
2 2

3 55

4 914 14
514 28 42 42

L e =

6 20 48 90 132 132

The rows are indexed by, and the columns by. Two most right numbers in each
row are equal, and the right side of the “triangle” is formed by the sequence of Catalar
numbers, since

n+n—-3\ (n+n—-3\_(n+n—-2\ (n+n—-2
n—2 n—3 - n—1 n—2
_Ll (-2 _
- n n—1 = Cn-1.

Moreover, the recurrence for computing the terms of the table is the following. Each
number is the sum of the one above it and the one on the left-hand side next to it. Anothe
property is that the sum of, say, k consecutive numbers in a given row, starting form (the
most left number) 1 is equal to the number in the next row, standing just below the las

number in the summation. In particular, the sum of all numbers mtlamow is equal to
the (n — 1)-st Catalan number,_;.

7. Model of ¢-free gaussian random variables

We are now going to construct a family of operators on a Hilbert space, and a
state on a-algebra generated by this family, with the distribution given by the central
limit measure for the-transformed free convolution. Our construction will depend on
modification of a full Fock space and of creation and annihilation operators there.
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Fort > 0 and a given Hilbert spack with the scalar product|), we consider the
Fock space
FH)=Cee EBH@’”

n>1

completed with respect to the following scalar product:
X1 ®X2@ - ®X, [ Y1 ® Y28 - @ Y1) =k 'I"_l'H(xj ly;), (]2), =1
j=1

Now, given a vectorf € H, we define creation operatd®(f) and annihilation
operatorA( f) on F,(H). For arbitraryxy, xo, ..., x, € H we put

B(f)x1®xQ - ®x,=fQ@x1Q®x® --®x,, B(f)Q=/{,

wheren > 1, and
A(f)x1®@x2Q - ®@x,=1-(x1| flx2Q - ® Xy,
A(HR=0, A(f)x1=(x1|[f)Q

wheren > 2. As one would expect, these operators are chosen to be adjoints of eac|
other with respect to the scalar product.

PrRoPOSITION 7.1. —In the Hilbert spaceF; (H) with the scalar product. | -),, for
any f e H, and any¢, n € F(H)

(A(HEn), = (&1 B(Hn),.

Proof. —First we check the case=Q, £ =x e H:

(AHx Q) =(x | f), (x [ B(HK), =& ={x]f)

It now suffices to show this property for gll=x; ® x, ® --- Q@ x, andn = y, @ y3 ®
Q@ v, withn >2andxy, ..., x,, y2,..., ¥, € H.
We have then,

(AN ®X2®@ - @ X,y | y2@ -+ @ yn),
:t'<x1|f>(x2®"'®xn|y2®"'®yn)[
nl x1|f Hx]|y]

and

(X1®---®xn|B(f)yz®---®yn)z=(x1®---®xn|f®yz®---®yn)z

" | f) ijlyj>- O

j=2
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Remark7.2. — Our construction is a concrete example of the general notion of
INTERACTING Fock SpACES introduced by Accardi, Lu and Volovich in [2], and
studied also in [1]. Namely, in the general construction we take the sequgree’ !
for n > 1 to obtain scalar product on our transformed Fock space, as well as the creatio
and annihilation operators.

Now let us define a vacuum stateon all bounded operatorg on the Fock space
Fi(H):

o(T) = (T2 ),
and position operator§ (f) = A(f) + B(f), wheref € H.

THEOREM 7.3. —For any vectorf € H with unit length, the position operatd@¥ ( /)
has the distribution with respect to the vacuum statgven by the central limit measure
for the ¢-transformed free convolution, and hence the moments are expressed by th
formula

<p(G(f)2") — Z t:tinner(V). (7.20)
VeNCa(2n)
Proof. —Let us fix a unit vectorf e H, and write for shoriG = G(f), A° = A(f),
and A' = B(f). Since both creation and annihilation change the “parity” of a simple
tensor, mapping{®" into H®"+Y or H®"=D the odd moments af are zero:

(G )= > (A APMQ|Q), =0

51,....52,+1€{0,1}

To find the even moments we make use of the idea of Feller of associating with
plane, which connects poini®, b)’ and (n, n) through the lattice point$m, k) with
0 <m < k < n. Let us recall that the path associatedAt --- A1 consists of 2
intervals of length 1, where thigh interval is vertical ifs, = 1 and horizontal ifs, = O.
Thus the first interval is always vertical frof@, 0) to (0, 1), since only fors; = 1 we
get a nonzero term; fan, = 0 there iSA°Q = AQ = 0. The second interval is vertical,
if so =1, or horizontal, ifs; = 0. It follows that the last interval connects — 1, n)
with (n, n), because a nonzero term must hawe= 0 (by the symmetry in the scalar
product). In this way to every sequenég,, ..., s;) We associate an appropriate path,
but a nonzero term in the considered sum has also factorsome powers, because
annihilations add them. In general - - - As1Q is of the form¢/ - £©" with £ = Q for
r =0, wherer = #{s; = 1} — #{s; = 0}. Thus a nonzero term one gets’ only for sequences
(s2,, ..., s1) with the same number of zeros and ones. Let us find out the powenof
such term. The crucial observation is that a factappears each time the annihilation
A acts on a simple tensgi®* with k > 2. This correspond to the part of the associated
path, which is above the straight line fraif, 1) to (n — 1, n); the power of is equal to
the number of vertical segments above this line. Now we will show that there is a one-
to-one correspondence between sequenggs. . ., sz, s1), which give nonzero terms,
associated paths, and elements of the\&é$(2n) of non-crossing 2-partitions of the set
{1,2,...,2n}. Given such sequence we haye=---=s; = 1 for a unique I<i <n
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with s; 1 = 0. Then we say thdt, i + 1} is a block of the corresponding 2-partition. To
obtain other blocks, each of which must contain exactly 2 elements, we use inductior
onn, “deleting” s; .1 ands; from the sequence, and repeating the same procedure for a
shorter sequence of2- 2 elements. Then the induction works. Now let us observe that
each block obtained in this way corresponds to a couple of segments in the associate
path, and that if one of these segments has an end on the ling@#®@nto (n, n), then

the other segment also enjoys this property and, consequently, the corresponding block
outer. All other blocks of the associated 2-partition are inner. This shows that the numbe
of inner blocks is equal to the number of vertical segments of the associated path, whic
are above the line fron0, 1) to (n — 1, n) (we allow segments which have one common
point with this line, like the segment froiid, 2) to (1, 3)). It follows that the power of

in a nonzero terngA*> ... A%1Q | Q); is exactly the same as the number of inner blocks
of the corresponding 2-partition.

8. Moments of the central limit measure for the ¢-transformed classical
convolution

In this section we are going to prove, that the measure which appears in the
central limit theorem for-transformed classical convolution, and which has the Cauchy
transform given by the following continued fraction:

1
1
2t

(8.21)

Gu(” (Z) =

has moments expressed by a formula similar to (6.18). Let us observe, that the od
moments of the measure are all zero, since the measure is symmetric.

We start with showing the relation between moments of the considered measure an
moments of the gaussian measure.

LEMMA 8.1. —Let g be the gaussian measure with dendityx) = %e‘xz/z dx, and
let « be the central limit measure fortransformed classical convolution. Let aléb,,
G, be Cauchy transforms of these measures, angifletM,, be generating functions of
moments of these measures. Then

1
Guu(e) = =G (%) My p(2) = My (2. (8.22)
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Proof. —Let us observe that by applyirig to the measurg we obtain a probability
measure with the following Cauchy transform:

1

G/L(’) (Z) = 1

A simple calculation shows that this continued fraction is also equ%@(\%).

On the other hand, using the formulay,, (z) = %Gv(i) for the dilation D, v of a
measure by a (positive) numbek, one gets foi = /7 that

G 15(2) = Gryu(@)

which proves the lemma. O
From this lemma we get the following

COROLLARY 8.2.—-Let M;(n),n =0,1,2,..., be the sequence of moments of the
measurel/,u and let M (n) be the sequence of moments of the meaguréhen odd
moments are zero, i.e. for any integek 0 we haveM;(2n +1) = M(2n + 1) =0, and
even moments are expressed by the following recurrence

n—1
M2n) =sM,(2n) + (s — 1)) _M(2j) - M;(2n — 2j) (8.23)
j=1

with M;(2n) = (2n — D! - " ands = 1/1t.

Proof. —Since moments of a measure dilated by a number are multiplied by powers
of this number, we can writd/,(2n) = M,(2n) - t" = (2n — 1)!! - t". Then, using the
Proposition 3.4 one gets the recurrence formula.

PropPoOsSITION 8.3. —The even moments of the central limit measure-toansformed
classical convolution are given by

M@ny= Y W, (8.24)
VePa(2n)

Let us notice, that in this formulg (V) is the number obuter connected components
of a partition), and the partition runs over all pair partitions. In the case of partitions
with crossings the number of outer connected components plus the number of its inne
connected components may be less thator a partition without crossings this number
is always equat, since in this case each block is either inner or outer.
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The definition ofinner andouter connected components is slightly more complicated
for partitions which might have crossings than for partitions without crossings. The
picture is more clear if we consider the numb¢is?2, ..., n} as being placed on a
circle in the natural order, and numbers which form a block are connected by lines.
Then the partition can be regarded as a graph, and blocks as subgraphs. Each blo
is a connected subgraph, and some blocks may cross each other. Blocks which cro
each other are contained in the same connected component. For example, the partiti
Y ={{1,3,7},{2,8}, {4,5, 6}} there are two connected componentk:2, 3,7, 8} and
{4,5, 6}. To be able to talk about inner and outer connected components we have tc
transform the above picture, remaining all the connections within blocks, onto linear
one, in which the number§l, 2,...,n} are placed in the natural order on a line.

It is important not to add any extra crossings while transforming the picture. Then
the connected components are preserved, and one can talk about outer and inr
components in the similar way as in the case of non-crossing partitions. In the partitior
YV ={{1,3,7},{2 8}, {4,5,6}} the connected componeft, 2, 3,7, 8} is outer, and the
connected componei, 5, 6} is inner.

The above proposition gives the following first five nonzero moments of our limit
measure:

MOy =1=M©2), M@ =2+1 M@®6) =10°+4r+1,
M(8) = T4 4+ 24> + 61 + 1. (8.25)

Proof. —We shall prove this proposition by induction an We use the recurrence
formula (2) from Proposition 3.4, which may be written as:

n—1 n—1
M@2n)=s-Y M@2j)-M/(2n—2j) = > M(2j) - M,(2n — 2j).
j=0 j=1

In this formula we use the inductive assumption #6¢2;) and write also

M,2m)=1"-Q2m—Dlt=¢"- > 170,
VePa(2m)

This gives

n—1
M©2n)=1" Z Z Z glo)+1

Jj=0VeP2(2j) WePa(2n—-2j)

n—1
-y oo s, (8.26)

J=1 V1€P2(2j) W1eP2(2n—2j)

Let us observe that some tergig)+1. 1200%) in the first sum on the right-hand side
cancel with some termg?(VD+1. 120" form the second sum. The necessary condition
for this cancellation igo(V) + 1 = to(V1). Here we allow alsd’ € P,(0) to be empty
partition.
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For every 0< j < n — 1 we treat in the natural way each pair of partitioriss
P2(2j), W e P(2n—2j)asapartition fronP,(25) x P2(2n—25) C Po(2n). Similar
situation is forVy, € P2(2j), WieP(2n —2j)with 1< j<n—1.

For every 1< j < n — 1 and every pailVi, W1) € P2(2j) x P2(2n — 2j) we shall
find exactly one paifV, W), which will form the same element @%,(2n), and which
will satisfy to(V) + 1 = to(V1). Namely, if to(V1) = 1, then we take) = ¢ and
W = V1, Wh). If fo(V1) = 2, thenV; € Po(2j) with 2< j <n —1; hence 1 and 2
are in two different outer connected component$’pfin this case the least number in
the connected component which containg®some odd numbem2+ 1 with 0 < m <
j — 1. Then the partitionV; is a direct product of a partitiow € P»({1, ..., 2m}) and
a partition) € P>({2m + 1, ..., 2j}). We defineW = (), Wy), which is an element of
P({2m+1,...,2n)).

This way we see, that the second summation in (8.26) will be cancelled with (a part
of) the first summation. What will be left in the first summation? Our construction of
W required it to have at least two outer connected components, beduse non-
empty. Hence there will remain not cancelled these tefi¥+1 in which V € P,(2)
is arbitrary and/V € P,(2n — 2j) satisfiesio(W) = 1. However, for such paif), W)
we havedo(V) + 1 =to(V, W). Therefore the remaining terms form exactly the sum

Yo g

UePr(2n)

which is the desired expression fof(2n). O

9. Mode of ¢-classical gaussian random variables

In a similar way as for the-free gaussian random variables, we construct a model
of non-commutative random variables, which have distribution given by the measure
which appears in the central limit theorem fetransformed classical convolution. The
random variables will be operators on a Hilbert space, and their distribution is meant
with respect to a given state.

The Hilbert space is just treymmetrid-ock space, with modified scalar product. The
construction runs as follows.

Fort > 0 and a Hilbert spacét, with a given scalar producte | ) we take the
symmetric Fock spacé; (H )sym Which is the space spanned by a distinguished vector
2, calledvacuum and simple symmetric tensor(ss, x2, ..., X,)sym:= D _,cs, Xo(1) @

Xo2) ® - ® Xo(n), WheresS, are the symmetric (permutation) groups. The scalar product
(o] ®); is defined as follows(2 | ), :=1 and

((x1s s X)syml (V1 -+ Yu)sym), 1= it Z (X1l Yo)) (X2 [ Yo2)) =+ X | You))

oeS,

forn > 1and forxy,...,x,, y1,..., y. € H.
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For a vector € H we define thecreationandannihilation operatorsB(v) and A (v)
in the following way:

Bw)Q=v, BW)((x1,...,X)sym) = (v, X1, ..., Xp)sym

and

AL =0, A@)x1=(v|x1)LQ,

n
AQ@) (XL, X)sym=1+ Y (0 | X)) (X1, .., K)o X)sym
j=1

wherex; denotes removed element. In this setting we have the following properties.

PrROPOSITION 9.1. —For anyv € ‘H the operatorsB(v) and A(v) are unbounded and
satisfy:

(BW)f18):=(f1AW®)g):
for arbitrary vectors f, g € F(H), which are finite combinations of simple symmetric
tensors.

The proof goes by computation on simple symmetric tensors, in a similar manner a:
for t-free case, so we omit it.

Now we consider the vacuum stage= ¢, , on thex-algebraM generated by the
position operatorsG(v) = B(v) + A(v), our non-commutativez{gaussian) random
variables, where € H:

P(X) == (XQ2| Q).

With respect to this state each random variabl@), with v € H a unit vector, has
distribution given by the central limit measure fetransformed classical convolution.

THEOREM 9.2. —For any vectorv € H with unit length, the position operataf (v)
satisfies

p(G™M) = > W, (9.27)
VePa(2n)

Proof. —To simplify the notation we fix a unit vectar € H and will denoteD~* :=
A(v) and D' := B(v). ThenG(v) = D=1 + D' and

9 (G (v)) = > (D---D7Q|Q),. (9.28)
£1,...,60,€{—1,1}2
Since
(DHYQ=(,...,v)ym and D (v,..., V)sym=kt (v, ..., V)sym
k k k—1

for k > 2, nonzero terms in the above sum will appear only when there is the same
number of creations and annihilations, and alse;ifi- --- +¢; > 0 for 1< j < 2n.
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Application of each annihilation operator results in multiplication by the nuniber
provided it acts onto (symmetric) vector

(v,..., U)sym
——
k

of length ¥ > 2. We are going to show, thatD*Q2 | Q), = c.t"~*, where ¢ =

(620, -.-,61), 81+ +e =>0fork=1,...nande; + --- + g5, = 0, is equal to the
numberc, of these 2-partitions frorP,(2n) which are “associated” with the sequence
¢, multiplied by the number"—*, wheres is the number of outer connected components
of the partitions. By “associated” we mean a patrtitidnthe blocks of which are of
the form {e;, &r} = {—=1,1}, with j # k ande; =1, = =1 if and only if j > k.

In particular, a connected component Wfis outer if and only if there is no block
{j,k} of V such thatj <i < k for all i which belong to this component. We know
from previous sections, that there is exactly one non-crossing partition associated wit
a given sequence, but there are always other arbitrary partitions associated with the
same sequence. For example, with the sequeneg—1, —1, 1, 1) we associate the
non-crossing partitiony = {{2, 3}, {1, 4}}, and also the partitio®? = {{1, 3}, {2, 4}}.

The non-crossing partition associated with givelmas a given number of outer blocks,
says. We shall show that every 2-partition associated with the same sequdasethe
same number of outer connected components.

LEMMA 9.3. —Lete = (ez,, ..., €1) be a given sequence efl’s and 1's, satisfying
g1+ -+ >=>0fork=1,...2n and ey + --- + &5, = 0. Let alsos be the number of
times the sum; + - - - + g; equals0, whenk varies from1l to 2n. Let V), be the non-
crossing partition associated withand let) be an arbitrary partition associated with
this sequence. Then the number of outer blocRg @nd the number of outer connected
components of are both equak. Moreover, the number af € P,(2n), associated with
g, is equal to the coefficient, .

Proof. —For the proof of the lemma let us observe that a blpgk}, j > k, of V is
outerifandonlyife; =1, =—-1and O=¢e1+---+¢;_1 =¢; +- - - +¢&. However, the
same condition guarantees, and is equivalent to the fact, that the connected compone
of ¥V which contains the blocKj, k}, is outer. Therefore)) cannot have more outer
components tham, since any outer connected component of it must satisfy the same
condition.

Let us now assume that= 1, then{1, 2n} is the only outer block o). It follows
thates +--- + 65,1 =0, and thatsy +--- + & > 1 for 1 < k < 2n — 1. Therefore,
gr=¢g=---=¢;=1,forsome X j<n,andej 1 =---=¢;;, =—11if j+1isthe
least number for which; 1 = —1,and 1<r < j <nissuchthat; .1 =1.In)V each
of the numberg + 1, ..., j +r forms a block with one of the numbers.1., j. This
condition gives exactlyi(j — 1)---(j — r) possible partitiony’ € P,(2n). If we now
forget about these blocks, we will find ourselves in the same situation as above, but noy
for partitions of 2 — 2r elements, for which induction can be applied.
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Similar process appears when we consider the (@S2 | 2),. Then

De+r ... DSHIDET L DFIQ = D D (v, L W) gym=j (= 1) - (j — )t
N——
j
if r > j, and forr = j =n we have

D ... DD ... DIQ = D ... D (v, ., V)gym=n! - P
——

n

Since fors =1 we haves; 4+ --- +¢; 2 1if 1 < j < 2n — 1, application of each
D®/ with ¢; = —1 results in multiplication by for such j. Therefore(D*Q | Q), =
JjG =1 (j — (D ... D*-+1D%i-r-1... DF1Q) | Q),, and the induction can be
also applied here. For completeness of the proof let us also observe, that the:pewer
in which ¢ appears inD*Q2 | 2);, can be computed in the following easy way. Since
D~ does not multiply byr only when acting on tensors of length 1, it follows that if
g1+---+e; > 1forl< j <kandei+---+e& =0,thenD® ... D1Q =c(, 1" 1Q.
On the other hand{l, k} is then an outer block of,. Hence, by induction o, or
performing the same reduction for each successive outer block, the statement about tl
power ofz follows. This shows that the lemma is truex

Using this lemma we can now conclude the proof of the theorem. The non-zero term:
in the summation (9.28) appear only for these sequencegs,,, ..., 1) Which are
associated with non-crossing partitions. Hence, with each such term also a numbe
of arbitrary 2-partitions is associated. It follows form the lemma, that this number is
equalc,, and that each of these partitions hasuter connected components, when
(D2 | ) = c.t"*. This finishes the proof of the theoremn

10. Cumulantsfor ¢-classical and ¢-free convolutions

For a given convolutio we would like to define a mapping — {R, ()},>1, which
associates a sequence of numbers to a given measiitee mapping should posses the
following “linearization” property:

R, (v ov) = R, (1) + R, (v) (10.29)

for pairs of measureg. and v with moments. If such transformation exists for a
convolutione, then it is called the cumulant transformation and, for a meagutle
sequencégR,(u)},>1 is called the cumulant sequence.

It turns out that if, for a given convolutiom there exist cumulants, then its
transformation also has cumulants. The idea is to defittansformed cumulants of
a measure by the given cumulants of theansformed measure.

ProposITION 10.1. —Let e be a convolution and IeR be the cumulant transforma-
tion for it. For anys > 0 and any positive integet defineR! (u) := R,U ). Then
R (1 o v) = RL (1) + R, (v).
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Proof. —The proof is and easy computation, since the definition is the right one:

R (11 0 1) =R, Uy-1Us pp o Uyv) =R,y Uy 1t 0 Uyv)
=RnUspt) + Ry (Uv) =R, (1) + R, (v). O

Remark10.2. — Cumulant-transformation is not uniquely defined, since for any
sequencet = (A,),>1 one can define als®; , (1) := A, - R,(U;n) and obtain the
required linearization property.

The two fundamental examples of existence of cumulants are known in the case
of classical convolutionr and free convolutior®. In both cases there is the relation
between moments and cumulants of a measure.

Example — For the classical convolution the relation between momanis.) and
cumulantsR,, (i) of a measure: is provided by the following formula:

M,(wy= > RV, (10.30)
VeP(n)

whereP(n) is the set of all partitions dfL, 2, ..., n}, and for a partitionV € P (n),which
consists of block$’ = {By, By, ..., B} we define

R(OV)=Ri, - Ri -+ Ry,

if 1B1=11,..., By =i; are numbers of elements in blocks.

Example— For the free convolution the relation between momefds (i) and
cumulantsR, (i) of a measure was discovered by Speicher [13], and is given by the
following formula:

M= 3 RV) (10.31)
VeNCn)

with the notation as in the previous example.

As in the classical case the summation is over all partitions, in the free case the
summation is over non-crossing partitions. Similar situation is forsthansformed
classical and free convolutions, with the modification of the appearance of outer block:
in thez-free case, and outer connected components in-thassical case.

Now we can describe the relation between moments and cumulants in- the
transformed classical and free convolutions.

ProposiITION 10.3. —Let (M, (1)),>0 be the sequence of moments of a meagure
and let(R,(1)),>1 be the sequence of free cumulants of the measure. Then fofrees
convolution the relation between moments aficke cumulants is given by

My = > RW)-t72V), (10.32)
VeNC(n)

where forV € N'C(n) we defingio(V) = number of outer blocks of the partition.
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Proof. —The proof is inductive and uses the recursion form@aof Proposition 3.4
for the relation between moments of a measure andHitansformation. The formula
can be written as

n—1 n—1
a, =§ - Zakbn—k - Zakbn—ky
k=0 k=1

wherea, = [x"du(x) and b, = [x"du,(x). By the inductive hypothesis and the
general formula relating moments and free cumulants the above may be rewritten as

n—1
ap=Y_ Y. RV N ROy
k=0 V1eNC(k) Voe N C(n—k)
n—1
=3 RWpsPM YT RO
I=1 WyeNC() WoeNC(n—I)

n—1
=> > Y RODREFOVH

k=0 Ve NC(k) VoeNC(n—k)

n—1
-> > > RWDRW)s*MW,
I=1 W1eNC() WreNC(n—I)
Let us observe that in both sums (oveand!) some terms are equal and may be
cancelled. For this purpose let us consider when the equality

ROVD)ROV,)s*WMFL = ROV R(W,)s O (10.33)

holds. In the first summation (ové) we have 0< k£ < n — 1, which allows the partition
V1 to be empty (ifk = 0). In the second summation (ov@mwe have 1<, n—I1<n—1,
so both partitiong/; andW, are nonempty. Now, the picture will become more clear if
we think of V; e NC({1, 2, ..., k}) andVo e NC({k+ 1,k + 2,...,n}, and in the same
manneV; e NC({1,2,...,1}) andW, e NC({l+ 1,1+ 2, ...,n}. In general, a pair of
partitions of two sets may be treated as a partition of a disjoint sum of these sets.
For fixed! € {1,2,...,n — 1} consider a paiw, e NC({1,2,...,1}) and W, €
NC{l+1,1+2,...,n}. We are going to construct a pait, V, of partitions, which
appear in the first sum, and for which the equality

RWVDRVo)s WD+ — R O R(W,) stV

holds. In the partitionV; the block containing is outer, and has a minimal element, say
k, with 1< k <I. LetU be equal taV; restricted to the sk, ..., [}. It consists of one
outer block and, possibly but not necessarily, some inner blocks. Let us dkfioebe
equal to the rest ofV;, which is the restriction o#V; to the sef1, ...,k — 1} (if k=1,
then, by definition,); is empty). Now let us defin®, e NC({k,k + 1, ...,n}) to be
equalif onik,...,1} and equalV, on{l +1,...,n}. Itis clear thaty; has exactly one
outer block less thanV;, and that blocks of the disjoint sum &¥; and)V, are exactly
the same as blocks of the disjoint sum)gf and V,. Therefore the required equality
holds.
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This way we can observe that all the terms in the summation/owél be cancelled
by equal terms in the summation oveiWhat we need to find out yet is what terms will
remain in the first summation. In the above construction the partifiohas always at
least two outer blocks: one which is fraby and at least one froM/,. This means that
we cannot obtain pair®’;, V,) e NC({1, ..., k}) x NC({k +1, ..., n} in which)», has
exactly one outer block. This outer block obviously contains bondk + 1. If we
identify (disjoint sum of) such’; andV, with a partitionV e NC({1, ..., n}, then

ROV -ROV2)=R() and go(V1)+1=to(V).

Hence, after cancellation of equal terms and the identification, we obtain the formula
given in the proposition. O

In a similar manner, one proves the following proposition for thelassical
convolution

ProPOSITION 10.4. —Let (M,,(1)),>0 be the sequence of moments of a meagure
and let(R, (n)).>1 be the sequence of classical cumulants of the measure. Then for the
t-classical convolution the relation between momentsraddssical cumulants is given

by.
M,y = Y REW) 17V, (10.34)
VeP(n)

where forV € P(n) we definedo()) =number of outer connected components of the
partition V.

11. Poisson type limit theorems

In this section we will study the Poisson type limit theoremssfdransformed free
and classical convolutions.

The setup for both is the following. For a given numbeg @ < 1 we consider a
sequence of measures

N = (1— 2)50 + 26,
N N

which are convex combinations of point mass measures concentrated at O and 1. Tt
problem is to find the limit (if it exists)

Nlim N ® -0 Ly = [, (11.35)

wheree is either of the two considered convolutions.
In our cases we can use appropriate cumul&@itso compute

RZ(MN o -0 Uy)=N- RZ(MN) =N -R,Unn)

and then the estimatioR,, (1) = M, (1) + O(%) to get the limit.
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Let us recall, that the-transform of the measuney is

Uity = PynSay + Onday, (11.36)
where
Av=ZA—yy),  By==4ym) = /1-4a t)“<1 “)
N—2 VYN)» N—2 VYN)» VYN = N N
BN - £ A AN
= - ’ QN = N .
YN

Py
YN
Because of the different tools used, we will treat both cases separately.

Case 1¢-transformed free convolution
In the case of-transformed free convolution we compute directlyansformed free

cumulants of the limit measure:
Ry, () =R, (Urp) = tar.

The generating functio®’ (z) of the cumulants is then given by the series:

l o
Ri(2)==) RuUp)z" =
z n=1 1-

We use the relation betweeR’ and the Cauchy transfor’ of the measureu,,

discovered in [13], to get
_z+(Q—ta)— V(i — A +ta))? — dta
= > .

§'(2)
Let us observe, that this formula, f@ = 7« appears in [5]. Since for the Cauchy

transformG , of the limit measurg:. we have (withs = %):

1 s L)

= — 5)Z

Guz) g'(2)
we can easily get the following formula faf,,
2t =Dtz +t(A—ta) —t\/(z — A+ ta))? — dta
G,u(2) = , 11.37
w(@) 2t(t — 1722+ 1+ ta)z — 2ta ( )

(11.38)

or
(@ =Dz+ A —1a) — /(2 — A +1a))?—4dia

2t —Dz2+s(1+ta)z — 2o

G.(2)
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This formula may be transformed into the following continued fraction:

1

G,(2) = 11.39
! . %.a (11.39)
Z——.a_
t t-a
z—(1+4+a)—
r-o
72— (1+4a)—
t«o
72— (14+a)— —
or
1
G.(2) = (11.40)
NN 04
Z—5- 00—
t-a
z—(14a)—
r-o
z—1+4a)—
t-a
72— (14a)— —
with the help of the well-known formula:
b
a’+b=a+ 5
20 + ———

b
2a + —

Fort = 1 one gets the Poisson limit measure for the free convolution.

Case 2s-transformed classical convolution

In the case of-transformed classical convolution we use Fourier transform. For
each positive integeN let py be the measure defined ag = uy *; - - - %, uy. We are
going to show, that this sequence of probability measures has glifdr this purpose
we first find the Fourier transform of thetransformation ofy, and then the limit of it.
Itis clear that

Uon) () = [Uyn) )],
so it suffices to compute the Fourier transform of the meade , which is

Urpn)" () = Pye Y + Qe o,

Since we study the limit, a®v tends to infinity, of theNth power of the Fourier
transform, we may take the Taylor expansion of the exponents above, and only the terr
containing% in powers 0 or 1 will contribute to the limit. So let us consider the Taylor
expansion:
A > (_ix)n n n
Uspn) (x):z% - (PyAY + Oy BY)
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and check what contribution comes from each term of this series. Let us start with the
observation thatly By = (1 - 1) 5 (1— &) = O(%). Using this we get the following:
LEMMA 11.1. —For each positive integer n the equality;, + By, = 1+ O(%) holds.
Proof. —-Forn =1 we haveAy + By =1, and forn > 2
n—1 n 1

k=1

The following lemma shows what contribution of each term of the considered series
should we take into account.

LEMMA 11.2. —For each positive integen > 2 we havePyA} + Oy By = & +
O(NZ), and forn =1 we getPyAy + Qn By = 5.

Proof. —Using the definition of all terms on the left-hand side of the above equality,
and thatyy = By — Ay, we may write fom > 3:

PyA" 4+ 0 B”—l[(B “)A"+(“ A)B”}
NAN N _VN N N N N N

(BN '+ By ?Ay + -+ By A2+ AV

SHE

— ByAy(By 2+ By PAy + -+ By A3 + A%?)

(Bn 1+An 1) (1—t)—(Bn 2+An 2)+O(N2>

n— n— o n— n— 1
(—Ay By 2 BNAN2)+W(BN2+AN2)+O<m>r

+0($>.

Forn = 2 one easily computeBy A2, + QyB2 = Lt A-na? t)ot O

=[g ZIQ 2|Q

Using these two lemmas we can now compute the Fourier transform of-the
transformatiorif, p of the limit measure.

PropPoOSITION 11.3. —=The Fourier transform of the-transformation of the limit
measure is given by the formula

Uy )" (x) = explrae ™ — 1o —ix(1—1)a] = @€ gixt-na,

Proof. —It follows from the lemmas above that

Upn) (x) =1+ %(—Ix) + Z —Ix) <_ + o(i))

N N2

=1+ 2 (—ix >+“"Z S o(5m)
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Hence

lim @4 i) () = lim @) (0]

. o . tor & (_ix)n a@ -1 _—ix(1-Ha
_Ilj(/n 1+N(—|x)+ﬁn§ - =¢ : . m)

By direct computation one can now check the following

COROLLARY 11.4. -Thet-transformation of the Poisson limit measuyrés

> (ta)”

Pr = e’ Z " 5n+(1—z)a-
n=0
REFERENCES

[1] Accardi L., Bazejko M., Interacting Fock spaces and gaussianization of probability
measures, IDAQPRT 1 (4) (1998) 663-670.
[2] Accardi L., Lu Y.G., Volovich I., Interacting Fock spaces and Hilbert module extensions of
the Heisenberg commutation relations, Publications of IIAS (Kyoto), 1997.
[3] Akhiezer N.1., The Classical Moment Problem, Oliver and Boyd, London, 1965.
[4] Akhiezer N.l1., Glazman I.M., Theory of Linear Operators in Hilbert Space, Ungar, New
York, 1963.
[5] M. Bozejko M., Leinert M., Speicher R., Convolution and limit theorems for conditionally
free random variables, Pacific J. Math. 175 (2) (1996) 357-388.
[6] Bozejko M., Speicher R., Interpolation between bosonic and fermionic relations given by
generalized Brownian motions, Math. Z. 222 (1996) 135-160.
[7] Bozejko M., Speicher R.g-Gaussian process: non-commutative and classical aspects,
Comm. Math. Phys. 185 (1997) 129-154.
[8] Bozejko M., Wysoczaski J., New examples of convolutions and non-commutative central
limit theorems, Banach Center Publ. 43 (1998) 95-103.
[9] Kesten H., Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959) 336-
354.
[10] Lenczewski R., Filtered probability I: random variables, limit theorems and fundamental
operators, preprint No 16/99, Wroctaw University of Technology, 1999.
[11] Lenczewski R., Filtered probability II: stochastic calculus on multiple symmetric Fock
spaces, preprint No 61/99, Wroctaw University of Technology, 1999.
[12] Maassen H., Addition of freely independent random variables, J. Funct. Anal. 106 (2) (1992)
409-438.
[13] Speicher R., Multiplicative functions on the lattice of non-crossing partitions and free
convolution, Math. Ann. 298 (1994) 611-628.
[14] Speicher R., Woroudi R., Boolean convolution, preprint, 1998.
[15] Xu Q., Remarks on interacting Fock spaces, preprint, 1999.



