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ABSTRACT. — We study phase coexistence (separation) phenomena in Ising, Potts and randol
cluster models in dimensioms> 3 below the critical temperature. The simultaneous occurrence
of several phases is typical for systems with appropriately arranged (mixed) boundary condition
or for systems satisfying certain physically natural constraints (canonical ensembles). The
various phases emerging in these models define a partition, calledhieécal phase partition
of the space. Our main results are large deviations principles for (the shape of) the empirice
phase partition. More specifically, we establish a general large deviation principle for the
partition induced by large (macroscopic) clusters in the Fortuin—Kasteleyn model and transfe
it to the Ising—Potts model where we obtain a large deviation principle for the empirical phase
partition induced by the various phases. The rate function turns out to be the total surface
free energy (associated with the surface tension of the model and with boundary conditions
which can be naturally assigned to each reasonable partition. These LDP-s imply a weak la
of large numbers: asymptotically, the law of the phase patrtition is determined by an appropriatt
variational problem. More precisely, the empirical phase partition will be close to some partition
which is compatible with the constraints imposed on the system and which minimizes the tota
surface free energy. A general compactness argument guarantees the existence of atleast one s
minimizing partition. Our results are valid for temperatufelselow a limit of slab-thresholdg.
conjectured to agree with the critical poifit Moreover,T should be such that there exists only
one translation invariant infinite volume state in the corresponding Fortuin—Kasteleyn model; &
property which can fail for at most countably many values and which is conjectured to be true
for everyT # T,.. 0 2001 Editions scientifiques et médicales Elsevier SAS
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RESUME. — Nous étudions le phénoméne de coexistence (et de séparation) des phases dz
les modéles d'Ising, de Potts et de clusters aléatoires en dimedisioB en-dessous de la
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température critique. La présence simultanée de plusieurs phases est typique des systémes &
des conditions au bord mixtes choisies de maniére adéquate ou bien des systémes soumis a
contraintes physiques naturelles (ensembles canoniques). Les diverses phases qui émergent ¢
ces modeles définissent une partition de I'espace, appelée la partition des phases empirigt
Nos résultats principaux sont des principes de grande déviation pour la partition des phase
empirique. Plus spécifiguement, nous établissons un principe de grande déviation général po
la partition induite par les grands clusters (macroscopiques) du modéle de Fortuin—Kasteleyn
nous le transférons aux modéles d'lsing et de Potts, dans lesquels nous obtenons un principe
grande déviation pour la partition des phases empirique induite par les différentes phases. L
fonction de taux est I'énergie libre de surface totale (associée a la tension de surface du mode
et aux conditions au bord) qui est naturellement assignée a chaque partition raisonnable. Ci
PGDs entrainent une loi faible des grands nombres : asymptotiquement, la loi de la partition de
phases est déterminée par un probléme variationnel adéquat. Plus précisément, la partition c
phases sera proche d’'une partition compatible avec les contraintes imposées au systéme et
minimise I'énergie libre de surface totale. Nos résultats sont valides pour des tempéfatures
en-dessous de la limite des points critiques dans les trarichgsi est conjecturée coincider
avec le point critiqud,. De plus,T doit étre telle qu'il existe seulement une mesure en volume
infini invariante par translation dans le modéle de Fortuin—Kasteleyn associé ; une propriété qt
peut étre violée sur un nombre au plus dénombrable de valeurs et qui est conjecturée étre vre
pour toute températurg # 7T... 0 2001 Editions scientifiques et médicales Elsevier SAS

1. Introduction and main results
1.1. Introduction

In this article we continue the analysis of phase separation and phase coexistenc
phenomena in the context of Ising—Potts and percolation models in dimedsipo8sby
extending the techniques used in our previous work [15]. The main goal of the presen
work is to justify, starting from a microscopic point of view, the validity of the basic
assumptions underlying the classical phenomenological theory of coexisting phase:
namely, that the shapes of coexisting phases are governed by a variational (minime
action) principle. Whereas our previous work [15] focused exclusively on the Wulff
problem — a prominent but specific example of phase coexistence — here we will stud
this phenomenon from a more general point of view. Results and ideas which are relevat
or closely related to those contained in the present paper appeared in [3,4,9,10,12-15,2
33-36,39,46,49,51]. Let us notice that several questions handled in the present work ha
been adressed in the context of two dimensional models [1,47,48,52]. For a summary c
the development of this field, in particular for general references and historical remark:
we refer the reader to the introduction of [15].

The g-states Potts model (a brief description of which is given in Section 2.2) is a
natural choice for our purpose since it is probably the simplest example of a Gibbs-
measure exhibiting several “pure” phasesyhich can be forced to coexist by imposing
appropriate constraints on the system, such as mixed boundary conditions or constrain

1We use the word “pure” for the phases obtained in the thermodynamic limit by imposing constant
boundary conditions.
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on the number of spins in a certain state. Recall that this latter constraint occurs naturall
in the lattice gas interpretation of Ising—Potts models: In this case it is simply a constraint
on the number of particles of a given type. It seems to be the case that when systen
corresponding to discrete spins are submitted to certain conflicting constraints, the!
exhibit only pure phases, several of which might coexist so as to satisfy the imposet
constraints. In particular, the pure phases are separated by sharp (when viewed fro
the macroscopic perspective) phase boundaries rather than by some wide transitic
regime where a smooth change between the phases could take place. We will refer |
this phenomenon aharp phase separation into pure phases

Two fundamental problems arise in this context. The first one is to understand the
reason behind the absence of “transitional” states, in particular, the sharpness of pha
boundaries. The second problem is to understand the geometry of the emerging phas
and to recover the law governing the shapes of the interfaces.

As an example, let us consider the Ising model below the critical temperature in a
lattice box which is slightly tilted (in a small angje) with respect to the lattice axis. We
impose boundary conditions as follows: plus on the top face, minus on the bottom anc
free on the remaining lateral sides. How does a typical configuration look like? Possible
answers are depicted in Fig. 1. According to the leftmost picture there is a continuou:s
transition from plus spins on the top face to minus spins on the bottom. In the middle
picture we observe a flat interface parallel to the top and bottom faces separating tw
regions filled with the pure plus and minus phases, respectively. The rightmost picture
is similar to the second one but the interface is not parallel to the top and bottom faces
The angle between the axis direction and the interface vgith 0 < o < y.

We will prove (Corollary 1.5) that in the Ising model with mixed boundary conditions
there is indeed sharp phase separation into pure phases, which rules out the fir
scenario? Phases will thereby be identified by looking at the value of lieal
magnetizatioraveraged on an intermediate scale. Once we know that only pure phases
separated by sharp phase boundaries, occur, it is reasonable to focus our attention
the (free) energy penalty created by these interfaces. Indeed, in the phenomenologic
description one assumes the existence of a direction-dependent macroscopic quanti
called thesurface tensiorr (v), such that any piece of an interface between two pure
phases carries an energy whose value is equal to the surface integra) aiver that
part of the interface, wheneis the unit vector normal to the interface. The fundamental
assumption underlying the phenomenological theory of coexisting phases is that i

2 Somewhat surprisingly, no short and convincing heuristic argument seems to be known.
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equilibrium, the various phases coexist in such a way that the total energy associated wif
the interfaces is minimal among all possible phase configurations (partitions) which are
compatible with the constraints (for instance boundary conditions or volume constraints
imposed on the system. The goal of the current work is a rigorous derivation of the
phenomenological picture described above.

In order to derive a law of large numbers, i.e., to describe the typical behavior of
the system, we perform a general large deviation analysis. We point out that the larg
deviation approach is currently the only known way to achieve this kind of results
in dimensionsd > 3. Namely, one essential ingredient of the proof is a compactness
argument which, similarly as in [10,12,14,15], replaces a combinatorial bound on
the entropy. Large deviations, on the other hand, link the microscopic model with
the calculus of variations. We have then to provide an adequate framework for the
precise formulation of the emerging variational problems. The relevant objeqibase
partitions for the spin models an€accioppoli partitions of finite perimetefior the
FK model. We can naturally define a surface energy functional on these objects (whict
turns out to be a good rate function in the large deviations context). In our analysis we
strongly rely on the Fortuin—Kasteleyn random cluster representation of the spin models
The basic results are derived in the FK-percolation setting and in a second step they a
transferred to the spin models.

Our main tool, Theorem 1.8, is a general large deviation principle (LDP) for the
macroscopic configuration observed in FK percolation. In order to identify the phases or
the spin level, we consider the partition of the underlying region associated with large, ir
fact macroscopic, clusters of the percolation process. In the next step, we obtain on th
spin level a LDP for thempirical phase partitiortorresponding to the different phases
visible on the macroscopic scale. We remark that the relevance of continuous partition
to study interfaces has already been outlined in the phenomenological theory of phase
coexistence, in particular results related to lower-semicontinuity of functionals on
partitions and theif"-convergence can be found in [5,6]. The LDP-s ensure a weak law
of large numbers: the law of the empirical phase partition is determined asymptotically
by an appropriate variational problem. With very large probability, the phase partition
will be close to a partition whose total surface free energy is minimal under certain
requirements corresponding, for example, to boundary conditions or volume constraints
A general compactness argument implies the existence of at least one such minimize
However, in most examples one cannot say much about the minimizers themselve:
(One notable exception is the Wulff problem.) The difficulty stems from the fact that
the surface tensiom is anisotropic and almost no quantitative information about its
magnitude is available. Moreover, the corresponding variational problems are extremel
hard even in the isotropic case and the (few) resolved questions represent the state
the art in the calculus of variations. For instance, a famous conjecture related to th
symmetric double-bubble in the three dimensional case with isotropic surface energ
(perimeter) has only been resolved recently [32] and the asymmetric case remain
unresolved (even in the isotropic case). In general, results on the regulatitywadid
yield results on the local regularity of minimizing configurations (see [7]). For general
results on minimal partitions in the isotropic case, see [2,40].
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Returning to our first example, in order to predict the “typical” empirical phase
partition we have to find the ones which minimize the surface free energy. Note that
along the lateral walls (where free boundary conditions are imposed) there is no energ
penalty, hence no contribution to the surface energy. Let us assume that the sharp triang
inequality holds (see [23]), which implies that the interfakeseparating the two pure
phases is flat. Its tilt will be determined so as to minimize the energy, which is given as
the product of the surface area®fandt (), wherer is the surface normal. Whether
the second or the third picture is “correct” depends on the unknown anisotropy of the
surface tension. There is an additional issue worth discussing, namely, the position c
the interface®. From our analysis it follows that the empirical phase partition will be
close tosomeminimizer. Here, there is a continuum of minima corresponding to any
flat interface with the correct tilt but in an arbitrary height. We believe that in the limit
N — oo, whereN denotes the box size, the distribution of the height of the interface is
indeed uniform. This has to be contrasted with the fihtease, where presumably more
subtle stochastic effects, such as interface fluctuations, should be taken into account
understand the law of the height of the interface. It is natural to conjecture that in this
case the height-density is nearly flat but decays rapidly near the top and bottom of th
box.

More interesting and complex questions appear naturally in the context of the Pott:
model with several states. Consider for instance the Potts modelgwitht colors
(states) in a three dimensional box with boundary conditian theith face of the
box. Naively, one might expect that all phases will try to occupy the region closest to the
corresponding piece of the boundary, which would lead to a phase partition consisting o
symmetric and pyramid-like regions, as can be seen in Fig. 2, left. However, at least ir
the case when the surface tension is isotropic (which is presumably the case in the lim
T 1 T,), there exists a better configuration with lower total surface free energy. Recall
that in this case our desired interface is simply a minimal surface spanned by the edge
of the box. A picture of the well known solution to this problem can be seen in Fig. 2,
right. In order to be able to discuss this example at temperatute® & 7., we have to
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make certain assumptions about the surface tensitve assume that the sharp simplex
inequality holds, that the value afis minimal in axis directions and thatincreases

as the normal vector moves from sg 0, 1) to (1, 1, 1). (Although these assumptions
are very plausible, none of them has been proved in dimengions). Under these
hypotheses, we conjecture that the phase partition at moderate subcritical temperatur
looks like in Fig. 3, left. In the limitT" | O, only two phases survive, as shown in Fig. 3,
right. At T = 0, there is no reason for the middle plane to stay centered, in fact, any
horizontal plane is equally likely.

In the next example we consider the three dimensional Ising model with free boundary
conditions belowr ., conditioned on the event that the average magnetization is positive
and does not exceed* — ¢, wheree is a sufficiently small positive number amaf*
denotes the spontaneous magnetization. It is natural to conjecture that the minimizers
the corresponding variational problem look like the picture in Fig. 4. A single bubble
sitting in one of the corners is filled with the minus phase and in the rest of the box we
see the plus phase. The size of the bubble is determinedaby its internal boundary
coincides with the corresponding piece of the surface of the Wulff crystal.

Fig. 4.

Another Wulff-type problem arises by conditioning thestates Potts model (with
say g > 4) to have a moderate excess of colors 2 and 3 while imposing 1-boundary
conditions on the entire box. In this case it is conceivable that a so-called “double

—

Fig. 5.
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Fig. 6.

bubble” is created, consisting of two adjacent macroscopic droplets filled with the (pure)
phases 2 and 3, respectively. The double bubble is swimming in the phase 1 whicl
fills the rest of the box. Fig. 5 shows the double bubble when the surface tension is
close to isotropic. Of course, we might have an excess of color 4 as well; in this case
a further bubble will presumably appear which will be attached to the previous two
bubbles. A picture of such a situation is shown in Fig. 6, where we assumed a relatively
strong anisotropy. (We warn the readers that these pictures are guesses and have not b
obtained by simulations.)
For related variational questions concerning soap films and immiscible fluids, see [38]
In fact, by studying questions concerning phase boundaries we are very quickly con
fronted with the theory of minimal surfaces, such as the Plateau problem, correspondin:
to anisotropic surface measures. Kebe a bounded open setiR¥ with smooth bound-
ary and lety be a Jordan curve drawn dif2 which separate$<2 into two disjoint
relatively open set§* andI"~. Typical configurations in the Ising model on a fine grid
in  with plus b.c.s o' and minus b.c.s o~ will exhibit two phases separated
with an interface close to a minimal surface which is a global solution of the following
Plateau type problem:

minimize /t(vs(x)) dH?1(x): Sis a surface i2 spanned by,
S

wherevg(x) is the normal vector t& at x. We remark that it is conjectured that, as
the temperature approach&s from below, the surface tension becomes more and
more isotropic and it is conceivable that the solution of the above minimization problem
approaches the solution of the classical (isotropic) Plateau problem.

1.2. The main results

We will study Ising—Potts models and FK percolation on certain finite regions of
the lattice. We refer to Section 2.2 for the definitions, notation and a brief summary
of these models. We consider first FK percolation in dimensibps3 in the regime



650 R. CERF, A. PISZTORA/ Ann. |. H. Poincaré — PR 37 (2001) 643-724

g =1, p> p.such thatd/(p) = 6“(p). Here p,. is the slab percolation threshold
introduced in [49] which is conjectured to coincide with the critical pgit (This

is the case at least for Bernoulli percolatian=£ 1) by the result of Grimmett and
Marstrand [31].) The quantitie8” (p), % (p) are the densities of the infinite open
cluster for the infinite volume FK measurég:?-/, ®2:4-* with free and wired boundary
conditions, respectively. The equaligy (p) = 6" (p) implies that there exists a unique
infinite volume FK measuré?”:¢ on the cubic latticé.? (and the converse implication is
true as well). It is conjectured that (p) =6 (p) for everyp # p. and it is known that
this is true for values op close enough to 1 and might be violated for at most countably
many values op, cf. [30].

Our approach is based on the Fortuin—Kasteleyn (FK) representation of the Ising-
Potts model which recovers the Potts measure on the spin level through an independe
coloring (with spins) of the clusters of the FK percolation process (see Section 2.2 fot
a detailed description). The inverse temperafgiee 1/ T in the spin model is related to
p via the relationp = 1 — exp(—B). The parameteg of the FK process is equal to the
number of states in the Potts model= 2 in the Ising case). We sgt = — log(1 — p,)
andi{(q,d) = {—In(1— p): p such tha®/(p,q) =6"(p, q)}.

Range of validity of the results. Our results for the Ising—Potts models hold in the
region:d >3, g e N\{0,1}, B > B.(q,d), B €U(q,d). For the FK process, our results
hold in the regiond >3, ¢ > 1, p > p.(q,d) such thab/ (p,q) =6"(p, q).

At this point it is natural to discuss the case of two dimensions. Although most of our
results should hold fa# = 2, there are several points in the proofs which would require
a significant change, making the proofs even longer. The main reason, however, for nc
to treat the two dimensional case is that the natural topology for the LDRESHR is
not the one we use (which is based on the distance:jlistit a topology based on the
Hausdorff distance. For reasons of space, we refrain from carrying out that analysis hert
in fact, that would require a separate publication.

Surface tension. From FK percolation we can extract a direction dependent surface
tensiont(v) = 1(p, q,d, v), cf. [15]. For a unit vectow, let A be a unit hypersquare
orthogonal tov, let cyl A be the cylinderd + Rv, thent (v) is equal to the limit

insidencyl A there exists a finite set of closed eddesuttin
lim 1 log d74 | " cyl A in at least 2 unbounded components and the edges of
n—oco pd-1 ® | E at distance less than/drom the boundary of cyl A are at
distance less thardZrom n A

The function t satisfies the weak simplex inequality, is continuous, positive and
invariant under the isometries which lea&&invariant (see Section 4 in [15] for details).

Consider a bounded open regi@nin R¢ with boundaryI" satisfying the following
hypothesis:

Hypothesis orf2. — We suppose tha is a Lipschitz domain, i.e., its boundaFycan
be locally represented as the graph of a Lipschitz function defined on some open ba
of R4,



R. CERF, A. PISZTORA/ Ann. |. H. Poincaré — PR 37 (2001) 643-724 651

Note that this hypothesis is automatically satisfied wf¥da a bounded open set with
aC! boundary or whei® is a polyhedral domain.

We will study Potts models and FK percolation on the regien To obtain a
discretized version of the regidn, we define fom € N,

7! =17%/n (the rescaled lattice)
Q,={xe 75 Ao (x, Q) < 1/n} (the discrete counterpart 6f),
r,=29"Q, (the inner vertex boundary &t,).

The Ising—Potts model onR. Let ¢ € N\ {0,1}. Consider a sequencg =
I'l, ..., T'9 of ¢ disjoint and relatively open subsetslofuch that the relative boundary
of '\ Ulgigq I'' in T has zerdH¢~! measure. We setfare Nandi =1, ..., ¢,

M={xel,; (x,T") <l/nand¥j <i, (x,I'V)>1/n} i=1,...,q.

We use the sequence gf-tuples of setsy(n) = (T'%,...,TY) to specify boundary
conditions as defined in Section 2.2; namely we impoebe.s onF; fori=1,...,q
these b.c.s by, = uf4v™,

The typical picture which emerges from the Potts model at the macroscopic level is ¢
partition of Q in maximalg phases corresponding to the dominant color in that phase.
The individual phases need not to be connected. A convenient way to identify the phase
is to look at the local density of the individual colors on an intermediate scale.

Forx € R? andr > 0 we define the box (x, r) by

Ax,r)={yeR: —r/2<y —x;<r/2,i=1,...,d}.

We next introduce arintermediate length scaleepresented by a fixed function
f N — N satisfying

nILmoon/f(n)d_l = lim f(n)/logn = cc. (1)

Fori =1,..., ¢, the local density of the colararoundx € €2 is defined by

’

0u(x,i) = () {y e NA(x, f()/n); 0,(y) =i}

whereo, (y) is the color of the vertex € 2, in the microscopic spin configuratias,
in ©,,. We partitions2 into the random setg’ ,i =0, 1, ..., ¢, according to the value of
the locally dominant color. More precisely, we setfet 1, ..., q,

Al ={xeVjell,....,q}\ (i}, ou(x, j) <ou(x,i)}

and A° is the set of those points where ties occur. The collectioh AL, ..., A9) is
called theempirical phase partitionOur first result shows that up to super-surface order
large deviations, the regioA® has negligible density and the other regions are colored
(magnetized) as in a pure phase corresponding to their dominant color, providing thereb
evidence for sharp phase separation in Ising—Potts models. It is important to point ou
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that the use of the spin-densities to identify the (pure) phases is not the only possibility
The proof shows that we could uaay bulk quantity and verify that within the phases
the correct values are taken, characteristic for the pure phases.

THEOREM 1.1.—Letd >3, e N\ {0,1}, 8 > B., B €U(q,d). For§ > 0,

lim sup—- |Ogun{ﬁd (A7) + Z /<Un(x D= (9+1;—9)‘

n—00
i=1,...,

1-90
an(x,j)—7>dx>8}:—oo.

+ >
j=1l...q

=L
Theorem 1.1 allows to relate the average densities of tdferent colors with the
volumes of the setgA?, ..., A9). Foriin {1,...,q}, let

Su(i) = Q| 7H{x € Qs 00 (x) =i }.
COROLLARY 1.2.-Foriin{l,...,q}, the sequences of random variables
(8:()),cy and (0LY(AL) /LY + L—0)/q),

are exponentially contiguous, i.e.,

V6 >0 limsup— dlllogun[\s (i) — 0L (A /LY — 1—0)/q] >8] =

Proof. —Let us fixi in {1, ..., g}. We write
|8, (D) — 0L (AL)/L1(Q) — (1—0)/q]

d d dQ
1)

]
1 , LAy 1-6
+‘£d(9)!"”(x”)dx_9£d(sz) T4 ‘

We study successively each term of the right-hand side. Sipcés a discretized
version of 2, the second term goes to 0 asgoes tooco. Each pointx such that
A(x, f(n)/n) C Q belongs tOf(n)d boxes of the formA (y, f(n)/n), y € Q. Therefore

T
|21

iy l/an(x l)dx‘ o ({x € Q: do(x,T) < 2df (n)/n})

Our hypothesis o2 implies in particular that the boundafyof 2 is d — 1 rectifiable

(in the terminology of Federer's book [26]) and closed, therefore its Minkowski content
is equal taH?~1(I"), from which we deduce that the above term goes (deterministically)
to 0 asn goes toco. To deal with the third term, we write
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’/an(x, iydx — 0L (AL) — 1—_9£d(9)’
Q

q
< [loi—o-2Lare s

A T A

1—-0
0. j) = == | + L9(AY)

and Theorem 1.1 provides the desired probabilistic control over this last term.

Our second result is a LDP for the empirical phase parti(iﬂ[;ﬁ, Ai, ..., A7), We
first define a (pseudo) metric diston the sef3(2) of the Borel subsets a@ by setting

VA1, Ay € B(Q) dist1(Aq, Ap) = LI (A1AAY). @)

We consider then the space of phase partiti®iS2, ¢g) consisting of(¢ + 1)-tuples
(A% AL, ..., A9) of Borel subsets of2 forming a partition ofQ2. We endowP (2, ¢)
with the following metric:

disty (A, ..., A7), (B%....BY))= > dista(A, BY).
i=0

The surface energ{ of a phase partition A%, AL, ..., A9) € P(R,q) is defined as
follows:
— for any(A°, A%, ..., A9) such that either® = ¢ or one set among?’, ..., A7 has
not finite perimeter, we s(A°, ..., A9) =0
— for any (A°, A%, ..., A9) with A° =@ and A%, ..., A7 having finite perimeter we
set

I(A% ... A= ) % / T(va, () dH 2 (x)

=120 “yeping

+' Z / T(va, (x)) dH ().

Note thatZ depends onr and the boundary conditiong = (I', ..., T'?). The first
term in the above formula corresponds to the interfaces preséntivhile the second
term corresponds to the interfaces between the elements of the phase partition and t
boundaryI". For a setA of finite perimeterg*A denotes its reduced boundary (see the
Appendix).

Results related to the lower semicontinuity of functionals more generalZheam
the theory of theirl-convergence can be found in [5,6]. In particuldris a good
rate function on the spadeP (L2, q), distp), i.e., it is lower semicontinuous and it has
compact level sets.

Let minpq 4 Z be the minimum value of over P(£2, ¢). Clearly this minimum is
always finite.

THEOREM 1.3. —The sequencéA,), = ((A%, AL, ..., A9)) _. of the empirical
phase partitions of2 satisfies a LDP i P(£2, ¢), distp) with respect tqu,, with speed
n?—1 and rate functiorZ — minp o Z, i.e., for any Borel subséi of P (2, ¢),
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infZ 4 min 7 < liminf — lo A, eE] <limsu ! lo A, eE
I T, T <t S togka (A <L < sup s log kA <

n—oo
<—infZ+ min 7.
E P(Q,q)
Remark— The constant mixg, . Z will be related to another quantity defined at the
FKlevel in Lemma 1.7.

Recall that imposing mixed boundary conditions is not the only way to force the
system to exhibit coexisting phases. In the Wulff problem in the Ising model context, for
instance, a restricted ensemble is studied which is characterized by an artificial exce:s
of say minus spins in the plus phase. Technically this can be achieved by conditioning
the system to have a magnetization larger than the spontaneous magnetization whi

imposing plus b.c.s.

The next result describes the large deviation behavior of the phase patrtition in a larg
class of restricted ensembles. Although it is a rather straightforward generalization o

Theorem 1.3, we state it separately because of its physical relevance.

Let (G,).>1 be a sequence of events, i.e., sets of spin configurations, satisfying the

following two conditions: first thgre exists a Borel sub&bf P(2, ¢g) such that the
sequence of eventss,),cy and({A, € G}),en are exponentially equivalent, i.e.,

. 1 -
limsup—— log ., (G, A{A, € G}] = —o0, (3)
n—oo N
where A denotes the symmetric difference. Second, the following limit exists and is
finite:
li 1 |
Zg = lm a1 0gun[ Gyl > —o00. (4)
The sequence of evenis;,),>1 determines a restricted (conditional) ensemble. Note
that if
infZ =infZ > —oo0, (5)
G G

then Theorem 1.3 implies that (4) is satisfied, wWith= igfI.

THEOREM 1.4. —Assume that the sequen@&,),>1 satisfies(3) and (4) and define
for eachn > 1 the conditional measures

ne =, (-1 Gy).

Then the sequeno(ein)@l of the empirical phase partitions @@ satisfies a LDP in
(P(R, q), distp) with respect tqu¢ with speed:“~* and rate functiorZ — Z, i.e., for
any Borel subseE of P(2, g),

: S | - , 1 ~
— inf Z+Zg <liminf —— logu,; [A, € E] <limsup—— logu, [A, € E]
ENG n—oo n“— n—oco N7
<—infT+7Z;.
ENG
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Theorem 1.4 gives a rigorous verification of the basic assumption underlying the
phenomenological theory, namely, that in a given ensemble, the typical configuration:
are those minimizing the surface free energy.

We show next how Theorem 1.4 can be applied to the Wulff and multiple bubble
problem. We take pure boundary conditions with color 1, thafts=T", I'? = ... =
' =¢.Lets,,...,s, beqg — 1 real numbers larger than or equakfo- 6)/q. We set

Vie{2,...,q) v=LY (07 (si—(1-0)/q).
We define next the events
VneN G,={Vie{2,...,q} S,(i) =5}
and the collection of phase partitions
Gz, ..., v.) ={A= (A0, A1, ..., A)) € P(R,q): LA = va,...,LYA,) > v,)}.
Corollary 1.2 implies that the sequences of events
(Gneny and (/Yn €eG2, ..., v)),ex

are exponentially contiguous, i.e., they satisfy the condition (3). In order to ensure
condition (5), we suppose that the minimum of the surface ernémyer G(vy, ..., v,)

is reached with a phase patrtition having no interfaces on the bouiidagre precisely,

we suppose that the following assumption is fulfilled.

Assumption— The regiore2 and the real numbers, . .., v, are such that there exists
A" = (Ag, AL, ..., AY) in G(vy, ..., vy) such that

Z(A*) =min{Z(A); A € G(vy, ..., v,)},

Vie(2,....q), do(AF,T)>0.

We expect that this assumption is fulfilled provided the real numbers.., v,
are sufficiently small (or equivalentlyy, ..., s, are sufficiently close tal — 6)/q),
depending on the regiaf?. This is for instance the case whenr= 2. Indeed, le}V, be
the WuIff crystal associated ta We know that/V; is, up to dilatations and translations,
the unique solution to the anisotropic isoperimetric problem associated kor v,
sufficiently small, a dilated Wulff grysta»to + agWV; of volume v, fits into Q without
touchingI’, and the phase partitioa* = (@, 2\ (xo + agW;), xo + agWV,) answers the
problem. In the case > 2, we expect that a minimizing phase partition corresponds to
a multiple bubble having — 1 components.

Under the above assumption, we claim that the collection of phase partitions
G(vy, ..., vy) satisfies (5). Fok > 1, we define

A’*(x)=(®,sz\ U xA;f,xA;,...,xA*).

q
2<igyq
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Since by hypothesis the sefs, ..., A7 are at positive distance from, for 1 larger
than 1 and sufficiently close to 1 the phase partlmm) satisfies

A1) € G(W vz ..., A%,) € G(var ..., vy)

and moreoveZ (A*(1)) = A9~ 1Z(A*). Sending\ to 1, and remarking that (v, . . ., v,)

is closed, we see th@l(vy, . .., v,) satisfies (5). Thus we can apply Theorem 1.4 with the
sequence of events;,,),.cn, thereby obtaining a LDP and a weak law of large numbers
for the conditional measurgs® = u, (- | G,). In the particular casge = 2, we obtain
again the main result of our previous paper [15]. In the more challenging situations
g > 2, the unresolved guestions concerning the macroscopic behavior of such systen
belong to the realm of the calculus of variations.

Ising model. Forthe reader’s convenience, we rephrase our basic results in the Ising
setting. In this casg = 2 and the phases 1 and 2 are usually calteghd— phases. We
use the same notation as in the Potts case except that 1 will be replacedby 2
by —. For instance we writd"" instead ofI'! and @ instead ofA2. The index 0
remains. In this case the spontaneous magnetization can be giveri@s= 6" (p, 2)
with p =1 — e #. Thelocally averaged magnetizatian, is the map fron®2 to [—1, 1]
defined by

1
Ve o) =—— > a(y).
T caw fmmna,

We partition$2 into the random set®;, Q° andQ;" according to whether the value of
the local magnetization is smaller, equal or larger than zero.

COROLLARY 1.5.-Letd >3, 8> B., BclU(2,d). Fors >0,

. 1
lim sup—— log {/ |0 (x) + m*| dx + £9(20) + / lon(x) —m*|dx > §| =—
n—oo N
Q Qr
The surface energf on P(2,2) is given as follows. IfA° £ @ or if P(A™) +
P(A') = 0o, we setZ (A% A=, AT) = co. For any(A®, A=, A*) with A° andA—, AT
having finite perimeter we set

I(AO,A‘,N):% / 7(va (1) dH ) + / T (va_ () dHI 1)

0*A—NQ I*A—NI'+
/ T(va, () dHI 7 (x) + / T(va, (¥)) dH 7 (x).
d*A*ﬂQ I*ATNI—

COROLLARY 1.6.-The sequencefzn)neN = ((2° Q;,2)),en of the empirical
phase partitions of2 satisfies a LDP in(P(£2, 2), distp) with respect tqu,, with speed
n?~1 and rate functiorZ — minpq 2 Z, i.e., for any Borel subsét of P(L2, 2),

l , 1 =
|an+ r(nln < I|m|nf —— log u, (€2, € E] <lim sup—— logu, [, € E]
n—oo N

|an+ min Z.
P(Q,2)



R. CERF, A. PISZTORA/ Ann. |. H. Poincaré — PR 37 (2001) 643-724 657

FK model. Consider a sequence = (I'"),,en Of (possibly empty) disjoint and
relatively open subsets df. The relative boundary of \ {J,,[™ in T should have
zeroH?~1 measure. We set fare N

" ={xel,;0u(x,I"™) <1/n, V& <m, do(x,T*) > 1/n}, meN.

We use the sequenc€’),,cn to specify boundary conditions for FK percolation in the
following way: for eachm € N, the points belonging t@&"" are wired together, while

the points inl*, \ U,, ' are let free. FK clusters are regarded to be connected (hence
identical) when they contain sites which are wired together, i.e., if they intersect the sami
boundary piecé" for somem.

Let y (n) be the partition of", consisting of the sequencg’’),,cn together with the
singletong{x}, x e I', \U,, I')}. The FK measure insid@ with partially wired boundary
conditions induced by the sequend®”),,n With lattice spacing An is the measure,
given by

b = chyq,V(n)
n n °

Our principal result, Theorem 1.8, describes a LDP for the collection of the large
FK clusters in the FK model which correspond to several coexisting pure phases in the
spin language. To deal with the entire collection of FK clusters simultaneously we use
Borel partitions(to be defined below) in a similar way as they were employed in [14]. In
the spin setting the framework of partitions allows us to describe systemsiththan
two phase®n the macroscopic level. Regarding the applications to Ising—Potts models
with mixed boundary conditions we have to refine the structure of partitions in order
to keep track of the microscopic connections (whose absence indicates an interface
between large clusters and the wired boundary pieces. We achieve this by introducing
touching functior? (A, m) indicating the presence or absence of a “connection” between
'™ and a given seA C Q. Given a partition and its “touching status” there is a natural
way to assign aurface energyo it with respect to the surface tensien In the next
paragraphs we give a brief description of these constructions so that we are able t
formulate Theorem 1.8.

A Borel partition A of Q is a finite or countable collection of non-negligible Borel
subsets of2 which, up to negligible sets, form a partition @f TheperimeterP(A) of
a partition.A is defined as

PA) =Y P(A),
AeA
whereP(A) is the classical perimeter af (see the appendix).

A touching functiorassociated with a partitiod of Q2 is a map7 : A x N {0, 1}
describing contacts between the setsdadind the boundary piec€E™),,cn; for m € N,

a setA of A is said to touch a boundary pieE# if and only if 7 (A, m) = 1. Thus there
is no microscopic connection betwedrandI™” if 7 (A, m) =0.

To define FK clusters we identify the physical clusters intersecting the same piece
" of the discretized boundary. As a consequence, a touching function must satisfy th
following compatibility condition: a boundary pied&" can touch at most one set of the
partition.
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A t-partition is a pair(A, 7) whereA is a partition of2 and7 is a touching function
associated with4. We denote by TR2) the set of allz-partitions of 2 with finite
perimeter.

Our next goal is to define an appropriate metric on the spa¢)IRVe first define a
metric disi- to deal with touching functions. Lef be the set of the functions frof to
{0, 1} endowed with the product topology. This topology is metrizable, for instance it is
compatible with the metric digtdefined by

VI, T, € F diste(Ty, To) = Y 27" |Ti(m) — Ta(m)|.

meN

An arrangemenif an element A, 7) of TP(R2) is a sequenceA(i), T (i,-),i € N)
of sets inA U {#} and functions inF such that:

— each set ofd appears exactly once in the sequefdé€), i € N) and the empty set

@ appears countably many times in the sequaae), i € N).

— foranyi e N, if A(i) #0,thenT (i,-) =T (A®), ).
In particular, if A is finite, thenA () = ¢ for i sufficiently large. WheneveA (i) = ¢,
the corresponding functiofi (i, -) might be any element gf. However we impose the
global constraint that a boundary piece can touch at most one set, that is,

Vm e N ZT(i,m) <1
ieN

Finally we define anetric Dist on TR) as follows: for(A1, 71), (A2, T2) € TP(Q2)

Dist((As o), (As, o)) = inf{Z(distLl(Al(i), Ax(i)) + dist (T2, ), Ta(G, .)))},
ieN
where the infimum is taken over all possible arrangemefisi), 7;(i, -),i € N) of A4;,
J =1,2, and dist: was defined in (2).

Remark— If we forget about the touching function, the metric Dist is the one used
by Congedo and Tamanini [16—18] (which is stronger than the one employed in [14]).
For a careful exposition and study of this metric on the space of Caccioppoli partitions,
see [40].

Thesurface energydepending orr and on the boundary conditiopd of az-partition
in TP(R2) is defined as

1
I(A’T):Z<§ / ‘[(UA(X))de—l(x)

AeA I*ANQ

+Y (1-T(A,m)) / T(va(x)) d'Hd_l(x)).
meN 9*ANC™M

The first term in the above formula corresponds to the interfaces present @itiihile

the second term corresponds to the interfaces between the elements of the partition a
the boundanf". It is instructive to express now the constant appearing in the LDP of
Theorem 1.3 with the help of the above surface energy.
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LEMMA 1.7.— For the sequencel™),.n, We choose here the finite sequence
I'l, ..., 'Y used in the section on the Potts model. [Fetlenote the set of t-partitions
such that no set touches simultaneously two distinct boundary parts, i.e.,

F= {(A, T)eTPQ):VYAe A Y TADT(A,))= o}.
1<i,j<q
i#]

Thenmin{Z (A, T); (A, T) € F} = min{Z(A); A € P(Q, q)}.

Proof. —The argument is a straightforward consequence of the definitions of the two
rate functions on the spaces (FB and P(£2, g) respectively. Indeed, I€t4, 7) belong
toF.Fori=1,...,q,there exists at most one elementof A such that7 (A;, i) =1.

If there is no such element A, we setA; =0. Let Ao =A\ {A1,..., A;}. Let A be
the phase partition defined by

A:(@,Al,...,Aq_l,AqU U A).
Ac Ay

Then Z(A) < Z(A, 7). Therefore migZ > minpq.,Z. Conversely, letA = (4,
A1, ..., A;) € P(R,q9). Let (A,7) be the element of TE2) defined by A =
{Ay,..., A} and

1 ifi=,
Vi,j=1,..., T(A;, j) = )
J ¢ T4 J) {O; otherwise.

(A, T) :I(A) whence mirZ < minpq 2. O

Now we are ready to turn to our basic LDP for FK percolation. fetN — N be
our fixed function representing an intermediate length scale satisfying (1). Forgiven
a (physical) cluste on 2, is calledlarge if diamC > f(n) andsmall otherwise. Let
C, denote the random collection of the large clusters. Withive associate theoronoi
partition of & with parts

VorC = {x € ;¥C' €C, \ (C}, da(x,C') > da(x,C)}, C€Cp.

Recall that an FK cluster can be regarded as the union of clusters intersecting sites ¢
the boundary which are wired. We define a large FK cluster as an FK cluster which
contains at least one large cluster. The collection of all large FK clusters is denotec
by C™€. A generic element of ™€ will be denoted byC K. The Voronoi partition of2
induced byC™® consists of the sets

vorc™*= | J vorc, c™ecit

CceC,, CCCFK

Finally, we associate witlZ™ the empirical t-partition (A,, 7,) € TP(R) as follows:
A, is the Voronoi partition ofQ induced byC'* and 7, is the touching function
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determined by the existence or absence of connections between the large FK cluste
and the boundary pieces. More precisely,

A, = {vorc™; c™ e}
and for anym € N, anyC™ e C™K,

T, (vorC™, m) = { L if et m ' #9,
0; otherwise.

THEOREM 1.8.-Letd >3, ¢ > 1, p > p. such thatd/(p) = 6*(p). The law of
the empirical t-partition(A,, 7,) under the FK measuré, satisfies a large deviation
principle in the metric spac&TP($2), Dist) with speedn?~! and rate function the
surface energy, i.e., for any Borel subset of (TP(2), Dist),

1 1
—infZ <liminf — 1Iog<I>n[(An,Tn)eé’]glimsup—d 1Iog<I>n[(An,Tn)eé’]
£ n—oo p“— n—oo N
< —infZ.
F3

Remark— The LDP of Theorem 1.8 holds with a slightly weaker hypothesig @n,
namely: there exists a constant « (d, p, ¢) such that for any functiorf (n) satisfying

VneN f(n)>«logn, ILmoon/f(n)d_l=oo.

the LDP stated in Theorem 1.8 holds. However, to transfer the LDP from the FK level to
the spin level we work with the stronger hypothesisfan).

The LDP stated in Theorem 1.8 is our most general LDP. In fact, we deduce the othe
LDPs from it. In the most general situation, this LDP ensures the concentration of the law
of the system (under arbitrary conditions) near the minima of the associated variationa
problem. Since the rate function is good, the set of minima is never empty. However,
in general, we have very little information on the minima themselves. A noticeable
exception is for instance the Wulff problem, which we handled in [15] for the Ising
model.

We finish with a straightforward consequence of the LDP of Theorem 1.8.

COROLLARY 19.-letd > 3, g e N\ {0,1}, 8 > Ec, B € U(g,d). Then our
definition of surface tension in the FK model coincides with the classical definition of
surface tension in the spin setting.

Proof. —Let v be a unit vector ifR? and leti < j be two different colors. We apply the
LDP of Theorem 1.8 to the following situatiof2 = A (0, 1) is a unit box centered at the
origin, ' = dA (0, 1) and for the b.c.s we consider the two sEts= {x € I": x - v > 0},
I'"={xel: x-v <0} Let tshe the classical definition of surface tension in the
spin setting for the Potts model (which is the limit of the excess free energy when putting
for b.c.s. the coloi on '~ and the colorj on I'). It is known thatz®2ssiqy) can be
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rewritten as (see for instance [12])

. 1
I — i i 1] +
r98S5) = — fim TS log @, [there is no open path betweEp andl'}],

whereS = {x € A(0,1); x - v=0}. By Lemmas 1.7 and 4.14, the above limit is equal to
HIL(8)r%8Siqy) = min{Z(A); A € P(R,q)}.

LetE_={xeR? x-v<O0andE, ={x e R’ x - v > 0}. LetA:(Ao,Al,...,Aq)
be the phase partition defined By = A0, )NE_, A; = A(0,1)NE, andA; = ¢ for
k #1i, j. Obviously,

HITH(S) TP ) < T(A) =HTHES) T (v),
whencer®255i(v) < 7(v). Conversely, letA = (Ao, A1, ..., A,) be a phase partition
having finite surface energy. Thety = ¢, and settingd; = A; U (E_ \ A), we have

I(A) > lim / 2 (v; () dHO ().

A(0,1+£)N3*A;
By the convexity of the homogeneous extension dior anye > 0,
[ e s @) a0 > falaz (u/lula),
A(0,1+£)N3*A;

where

U= / vz (%) dH ().

A0, 1+£)Nd*A;
SinceA; AE_ is included in a compact subset of the interiorAof0, 1 + ¢), then
U= / ve (1) dH T H(x) = HH (A, 1+ &) NIE_)v
A(0,146)NI*E_
(see for instance [7], Proposition 3.10 for a more precise result) and therefore
lulot (u/lul2) = HH (A, 14+ ) NIE_)T(v).
Thus
T(A) = H*H A0, ) NIE_)t(v) = H X (S)T(v)

and taking the infimum over all phase partitiods we conclude thatrc2ssiqy) >
T(v). O
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2. Preliminaries

In this section we introduce first the notation and we give some basic definitions. In
the second part, we recall some useful properties of FK (or random cluster) measures at
we give a short description of the Potts and Ising models and their FK representation.

2.1. Notation

The cardinality of a sef is denoted by A|. The symmetric difference between two
setsAq, A, is denoted byA;AA,. Forr e R, |r] denotes the integer part efand [r]
stands for the smallest integer larger than or equal to

Metric. We denote by, the metric associated with the-norm, i.e.,d,(x,y) =
|x — y|, for any x,y in R?. We will only use the 12 and co norms. Thed,
distance between two subsefs and E, of RY is d,(E1, Ez) = inf{|x1 — x2|,! x1 €
E1, x5 € Eo}). Ther-neighborhood off € R? with respect to thel, metric is the set
V,(E,r) ={x € R?: d,(x, E) < r}. Thed, diameter of a subsef of R’ is diam,E =
sup|x — yl,: x,y € E}. We will usually work with the Euclidean distaneb on the
continuous spac®‘ and with the distancel; or d,, on the discrete lattic&?. By
default, when we speak of the diameter of a set without any specification, we meat
thed,, diameter.

Geometric objects. Let x = (x1,...,x;) be a point ofR? and letr be positive.
The closed ball of center and Euclidean radius is denoted byB(x, r). The sphere
of centerx and radiusr is dB(x, r). The unit sphere oR? is denoted bys?~*. The
projective sphere? S’ is obtained by identifying opposite points 6A~1. Let w be a
unit vector. We set

hyp(x, w) = {y € R (y—x) -w= 0}.

Forry, r» in RU {—o00, +00}, we define
slabix, w,r1,72) = {y e RG i < (v —x) - w <2}

We set next
B_(x,r,w)=B(x,r)Nslabx, w, —oco, 0),
B (x,r,w)=B(x,r)Nslabx, w, 0, c0).

By disa(x, r, w) we denote the closed disc centered af radiusr and normal vectow.
A boxis a set of the form

A(X,")={y=(J’1»---,J’d)eRd§—ri/2<J’i_xig”i/z» i=1a---ad}9

wherex = (x1,...,x;) andr = (r, ..., ry) belong toR?. Clearly, x is the center and
r determines the side lengths of the boxz;l&= ¢ for eachi =1, ..., d, wherer € RT,
then we write simplyA (x, 7). Notice thatA (x, ¢t) has diameter and is neither open nor
closed. Ifd,.(x, y) >t thenA(x,t) andA(y, t) are disjoint. LetA be a subset dR? of
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linear dimension/ — 1, that isA spans a hyperplane &, which we denote by hyp.
We call such a set an hyperset. By dowe denote one of the two unit vectors orthogonal
to hypA, or equivalently the element &S'~* orthogonal to hypt. The cylinder of basis

A is the set

cylA={x+1tnorA;r R, x € A}.

We setalso cylA,r) ={x +tnorA: |t|<r, x € A}=cylANslab(x,norA, —r,r).

Topology and measure. Let E be a subset aR¢. We denote its interior bﬁ, its
closure byE, its boundary by) E. WheneverA is an hyperset oR¢, that isA spans a
hyperplane ofR?, we use the induced — 1)-dimensional topology of hya to define
dA, A, A. The collection of the Borel subsets of a #bf R? is denoted by3(E). The
volume of a Borel seE is simply its Lebesgue measure which we denot€HyA Borel
set is said to be negligible if its volume is zero. We define a (pseudo) metrja dist
B(RY) by

VE,F e B(R") dist..(E, F)=LY(EAF).

When dealing with topological questions on the spd®@?), we consider the
equivalence classes of the Borel sets modulo negligible sets. We dend# kye
standardc-dimensional Hausdorff measure, foe= 1,2, ..., d.

The lattice L¢.  We turnZ¢ into a graph with vertex sét¢ and edge set
EY={{x,yhxeZ’, yeZ!, di(x,y) =1}.

This graph is called thé-dimensional cubic latticand is denoted bi.?. We often think
of this graph as embedded RY, the edgedx, y} being straight line segmen{s, y]
between nearest neighbors.Mdfand y are nearest neighbors, we denote this relation
by x ~ y.

Let D be a subset dR“. An edge{x, y} of E¢ is said to be included i if both sites
x, y belong toD. We denote byE? (D) the set of the edges @ included inD. For D
a subset ofZ¢, the graph(D, E4(D)) will be often identified with its vertex seb. For
E asubset of?, a formula likeE c E4(D) will be abbreviated intdk c D.

To simplify notation, we will sometimes identify subsetsRf with their traces on
the lattice, i.e., we identifid € R with A N Z<. For exampleA (n) denotes a box both
in the continuum and in the lattice.

The lattice L%*°. We introduce another graph structure h First we define the
edge set

E4>® = {{x,yhix e 78,y eZ%, de(x, y) = 1}.
The latticeL?-> is defined to be the graptZ?, E4>).

Discrete topology. Let A be a subset dZ. We define its edge boundary,

%994 = {{x,y} e E%;x € A, y € A}
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its inner vertex boundaries,
IMA={xeA;Iye Ay ~x}, AMNA={xeA;TyecA(x,y} eE>}
its outer vertex boundaries,
PMA={xeA%TyecAy~x}, dMA={xecA%TyecAx,y}eE">}.

These definitions are extended to the subset®%by setting, forE c R?, OLE =
ai(Zd N E), wherex stands foredge in or outand x stands for nothing oso.

A pathy in (Z¢, E?) (respectively(Z?, E4>)) is an alternating sequenag, eo, x1,
e1,...,e,_1, %, ... Of distinct verticesy; and edgeg; belonging to(Z¢, E?) (respec-
tively (Z4, E4*>)), wheree; is the edge between andx, ;. The path is said to con-
nect every pair of its vertices. If the path terminates at some veytéxs said to have
lengthn, otherwise it is infinite. Two paths are disjoint if they have no edges in common.
The setA is said to be connected &-connected (respectively®-*-connected) if the
graph(A,E4(A)) (respectively(A, E4>(A))) is connected. Note that connectedness in
the usualL? sense implied.?*-connectedness.

Let A, B, D be subsets dR“. A set of edgest C E¢ is said toseparateA and B in
D if there is no path in the graptZ? N D, E4(D) \ E) connectingA and B. The setE
separatesx in D if the graph(Z? N D, E4(D) \ E) has at least two infinite components.

The relevance of the lattice?- > stems from the fact that thexternalboundary of
any L%*°-connected finite sett in Z? is itself L¢>-connected (whereas the external
boundary of anylL-connected finite set ifZ¢ is not necessarily.¢-connected). To
be more specific, let us define tmesidual x-componentsof A as thex-connected
components ofA¢ wherex stands for.? or L%, Let A be alL¥*-connected subset
of Z%.If R is aresiduak-component of (in either sense), then its inner and outer vertex
boundarie$™ R andd°“'R arelL.?-*-connected (cf. [21, Lemma 2.1]) and therefore also
3N R andd2U'R arelL?*-connected. We will need the notion of external boundaries. Let
A be afinitel.?-**-connected set and I& be its unique infinite residudl?-component.
Theexternalouter vertex boundary of, denoted byy°Ut®*4, is defined a®'"R and it
is L4->-connected. The external outer verfiek>-boundary is defined by

32Ut — N R = {x € R; Iy € A with {x, y} e 4>}

and this set is alsh“-*°-connected.
For future reference, we prove a geometric lemma.

LEMMA 2.1. —For any finitel.?->°-connected subset of Z¢, for r > 4,
LY(Vao (A, 1)) <AT71(A v r).

Proof. —If diam A < r, thenL? (V. (A, r)) < (3r)?. Suppose now that < diamA <
oo. Let{xy, ..., x;} be a collection of vertices o of maximal cardinality such that

Vi,jell,....)l}, i#j, Al,r)NAx;,r)=0.
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The maximality of the collection implies that C A(xy, 2r)U---U A(x;, 2r). Becausé
is necessarily larger or equal than 2 afds .Y *°-connected, for eachin {1, ..., 1},

AN A, )| > doo (xi, 3" A(xi, 1)) = 7/2 -1,
sothatlA| > 1(r/2—1). SinceV, (A, r) is included in boxes of diameter”4 we obtain
L (Voo (A, 1)) <1@ANT < G (r/2— 1A <4777 AlL O
2.2. FK percolation and Ising—Potts models

Edge configurations. For E € E with E # ¢, we write Q (E) for the set{0, 1};
its elements are calleddge configurations irE. The natural projections are given
by pr,:w € Q(E) — w(e) € {0,1}, wheree € E. An edgee is called open in the
configurationw if pr,(w) = 1, and closed otherwise.

For A € 74, let Q, stand for the set of the configurations withiy i.e., Q4 =
{0, L}E' andQA for the set of the configuratiorautsideA, i.e., Q4 = {0, 1}E\E'(),
(Recall thatE?(A) denotes the set of edges between sited.inin general, forA
B C 74, we setQ4 = {0, JE'®\E‘®)_Givenw € Q and E C E¢, we denote byy (E)
the restriction ofw to 2 (E). Analogously,wy stands for the restriction @b to the set
E4(B) \ E4(A).

Given n € Q, we denote byO(n) the set of the edges d@? which are open in
the configurationy. The connected components of the gra@i, O(n)) are calledy-
clusters The pathy = (x1, e1, x», ...) is said to bey-open if all the edges; belong to
O(n). We write{A <> B} for the event that there exists an open path joining some site
in A with some site inB. Similarly, we denote byA < oo} the event that there exists
x € A lying in an infinite component.

Let » be an edge configuration &’ (or in a subgraph oL?). We can look at the
open clusters inV or alternatively the opefv-clusters These clusters are simply the
connected components of the random graphO(w (E))), wherew (E) is the restriction
of wto E.

Given E C E¢, we write F(E) for the o-field generated by the finite-dimensional
cylinders associated with configurations@1E). Similarly, for A € B € Z¢, we use
the notation7; for theo -field generated by finite-dimensional cylinders associated with
configurations ing. If A=¢ or B=2Z%, then we omit them from the notation.

Stochastic domination. There is a partial ordex in  given byw < o' iff w(e) <
o'(e) for everye € E4. A function f:Q — R is calledincreasingif f(w) < f(o)
wheneve < «’. An event is called increasing if its characteristic function is increasing.
Let F be ao-field of subsets of2. For a pair of probability measurgs and v on
(2, F), we say thajx (stochastically) dominates if for any F-measurable increasing
function f the expectations satisfy(f) > v(f). If, in addition, for eachiF-measurable
cylinder Z with w(Z) A v(Z) > 0, we haveu(f | Z) > v(f | Z), then we say that
wu strongly dominates, and we denote this relation hy> v.

FK measures. Let V C Z? be finite andE = E¢(V). We first introduce gartially
wired) boundary conditionss follows. Consider a partitiom of the set9"V, sayz =
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{B1, ..., B,}. (The setsB; are disjoint non-empty subsets &%V with B;U---UB, =
d"V). We say thatr, y € 3"V arem-connectedif x, y € B; for ani € {1, ..., n}. Fix
a configurationn € ©2,,. We introduce an equivalence relation ¥nx andy are said
to bex- n-connectedf they are both joined by-open paths to (or identical with) sites
x’,y" € 3"V which are themselves-wired. The new equivalence classes are called
7 - n-clusters, oFK clustersin V with respect to the boundary conditian The number
of FK clusters (w.r.t.w) is denoted byl™ (). In general, we will us€ to denote clusters
andCFK for FK clusters.

For fixedp € [0, 1] andg > 1, theFK measure with paramete(y, ¢) and boundary
conditionsr is a probability measure on thkefield 7, defined by the formula

7 1 e —n(e cl™
vneQ, o7 {n= Z7PT (H p1O@ — p)t—n ))q 1 (6)
14 ecE

where Z}"? is the appropriate normalization factor. Sin&g is an atomico -field

with atoms{n}, n € Q,, (6) determines a unique measure #. Note that every
cylinder has non-zero probability. There are two extremal b.c.s: the free boundary
condition corresponds to the partitioh defined to have exactlyp"V| classes, and

the wired b.c. corresponds to the partitianwith only one class. The set of all such
measures called FK (or random cluster) measures corresponding to different b.c.s will b
denoted byFK(p, g, V), and we writec FXC(p, ¢, V) for its convex hull. The stochastic
process(pr,).ce(v) : 2 — 2, given on the probability space2, 7, ;") is called

FK percolation with boundary conditions.

We will list some useful properties of FK measures. A property of crucial importance
is that forg > 1, every® € FK(p,q, V) is strong FKG This means that for every
F,-measurable cylindeZ, and for all 7,,-measurable increasing functiorfsg, we
have

®[fg|Z] = @lf | Z1®[g | ZI. @)

In some cases it is possible to compare FK measures with different b.c.s. There is
partial order on the set of partitions ofv. We say thatr dominatesr’, &= > =/,
if x, y m’-wired implies that they arer-wired. We then haveb’(,/””q < o7, This
implies immediately that for eacth € FK(p,q, V), CD{;”’q <® < o7 Next we
discuss properties of conditional FK measures. For giveh V andw € 2, we define
a partition WY (w) of MU by declaringx, y € 3"U to be WY (w)-wired if they are
joined by anw{ -open path. Fix a partition of 3"V . We define a new partition &f"U,
denoted by - WY (w), by consideringx, y € 3"U to ber - WY (w)-wired if they are
both joined byw!-open paths to (or identical with) site$, y’, which are themselves
m-wired. Then, for everyF,, -measurable functiorf,

SPIf | FY @) =@ "V afrias, (8)
Note that (8) can be interpreted as a kind of Markov property. A direct consequence
of this formula is that the restriction of every FK measdren F/C(p,q, V) to Fy is
contained in the convex hWFC(p, g, U).
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Ising—Potts measure. Let V C Z‘ be finite and lety > 2 be an integer. Aspin
(color) configurationin V isa mapo:V — {1,2,...,g}. We denote by (x) the spin
at sitex in the configurationo. To define (mixed) boundary conditions (b.c.s) Bn
we consider an ordered partitign of 9"V into g + 1 disjoint sets(R®, R, ..., R?).
A configurationo is said to beo-compatible ifoz =i fori =1,..., g. Note that there
is no constraint on the spins iR°. The constant b.c.s witR’ = 3"V for somei are
calledi-b.c.s fori =1, ..., g andfreeb.c.s fori = 0.

Let p be fixed. The energy or Hamiltonian of a configuration is given by

S Lyze(; I o is p-compatible,
Hyj(0) = ¢ toyhx~y
00; otherwise.

For 8 > 0, the corresponding Gibbs measuxé’q"’ with boundary conditions at
inverse temperaturg is the probability measure di, ..., ¢}V defined by:

parie) = exp(—BHy(0))/Z(B.q.p. V),

whereZ(8, q, p, V) is the normalizing factor, called the partition function, given by

Z(B.q.p.V)= Y exp(—BH)(0)).

oell,...q}V

FK representation of Ising—Potts measures. We describe a coupling, constructed
by Fortuin and Kasteleyn [27], between FK percolation and the Ising—Potts model
(see e.g. [45] and the references therein for more details)VLetZ¢ be finite. An
edge—spin configuratiom V is an elementw, o) of {0, 5™ x {1,...,4}". Let
o= (R% R, ..., RY) be ab.c. for the spin model and letbe the boundary condition
for the percolation model defined as follows: the equivalence classes of the partitior
o are R, ..., RY plus all the singletongx}, x € R®. In words: wired b.c.s on the
Ri-s fori =1,...,q (but these sets are not wired together) and free b.c.B%We

denote by@{;’q"’/’*} the probability measure on the edge configuration¥ inbtained

by conditioning the regular FK measur@{i’q’p/ on not having any open connections
between the setR’, R/ for 1 <i < j < ¢. Note that in the case of constant b.c.s there is
no restriction on the existence of open connections.

For a giveng > 0, we setp =1 — e #. We can sample a spin configuration from the
distribution M’f,’q"’ as follows. First we draw an edge configurationVinaccording to

@’\i’q’pl”“. In a second step we color each open cluster independently, with color {spin)
for clusters intersecting’ and with the uniform distribution oftl, .. ., ¢} for the other
clusters. In this way we obtain a random edge—spin configuration whose distribution will
be denoted bj?”f,’q"’. We refer to a process of edge—spin configurations with this law as
the FK coupling of the Ising—Potts and FK percolation processes.

Basic asymptotic properties of FK and Ising—Potts measures. It is known that for
* = f or w, the weak limitsb2;%* = lim,_, . @} (" exist and are translation invariant.
Moreover they are extremal w.r.t. stochastic ordering among measures obtained as we:
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limits of FK measures with mixed boundary conditions. The order parameter of FK
percolation is given by the percolation probabibity = 0" (p, g, d) = 29" [0 < oo].

It is known that ford > 2 the system exhibits a phase transition, more precisely, there
existsp. = p.(¢q,d) € (0, 1) such thav” (p) =0 for p < p. and6™(p) > 0 for p > p..

It has been conjectured that?:9* = &»:4-/ (which is known to be equivalent to

0¥ (p) =67 (p)) when p # p. but it is only known that the complement of the set of
regular points

Uq.d)={p e[0,1]; DLI" = pLe /)

can have at most countably many elements. More about this topic can be found in [30].

Assumep € U(g,d) and p > p.. Typical configurations (w.r.t. any measure in
cFK(p,q,N)) in a large finite boxA have the following properties: there exists a
unique largest cluster which is “omnipresent”, in particular, it crosses the box from
wall to wall in each direction. Its density is closedcand its mass is homogeneously
distributed in the entire box. Most of the remaining clusters are bounded in diameter by
aconstani = L(p, g, d). More precisely, these latter clusters and the largest cluster fill
up the box up to a negligible fractional volunae Large deviations estimates for (the
complements) of such events can be found in [49]. By using the FK representation of th
corresponding spin models it is easy to derive the following information about the “pure
phases” of Ising—Potts models: in a large box with constant 1-boundary conditions (ol
if we restrict the infinite volume measure4-® to the box), we typically see a large
spin cluster of color 1 which is omnipresent in the box. All the different colors (spins)
are homogeneously distributed in the box and they have densiigd — 6) /4 for spin
i=1,and(1—-0)/qgfori=2,...,q.

The region . We consider a bounded, open and connected regiam R¢ with
boundaryl" = 92 satisfying the following assumption:

Hypothesis of2. — We suppose tha is a Lipschitz domain, i.e., its boundaFycan
be locally represented as the graph of a Lipschitz function defined on some open ba
of R¢1,

The precise condition can be expressed as follows: each patl’ = 02 has a
neighborhood’ such that N Q2 is represented by the inequality < f(x1, ..., x,_1)in
some cartesian coordinate system whgie a function satisfying a Lipschitz condition.
Such domains are usually called Lipschitz domains in the literature and they posses
all the geometric properties we will need in the course of our proofs. In particular the
boundaryl" of Q is d — 1 rectifiable (in the terminology of Federer’s book [26]), so
that its Minkowski content is equal t&?~1(I"). In addition, a Lipschitz domai® is
admissible (in the terminology of Ziemer's book [54]) and in particdr*(I"\ 3*Q) =
0. Moreover, each point df is accessible fron®2 through a rectifiable arc.

Note that this hypothesis is automatically satisfied wf¥da a bounded open set with
aC! boundary or whei® is a polyhedral domain.

We will study Ising—Potts models and FK percolation on discretized versiogs of
More precisely, we define for € N,

78 =7%n (the rescaled lattice)
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Q,={xeZ%dy(x,Q) <1/n} (the discrete counterpart 6F),
I,=0"Q, (the inner vertex boundary &t,).

Coarse graining of FK processes 0122,,.

The blocks and the block events. Let n and K be positive integers whose value
will be fixed for the sequel. Fat € Z¢, we define the block indexed byasB(x) =
A(xK /n, K/n). Note that the blocks partition the entire space, in particifaive will
sometimes identify the blocB( x ) with its indexx. In particular, we will speak about
nearest neighbor blockg?- or IL*°-connected components of blocks, and about the
various boundaries of such setsAlfis a subset oZ¢, we defineB( A) to be the union
of the blocks indexed by, i.e.,

B(A) = B(x).

XeA

To obtain a coarse graining of FK percolatiortin we will consider events which can
be observed within the individual blocks or in their neighborhood. &k a positive
integer, called thevent-block sizéorx € Z¢, we introduce a larger block’( x ) around
B(x), called theevent-blockby setting

B(x)= |J B. 9)
25 Ooo(z,X)<a
Note thate is equal to the total number of layers of boxesBitix ).

LEMMA 2.2. —Under our hypothesis o, there exists an increasing sequence of
open and connected se&®s with | J, . €2/, = 2 such that

supH?1(3R)) < o0, (10)
neN
n
lim ——dy(3Q2, T") = o0, 11
% 7o) 2(0€2,, 1) (11)

where f is our fixed function satisfyingl).

Remark— A stronger statement is proved in [42], namely, an approximating sequence
of strict subsets of2 is built whose perimeter converges to the perimete® of

Proof. —For¢ > 0, let us define
Q) ={xe€Q: do(x,T) > t}.

Let f:Q — R* be the map defined by (x) = d»(x, I'). This map is Lipschitzian with
Lipschitz constant 1. We apply the coarea formulaftand 2 \ Q(1/m) (see [26,
Theorem 3.2.11], or [24, paragraph 3.4.2]). We haverfar N

LY\ Q1/m)) > / |V f(x)|dL? (x)

Q\Q(1/m)
1/m

>/Hd—1((sz\sz(1/m))mf—l(t)) dr = /Hd—l(asz(t))dt

R 0
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hence there existgm) in (0, 1/m) such that
mL(Q\ Q(t(m))) = H* QU (m))).

Our hypothesis o2 implies in particular that the boundafyof 2 is d — 1 rectifiable
(in the terminology of Federer’s book [26]) and closed, therefore its Minkowski content
is equal ta¢~X(T") (see the appendix for details), hence

im Z24({x e R dy(x,T) < 1/m}) = H*LT) > %Iim supHH (0t (m))).

m—>00 2 m—>00

Notice that the sef2(¢(m)) is not necessarily connected. Let us fix a poigtin .
Let Q(z(m), xo) be the connected component Qf(z (m)) containing xg. Obviously
HAELOQ(r(m))) = HI"1(3Q(t(m), x0)) and therefore

lim supH“~1(82 (¢ (m), x0)) < 2HH(T)

m—0oQ

so that (10) is satisfied. Since ljm .. t(m) = 0, we can extract fron{t (m)),,en @
decreasing subsequenc¢e(m)),,cn. The sequence of set$§2(u(m), xo))men IS then
increasing, and sinc® is connected, we have

U Q(u@m), x0) = Q.

meN

Finally, the sequencéd,(2 (u(m), xo), I'))men iS positive and decreases to 0. By re-
indexing appropriately our sequence of sets, we can ensure condition ¢11).

It turns out, somewhat surprisingly, that it will be sufficient to have a coarse grained
picture of the FK process in a certain neighborhood of theXetFor givenn, o, K
(whose value may depend ai and functionf : N — N satisfying (1) we consider the
following collection of blocks:

Q,={xeZ% do(xK /n, Q) < (3, T)/2 andaK /n < dp(xK /n,T)}.

Note that the event-blocks cover tlign)-neighborhood of2/, and are entirely contained
in Q,.

Block events. Let A be a box inZ¢ with side-length equal ta. An open cluster
within A is called crossing fon if it intersects each of thed2faces ofd" A. Let g be an
increasing function fronN to R* such thaig (k) < k for all k and let§ > 0. We consider
the following events:

U (A) = {there exists a unique open crossing clugtéin A},

R(A, g) =U(A) N {3 open cluster with diametek g(k)},

O(A, g) = R(A, g) N{C™ intersects every sub-box aof of diameter> g(k)},
V(A,8) =U)N{O —38)|A] < |C*| < (0 +3)|Al},
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T(A,g,8) = O0(A, g) N{forany boxA’ C A of diameter> g(k),
(0 —8)|A|<|C*NA'| < (@ +8)A}. (12)

Theorem 3.1 in [49] implies that faf > 3,9 > 1, p > p., 6/ (p) =60¥(p), there exist
positive constantd = b(p, q,d), c =c(p,q,d) andx =« (p, q, d), such that for each
k > 1, each box with side-length, and each measurk € cFK(p, g, A)

®[U(A)] < bexp(—ck). (13)
Moreover, ifc Ink < g(k) <k forall k in N,
®[R(A, 8)°] < P[O(A, g)°] <bexp(—cg(k)). (14)

Also, for § > 0, there exist positive constanks= b(p, ¢q,d,d), c =c(p,q,d,s) and
k =«(p,q,d,?d), such that for eaclt > 1, each box with side-length, and each
measureb € cFK(p,q, A)

D[V (A, 8)] < bexp(—ck) (15)
and, ifkInk < g(k) <kforall kin N,
DT (A, g.8)] < bexp(—cg(k)). (16)

Notice that we have introduced a new type of event naime, g, §). The correspond-
ing estimate follows from Theorems 3.1 and 1.2 in [49].

We will have to work on the Iattice%ﬁ for n > 1. In order to keep the notation
relatively simple we adopt the followingonvention.When working on the lattic&?
with n # 1 the events described in (12) have to be understood in scales adapted to tf
actual lattice spacing. In particular, the effective diametes ofith “side lengthk” will
be k/n, a sub-box of “diametel: g(k)” will have diameter> g(k)/n etc. In general,
length and volume have to be measured on the actual lattice scale. This is of course n
valid for the cardinality of sets.

Block variables. In the course of the proofs we will often use coarse graining in
2, by looking at a block proces§X (x)).cq,, indicating the non-occurrence of one
of the typical events listed in (12) in the corresponding event-block. (According to
our convention the block size has to be measured in the lattice units!) By controlling
the coarse grained proceX¥swe can extract useful information about the underlying
FK process; in fact this is our main tool to control the microscopic behavior of the
model. The definition of the events and the estimates (13)—(16) guarantee that the bloc
process satisfies the following properties:

— the variableX (x ) depends only on the edges®i(x ),

— max Ol X =1]<s. 17
L S [X(x)=1]<e¢ (17)

These two properties imply furthermore

— >20—1)] <e.
Qecfr}gg{;’m)@[)((&) 110(X(2), de(x,2) =20 —1)] <¢ (18)

For later reference we re-state Lemma 2.2 from [15].
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LEMMA 2.3. — Consider &-1 valued random fieldX ;) .c ) With the property that
there exist a positive integdd ande € [0, 1] such that for each € A (m),

P[X.=1|0(X,; do(z,y) = D)] <e. (19)

Then, for every € (¢, 1],

1 d . m |¢
P[ﬁ ) X»s} <D exp(—Agw) {BJ )

zeA(m)
where
5 1-6
A7 (§)=48log—+ (1—48)log ——
- & 1—¢

is the Legendre transform of the logarithmic moment generating function of a Bernoulli
variable with parametee. (We remark that it <5 < 1/2, thenA*(8) > élog(s/e) —
log2)

3. The surface energy of partitions

In this section, we introduce the metric on the space of partitions with finite perimeter
and we prove the basic geometrical results necessary to obtain the large deviatior
principles. Some extra technical work is needed compared to the existing results becau:
we wish to take into account boundary effects. Apart from this additional feature, the
metric on the space of partitions Dist is the one used by Congedo and Tamanini [16—18]
for a careful exposition and study of this metric on the space of Caccioppoli partitions,
see [40].

Throughout the section, we consider an open bounded dofmairR?, together with
a sequence€l™),,cy of (possibly empty) disjoint subsets of its bounda@re 9<2.

Hypothesis— We suppose that the bounddtyof 2 can be locally represented as the
graph of a Lipschitz function defined on some open balkéf!. For eachn in N, the
setI' is open for the relative topology af. The relative boundary df \ | J,, ™ in T
has null#¢~! measure.

The precise condition oft can be expressed as follows: each poeinf I' =92 has a
neighborhood’ such that/ N 2 is represented by the inequality < f(x1, ..., Xxs-1)
in some cartesian coordinate system whegrds a function satisfying a Lipschitz
condition. Such domains are usually called Lipschitz domains in the literature and they
possess all the geometric properties we will need in the course of our proofs. First the
boundaryl” of Q is d — 1 rectifiable (in the terminology of Federer’s book [26]), so that
its Minkowski content is equal t&(“~%(I"). Second, a Lipschitz domaif is admissible
(in the terminology of Ziemer's book [54]) and therefak&—1(I" \ 3*Q) = 0. Third,
each point of" is accessible fron® through a rectifiable arc.

We recall that the relative topology ofis the topology induced oF by the topology
of R¢. Hence each sdi” is the intersection of* with an open set oR?. Finally the
last sentence in the hypothesis is equivalent to sasifig'(ar J,, I'™) = 0, wheredr is
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the boundary for the topology induced BY onT. Since the setE” are relatively open
and disjoint, we haveJ,, orI'™ c or U, I'™.
The sequencél'),,cn induces the b.c. o in the following way: for anym € N,
the points belonging td™ are wired together, while the pointsin\ |J,, ' are let free.
The aim of this section is to describe the geometric macroscopic object which emerge
from the FK measure defined insi@ewith b.c. induced by the sequen@@"),,cn-
A partition A of €2 is a finite or countable collection of non-negligible Borel subsets of
€ which, up to negligible sets, form a partition Qf The perimetefP(.A) of a partition
A is defined as

PA) =) P(A).
AecA

A set of a partition is the macroscopic object corresponding targe FK cluster
of the percolation configuration. Because we wish to take into account the effect of
b.c., we need to keep track of the connections between the clusters and the boundal
Unfortunately, the macroscopic picture of the sets alone does not describe what migF
happen on the microscopic level neBr Hence we record separately the relevant
information with a touching function.

A touching function associated with a partitiohof Q2 is a map7 : A x N~ {0, 1}
describing the contacts between the sets4Aofand the boundary pieced™™),.cn.
A touching function must satisfy the following compatibility condition: a boundary piece
'™ can touch at most one set of the partition, or equivalently,

VvmeN Y T(A,m<L
AcA

Indeed, a set ofd is the macroscopic object corresponding to a large FK cluster of
the percolation configuration, and to define the FK clusters we take into account the
boundary conditions.

We say that a partitiotd of Q2 has touching statug (or that.4 is a partition of©2 with
touching statug) if 7 is a touching function associated with Formally, a partition
with touching status is a pait4, 7) where A is a partition of©2 and7 is a touching
function associated withd. Let (A, 7) be a partition ofQ2 with touching status. For
m € N, a setA of A is said to touch the boundary piec# if and only if 7 (A, m) = 1.
Thus an interface betweehandI'™” is taken into account only i (A, m) = 0.

We denote by TER?) the set of all partitions af2 with touching status whose perimeter
is finite.

We next build a metric on T&2). We first define a (pseudo) metric disbn 5($2) by

VA1, Ay € B(Q) dist1(A1, Ap) = LI(A1AA)).

Let F be the set of the functions frof to {0, 1} endowed with the product topology.
This topology is metrizable, for instance it is compatible with the metric-diffined

by
VI, T, € F diste(Ty, To) = Y 27" |Ti(m) — Ta(m)|.

meN
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An arrangement of an eleme@tl, 7) of TP(Q2) is a sequencéA(i), T (i,-),i € N) of
sets inA U {#} and functions inF such that:

— each set ofd appears exactly once in the sequefdé€), i € N) and the empty set

@ appears countably many times in the sequaae), i € N).

— foranyi e N, if A(i) #0,thenT(i,) =7 (A(@), -).
In particular, if A is finite, thenA (i) = @ for i sufficiently large. Whenevet (i) = ¢, the
corresponding functiof (i, -) might be an arbitrary element gf. However we impose
the global constraint on the functiog (i, ), i € N) that a boundary piece can touch at
most one set, that is,

Vm e N ZT(i,m) <1
ieN
We define a metric Dist on TR2) by: for (A1, 71), (A2, 7o) € TP(Q)

ieN
where the infimum is taken over all possible arrangemedisi), 7;(i, -),i € N) of A4;,
j=12.

Our next aim is to define the surface energy corresponding to the surface tension
(extracted from the microscopic model) for a partition with touching status. The results
of this section are valid for any function from S9! to R* satisfying the following
hypothesis.

Hypothesis orr. — The functionr does not vanish o8~! and it is invariant under
sign changeYx € S9! 0 < 7(x) = r(—x). The homogeneous extensiegof r to R’
defined byry(0) = 0 andrg(x) = |x|o7(x/|x]2) for x € R? \ {0} is a convex function.

We define the surface energy of an elemett7) of TP(2) by

1
IAT =) > / T(va(x)) dH " (x)

AcA I*ANQ

+> (1-TA,m) / r(vA(x))de_l(x)>.
meN d*ANCM

The first term in the above formula corresponds to the interfaces preséntvimile
the second term corresponds to the interfaceF .dret (A, 7) € TP(2). We define the
reduced boundar§*(A, 7) of (A, 7) to be the set

(A T) = ( U  94n 8*A2) U ( U I*ANIQN F’").
A1,Aze A, A1#£A; (A,m)e AxN: T (A,m)=0
For a pointx of 0*(A, 7) N 2, the pair(A;, A,) of elements ofd satisfying A1 # Ao,
x € 3*A1 N 3*A,, is unique up to the order (both sets and A, have density A2 atx);
moreover, the generalized normal vectorsiefand A, atx satisfyv4, (x) +va,(x) =0.
With each pointx of 3*(A, 7) N Q, we associate the elemenfx) of the projective
sphere P S9~1 corresponding to the vectons,, (x), va,(x). We denote by(x) one
among these two unit vectors, selected in such a way that thexnmap*(A,7) N
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Q +— v(x) € $971 is measurable with respect #@?~1|;+ 4.7, (@ way to perform this
construction is to choose an arrangemeéati),i € N) of A and then to select at
each point the normal unit vector corresponding to the set having the smallest inde:
in the arrangement; more precisely,xifbelongs t0d*A(i) N 3*A(j), wherei < j,

we setv(x) = va; (x)). In any case the map € 3*(A4,7) N Q — v(x) € PS 1 is

H Y347 measurable. Similarly, for a pointof 8*(A, 7) N T, there exist a unique
setA in A and a unique integen such that7 (A, m) =0 andx € 3*A N I'™. Moreover,

the generalized normal vectors afand 2 at x satisfy v, (x) — vq(x) = 0. We define

v(x) = va(x), andv(x) is the projection ofv(x) on PS¢~1. Now the surface energy
Z(A,T) can be rewritten as

LA T)= / T(B()) dH ) + / 7 (v(x)) dH ()

(A, THNQ a* (A, THnr
or even in the more concise form

IAT)= / T(U(x)) dH ).
9*(A,T)
The symmetry of the surface tension allows to define it on the projective

sphereP S~1, so thatr (v(x)) makes sense. The agreement of the two expressions of
the surface energ¥(.A, 7) is a consequence of the following fact: for aAyin A,

HITNO*A) =HTHO* AN Q)+ Y HIHI*ANIE). (20)
EcA\{A}

See [17], Lemma .2 and formula(1.5).

LEMMA 3.1.-Let(A, 7) belong toTP(R2). Let £ : 9*(A, T) — R be aH |3+ a.1)
measurable bounded function. Pai? ! almost allx in 8*(A, 7),

lm (w2’ [ i) = fo.
B(x,r)Na*(A,7T)

Proof. —Since A is a partition ofQ having finite perimeter, thet(?=1(3*(A, 7)) is
finite, whence for/~! almost allx in 8*(A, 7) (by [25], Corollary 25),

lim sup(ad_lrd‘l)_lHd‘l(B(x, rNd* (A T)) <L

r—0

We do the proof for the points i (A4, 7) N 2, the argument is similar for the points in
3*(A, T)NT. Let A be an element afl. It follows from (20) that for+¢~* almost allx
iNnd*ANd* (A T)NS,

liminf (eeg—ur ") "H N (B, 1) 007 (AT))
> liminf (ag-2r' ") "HH (B, ) N0%A) = 1

im (as-r*2) O (B, r) 0 (0" AMD" (A, T))) = 0.



676 R. CERF, A. PISZTORA/ Ann. |. H. Poincaré — PR 37 (2001) 643-724

SinceA is countable, then fok?— almost allx in 8*(A, 7) N Q,
lim (cg-2r 1) "HH (B, ) N97(A,T)) =1,
IirT}J (Old—lrd_l) _LHd_l(B(x» r)N(3*(A, T)Ad*A1(x))) =0,

(where A;(x) is one of the 2 sets ofd having density 12 at x). Next, using the
Besicovitch differentiation theorem (see the appendix), F6f—1 almost all x in
*(A, 7T)NQ,

lim (a7 [ Fea ) = .

B(x,r)No*A1(x)
By decomposingB(x,r) N9*(A, 7T) as
(B(x,r) N3*A1(x)) U (B(x,r) N (3"(A, T)\ 8*A1(x)))
\ (B(x, r)yn (B*Al(x) \ 0% (A, T)))

and integratingf’ separately over each of these sets, with the help of the previous density
results, we obtain the claim of the lemma fgf—* almost allx in 3*(A4, 7) N Q. O

We check that
V(A,T) e TP(Q) %Tmin(P(A) —P(Q) <I(AT)< %Tmax(P(A) +P(Q)),

where tyin and tmay are the infimum and the supremumobn $¢—1. The hypothesis
on 7 implies that O< tmin < Tmax < 00. ThereforeZ (A, T) is finite whenevetA is a
partition of 2 having finite perimeter.

LEMMA 3.2. -The surface energ¥ is lower semicontinuous with respect to the
metricDist.

Remark— It seems that the general results of [5,6] cannot be applied directly in this
situation, because we are dealing with partitions having a countable number of set:
Therefore we provide a direct proof of the lower semicontinuity.

Proof. —-Let M e N. Form € {0, ..., M}, sincel'™ is relatively open i, there exists
a setV,,, relatively open irT", such that

Vi CT", HTYT"\ V) < /M2

As a consequence, there exigts- 0 such thatV(V,,,6) N T" c I'"* for eachm €
{0,..., M}, and the set/(V,,,8), m € {0,..., M}, are pairwise disjoint. Lein €
{0,..., M}. SinceH1(V,,) is finite, by the definition of the Hausdorff measué 1,
there exists a collection of balB(x;, r;), i € I, such that

Viel B(xi,r,-)ﬂVm;éﬂ, 0<}",' <5/4,
Vi CUBGi ), Y rit <o,

iel iel
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Let G,, = U;e; B(xi, 1) \ Q. The setsG,,, m € {0, ..., M}, are pairwise disjoint,
moreover(dG,, UV(V,,,8))NT c I'" for eachm € {0, ..., M}. Let us define the map
Ty :TP(Q) — R* by

1
In(AT)=> > / T(va(x)) dH 1 (x)

Ae A I*ANQ

+ > (1-TA,m) / t(vA(x))de_l(x)).

oOsm<M 3*ANGy,
We have then for al¥ ¢ N

V(A,T) e TP(2)

0<T(AT) = Tu(AT) < tmadt? (U )+t M + /1%

m>M
so that
VA, T)eTP(Q) I(A,T)=supZy(AT)
MeN
and we need only to prove that for a fixéfle N the mapZ,, is lower semicontinuous.
We denote byC3(R?, W,) the set of the compactly supported vector fields defined on
R? taking values in the Wulff crystalv;,. Let (A, 7) € TP(R2). We claim that, up to an
additive constant, 2y, (A, 7) is equal to the supremum of the quantity

> / (xA(x>+ > T(A,m)xGm(x)> div £ (x) dx

AcA o<m<M
+ Y (1= Y Tam) e, wdv @
o<m<M AcA

over all families of vector fieldsf, f4, A € A, belonging toC3(R?, W;). Indeed, the
surface energ{ (E) of a setE of finite perimeter is (see [15])

0*E

1(E) = sup{/divf(x) dv: f e CH(RY, W,)} - / 7 (vp () dHA2 (o).
E
Thus the supremum of the previous quantity is equal to

[E I(AU Gm>}+l—( | | Gm>
Ac A me{0,...M}
T(A,m)=1 g AeA 7T (A,m)=0

which is further equal to2y, (A, 7) + ¢, wherec is the constant

c= Y. / (vg, (x)) dH 7 (x) + / T (va(x)) dH(x).
OéméM a*Gm\F F\ U Gm
o<m<M
We finally prove the lower semicontinuity of,, with the help of the previous
representation. LetA,7) € TP(R2) and let (A(i), T (i, -));en be an arrangement of
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(A, T) such thatT (i, -) is the null function wheneved (i) = @. Let ¢ > 0. There exists
a finite subsef of N and a finite family of vector fields, (f;);c; in C3(RY, W,) such
that

Vme{0,....M} > T(i,m)=> T(i,m),

iel ieN

2Ty (A T) +c—e<y. / (xA@(xH 3 T(i,m)xGmm) div f; (x) dr

iel os<ms<M
+ > (l—ZT(i,m))/XGm(x)din(x)dx.
os<ms<M ieN

Let
a = max(supsup|div f;(x)|, sup|div f(x)]).

iel xeRd xeRd
Let § be such that & § < min(2=", ¢/a) and let(A’, 7') be an element of T®2) such
that

Dist((A, 7), (A", T")) <.
Then there exists an arrangement(i), T'(i, -));en Of (A, 77) such that
> (dist1(AG), A'()) +distr (TG, ), T'(, 1)) <.
ieN
Then we must have

VieN Vme{0,...,M} T(@,m)=T'(i,m),

and thus
2Ly (A, T)+c—¢

< Z/(XA/(;’)(X)-F Z T/(l'»m)XGm(x)) div fi(x) dx

iel o<m<M

+ Y /(1 ST, m)) X6, ) div F(x)dr +a Y LA ()AAG))

os<m<M ieN iel
S2Zy(A, T +c+as <2Ly (A, T)+c+e
which proves the lower semicontinuity &, at (A, 7). O

PROPOSITION 3.3. —The map(A, 7) € (TP(2), Dist) — Z(A,7) € R* is a good
rate function, i.e., its level se{g.A, 7) € TP(2): Z(A,7T) < A}, A € R*, are compact
with respect to the metriDist.

Proof. —The proof is a variant of the proof of the compactness result for Caccioppoli
partitions of Congedo and Tamanini [17], Theorer@.'he only additional problem is
the touching function. Let belong toR* and let(A,, 7,).en be a sequence in TR)
such thatZ (A,, 7,) < A for all n in N. For anyn € N, since
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> LUA) < LYR),
Ae A
D" P(A) < (2/tmin)Z(A, T) + P(2) < 24/ tmin + P(R).
AcA
Yo > 2"T(A,m)<2,
Ae A meN
then, fort positive, there is a finite number of setsn A, such that

LYA)Y+PA)+ D 27T (A, m)>1t.

meN

Therefore there exists an arrangemeéest (i), 7,,(i, -), i € N) of A, such that4, (2i +
1)=0,T,2i +1,-)=0f fori € N (Of is the null function ofF) and if we set

VieN u,(i)=L"(Ax(2) +P(Au2)) + > 27T, (2, m),
meN

then the sequencé:, (i));cy is decreasing. Yet the spa¢®& € B(Q2): P(E) < A} is
compact with respect to the metric dist(see the appendix). The spagg, distr) is

also compact. By a standard diagonal argument, we can extract from the sequence
arrangementéA, (i), 7,,(i, -), i € N), ey @ subsequence (not relabeled) such that: for each
i in N, there exist a Borel set(2i) in 5(2) and a mag; in F such that

lim dist; (4, (20), A(20)) + distz (T, (2, ), T;) = 0.

Fori odd we setA(i) = @. For anyi; # i, andn in N,
L4(Ai1) N A(ip) < dist 1 (A1), Ay (in)) +dist 1 (A, (i2), Ai2)).
Letting n go to co we obtain thatA(i;) N A(iz) is negligible for anyi; # i,. Let
A be the collection of the nonnegligible sets of the sequearag), i € N), that is,
A={A@): i e N}\ {#}. Then(A(i), i € N) is an arrangement of.. Next, we have
Vn,i e N LYQ) +P(RQ) + 20/ Tmin + 2> i1, (7).

We seta = £4(Q2) + P(RQ) + 21/ tmin + 2. By the isoperimetric inequality iR, for all
n,iin N, we have

d/(d-1)

£(A,(20)) < cisoP (An(20)) < ciegla) )14,

By summing the isoperimetric inequality, we get
vneN LY@)= ) £YA) < Y LY(AK) + (d — Deigoa®/ @ D7D,
AcA, 0<k<L2i
By letting successively: andi go to infinity, we get£?(Q) < 3,4 £9(A). By the
lower semicontinuity of the perimeter and Fatou’s Lemma,
P(A) = P(A@2)) <Y liminf P(A,(2))
ieN ieN

<liminf > P(AL20) = liminf 7 (A,) < 22/ tmin + P(L) < o0.
ieN
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Thus A is a partition of2 having finite perimeter. LeA belong to.A. There exists a
unique index such thatd = A(2i). We set7 (A, -) = T;. Let us check thaf” satisfies
the compatibility condition. For ang € N, by Fatou Lemma,

Y TAm=) Tim)=)_ lim T,(A,),m)
Ac A ieN ieNn_)OO
<liminf > " 7,(A, (i), m) =liminf >~ 7,(A,m) < 1.
n—o00 TN n—o00 AcA,

Thus 7 is a touching function forA. It remains to check that the subsequence
(A,, T,).en cOnverges toward6A, 7) with respect to Dist. Setting

VieN A@Zi+D =0, T@@i+1)=0r T, )=T,

we see thatA(i), T (i, -),i € N) is an arrangement @f4, 7). For alln,i e N,

> 27"T,(2i,m) <ali.

meN

Leti be strictly larger thama and letg (i) be the unique integer such that’®) > a/i >
2791 Then, for any: € N and anym < ¢ (i), we haveT, (2i, m) = 0 so that

SN 2 (2komy=)" > 27T, (2k, m)

k>2i meN k>2i m>¢ (i)
= > 2" T,(2km< Y 27"<2?0,
m>¢ (i) k>2i m>¢ (i)

Therefore, for any:, i in N

Dist((A,, ), (A, 1) < Y. (dist(A, k), A(K)) + diStr(T, (k, ), Tk, -)))

0<k<2i
+2(d — Vi =i~ 1@=1 4 210 @),

Letting first n and theni go to oo in this inequality, we see that the subse-
quence(A,, 7,).en converges towardéA, 7) in (TP(R2), Dist). O

LEMMA 3.4.—Let(A, 7T) belong toTP(£2). For any positives, §, there exists a finite
collection of disjoint ballsB(x;, r;), i € IoU I1, such that
— for anyi € Ip, B(x;,r;) € Q,0<r; <1, and there existA’ , A’ € A, v; € §971
such that

dist,1 (A" N B(x;, ri), B (x;, i, v00)) <878,
dist1 (AL N B(x;, 7)), By(xi, i, vp)) <87,

— foranyi e I, x; e I', 0 < r; <1, and there exist4; € A, v; € S9~1, m; e N, such
that

T(Ai,m,-)=0, B(x,-,ri)ﬂFcFmi,
dist;1(A; N B(x;,ri), B_(x;, i, v)) <8rf,
dist 1 (B(x;, i) \ 2, By (x;, 13, v;)) < 87
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Finally we have

<e.

‘I(A, 7T)— Z Old—lrid_lf(vi)

ielgUl1

Proof. —Let ¢, § be positive withe < 1/2,5 < 1. Because a generalized normal vector
is also a measure theoretic normal (see the appendix for the definition), for any
in 0*(A, 7) N, there exist a positivey(x, §) and two setsA*, A% in A such that,
foranyr < ro(x, 8),

dist, 1 (A* N B(x,r), B_(x,r,v(x))) <8r,

dist1(A* N B(x,r), By(x,r,v(x))) <8r.
We handled* (A, 7) N T in a similar fashion. For any in 0*(A, 7) N T, there exist one
setA* in A, an integein in N such that7 (A*, m) = 0 and a positive; (x, §) such that
foranyr < ri(x,9),

B(x,r)ynrCcr,

dist1 (A* N B(x,r), B_(x,r,v(x))) <8r,

dist1(B(x, )\ Q, By (x,r, v(x))) <8r.

The mapr € 3*(A, T) — v(x) € PS?~tis measurable with respectt¢’ ~1|3+4.7)- By
Lemma 31, for H?~! almost allx in 3*(A, 7),

|im0 (ozd_lrd_l)_lHd_l(B(x, NI (A T)) =1,

lim (™7 [ e m) dH) = ().
B(x,r)No*(A,T)

Let 0**(A, 7) be the set of the points @&*(A, 7) where the two preceding identities
hold simultaneously. Clearit¢=1(3*(A, T) \ **(A, 7)) = 0. For anyx in 3**(A, 7),
there exists a positive (x, ¢) such that, for any < ra(x, &),

‘Hd_l(B(x, NI (AT)) — ad_lrd_l‘ <eay_ri

(ag_1r?H) / L () dHI () — T (9(0))| < e
B(x,r)Na*(A,T)

The family of balls

B(x,r), x€d™*(A,T)NQ, r<min(ro(x,s),ra(x,¢), 1 dp(x,T)),
B(x,r), x€d™(A,T)NT, r<min(ry(x,3),rx,¢),1),

is a Vitali relation for 9**(A, 7). By the standard Vitali covering theorem (see
Theorem A.2), we may select a finite or countable collection of disjoint [&(lis, r;),
i € I, such that: for any in I,

— eitherx; belongs t®**(A, 7) N Q andr; < min(ro(x;, 8), r2(x;, €), 1, da(x;, ),

— orx; belongs t@** (A, 7) N T andr; < min(ry(x;, 8), ra(x;, ), 1),
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and moreover
either Hd‘1<8**(A, T)\UB(x,-,ri)) =0 o Y rft=c0
iel iel
Because for eachin I, r; is smaller tham,(x;, €),
1—28)) agar! P <HITHO™(A, T)) < P(A) < o0,
iel

and therefore the first case occurs, so that we may select two disjoint finite sigydets
of I such that

68**(A,T)ﬂQ ifiGIo, X; eB**(A, T)ﬂl“ ifiEI]_,
Hd—l(a**(A, D\ | B, r,-)) <eHITH 0" (A, T)).

ielgUl1

We claim that the collection of ballB(x;, r;), i € Io U I1, enjoys the desired properties.
In fact, we need only to check the final inequality stated in the lemma. We compute

(V) dH T ) — > g T (Vg ))‘

3*(.'4’7—) ielgUl1
< / T(U(x)) dH " (x)
0 (AN, ¢ 1gur, BOo)
+ Z / T(V(x)) dH 7 (x) — ad_lrid_lt(i(xi))‘.

€IV e (A T)NB(x;.17)
The first integral of the right-hand member is less thatf —1(3**(A, T))Tmax. FOr anyi
in IpU Iq,
T(v(x)) dH ) — ad_lrlfi_lt(i(x,-))‘
(A, T)NB(x;,ri)
<26 HY(B(xi, 1) N (A, T)),
whence by summing ovérin Iy U I3,

> / (V) dH (%) — g1t (D ))‘ <2eHTH 8™ (A, T))
1€l0VI1 yux A THNB(x;.1)

and putting these inequalities together, we get

‘ / (V) dH ) — D agar! v(x,))’<8Hd_1(8**(.,4,7))(rmax+ 2).

3 (A, T) ielgUly

SinceH* (9™ (A, 7)) < Z(A, T)/tmin, We get

AT 3w e (500)| <6 @+ tmad ZA T/t

ielpUly
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Sincetmax Tmin aNdZ (A, 7) are fixed and finite, we have the required estimate.

An element(A, 7) of TP(Q2) is said to be polyhedral 4 contains a finite number
of sets and* (A, 7) N Q is included in the union of a finite number of hyperplanes. An
hypersurface is &* submanifold ofR? of codimension 1.

THEOREM 3.5.—Let (A,7) belong to TP(2). For any ¢ > 0O, there exists a
polyhedral elementA’, 77) in TP(2) such that

Dist((4, 7), (A, T)) <&, |T(AT)-I(A,T)| <e, HT @A, THNT) <e.

Proof. —We first reduce the problem to a partition having a finite number of elements.
Let (A, 7) belong to TR2) and lete > 0. There exists afinite number of setg, ..., A,
in A such that

> L/A+HTHOANT) <.
AcA\{A1,..., A}

Let (A, 7") be the element of T@&2) defined by:
A={As,....a02\ |J Al

1<igr

Vie{l,...,r} VYm eN T/(A,-,m):'T(Ai,m),

Vm eN T’(Q\ U A,-,m> =T (Ao, m),
1<i<r
whereAg is afixed element afl\ {Ay, ..., A,}. We have the (A, 7') < ZT(A,T)+¢
and

Dist((A, 7), (A, T") < L (Q\ U A,) + ) LiA) <z
1<i<r AcA\{A1,.... A}
Hence we need only to consider the case whéteas a finite number of elements.
The main difficulties of the proof are to handle properly the approximation cloBe to
that is, to push back insid@ almost all the interfaces up to a setféf —! measure;, and
to keep simultaneously a partition. The essential tools of the proof are the Besicovitct
differentiation theorem (Theorem A.1), the Vitali covering theorem (Theorem A.2)
and the strong approximation result of Quentin de Gromard (Theorem A.3). Let us
summarize the global strategy.

Sketch of the proof. We fix y > 0. Since“~}(TI" \ 9*Q) = 0, applying an idea of
De Giorgi we can find a compact subgeiof 3*Q such that~(I"\ D) <y andD is
included in an hypersurface. By the definition of the measure theoretic boundary, clos:
to a point of3*Q2, the set2 looks like a half-space. We covéy by a finite collection
of disjoint ballsB(x;, r;), i € IoU I, centered orD, whose radii are sufficiently small
to ensure that the surface and volume estimates within the balls are controlled by th
factor y. The remaining part of" is covered by a finite collection of ballB(yj, s;),
j € J1. The indices ofly correspond ta N d*(A, 7) and the indices of; correspond to
I\ o*(A, 7).
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We chooses > 0 sufficiently small, depending on the partitioh, on y and on the
previous families of balls and we apply the strong approximation result of Quentin de
Gromard to each set of the partitioh We build then two further family of balls:

— B(x;,ri),i € I,, cover the interfaces inside, up to a set of{¢~! measure:.

— B(ys,s;), j € J2, cover the remaining boundary piecesin

Inside each balB(x;,r;), i € Iy U I; U I, up to a small fraction, the interfaces are
located on hypersurfaces and the radii of the balls are so small that these hypersurfac
are almost flat. Hence we can enclose the interfaces into small flat polyhedral cylinder
D;,i € IpU I, U I, and by aggregating adequately the cylinders to the sets of the
partitions we move these interfaces on the boundaries of these cylinders. The remainir
interfaces are enclosed in the balgyy,s;), j € J1 U J, and we apply a similar
technique, by approximating these balls from the outside by polyhedra.

We have to define delicately the whole process, in order not to lose too much
surface energy, and to control the possible interaction between interfaces clbse to
and interfaces i®2. The presence of boundary conditions creates a substantial additiona
difficulty compared to the polyhedral approximation performed in [14]. Indeed, the most
difficult interfaces to handle are those correspondin®ipi € I;. We first choose the
balls B(x;,r;), i € IoU I, corresponding tgz. We cover the remaining portion a&f
with the ballsB(y;, s;), j € J1. At this point we can already define the cylindebs,

i € Ip. Then we choose small enough, depending gnand the ballsB(x;, r;), i € I,

to ensure that the perturbation of volumeaused when applying Quentin de Gromard’s
result will not alter significantly the situation inside the balléx;, r;), i € I;. Then we
move inside2 and we buildD;, i € I,. Then we come back to the boundary and we
build D;, i € I;. We cover the remaining interfaces dhby the ballsB(yy, s;), j € J>.
Finally we aggregate successively each flat polyhedral cylinder to some adequate set |
the partition, in two steps, getting first a collectigti and then a second collectiof’.

An ultimate problem is that the collectiod” might have overlaps, which is solved by a
simple algorithm.

Start of the proof. tet us consider now an elemett, 7) of TP(2) such thatA
has a finite number of elements,, ..., A,. Let y belong to]0, 1/16[. We start by
handling the boundary, for which we make locally flat approximations controlled by
the factory. By hypothesisH¢~1(ar |J,, I'™) = 0. Our hypothesis o implies that
NI\ 9*Q) = 0. We apply first an idea going back to De Giorgi (which is also used
at the beginning of the proof of Quentin de Gromard’s result). There exists a compac
subsetD of I such thatH?~X(I" \ D) < y and moreoverD is a compact subset of
an hypersurface. Using the exterior regularity?¢f—|-, we can find an open se,
containing(I"\ D) U dr |J,, I'" and such thatt‘=1(0oNT) < y. We apply Lemma A.4
to the sef” \ Og and the hypersurface containitiy

dMy V50>0 E|770>0 VX,yGF\Oo
Ix — yl2 < no = da(y, tan(T", x)) < Modolx — ylo.

Let 8o in 10, 1/2[ be such thaiMydy < y and letng be associated té, as in the above
property. By Lemma 3.1, for¢~t almost allx in |J,, T N 8*(A, T) \ Oo,

|imO (ozd_lrd_l)_l'Hd_l(B(x, NI AT)) =1,
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lim (@7 [ e m) dH ) = ().
B(x,r)No*(A,T)

Let 9** Ay be the set of the points where the two preceding identities hold simultane-
ously. For anyx in 9** 4y, there exists a positive(x, y) such that, for any < r(x, y),

‘Hd_l(B(x, r)Na*(A,T)) — ozd_lrd_1| <yogri

(ag_ar®H) / (5 dH ) — T (0(0)| < .
B(x,r)Na*(A,T)

Next, for 79—t almost allx in I\ 8*(A, 7) \ O, there exists a set, in A such that
x €9*A, and

lim (aar®) LY (B(x. ) N Ay) =1/2
and moreover
lim (egr®) £ (B, 1)\ 2) =1/2
1@0 (ozd_lrd_l)_lHd_l(B(x, r)N3* (A, T)) =0,
lim (eg—ar* ™) "B, 1) NT) =1,
Let 9** A, be the set of the points where the four preceding identities hold simultane-
ously. For anyx in 9**.4,, there exists a positive(x, y) such that, for any < r(x, y),
|£d(B(x, rynA, — ozdrd/2| < yozdrd,
|Ed(B(x, )\ Q) — adrd/Z‘ < yadrd,
Hd_l(B(x, rNNIAT)) <y og_1r?t,
(HH(B(x, 1) NT) —agoar’™H <y ag_ar™.

The family of ballsB(x,r), x € 3**Ag U 9** Ay, r < min(r(x, y), y, no), is a Vitali
relation for

(T'\ Og) N (3% AU 9** Ay).

By the standard Vitali covering theorem (see Theorem A.2), we may select a finite or
countable collection of disjoint ballB(x;, r;), i € I, such that: for any in I, x; belongs
to the above set; < min(r(x;, ), y, no) and

either Hd‘1<F \ 0o\ | JB(x:, ri)> =0 or Y rit=co.
iel iel
Because for eachin I, r; is smaller tham (x;, ),

aa-1(L=y) Y 7P <HITHT) < oo,

iel

and therefore the first case occurs, so that we may select two finite supsktsf 7
such that
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Vielyp x;€d™ A, Viel; x;€0™A;,

Hd_l(r\oo\ U B(xi,’”i)><)’-

ielgUl1
Leti belong tol;. We have

HH T N B, 1)\ B(xi, ri(L—2/7)))
=H"H TN B, ) —HH T N B, ri(L—27)))
<A+ y)agar! ™t — A= y)agr!HA-2y)
=as 1! T (1+y —A-p)A-2yy)" ) <o r2d Y.

Hence

D HTHT N B ) \ BGi,ri(L=2¥))) <247 Y eq-vr{ ™ < 4d Sy HTHI)
ielp ielp

and

Hd—l(F\OO\ UB(Xi,ri)\ UB(X,,I’,(].—ZW))) <y+4dﬁHd_1(F)

ielp iely

so that

Hd—l<l"\ U B(xi,l’,-)\ U B(xi,ri(l—Zﬁ))> < 2)/ +4d\/?Hd_l(F)

iely ielp

We have a finite number of disjoint closed balléx;,r;), i € Iy, B(x;,r;(1—2,/y)),
i € I. By increasing slightly all the radij, we can keep the balls disjoint, eaglstrictly
smaller than mitr(x;, v), y, no) for i in IoU I, and get the stronger inequality

Hd—]-(F\ Ué(xi,ri)\ Ué(X,,F,(l—Zﬁ))) <2y+4dﬁHd_1(F)

ielp iely

The above set is a compact subselotJsing the exterior regularity df“=1|-, we can
find an open se®; such that

r\ J B\ | B i1 —27)) C 04,
ielp iely
HH01NT) < 3y +4d JyHIHD).
Let
p1 = (1/6) dist(F VU B, o\ U B(xi, (L= 2y7)), T\ 01).
ielp iely

By the definition of the Hausdorff measufé’~1, there exists a collection of balls
B(yj,s;), j € J1, such that:

Vielh O<sj<pi, B(yj,sj)fW(F\Ué(xi,ri)\Ué(xi,ri(l—Zﬁ))>7é@,

iely ielp



R. CERF, A. PISZTORA/ Ann. |. H. Poincaré — PR 37 (2001) 643-724 687

> goasiTH < By +4d Sy HITHD,
JjeJ1
I\ JBGi, )\ JBriX=2yy)) c | B(yj,s)).
icly iel Jjen
By compactness, the sét can be chosen to be finite. For eddh Iy, let P; be a convex
open polygon inside the hyperplane Iyp vr(x;)) such that

diSC(X,', i, VF(X,')) C P C diSC(xi, ri (14 do), U]"(X,')),

d-2 d-2 d-2 d-1 d-1 d-1
|HY20P) — ag—orf 2| < Soota—or{ =2, |HTH(P) — agoary | < Sog—ar! .

Let D; be the cylinder cy{ P;, Modo(1 + 8o)r;) of basisP; and height 24p8¢(1 + g)r;.
ThenI' N B(x;,r;) C D;.

Fori in Ip U I, there exists a uniquii) in {1, ..., 2} such thatx; € 3*A;;. Fori in
I there exists a unique integer(i) such thaty; € '@,

We next deal with the interfaces insi@eand we make approximations controlled by
the factore. We choose: sufficiently small compared tp so that, when we perturb the
sets by a volume, the resulting effect close to the boundary is still of ordee have
to delay the approximation df by flat interfaces inside the balB(x;, r;), i € I, until
we have modified the situation inside

Lete > 0 be such that < y and

eh(1+6H(3"(A. 7)) < yaaminr.
iel

We apply next the approximation result of Quentin de Gromard (see Theorem A.3 in the
appendix) to each setq, ..., A, ande (here we consider these sets as subseR/of

i.e., we apply the approximation result in the whole space). For eacH1, ..., &},

there exists a sdit; of finite perimeter, aC* function f; : R¢ — R, a compact sef;, an

open set; and an open bounded skt such that, setting; = {x € R?: f;(x) > 0}, the

setV; N3 F; is the hypersurfacér € V;: f;(x) =0} and

C,CB;, B CVic{xeR% dfi(x)#0}, CiCd*ANIF,
LiNnBi=FNB;, V,Nd'F=ViNiF,
-1

Vx e C; vy (x)=vp(x)= —| dﬁ(x)| df; (x),

LUV <e, LYUAAL) <e,

HITYOF N (Vi\C)) <e, HTHI*ANC) <6, HITHI*AAIL) <o,

Li CVa(Aj8), RINL CVa(RY\ 4j,¢).
Since{Aq, ..., A,} is a partition of2 having finite perimeter, then the s@tsd; N 9*A;,
1<i < j < h, are pairwise disjoint, and so are the s€tsN C;, 1<i < j <h. It
is possible to impose that the open sefs 1 < i < &, are chosen such that the sets
ViNV;, 1<i < j < h, are also disjoint. More precisely, at the beginning of the proof of

TheoremA .3, the compact sefS;, 1 < i < h, are chosen by applying Egoroff Theorem;
using the exterior regularity of the measute¢$ 1|, ., they are then approximated from
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outside by the set¥;, 1 <i < h. We perform simultaneously this step for all the sets
and we impose that each gJétis close enough t@;. If we set

r=(1/3MIn{ds(C; N C;, CeNC: 1<, jok I <h, i < j, k<l () # KD},

thenr is positive (the set€’; N C;, 1<i < j < h, are disjoint and compact) and it is
enough to require that; is included inV,(C;, r) for eachi in {1,..., h}.
Foranyiin{1,...,h},

HITHQNIL N\ C) <HTHQNIL \ 9% A) +HITH(QN 3" A; \ C) <

SettingH = U;<; <, (9L; \ B)) N2, we getH! " (H) < 2he. LetnextC = Uy¢;_j<;, CiN
C;. Notice thatC is a subset of2. We have

HITYQNIL \ C) <HITHQNIL \ C) + Hd‘l(Q nc\ U c,-)

1< <h.j#i

<28+Hd—1<smc,-\ U a*Aj>

1<j<h, j#i
+HH U Qma*A,-\cj> < (h+ De.
1< j<h, j#i
SettingG = U<, <, QNIL; we getH"1(G \ C) < h(h+ 1)e. Foreach in{1,..., A},

we apply Lemma A.4 to the sétF; N B; and the hypersurfaceF; N V; (smce B, is
bounded, thed F; N B; is compact):

IM; >0 V6>0 3n;>0 Vx,yedF,NB;

lx — yl2 <mi = da(y, tan(@F; N Vi, x)) < Midlx — yla.

For a pointx belonging toC;, the tangent hyperplane @fF; N V; at x is precisely
hyp(x, v(x)). Let M be the maximum md4, Mg, M1, ..., M;,} and lets in 10, 1/2[ be
suchthat 28M < ¢. Foriin {1, ..., h}, letn; be a positive real number associated &5
in the above formula and let=min{n4, ..., n,}. Let also

p2=(1/6)min (min{d>(C;, R\ B;): 1<i <h},

min{dx(C; N C;,RI\ Q): 1<i < j<h}).

Since each sef; is a compact subset of the open Bgand each sef; N C; is a compact
subset of2, thenp, is positive.

The mapx € 3*(A4,7) N Q — T(x) € PS‘! is measurable with respect to
HY Y3+ 4. 1)ng- By Lemma 3.1, for¢~t almost allx in 3* (A4, 7) N ,

lim (ad r? ) - l(B(x NI AT)) =

fim (eg2r )™ / 7 (T(y) dHIL(y) = 7 (T(x)).
B(x,r)Na*(A,T)
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Let 0** A be the set of the points @& (A, 7) N Q2 where the two preceding identities
hold simultaneously. Clearljt¢=1(3*(A, T) N Q\ 3**.A) = 0. For anyx in 3** A, there
exists a positive (x, €) such that, for any < r(x, &),

(HH B, r)N* (A, T)) —ag_1r?™Y <eag1r®™,

™[ o)) - ) <e
B(x,r)Nd*(A,T)
The family of ballsB(x,r), x € 3**A, r < min(r(x, &), &, n, p2), is a Vitali relation
for C. By the standard Vitali covering theorem (see Theorem A.2), we may select a
finite or countable collection of disjoint balB(x;, r;), i € I’, such that: for any in I’,
x; belongs taC, r; < min(r(x;, ¢), &, n, p2) and

either H4?t (C\ U B, ri)) =0 or Y rit=c0.

iel’ iel’
Because for eachin I’, r; is smaller thanr(x;, ),
ag-1(1—8) Y rTP<HITHOM A TN Q) < oo,
iel

and therefore the first case occurs, so that we may select a finite $pb$ét such that

Hd_l(C\ U B(X,',l‘i)) <é€.

iel

We have a finite number of disjoint closed balKx;,r;), i € I,. By increasing
slightly all the radiir;, we can keep the balls disjoint, eaghstrictly smaller than
min(r (x;, ), €, n, p2) for i in I, and get the stronger inequality

Hd_l<C\ U f?(x,-,ri)) <E€.

iel

For eachi in I, let P; be a convex open polygon inside the hyperplane (hyw(x;))
such that
diSC(X,', ri, ﬁ(x,)) C Pl' C diSC(xi, ri(l + (S), V(xi)),
[HY2@ P) — agori 2| < Sag_or ™2, |HHP) —agarf™t
We sety = M§(1 + 8) (hencey < e < 1). Fori in I, let D; be the cylinder
cyl(P;, M&(1+ 8)r;) of basisP; and height Z/r;. The sets

d-1
< 5ozd_1ri .

U D, 1<k<i<h,

ielp, x;eCrNCy
are pairwise disjoint. Indeed, létbe an index inl, such thaty; is in C, N C;; because
ri < P2,

D; C B(x;,3p2) CB,NB, CV, NV,
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and the setd, NV,, 1<k <1 < h, are disjoint. Next, for anyk <[ in {1,..., 4},
any i in I, such thatx; belongs toC, N C;, r; is smaller thanp, and », so that
B(-xivri) C BkmBlv

OLy N B(x;,r)) =0F, N B(x;,r)), 0L N B(x;,r;)=03F N B(xi,r;),

Vx e (@F, UdF)NB(x;,r;) da(x, hyp(x;, v(x;))) < M8|x — x|z,
whence
(0L, UIL,) N B(x;, r;) C cyl(disclx;, ri, v(x:)), Mr;) C Di.

Next, form distinct fromk, I, sinceB(x;,r;) C By N B; andB; N B; N B,, = @, then

9L, N B(xi, ;) C QN IL, \ B, C H.

Thus
GNB(x,r)C(OL,UIL, UH)NB(x;,r;) C D; UH.

We are now ready to perform a first modification of the sets of the partition. The
modification consists in pushing all the interfaces in the cylindersi € I, on one
side of the cylinder and forcing the remaining interfaceito lie on the boundaries of
the setslq,...,L,. Wesetforl in {1, ..., h}

A=@nLpu |y U bl U b

1<k<l iel I<k<h ielp
x; €CrNCy x;i€CrNCy

and7’(A;,m) =T (A;,m) form e N. We setalsd, ; = @\ U;¢/<, A; and

VmeN T'(A,,m)=1— > T(A,m).

1<i<h

Let us show that this new collection approximates correctly the initial partition. For each
1in{l,...,h},
AJAA, C (A ALY U D;
iely
and
AaC | AaaL
1<I<h

Thusforlin{l,...,h}

LYAAA) e+ 204 1A+ 8)yr.

iel

Yetr; < foriin I and Y, ag_1r™t < 2H41(9*(A, T) N Q), so that for/ in

{1,...,h}

ielp

LY(AAA) <e(1+BHITYI* (A, T)NQ)).
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Moreover
LY(A)yq) <he(L+6HTHO* (A, T)NQ)).

Two problems remain at this point. First we have now to push the interfaces of
3*(A, 7) N T into Q. Second the setd], ..., A. might overlap.

We next handle the regions close fowhere the sets of the partition are touching
boundary pieces, that is, the family of baBsx;, r;), i € I;. We will modify adequately
the setsA], ..., A} to ensure that no significant interface is created within these balls. In
order to avoid interferences with other interfaces, our modifications will take place inside
the ballsB(x;, r;), i € I;. Our technique consists in building a small flat cylinder centered
onTI" which we add to the set of the partition touching the boundary piece containing
and which we remove from the other sets of the partition. We have to design carefully
this operation in order not to create any significant additional interface. This is the place
where we tie together the covering of the boundary and the inner approximation.

Leti belong tol;. Because of the condition imposed @nve have:

|Ed(B(x,-, )N Ay — ozdrid/2| Syaurf+e<2yaur?,

Vie(l,...,h+ 10\ {@)} LYBGxi,r)NA) <2yauri+e<3yagr?.
Since in addition
1£4(B(xi, ri) \ Q) —aar{ /2] <y aar
it follows that
LY(B(xi, ) N(2\ A)) <3y agrf.
Let P; be a convex open polygon inside the hyperplane(hypr(x;)) such that
diSC(xi, ri(l— Zﬁ), U]"(X,')) C P C diSC(X,', ri(l— ﬁ), vr(x,-)),
[HI2(0P) — agor{ "2(1 = /7)" 72| <Saqor! 21— V)2,
[HTHP) = agar! TN A= ) T <o THA = )T
The choice o8, guarantees thapo(1 + 8o)r; < 2yr;. For anyr such that
Mosg(L+ Sg)r; <t < ﬁr,’

we have
—tvr(x;) + P; C B(x;,1y), LN (—tvr(x;) + P) =0.
Moreoverl N B(x;, r;(1—2,/y)) C cyl (P;, 2yr;) and in addition

/ (Hd_l((—tvr(xi) + P\ A;(i))
2yri<t</yri
+ Z Hd_l((—tvr(xi)-i-Pi)mA;)) dr

1<ISh+1
T1(i)
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SLYBi,r)NQ\Aj)) + Y LYB(xi,ri)NA)) <3y (h+ Dayr.
1<I<h+1
1#1(i)

The condition ony yields in particular,/y — 2y > ,/y/2. Hence there exists €
12yr;, Jyril such that

HITH((—tor ) + PO\ A+ > RO (—tor () + PN A))
1I<ISh+1
1#1(i)

<6y (h+ 1)ozdrid_1.
Let D; be the cylinderD; = cyl(P;, t;). We deduce from the preceding inequalities that

Hd_l(G\ U f)i\Ué(yj’sj))

ielgUl1 Ul jeJ1

<H(a\U b))

iel
<H (U Besr ) + 1t
iel
SHITYG\ C) + & + 2he <h(h + Ve + & + 2he < (h+ 1) (h + 2)e.
Since the setsf)i, ielgUly, é(yj, s;), j € J1, coverT’, then the set appearing on the

left-hand side of the above inequality is compact and it is at positive distancelfrom
Let

po=/odists (r.6\ B\ Boyesp):
ielgUl1 Ul jeJ1

By the definition of the Hausdorff measufé’~1, there exists a collection of balls
B(yj,s;), j € J2, such that:

Vjejz 0<Sj<,03, B(yj,sj)ﬂ<G\ U bi\Ué(yj,sj))7é@a

ielgU Ul jeJ1

G\ U bi\ U é(yjasj)c U é(yj’sj),

ielgUlhUl> jer jeJa
Y a-1s] <+ D(h + e e
JjeJ2

By compactness, we might assume in addition thas finite.

For eachj in Jo U J,, let Q; be an open convex polyhedral set such that;, s;) C
Q; C B(y;, 2s;) andH (3 Q;) < ag-12¢71s¢7 1

We now perform the second modification. The resulting sets will be polyhedral and
all the interfaces up to a small portion are pushed backsnt@/e set forl in {1, ..., i}

A?:AQU( U D,-ﬂQ)U( U U D,-mQ)

ielp meN ielpy
1()=l T(A,m)=1 x;er™



R. CERF, A. PISZTORA/ Ann. |. H. Poincaré — PR 37 (2001) 643-724 693

meN iely iely jeJ1uJdz
T(A,m)=0 x;er™ 1()#l

and7" (A}, m) =T (A;,m) form e N. We set alsdi; ,; = Q\ U1, A/ and

VmeN T'(Aj,.m)=1— > T(A.m).

1<i<h

We first check that the collectioA?, ..., A, , approximates the initial partition with
respect to the metric Dist. For eatin {1, ..., &},

AJAA C (AjaA)U | Div | 0.

ielgUl1 Ul jeJiUJa
whence
LYA]AA) <e(L+6HTHO* AT NQ) + D 20g-1r{ M1+ 80) 2y ry
ielp
+> 200 1M A+ YV + Y 20 ar! THA+ 8) Yy
ielp ielp
+ ) (25"
jeJ1UJa
Yet eachv; is smaller thary,
Z Old_ll‘l-d_l < ZHd_l(F)»
ielgUl1
> g 2ZHTH 0N A TH N Q),
iel
> a1si <3y +4dyHITHD) + (h+ D(h+ e +e,
jeJiUJa

sothatforlin{1,..., A}

LYATAA) <e(1+6HILO* (A T) N Q) +y (FHHT) + 6HL(9* (A, T) N Q)
+2/(3y +4d SYHITHD) + (h+ D (h + e + ¢).

Moreover

Aj,c | @a\Lpu | biu |J 05

1<I<h ielgUlp jeJiUJr
whence

LA ) <he +yHIHT) + 2/ By +4d yyH* X T) + (h + D(h + 2)e + ¢).

It follows that
Dist(A, A”) < h(6e + 6y)H (0" (A, T) N Q) + (h + 1) (9 + 2*2d /y)H (D)
+23h+ Dy +he +2/(h+ D((h + D(h + e +¢),
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and the collectiond” approximates the collectiod with respect to the metric Dist.

We show next thatd” is polyhedral. The set®;, j € J1U Jo, D;, i € hU I U I,
coverG. The definition of the setd!), 1 <m < h + 1, implies that

U aA;;cru<G\< U biv U é,-))u U ebiu |J 80,

1<m<h+1 ielgUI1Ulp jeJiUda ielgUI1Ul> jeJiUJr
=ru | op;u | 99,
ielgUI1 Ul jeJ1UJa

and the collection4” is polyhedral. We next refine the above inclusion in order to
estimate the surface energy Af. Let us again considér </ in {1,...,h} andi in I,
such thaty; belongs taC; N C;. Let B = /1 — ¢2. We set

G; =disc(x; — Yrivg, (x;), Bri, V(x;)) =disc(x; + Yrivy, (xi), Bri, V(x;)).

We claim thatG; is included in the interior of.; and in the interior oR“ \ L,. Indeed,
G, isincluded inB(x;, r;) N 0 D; and therefores; does not intersedL; U dL,;. Since
v, (x;) = va, (x;) = —vp, (x;) = —vg4,(x;) is the exterior normal vector td, atx; and
the interior normal vector té,; atx; thenG; is included inZk \ L;. The sets

U D 1<k <I'<h,

iEIz,)CjECk/ﬂCI/

being closed and disjoint, looking at the definition 4f and A;, we see that for a
sufficiently small neighborhoo®; of G;

WiNA,=W;NLy, WiNA,=W,NL =0,

whencedA; NG; =0A;NG; = . The definition of the setd , 1 <m < h+ 1, implies
that

A, NG, c |J 00;, 9A/NG;=0.

jeJiUda

It follows that

FA T )nQc|Jobnu ((aD,- NN ((Rd\A;m) u Y A;>>

ielp iel 1#£1(i)
ulJebi\Ghu |J 90;.
il JjeJ1UJ2

Notice also thatﬁ,-, ielpUlandB(y;,s;), j € Jo coverl’, therefore
A THNTc |J @D;inDUJ@;nDc (J @D;NTHUO0NT).
ielgUl1 je1 ielgUl1

Notice that fori in Iy U I3, the intersectiord D; N T" is contained in the “lateral” part of
the cylinderD;. Therefore
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H (0" (A7, T")NT)
< > HTHNODNT)+HH 01N

ielgUl1

<D 2y TN+ 80) + D 2y /yaaor{ M1+ 80) + 3y +4d yHTHT)

ielp iely
<6V (@g—2/aa-)H'HT) + 3y +4d Sy HTHD).
Finally
I(A, T / T (V(x)) dH4~ 1(x)—|—Z/ (V(x)) dH 1 (x)
iely aD;NQ i€l A
+> / (D) dH T ) + Tmax Y, HH00))
i€l2 ypi\G; j€1UJ2

+ Tmade_l(a*(-A// T//) N F)

where the set of integration for the second integralAis= (aD; N Q \ Aj;)) U
(@D; N Upuay A We use now the various estimates obtained in the course of the
approximation. We get

(A", T") < Zad—lrid_l(l +8)T(V(x;)) + Z Tmaﬂd—zrid_leO(SO(l +80)°

ielp ielp

+ 3" Tmax(By/7 (h + Dogr! ™ + 27 (L+ Sarg_or ™)

ielp

+> qrTH A+ O T(V()) + D tmadta—1r (A + 148 — B

ielp iely

~1.d-1
+ Z Tmaxtd-12" S}i

jeJiUJr

1+5

<1 > T(D(y)) dH* 1 (y)

1€loVl2 gy % (A, T)
+ 2TmaxH* 1 (D) (Sy ay—z/eta—1+ 67 (h + Dag /g1
+3Yda—2/0tq-1)
+ 2maH (5 (A T) N Q) (49 + (14 8) — (1—y2)
+ Tmax@’ 13y + 4d Sy H D) + (h+ D) (h + e + )
<(@A+8)/A—y) + 2(tmax/mmin) ((d + 3)e + 8))Z(A, T)
+ 16tmadi’ (D) /¥ (@a—2/@a—1+ (h + D /otg-1)
+ a2 By + 4d ST HITHD) + (h+ D (h + 2)e +¢),

where we have used the inequality< ¢ in the last step. The only remaining problem is
that the sets of the collectioA” are not necessarily disjoint. This issue is solved through
the next lemma. We recall that a subgebf Q2 is said to be polyhedral #*A N Q is
included in the union of a finite number of hyperplanes.
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LEMMA 3.6. —Let. A be a finite collection of bounded polyhedral subsetg ahd let
T be a touching function associated.th There exists a finite collectio of bounded
polyhedral subsets @2 and an associated touching functiéhsuch that

UB= A IMBSIAT, Lid( U BmBz)=o,

BeBB AcA B1,B2eBB,B1#£B>
Dist((B,S), (A, 7)) < (JAl — 1) |A|£d< U AN A2>.
A1,A2e A, A1#£A2
Remark— The collectionB is not necessarily a partition. To define its surface energy
Z(B,S), we simply use the first formula provided f@rat the beginning of Section 3.

We do the same to define the distance Dist betwgtrs) and (A, 7): the definition
given for partitions is readily extended to more general collections of sets.

Proof of Theoren8.5 continued. “We apply Lemma 3 to (A”, 7") to get a finite
collection (A", T"") of polyhedral subsets @ with touching functionZ7””’. Because of
the choice ofd; ,, we havel J,. o» = 2. Moreover

£d< U AlﬂAz) < ) LYALNAY)
A1,Ape A" A1#£As 1<k<I<h

< Y LUAJAAL) + LY(A]AA).
1<k<I<h
Therefore the resulting collectiad” is a polyhedral element of TR) satisfying
Dist((A", T"), (A, T)) < 3h(6e + 6y)Z(A, T)/Tmin
+3(h + 1) (9 +2772d /7 YHITHT) 4 29(h + D)y
+3he + 2'3(h + 1)((h + 1)(h + 3)e +¢)
and furthermore
TA", T KITA",T") < ((1 +8)/(L=y) + 2(tmax/ Tmin) ((d + )& + 3))I(A, 7)
+ 16tmaxH! (D) /¥ (@a—2/et-1 + (h + Deg/aa-1)
+ tmax® 13y +4d Sy HTHT) 4+ (h+ D (h + 2)e +¢).
Since Z(A, T) is finite and i, H¢"X(T"), tmax Tmin are fixed, we have the required
approximation by choosing, é, ¢ sufficiently small. O

Proof of Lemma 3.6. e use an algorithm to buil@3, S) starting from(A, 7). We
define forA a subset of2 having finite perimeter and a function of 7

T D=5 [ e @0+ Y @-Ten) [ el dit)

3*ANQ meN d*AN™

so that the surface energy of a collection with touching statis") can be expressed
as

IAT)=> I(A,T(A,).
AcA
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We initialize the algorithm with the collectiol8° = A and the touching function
S% = 7. We describe next the-step of the algorithm. Suppose that we have built the
collection B¢ and the functionS* for somek in N. If

£d( U Blm32>:o

B1,ByeBk,B1#B;

the algorithm stops. Otherwise, IBi, B> be two sets of3* such thatC¢ (B, N By) > 0.
Let B; = B\ By andB; = B, \ B;. We have

max(L(BjAB1), LY (B4AB2)) < LY(B1N By) < L:d( U BiN Bz).

B1,ByeBF, B1#B>
Moreover

Vg, (X) if x €9*B1\ By,

—vp,(x) if x €0*ByN By,

Vg, (X) if x € 9*B, N 9* By andvg, (x) 4+ vg,(x) =0,
0 elsewhere.

VB1\ B> (x) =

This result is quite direct here because we deal only with polyhedral sets. See [53] for
more general result. Using the symmetry and the positivity, of

1 1
(B, 8" (B ) <5 / 7 (v, (0) AHH) + 5 / 7 (vg,(x)) dH 1 (x)
QNo*B1\B, élﬁa*Bz
1
+5 / T (vp,(x)) dH 1 (x)

3*B1Nd* By

£ @=StBam) [ wlm) i,

N —
me r'no*Bi\ By

1 1
Z(By. S'(B2. ) < 2 / T (vp, (1)) AR () + > / 7 (vp,(x)) dH 1 (x)
QNd* Bo\ By BoNd* By
1
+ 5 / ‘E(UBZ()C)) de_l(x)

3* BoNd* By

+> (1-8(B2m)) / T (vp,(x)) dH T (x).

meN I'Na*Bo\B1

Summing the two inequalities yields
Z(By,S"(B1, ")) +I(Bj, S*(Ba, ) <I(B1, S*(B1.) + I (B2, S (Ba,-)).

Two cases can occur.
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o If Z(By, S¥(B1, ) < Z(B1, S*(B1, ), then we set
B* ={B}UB“\ {B1}, S“"(Bi,-)=8"(B1,"),
VB e B\ {B;} S“(B,.)=8%B,").
o If Z(B), S¥(Ba, 1)) < Z(Ba, S¥(By, ), then we set
B ={B)}UB“\ (B2}, S*"(By,-)=5"(By,")
VB e B\ {B,} SY(B,)=S*B,").
The collection with touching statu@***, $¥1) satisfies

(B s <1858, |J B= | B

BeBk+1 BeBk
U BiN By, C U B1N By,
By, BoeBBA+L B1#£B, B1,ByeBk,B1#B;

Dist( (B2, $°1), (4, 7)) < Dist( (B, $+), (B, 8%) ) + Dist( (B, 8*), (A, T))

< Lid( U BN Bz) + Dist( (B, 8), (A, T)).
Bl,BzeBk,Bl#Bz
Necessarily the algorithm stops at some &tégss than(|.A| — 1)|.A|. The final collection
with touching statug3, S) obtained at the end of the algorithm satisfies the conditions
stated in the lemma. O

4. Proofs of the main results

We prove first the large deviations principle of Theorem 1.8 for FK percolation. The
upper bound is split in two parts: exponential tightness (Section 4.1) and a local uppe
bound (Section 4.2). We then prove the lower bound (Section 4.3). Next comes the proc
of Theorem 1.1 in Section 4.4. Finally, the proof of the large deviations principle of
Theorem 1.3 for the Potts model is split into three parts: the study of the asymptotics o
the conditioning event in Section 4.5, then the lower bound (Section 4.6) and the uppe
bound (Section 4.7).

4.1. The exponential tightness estimate for FK percolation

Let k be a fixed integer. We work with thek = k, « = 2) renormalization process
with block variablesX (x) given by the indicator functions of the eve@t(B'(x), k —
1)¢ for x € Q,. Let A be aL?¥*°-connected subset @&,. We recall that a residual
L4>-component? of A in , is anL¥*-connected component 6f,, \ A. We define

filA=AU {B; Risa residuaLd’OO—component ofd,
diamR < f(n)/k, RNQ, # 0}

whereQ; = {x € Q,; B(x) N Q) # @} (see Section 2 for the notation). Remark that a
IL4->°-connected sek such that diank < f(n)/k, RN/ # @ does not interse&" .
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For a clusterC of the configuration, we sef = {x € Q,; B(x) N C # @}. Notice that
if C is a large cluster, i.e¢ € C,, then dianC > f(n)/k. Let A be alL.¥*-connected
component of good blocks, i.e., of the gete 2 ,; X (x) = 0}. Note that there is at most
one large cluster intersectiry (if there were two then they would be connected Aip
Let R be a residual.®*°-component ofA such that dianR < f(n)/k and letC be a
large cluster such that N R # #. SinceC cannot fit intoR (for reasons of diameter),
we haveC N 3a2"R # @; howeverd2"'R C A (recall thato?"'R is a connected set of good
blocks) so thalC N A # (. Therefore, ifC is a large cluster then eith€f N A # @ or
Cnfill A=@. ForC €C, we define

C=Jfill A,

where the union runs over all tie!->*-connected component$ of good blocks such
that C N A  ¢. The previous discussion shows that the g&tsC € C,, are pairwise
disjoint. By definition, thelL?->° outer boundary of consists of bad blocks whenever
C #¢. In caseC =, we define 8°“tC asC which again consists only of bad blocks.

Let now C belong toC, and IetF be anlL¢-*°-connected component of bad blocks
intersecting smultaneous&&”C andQ2’. We claimthat £| > f(n)/k. To show this we
consider only the case whece;é @ (the case&C =0 is straightforward) and we assume
|F| < f(n)/k. The definition of®, implies that forn large enoughiz(a'”gn,gn) >
f(n)/k thereforeF N d"Q, = @. Let D = 3%"**}'F. Then D is alL¥* connected set
of good blocks surrounding’, so thatF is included in al.*> residual component
R of D satisfying diamR < f(n)/k, RN # . Let A be theL4*°-connected

component of good blocks containing. The above properties imply tha C fill A.
Moreoverd2UtF N C # @; since dianC > fm)/k, necessarilf92"t*'F) N C + ¢, hence
ANC # . Either AN C # #, whencer C C, a contradiction. Or there existsl&->-
connected component’ of good blocks intersecting such thatd Nfill A” # @, which
implies thatA c fill A’ (any L% >-connected component of good blocks intersecting a
residual component of’ is fully included in this residual component, otherwise it would
intersectd’) and againk C fill A’ C C, which is absurd. Thug’| > f(n)/k, as claimed.

Let F be the union of all thé&.?->*-connected components of bad blocks intersecting
simultaneoushy/, and{Jcc, 92C.

LEMMA 4.1. —There existskg = ko(d, 2, p, g) such that, fork > ko, there exist
positive constantd = b(k,d, 2, p,q), c = c(k,d, 2, p, g) such that for alls > 0 and
neN,

@, [|F| > s] <bexp(—cs).

Proof. —We proceed as in Lemma 2.3 in [15] or Lemma 7.9 in [14]. TheFsebnsists
of bad blocks and each of its components has size largerfttax k. We first prove the
following estimate: for any subset C 2 ,,,

®,[Vx € A; X(x) =1] <exp(4~?|Alloge), (21)

wheree = bexp(—ck) is given by (14). We use the equivalence relationsbpt x ~ y
iff 3 divides each component of — y. Since there are at most 4listinct classes in
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Q,, certainly there exists* € @, such that the intersection ¢f and the equivalence
class ofx* has cardinality at least4|A|. By (18), the fieldX(x), x e R,, x & x* is
stochastically dominated by a Bernoulli product field with paramet€&iinally,

D, [VxeA X(x)=1<d,[Vxe{ycA; y~x"} X(x)=1]
< exp(47/|Alloge)

as claimed. Now we turn to the statement of the lemma. By decomposing the event i
question, we can estimate, [| F'| > s] by

Z Z Z Z ®,[Vxe AjUAU---UA; X(x)=1].

jzs ISISk/f(n) mima,..omizf)/k Ag,Ap,....A;
my+mo+-+m;=j

The ultimate summation extends over the pairwise disjointgefs. ., A; intersecting
Q' suchthat4, is L4>-connected anfi4 ;| = m; for 1 < <i. By (21), the probability
appearing in the summation is less than @xpjloges). For fixed j andi, there are
at most 2 ways to choose the values,, ..., m,;. Recall that there exists a constant
b = b(d) > 0 such that the number d@f¢>-connected sets of size containing the
origin is bounded byb/2)". The number of possibilities for choosing the get is
bounded by¢(Q)(n/k)?b™ for 1 <1 < i. Thus the number of terms involved in the last
three summations is less than 26@yk/f (n))log(L4(Q)(n/k)?) + jlogh). Putting
these estimates together, we get the claim of the lemrma.

Our next goal is to define a (random) t-partition associated with the otﬁeatSe Cn-
Recall that for a set of (indices of) block&, B(A) denotes the union of the blocks
indexed byA. First we set

g:gn\(ﬁu Ug)

ceC,
and forCFK e CFX,

)
1Y)

FK _ U

CeC,, CcCFK
Let (A4,, 7,) be the element of T@2) defined by
A, = {2 NB(CF); cFecf I u{Q,NB(E), (2\ Q) UB(R)}
and form e N, CFK e CX,
7,(B(E),m)=T,(B(R),m) =0,

N R 1: FK NI
Z(B(QFK),m):{ s C 'n #@:
0; otherwise.
We next derive a probabilistic estimate on the surface energy of this t-partition.
LEMMA 4.2. -There existskg = ko(d, 2, p, g) such that, fork > ko, there exist
positive constants = c(k,d, 2, p, q) andio = Ao(d, L2, p, ¢) such that for allx > Aq,

limsup log ®, [I(fln, 7)) > Al < —ch. (22)

n—oo N

d-1
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Proof. —By construction, the interfaces of, (that is, the sed*(A,, 771)) are located
either ond2), U T or on the faces of the blocks &. Thus

T(Ay, T,) < tmax(HHD) + HITHORQL) + (k/n)?~*2d | F]).
The desired claim follows from Lemma 4.10

‘The next step is to show that the sequences of phase partitiénsz,),.n and
(A, T,)nen are exponentially contiguous.

LEMMA 4.3. —There exist&o = ko(d, 2, p, ¢) such that, fork > kg, for eachs > 0,

limsup—— log ®, [Dist((A,, 7,), (A,, ﬁ)) > 8] = —o0. (23)

n—oo n

Proof. —~We compute first the volume of thé&(n)/n-neighborhood oB( F).LetF,,
i € I, be thelL!-*-connected components 6f Applying Lemma 2.1,

L (Voo (B(E), f(n)/n)) <> _n7 "L (Voo (nB(F.), f()))

iel

< o nT A ) TR E | = AT k) f () T E

iel

By construction, for any € C,, we haveC € C U F. By setting
E={xeQVCeCl,,ds(x,C) > f(n)/n}

we have
Q,NB(R)\ Voo(B(E). f(n)/n) S NE.

(Indeed, anyL.?->*-component of good blocks 2/ is surrounded by &“-*-connected
set of bad blocks which is included E].)

In order to estimate the volume af we work with the (K = f(n),a = 2)
renormalization process. Note that, is different from the previous one since the block
size is now different. The block variablB(x) is the indicator function of the event
O(B'(x), f(m)". If Y(x) =0 then there exists a unique large clusteintersecting
B(x)andB(x) N E = . Therefore,

LYENQ) < (f/n) Y Y(a).

xef2,

We derive an upper bound on the distance betv(eblnTn) and(An, Tn) by considering
an arrangement between the two t-partitions in wheiC 7<) corresponds to varFK,
for everyCFK e CTX:

Dist((A,, 7). (A, 7p)) <2L(Q\ @) + £4(Q, N B(E)) + L4 (2, N B(R))

+ ) dista (2, N B(C™), @, nvorCc™)

CFKeCPK
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<2L9(Q\ Q) + L4(Q, N B(F)) + £ (2, N B(R))
+ 3 dista (2, N B(C), 2, NvorC).
ceC,

Yet, Q' N B(C) < @, NvorC. Since A, is a partition and the sets vor, C € C,, are
pairwise disjoint, we have

> dist (2, N B(C), 2, nvorC) = > £4(, NvorC \ B(C))
ceC, CceC,

<£d(9;\ U B@)

CceC,
<LY(QNB(F))+ L2, NB(R)).
Finally,
Dist((Ay, T,), (A, 7,))
<2L9Q\ Q) +2L% (2, N B(F)) 4+ 2L9(Q, N B(R))
204\ Q) +2L%(2, N B(F)) 4+ 2L4(Q, N E) 4+ 2L (Voo (B(F), f(n)/n))
2L (Q\ Q) + A2k /) fF () THE ]+ 2(f () /n) Y Y ().

XEQR,

<
<

The estimate obtained in Lemma 4.1 yields
, 1 ~
V6 >0, limsup——log®,[|F|>dn/f ()] = —o0.
n—oo N
By the estimate (14) and Lemma 2.3, we have also

Vs >0, lim sup% log ®,, [Z(f(n)/n)d Y vx) > 3} =0
n—oo N

xef2,

and the exponential contiguity (23) follows directly from these estimates.

An immediate consequence of Lemmas 4.2 and 4.3 is the exponential tightness of th
sequence of t-partition64,,, 7,,),.cn: there existe = c(d, 2, p, g) > 0 andig > 0 such
that for everyn > 1o, everys > 0,

lim sup% log @, [Dist((A,, 7,), Z-X([0, A])) > 8] < —ch. (24)

n—oo N

4.2. Local upper bound estimate for Theorem 1.8 (FK percolation)

We start by recalling some essential results from [15]. Betc R? be a box
building, i.e., the union of finitely mang-dimensional boxes with nonempty interior.
Fix a monotone increasing functiop:N — N satisfying lim,_, ., ¢(n) = co and
lim,_ o ¢ (n)/n = 0. We will consider thep(n)/n-interior of the building® which is
defined as

int (0, ¢(n)/n) ={x € ©; dy(x, 3"O) > $(n)/n}.
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PROPOSITION 4.4. — Assumel > 3, g > 1, p > p. With 6/ (p) = 6% (p). Let S, be
a sequence of events such tlsatdepends only on the edgesiim (®, ¢ (n)/n) and for
eachn e N, letr (n) be a partially wired b.c. or®. Then

1
limsup—— log o5 77[S,] = I|m 1Sup-——; log ®577[S,].

—>oon

The same equality is valid whéim supis replaced byliminf.

LEMMA 4.5 (Decoupling lemma). ketd >3, ¢ > 1, p > p. with 6/ (p) =6 (p).
Let D;, i € I, be a finite collection of disjoint compact subsetsx0f I'. Assume that
these sets have non-empty connected interiorsi Eof let S| be a sequence of events
such thatS’ depends onIy on the edgesinN €2,,. Then

Ilmsup — 1Iog<I> [ﬂs’} > limsup — 1Iog@ [S].
iel iel ">
Notation — Let B(x,r) be a ball inQ, let w belong to S, n to N and let
r,8 be positive. Recall that the opeB(x, r)-clusters are the open clusters in the
configuration restricted to the baB(x,r). Let Sefn, x, r, w,§) be the event: there
exists a collectior of openB (x, r)-clusters such that

distLl( U U A, 1/n), B_(x,r, w)) < 8. (25)
ceC xeC

Let next B(x,r) be a ball such that belongs t0d*Q2. Let n € N and§ > 0. Let

Seﬁ’d(n, x,r,8) be the event: there exists a collecti@of openB_(x, r, vr(x))-clusters

such that none of them intersed¥<2, and the inequality (25) is satisfied wit

replaced byr(x).

LEMMA 4.6 (Interface lemma). ketd >3,¢ > 1, p > p., 8/ (p) =6"(p). There
exists a constant = ¢(p, g, d) such that for every in (0, 1), every ballB(x, r) C €,
every unit vectow in $¢~%, and eveng in (0,0/2),

1
limsup e —— log @, [Sepn, x, r, w, 8)] < —ag_1r" "t (w)(1—c8?)

n—o0

and form € N, for every ballB(x, r) such thatt e ' No*Q and B(x,r) NI C '™,

I|msup—log<I> [Seﬁ’d(n x,r,8)] < —ozd_lrd_lt(vr(x))(l—C(Sl/z).

n—oo

The first estimate was proved in [15]. We explain briefly how to derive the second
estimate. Letx € I' N 0*Q2 for somem € N and letr be such thaBB(x,r) N T C I'"™.
We remark first that the event S8, x, r, §) is decreasing. Le® be a box building
containingB(x, r) in its interior and such tha® N I" € I'"" (such a box building exists
becausé™ is a relatively open subset DY). Let @/ be the FK measure i® N 2 induced
by the following b.c.:

— the points of® NI are wired together;

— the points 0B (G N Q) \ '™ are let free.
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Let @ be the FK measure i® induced by the following b.c.:
— the points 0B ® \ © are wired together;
— the points 0B (®@ N Q) \ I are let free.
By the monotonicity of FK measures with respect to boundary conditions,

@, [Sepn, x,r,8)] < @, [Sepd(n, x,r,8)] < ®/[Sepn, x, r, vr(x), 8)].

The second estimate stated in Lemma 4.6 is then obtained by applying successive
Proposition 4.4 and the first estimate stated in Lemma 4.6.

Our next goal is to construct a t-partition which is exponentially contiguous to the
empirical t-partition(A,,, 7,) and whose boundary corresponds to closed edges. First
we define a partition of2, by attaching each small cluster of the configuration not
intersectingdl”, to the closest large cluster. To break ties we use an arbitrary deterministic
rule. ForC € C,, we denote by the corresponding continuous regia@nis the union of
all cubesA (x, 1/n) centered at sites in eithér or some of the small clusters attached
to C. We define forCc™ e CFX

c*= |J C
CeCy, CCCFK

We then define a random t-partition @fby setting
A, ={QNC; cF e cP YU {G,),
whereG, = Q N U, A(x, 1/n) and the union runs over all the vertices of the small
clusters intersectin@,. The touching functions are given by
~ o~ . FK m
0; otherwise,
VvmeN T,(G,,m)=0.
We first show thatA,,, 7,),cx and(A,, 7,).cn are exponentially contiguous.
LEMMA 4.7.—For eachs > 0,
: 1 PR T I
limsup—— log @, [Dist((A,, 7,), (A,, 7,)) > 8] = —o0.
n

n—oo

Proof. —By considering the natural arrangements(4,, 7,) and (A4,, 7,) in which
B(C ™) corresponds t@'™ for eachC™ e C™¥, we obtain immediately

Dist((A,, 7). (A, 7))
< Y dista(Q,NB(CT), @, NC™) +£(2, N B(E))

CFKEC,EK

+ L£Y(Q N B(R)) +2L4(R\ Q)
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< > dist (2, N B(C), 2,NC) +L£4(Q NB(E)) + L£(2, N B(R))
ceC,
+2L1Q\ Q).

From our constructions it follows that for each large clugtemwe haveQ), N B(C)C
Q' NC. SinceA, andA, are partitions and the set§ C € C,, are pairwise disjoint, we
have

> dista(2, N 8.2, ) <242\ | B(O))
CceCy, CeCy
<LY(Q, N B(F)) + L£4(2, N B(R)),
whence
Dist((Ay, 7). (Ay, o)) < 2L9(Q\ Q) +2£9(Q, N B(F)) + 2L (2, N B(R))

and the conclusion follows from the final estimates obtained in the proof of Lem-
ma4.3. O

Finally, we estimate the probability thatl,,, 7,) is close to a fixed element of TR).

LEMMA 4.8.—For (A, 7T) € TP(R2) ands > 0, there exists =8((A, 7), ¢) > 0such
that,

limsup—— log®, [Dist((A,, 7,), (A, 7)) <8] < —(1—&)Z(A,T).

n—o00 n

Proof. —By the triangle inequality for Dist and Lemmas 4.3 and 4.7, we need only
to prove the above statement for the t- partlt(omn, 7,). Let (A, 7) be an element of
TP(RQ). Fore > 0, sete’ = e(1+ 1/Z(A, T))~1. Pick 8o € (0, 0/2) such thatc\/5g < &’
wherec = c¢(p, g, d) is the constant appearing in the interface Lemma 4.6 Bi(et, r;),

i € Iy U I, be afinite collection of disjoint balls associated with, 7), ¢’ andéy/3, as
given in the covering Lemma 3.4. L&t> 0 be such that

VielgUl, 8§<8?/3 and Viel; §<2™.

Suppose that Di$¢ﬂn, 7,), (A, T)) < 8. Then fori € Io, there existA’ € A, Al e A,
v; € §91 such that

dist1 (A" N B(x;, i), B_(x;, 13, v;)) < 807 /3,
dist;1 (A", AY) <3,
and fori € I, there exisid’_€ A, A\ € A,, v; € $%~1 such that
T(A”,m;)=0, B(x,r)NTCI™,
dist 1 (A~ N B(x;, r;), B_(x;,ri, 1)) < o' /3,

27T (A, m;) +dist 1 (A”, A!

n

)<3$
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and finally

‘I(A, T)— Z ag 1T (vy)

ielgUl1

/
<Lé.

The penultimate inequality implies in particular tHatA’ , m;) = 0, hence none of the
open clusters included A’ intersectsI'”. Fori in Io U I; let C(i) be the collection

of the open clusters of the configuration restrictedAtpn B(x;,r;). Note that for
anyi € Ip U I, the clusters of (i) are open clusters of the configuration restricted to
B(x;,r;). We have

d|StLl( U U A(.x, 1/”), B—(-xivria Ui))

CeC(i)xeC
< distL1< U UAG, 1/n), A) N B(x;, r,-)>
CceC(i)xeC
+ distz1 (AL N B(x;, 1), A~ N B(x;, 1)) +dista(A” N B(x;, r;), B_(xi,7i,v;))
< (d)/n 48+ 8or! 73 < Sor?,
wherec’(d) is an appropriate constant depending only on the dimensierbdfongs to

I then the collectior€ (i) realizes the event Seép x;, r;, v;, 8g). If i belongs tol; then
the collectionC(i) realizes the event S%‘hn, x;, ri, 8g). We conclude that

{Dist((A,, 7). (A, 7)) <8} S () Sefn, xi, 11, vi, 80) N [ SeB%(n, x;. 17, o).
ielg iely

Note that the setB(x;,r;), i € Io U I, are compact and disjoint. The decoupling
Lemma 4.5 and the interface Lemma 4.6 together imply

limsup—— log ®, [Dist((A,. 7,). (A, 7)) < 5]
n—oo N
<-— Z Old—l”,-d_lf(vi) (1- C\/%)
ielgUly

<-ZATYA-e)+e'=-T(AT)(1-e). O

The exponential tightness (24) and the local estimate given by Lemma 4.8 yield in &
standard way the large deviations upper bound of Theorem 1.8.

4.3. Proof of the lower bound in Theorem 1.8 (FK percolation)

We start with two preliminary lemmas. L& € O be open connected subsetsof
such that d(U, 2\ 0) > 0. We suppose also that there exist a finite number of indices
ma1, ..., m, such that

Vie{l,...,r} aUNT™ 40,

VmeN\{mq,...,m,} 00NT"=40.
We denote by fullO, U, n) the event that
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— for the configuration restricted 1 there exists an open clust€rsuch tha2, N U
is included inVy(C, f(n)/n),

—fori=1,...,r,we haveCﬂF;}” #0,

— no other large cluster intersedts, (2, N U, f(n)/n).

LEMMA 4.9.-Let (E,),cn be an arbitrary sequence of events depending on the
configuration restricted t&2 \ O. Then

n—oo

liminf % log®,[full(0,U,n) | E,] =0.
py

Proof. —Let § > 0. We work with the(K = én, o = 2) renormalization process with
block variablesX (x) given by the indicator functions of the eve®(B'(x), f(n))*
for x € Q,. For§ small andn large enough, there exists a connectedAetch that
Voo (2, NU,2f(n)/n) € B(A) € O (we recall thatB(A) is the union of the blocks
indexed byA) and moreovetA| < ¢ for ac = ¢(8, 2, U, O) independent of:. Our
hypothesis orf2 implies that each point df€2 is accessible fron® through a rectifiable
path. As a consequence, forc N and fori =1,...,r, there exists a patp" of edges
in €, \ B(A) joining a vertex ofl"" to a vertex belonging to one fade" of a block
belonging toA and such thaty"| < ¢'n wherec’ = ¢/(8, Q2) is a constant depending on
§ and2 only. Let T be the event

T = {all the edges iy" U F;" are open.

We have
N {X(x)=0}n () T/ <full(0,U,n).
xeA 1<igr

Therefore

@n[full(o,U,nnEn}>q>n[ﬂ{X(£):o}|Enm N Tﬁ}d)n{ N Ti”|En}

xeA 1<igr 1<ir

Since the eventg", i =1, ..., r, do not depend on the edges belonging to the interior
of the blocksB( A ), and since the cardinality of is bounded, the uniform estimate (14)
implies

lim @n[ﬂ{X(1)=O}|Enﬂ N 7;”}:1.
e XEA 1<i<r

By the FKG inequality, we have

d%[ N 171 E} >eXp<
1

1<i<r

2. <|%”I+|Fl~"|)|og(#>>

<i<r p+q(l—p)

/ d—1 p
> exp((c nr+ (8n)*"'r) |Og(p . p)>>'
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We obtain finally that

S | p
| f——log®,[full(0,U,n)| E,] >8"rl (7)
iminf -7 log [full(O,U,n)| E,] rlog rad— )

We conclude by sendingjito 0. O

Let A be an hyperset iiR¢ and letr be positive or infinite. We denote b§(A, r)
the event that there exists a finite set of closed edges iA cyV,(hypA, r) which
separateso in cyl A, that is,

S(A,r)={3E ccylANVy(hypA,r), |E| <oo, Ve E w(e) =0,
E separateso incyl A}.

LEMMA 4.10. —Let F be a(d — 1)-dimensional set if2 such thatH¢=2(d F) < oo.
We define

wall(F,n) = S(F, f(n)/n) N
{all the edges iV, (cyl dF, 2d /n) N Va(hypF, f(n)/n) are closed.
Then

lim inf % log®, [wall(F,n)] > —H* Y (F)t(norF).
n

n—o0

Proof. —The number of edges in the Sei(cyl 9 F, 2d/n) N Vo (hyp F, f(n)/n) is less
than c(d)H?=?(dF) f (n)n?~? for some positive constant(d) depending only on the
dimensiond. By the FKG inequality,

@, [wall(F,n)] > @,[S(F, f(n)/n)] exp(c(dyH 2D F) f (m)n"2In(1 — p))

and by using Lemma 4.7 of [15] we are donex

In view of the approximation result stated in Theorem 3.5, to prove the LDP lower
bound we need only to show that for any- O, for any polyhedral elemert4, 7) in
TP(Q) satisfyingH¢~%(3*(A4, 7) NT) < &, we have for als > 0,

liminf % log @, [Dist((A,, 7,), (A, 7)) <8] > —Z(A, T) —c(d, p, q)¢.
n—oo p

wherec(d, p, g) is a constant depending @h p,q only. Lete > 0, let (4,7) be a
polyhedral element of T@) such that{?1(3*(A,7) NT) < ¢ and lets§ > 0. Up to

a slight modification of the approximation procedure, we might assume that the set:
A1, ..., A, of A are connected and that they touch only a bounded number of boundary
pieces. More precisely, we suppose that there e¥stsN such that

Vvm>M Viel{l,...,r} T(A;,m)=0.

We suppose also that forang {1,...,r}andanyn e {1,..., M —1},if T(A;,m)=1
thend A; NT'™ is a relatively open subset of. In particular, we have

Hd_1< U F’") <e.

m>M
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By definition of a polyhedral elemend; (4, 7) N Q is the union of a finite number of
(d — 1)-dimensional set$y, ..., F;. Thus

IA T Y HHF)T(NOTF)) + eTmax.

A

Moreover, for eachi in {1,...,s}, the relative boundandF; has finite (d — 2)-
dimensional Hausdorff measure (we can achieve this by a slight perturbation of the
polyhedral sets if necessary, using the hypothesi§riet § > 0 and letUy, ..., U,

and Oy, ..., O, be open connected sets such that foraay1, ..., r}

U,' g 0[ g Al', dz(Ul', Q\ Ol) > O, dz(Oi, Q \ Al) > 0, diStLl(Ui, A,) < 8/(37’2)
and finally for everyn € {1, ..., M},
TA;,m)=1=3U,NT"£0, T(A;,m)=0=00,NT" =4.

By hypothesis, the relative boundary lof, I in T' has zeroH?~! measure. By the
outer regularity ofH{?~? restricted tal", there exists an open sétsuch that

U rmu (@A nr)co, H"HONT) < 2.

m>M

Let us define

n= min(dz(myM U (9%(A,T)NT), T\ 0), [N da(0;, 2\ Ai)>,

U:V2< Y ru (8*(A,T)mr‘),n/2>.

m>M

ThenU is an open set such that

U rmu(@@A@nnr)cu, Uco, HTHUNT) < 2.

m>M

Let E, be the event that every edge having an endpoidbi@ N T, 2/n) is closed. The
numberN, of all such edges can be estimated as follows. SiiceT is closed and
(d — 1)-rectifiable, we have (see the appendix)

lim (1/21) L7 (Vo(UNT. b)) = H U NT) < 2e.

Since
N, <2d|ZE N V(U NT, 2/n)| < 2dn?LY(Vo(U NT, 4/n)),
we see that
limsupn~“"YN, < 32s.

n—oo
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If E, occurs then clearly there is no open edge exiting from
( U r,;") UV,(05(A, T)NT, n/4).
m>M

Suppose that all the events
En, fU"(O,’,Ui,n), 1<l<l‘, Wa”(Fj,n), 1<]<S

occur simultaneously. Let us denote loy the open cluster of the configuration
containing the cluster realizing the event €@\, U;, n) and IetCl.FK be the FK cluster
containing it. We have then th&, N U; C vorC,.FK. Moreover, the occurrence of the
eventsk, and wallF;, n), 1 < j <s, precludes that an open path connects two distinct
setsO; or two boundary pieceB™ (apart from those which are already connected inside
the sets0;), thus the cluster€ K are distinct and satisfy far=1, ..., r,

Q,NU; S, nvorC* @\ | Ox.
ki

Therefore,

> distis(vorCi, A;) <24(Q\ ) + > Lf (sz; \w: vl ok))

i=1 i=1 ki

S2L9Q\ Q) + )Y LUAN\ U <2L9(Q\ Q) + /3.
i=1 k=1
Moreover, the condition imposed on the sabs, together with the definition of
full (0;, U;, n), ensures thaf (vorC€, m) = T (A;, m) for eachi =1,...,r andm =
1,..., M. Necessarily, for anyC™ e P\ {CIK,...,CFX}, @/ NnvorCc™ c Q! \
Ui<i<, Ui, and therefore

L4 (vorC™) < §/3+ L£4(Q\ ),

CRReCT\(CFK.....CTK)

whence also Dist.A,, 7,), (A, 7)) < § for n large enough so that?(Q2 \ /) < §/9.
This discussion shows that

@, [Dist((Ay. 7o), (A, T)) < 8] =@, | () full(0;,Ui,n)NE, N ) waII(Fj,n)}.
1<ir 1<j<s

The eventE, depends on the edges insid@(U N T, 3/n), the event wallF;, n)
depends on the edges insitie(F;, f(n)/n), whereas fullO;, U;, n) depends on the
edges inside);. Because of the condition imposed prwe have

dz(Vz(Uﬂ F, 3/71), 01 U.--u 0,) > 0.

The distance between the sétsU--- U F, and O, U --- U O, is also strictly positive.
Since f(n)/n — 0 asn — oo, Lemma 4.9 implies that
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- 1
Ilmgfwlogén{ () full(o:, Ui, m|E, 0 WaII(Fj,n)} =0.

1<i<r 1<j<ss

By the FKG inequality, Lemma 4.10, and the previous estimates, we obtain

1
liminf —— log ®, {Enﬂ N waII(Fj,n)}

n— o0 -
n 1<) <s

L 1 P N
> liminf lo ( ) — HY(F)t(norF;)
R 1O g p) g,:g : :

N
p+ql—p)
which yields the desired lower bound

> 32d¢log —Z(A, T) — &Tmax

4.4. Proof of Theorem 1.1 (Potts model)

Throughout the proof, we work with the coupling meastite between the FK
measured, and the Potts measug, (see Section 2.2). For a given we express the
local average of théth color o, (x, i) with the help of the FK representation: for each
xeQandeachcoloi=1,...,q,

’

o, i)y=fm™ > |CNA(x, f(n)/n)

C cluster o (C)=i

where the sum runs over all the open clusters of the configuration. We separate th
contribution of the small and large clusters by setting

’

O_nsmall(x, i) = f(n)_d Z |C N A(X, f(n)/n)

C.diamC< f(n), o(C)=i

where the sum runs now over all the small open clusters of the configuration; and we
defines 9 analogously except that the sum is running over the large clusters (that is
the elements of,,) colored with;.

LEMMA 4.11. —For anyé > 0,

. 1
"Tf;‘pﬁ logP, [ >

i=1,...q

/\a,fma”(x,i)—(l—@)/q|dx > 8| = —o0.
Q

Proof. —The proof is based on the observation that the i.i.d. coloring of the small
FK clusters (whose number is of volume order) will create fluctuations whose large
deviations behavior is close to volume order. We omit a full blown proof since it is a
straightforward adaptation of the proof of Lemma 7.10 in [151

Fori=1,...,q,we set

D,= |J vorc.
ceCy,0(C)=i
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Notice that all the clusters belonging to the same FK cluster have necessarily the san
color. Thus, by the very definition of the sets @i, C™ e C™¥, we have

D = U vor CFX.

CFKeCFK, cFKe Dl

LEMMA 4.12. —For § > 0,

_ 1
lim sup——; Iog]P’n{ E /<|0rllarge(x, i) — 0|
n—oo N i=1..q o

+ > 0%, j)) dr > 3} = —o0.
j=1...q
J#

Proof. —We work with the(K = f(n),x = 2) renormalization process with block
variablesX (x ) given by the indicator function of the evefit{B'(x ), f(n), §)°. Suppose
thatX(x) =0, i.e., the block is good. Let € B(x). Then there exists exactly one large
clusterC such that ¢,(x, C) < f(n) so thatx € vorC and also toD?©. This cluster
satisfies in addition

[ICN A, f(n)/n)| —0f ()| <8f ()

therefore|o398(x, o (C)) — 6| < § and for eachj # o (C), 0/¥%(x, j) = 0. We split
the regions of integratio®! into the blocksB(x), x € £,, and we use the previous
inequality to get

omen-ats 5 )
j:

=h b i
<2(fm/n)" Y X(x) +5L4Q) + LR\ Q).
£€Qn

By the estimate (16) the block process satisfies (18) withb exp(—cf (n)). The result
follows from Lemma 2.3. O

We next compare the random partitioi3!, ..., D7) and(A°, AL, ..., A9).
LEMMA 4.13. —For anyé > 0,

1 o
lim sup—— logP, {cd(Afj)Jr dist1 (A, D!) > 8| = —o0.
n—oo N ,

i=1,..,q

Proof. —For ¢ > 0, we denote byD! (¢) the set of points: € D! for which

S (losmx, ) — A= 0)/q| + 02%%x, j))

+ oS i) — (1= 60)/q| + |0,%x, i) — 0] < e.
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If x belongs taD: (¢) then
|Gn(x,i) — (6 + (l—9)/q)| <&, Vj#£i |0n(x,j) — (1—9)/q| < &.

Therefore, fore small enough we hav®i (¢) € A!. SinceD?, ..., D! is a partition of
Q, we see that

LYAY) + > disti(AL, D)
i=1,...q

gcd( U D;\D;(a))+2 > £YDi\ Di(e) <3 L£4(Di\ Di(e)).
i=1 i= [

1.9 i=1,...9

Lemmas 4.11 and 4.12 yield that for afiy- 0

1 ) )
lim supw logP, [ Z L£Y(Di\ Di(e)) > 8} =—00
n—00 i=1,...q

which, together with the previous inequality, concludes the prodf.
Lemmas 4.11-4.13 together yield the claim of Theorem 1.1.

4.5. Asymptotics of the conditioning event

In order to transfer the LDP from the FK model to the Potts model, we will need to
estimate the probability of the conditioning event. This is the purpose of the next lemma

LEMMA 4.14. —Let F denote the set of the t-partitions such that no set touches
simultaneously two distinct boundary parts, i.e.,

F= {(A, T)eTP(Q); VAc A Y T(ADT(A,j)= 0}.
1<i j<q
i#]
We have
. 1 _ _ , .
lim ——log®, there is no connection betweé&y) and T fori # j, 1<i, j <q]
n—oo pd—

=—minZ=— min Z.
F P(2,9)

Remark— Notice that the event estimated above is the absence of any open patl
between boundary pieces, even of open paths of diameter lesg thanThis event
cannot be expressed directly with the random t-partitidp, 7,,).

Proof. —The final equality mig- Z = minp 4 Z is proved in Lemma 1.7. We turn
now to the computation of the limit presented in the statement of the lemma. We first
prove that the seF is closed inTP(R), Dist). Indeed, if(A, 7) € F, then there exists a
sequencéA,, 7,).cn in F which converges toA, 7). Let A belong toA. There exists
a sequenceéA,),cy such that for each € N, A, belongs ta4,, and

lim dists(A, A) + Y 27T, (A, D) =~ T(A, D] =0.
i=1,...q
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Since(A4,,7,) € F, then7,(A,,i)7T,(A,, j)=0fori, je{l,...,q9},i # j. Sending:
to oo, we obtain thatZ (A, i)7 (A, j) = 0 for different colors, j, thus(A, 7) belongs
to F as claimed. .

Our next observation is th&f (the interior of F) can be written as

gz{(A,T)EJ-";Z 3 T(A,i>>q—l}-

AeA i=1,..q

We prove first thatF CG. Let(A,T) € F be such that

Y TAi)<qg-1

AeA i=1,..q

Then there exist two distinct colo#s [/ such that}",. 47 (A, k) + 7(A,l) = 0. For
everyn large enough leB, be a ball of radius An included in<2. Let us define

An = {A \ Bn; A EA}U{Bn}a

. ) 1, j=korj=I,
Viell, ..., T1,(B,, j) = )
J et a) (Bn. /) { 0; otherwise.

Clearly (A,,7,) ¢ F, however, Dist(A,7), (A,,T,) < 2£%(B,). Therefore
(Au, Tp)nen is @ sequence in TE2) \ F converging towardg.A, 7). Hence(A, 7) is
not in F and thereforer C G. .

To show the other inclusiog c F we start by considering an elemem, 7) of G.
There exists at most one colfy such that)",. 47 (A, ip) = 0. For each colo¥ # i
there exists a unique sat € A such that7 (4;, i) = 1. Picke > 0 such that

e <min(279, (1/2) r,r;i,n,cd(Ai))

and let(A’, 7') € TP(Q2) be such that Digt.A, 7), (A, 7")) < . Necessarily, for each
colori # ig there exists a set; € A’ satisfying

dist,i(A;, A)+ Y. 277|T(AL j)—T(AL j)| <e.
j=1,....q

The condition imposed onguarantees that the set$, i # ip, are distinct and also that,
if i # iy, we haveT (A;, j) =T (A, j) for each colorj. Since at most one set gf can

touch any boundary piece, we conclude thdt, 7") € F and thereforej C F.
We show finally that

iNf{Z(A,T); (A, T) € F} =inf{Z(A, T); (A, T) € F}.

Let (A, T) € F\ F. Then
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Letl =g — > aca 2i-1..47 (A, i) and letiy, ..., i; be thel distinct colors such that

,,,,,

D (T in+---+T(A,ip) =0.
AcA

Let Bi(n), ..., B;(n) bel disjoint balls of radius An included inQ2 (we assume that
is large enough) and I€t4,,, 7,)) be defined by

A, ={A\ (Bi(n)U---UB(n)); Ac A} U{Bi(n),..., B(n)},
VAe A T,(A\ (Bi(n)U---UB(n)),-)=T(A,),
and foreach=1,...,qandj=1,...,]
N L i=iy,
Ta(Bj(m), ) = {O; otherwise.

Then(A,, 7,) belongs taf. Moreover,
I(Anv 771) < I(Aa T) + l Tmaxad—l/”d_l» DISt((A9 T)a (AIM 771)) < lo{d/nd‘

Sendingn to oo and taking the infimum ovefA, 7) in F \ }o‘, we obtain the desired
inequality inff\ﬁI >infzT.
Next, we claim that

Fc {there is no connection betwe&) andT; fori # j, 1<i,j <q} C F.

The second inclusion is straightforward. The first one stems from the fact that, on the
eventZ, there existy — 1 distinct FK clusters which are touching exactly one boundary
piece, therefore no cluster can touch simultaneously two boundary pieces. The clair
of the Lemma is obtained by applying the LDP principle for FK percolation stated in
Theorem 1.8

. oo 1
—infZ <liminf —— log®, Fl < lim sup—
F n—oo ptT n—soo N

i
Iog D, [F] < |9fI
in conjunction with the fact that ifZ =infzZ. O

4.6. Proof of the lower bound in Theorem 1.3 (Potts model)

Let A = (A%, ..., A%) be an element oP(§2, ¢) such thatZ(A) < co. Lets € (0, 1)
and letBy, ..., B, beq disjoint balls of volumes/(842) included in2 (we assume that
§ is sufficiently small). Foi =1, ..., g, we set

By Lemma 4.13, we have
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liminf - | distp ((A° A7), A) <8
mint -1 og u, [distp ((A,, ..., A7), A) <§]

. . 1 . i i
> |I’[T_])Ior<1)f Flog]}”n[ Z dist;1 (A", D)) < 8/2}

i=1,...q
> Ilmlogf 1 logP, [iZ; qdlStLl(E ,D.) < 8/4}.

Furthermore, recalling the definition dﬁ;, we observe that
P, [ dist. 1 (E', D!) < 5/4}
i=1

>P,[ACT,....C] eCi* Vi=1...q o(C[)=i and

dist,1 (vorCI <, E') < §/(89)]
- @, [Dist((A,, 7,), (A, T)) < §/(8¢27) and no connection betwedtt, ..., I'7]
- @, [no connection betweelt, ..., ']

where(A, 7) is the t-partition given byd = {E*, ..., E?} and

P 1L j=i,
T ={, 7,
0 Jj#IL
Suppose that the evefDist((A,, 7,), (A, 7)) < §/(8¢27)} occurs. Then there exigt
disjoint FK clustersCT®, ..., C;¢ such that

> dista(vorCf EN) + >0 > 27| T, (vorCTX, j) — T(E, j)| < 8/(8g27),

1<igq 1<igq 1<j<q

which implies thatZ, (vorC™, j) = T (E', j) for all i, j = 1,..., g; in this situation,
there is one FK cluster touching each boundary piece (we added theBballs, B, to
ensure this) and each of these clusters touches exactly one boundary piece, so that th
is no connection betwedn!, ..., 'Y, Thus

@, [Dist((A,, 7,), (A, T)) < §/(8q27)]
®,[no connection betweeR!, ..., I'/]

i=

,,,,,

IPH{ > dist.(E', D)) <5/4| >
1.4

SinceZ(A,7) = I(A), the LD lower bound of Theorem 1.8 and Lemma 4.14 yield that
foranyé > 0,

. . 1 . 0 -2 -2 .
lim inf T log, [distp ((A,, ..., A?), A) <8] > —T(A)+ Prpszlg)l. o

4.7. Proof of the upper bound in Theorem 1.3 (Potts model)

Let E be a closed subset 6P (L2, ¢), distp). By Lemma 4.13, we need only to show
that
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Ilmsup — logP,[(. Dy, ..., D{) e E] < —inf {T(A); AcE} + Prpgi’r;)l.

—>ool’l

Let £ be the set of the elementsl, 7) of TP(2) such that4 can be partitioned iy
collections of setsd?, .. ., A7 satisfying

Z > Z T(A,j)=0 and (@, Ua....U A)eIE.

~q Ae Al j=1,.. Aec AL Ac A4
1751

The definition ofD}, ..., DZ implies that
P,[(8, D}, ..., DY) e E] < ®7[(A,, T,) € £]
< ®,[(A,, T,) € €]
= ®@,[no connection betweeR!, ..., ']’
LEMMA 4.15. -The sef is a closed subset ¢TP(2), Dist).

Proof. —Let (A, 7)),y be a sequence i converging towards an elememd’, 7') €
TP(2). Let ((A'(0),T'(i,-)),i € N), ((A,(i),T,(i,-)),i € N),ey be arrangements of
(A, 7" and(A,, 7,))nen Such that

Z(dIStLl(A M), A, )+ >, 27|T'G. j)—T,G, J)|>

ieN j=1l...q

converges to 0 as — oo. By the definition of, for eachn € N, there exisly disjoint

sets of indicedy . ..., I, , such that
(i) Z o> TGh=
----- q jell, k=l...4q
' ki
iy U 1,={jeN;A,()#0},
i=1,...q9
(i (w, U A U A;u)) cE
jeliv,l JE€lp

Let¢,:N—{0,1,...,¢q} be defined by

i jEIl/n, i=1...,q

ou(i)= {O; otherwise.

By passing to a subsequence if necessary, we can assume that the limit
lim ¢.() =) €{0.....q)
exists forj € N. Obviously,¢ (j) ## 0 wheneverA’(j) £ 0. We setfori =1,...,¢q

I={jeN;A()#9, 6(j)=i}.
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Let M € N be fixed. We have for each colarlim, . (I/ \ I{,,) N {1,..., M} = . Since

VneN Z Z Z T,(j. k) =

-q ]el’ k=1,...,
j<M !

sending successivelyand M to oo, we get

PP Z T'(.b =

Let M € N be fixed. Fom large enough, so tha,;,(I/ \ I/,) N {1, ..., M} =0, we

have
distp(<@, U a.um..... U A;(j)), (@, Uao..... U A/(j)>>

jelin JElp Jjel Jel
< Y dista(AG A+ Y LYALW)
JSM A (J)#9 JSM A'(j)=0
+ 2L A(D) + D dista (A'(), AL ()
j>M j>M

Sending successivelyand M to co and using the fact thd is closed, we see that

(@, Uaw..... A’(j))
Jjel Jel
is in E. Considering the partition ofd’ in the ¢ collections A" = {A'(j), j € I},
1<i <g¢q,weconclude thagd’, 7") is stillin £. O
We finally finish the proof of the upper bound in Theorem 1.3. We have
1
Ilmsup—logIP (4, DY, ..., DY) € E]

n—oo

< limsup o 1Iog<I> [(A,,7,) €f]

n—oo
1 1
— limi - i q
|In|II inf 1 Iog D, [no connection betweelnn, ceey n}.

Sincef is closed by Lemma 4.15, the large deviations upper bound of Theorem 1.8 anc
Lemma 4.14 yield

limsup—— logP,[(4, D}, ..., DY) e E] < —inf{Z(A,T); (A, T) &} + min 7.

n— oo

For any (A, 7) in &, denoting by.A?, .. , A7 the associated partltlon od and byA
the correspondlng phase partition, thatzfs,_ D, Upear A, . ...Upess A), We have
(A, T) >I(A) Therefore,

—inf{Z(A, T); (A, T) € £} < —inf{T(A); A cE}
and we are done. O

ndl
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Appendix A

We recall here some facts concerning the class of the sets of finite perimeter
introduced initially by Caccioppoli and subsequently developed by De Giorgi (see [19,
20,24,26,28,41,54]). The perimeter of a Borel Batf R¢ is defined as

P(E) = sup{/divf(x)dx: feCy(RY, B(l))},
E

whereC (R, B(1)) is the set of the compactly supportéd® vector functions from

R? to the unit ballB(1) and div is the usual divergence operator. The/és of finite
perimeter ifP(E) is finite. A setE is a Caccioppoli set if it is locally of finite perimeter.

In this paper, we deal with bounded sets, hence we need only to consider sets of finit
perimeter. A setE has finite perimeter if and only if its characteristic functigp is a
function of bounded variation. The distributional derivatve of x¢ is then a vector
Radon measure arfl(E) = ||V xz||(R?), where||V xg|| is the total variation measure

of Vxg. The perimete is I.s.c. on the spacg3(R?), dist; 1).

Compactness property of sets of finite perimeter. For every bounded domaiti
and everyh > 0, the sef E € B(U): P(E) < A} is compact for the metric digt.

This result is stated in this precise form in [20], Teorema 2.4, or [19], Teorema I. It
is also an immediate consequence of the compactness theorem stated in [41], Chapter
p. 70. Modern presentations are formulated through functions of bounded variations
if O is an open bounded domain with sufficiently regular boundary (S8y then
a set of functions inL*(0) uniformly bounded in BV-norm is relatively compact in
LY(0) (see any of the following references: [24], Sectio.3, [28], Theorem 119,

[54], Corollary 53.4). To deduce the compactness result on sets of finite perimeter, we
choose an open bounded domalnwith regular boundary containingf in its interior.

We embed3(U) in L1(0) by associating to a Borel sét its characteristic functiomn z

and we simply remark that the Set:; E € B(U)} is a closed subset df'(0).

Let E be a set of finite perimeter. Its reduced bound&t¥ consists of the points
such that

e |Vxell(B(x,r)) > 0foranyr > 0,

o if v,(x) = —=Vxe(Bx,r)/IIVxell(B(x,r)) then, as- goes to O, (x) converges

towards a limitvg (x) such thafvg (x)|> = 1.
The reduced bounda@/ E is countably(d — 1)-rectifiable, that i$*E C N U {J;.y M;
whereH¢~1(N) = 0 and eachV; is a(d — 1)-dimensional embedded! submanifold
of R¢. For a pointx belonging tod*E, the vectong (x) is called the generalized exterior
normal toE at x. A unit vectorv is called the measure theoretic exterior normaEto
atx if

|im0r_dﬁd(B_(x, r,v)\ E) =0, |im0r_dﬁd(B+(x, r,v) N E) =0.

At each pointx of the reduced bounda#dy E of E, the generalized exterior normal (x)
is also the measure theoretic exterior normaEtat x. The mapx € 0*E +— vg(x) €
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$9=1is ||V x| measurable. For any Borel sétof R?,

IVxell(A) =HTHANIE), Vye(A)= / —ve(x)H T (dx).
ANO*E

We next apply the Besicovitch derivation Theorem [11] (for a quick proof, see for
example [8]) to the measutev xz||.

THEOREM A.1l.— Let f:90*E — R be a||V xg|| measurable bounded function. For
H4-1 almost allx in 9*E,

tim (a7 [ FOIA ) = 0.

B(x,r)NI*E

For any vector functiory in C3(R?, R?), any Caccioppoli seE, by the generalized
Gauss—Green Theorem,

/ div £ (x) dr = / FO0) - v () HO(d).
E

0*E

The isoperimetric inequality. There exists a positive constant, depending on the
dimension only such that, for any Borel getiin R¢ having finite Lebesgue measure,

LYE) < cisoP(E)Y471

The Vitali covering Theorem for 14~ (see for instance [25], Theorem 1.10). L2t
be a Borel subset @“. A collection of setg/ is called a Vitali class foE if for eachx
in E and$ positive there exists a sétin I/ containingx such that O< diam,U < §.

THEOREM A.2.— Let E be anH¢ l-measurable subset d&‘ and let/ be a
Vitali class of closed sets faE. Then we may select @ountable disjoint sequence
(Upier from U such that eithery"; ,(diamU;)?~t = oo or HI"YE \ U;, Ui) =
0. If H"YE) < oo then, givene > 0, we may also require that{?~(E) <
Old_12_d+1 Ziel (diasz,-)d‘l + €.

The Minkowski content (see [26], 3.2.36). The&d — 1)-dimensional Minkowski
content of a subsef of R¢ is equal to the limit, if it exists,

1
j@ogﬁd({x eR”: dy(x, E) <r}).
WheneverE is (d — 1)-rectifiable (i.e. there exists a Lipschitz function mapping some
bounded subset dk“~! onto E) and closed, the Minkowski content @f is equal to
HI=Y(E) (see [26], Theorem 3.2.39).

THEOREM A.3 (Strong approximation of sets of finite perimeter [50])Let O be an
open setiR? (d > 2). LetE C O be a set of finite perimeter i@ and lets be positive.
There exists a sdi C O of finite perimeter inO such that
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(@) 0 NJL is included in a finite union of * hypersurfaces,
(b) LS Va(E, &), O\NLCS V(O \E,¢),
(c) LYAON(EAL)) <&, H"Y(ON@B*EAIL)) <e.
More precisely, there exists a compact 6ein 0, a C* function f :R¢ — R and open
setsV, B andG in O such that, setting" = {x € O: f(x) > 0}:
CCONJIE, HYONIE\C)<e,
VxeC f(x)=0, vpkx)=vpx)=—-df(x),
CcVci{xeoO: df(x)#0},
VNI'F=VNIF={xeV: f(x)=0}, whichis aC* hypersurface
L£4vy<e, HITHOFN(V\O)) <e,
C C B C V, B is afinite union of open cubges
0 NaG is aC*™ hypersurface
the setL = (FN B)U (G N O\ B) satisfies(a), (b), ().
LEMMA A.4.—Let I' be an hypersurfacgthat is a C' submanifold ofR? of

codimensionl) and let K be a compact subset d@f. There exists a positivd =
M (T, K) such that

Ve>0 3r>0 Vx,yeK |x—yl2<r = do(y,tanl, x)) < Me|x — y|2

(tan(T", x) is the tangent hyperplane ofat x).

Proof. —By a standard compactness argument, it is enough to prove the following
local property:

Vxel' IMx)>0 Ve>0 3r(x,e)>0 Vy,zel NB(x,r(x,¢))
do(y,tanl, z)) < M(x) e ly — zlo.

Indeed, if this property holds, we covér by the open ballsé(x, r(x,e)/2),x € K, we
extract a finite subcovering (x;, r(x;, €)/2), 1< i < k, and we set

M =max{M(x;): 1<i <k}, r=min{r(x;,e)/2: 1<i <k}.

Let now y,z belong to K with |y — z|» < r. Let i be such thaty belongs to
B(x;,r(x;,€)/2). Sincer < r(x;, €)/2, then bothy, z belong to the balB(x;, r(x;, €))
and it follows thatdx(y, tan(T", 2)) <K M(x;) e|ly —zl2 < M e |y — zl2.

We turn now to the proof of the above local property. Siiicis an hypersurface, for
anyx in T there exists a neighborhodd of x in R?, a diffeomorphismf : V > R of
classC?! and a(d — 1)-dimensional vector spacgof R¢ suchthatzn £(V) = f(I'NV)
(see for instance [26],.3.19). Let A be a compact neighborhood efincluded inV.
Since f is a diffeomorphism, the mapsg € A — df(y) € EndRY), u € f(A) —
df~1(u) € End(R?) are continuous. Therefore they are bounded:

IM >0 VyeA |dfWI<M, Vuef(A) [dftw]<M
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(here||ldf (x)|| = sug{|df (x)(y)]2: |y|2 < 1} is the standard operator norm in EiRd)).
Since f(A) is compact, the differential mapfd* is uniformly continuous ory (A):

Ve>0 36>0 VYu,ve f(A) |u—v2<8 = ||df tw) —df )| <e.

Let ¢ be positive and let be associated te as above. Lejp be positive and small
enough so thap < §/2 andB(f(x), p) C f(A) (sincef is aC?! diffeomorphism,f(A)
is a neighborhood of (x)). Letr be such that & r < p/M andB(x,r) C A. We claim
that M associated ta andr associated te, x answer the problem. Let, z belong
toI' N B(x,r). Since[y,z] C B(x,r) C A, and||df(¢)|| < M on A, then

lf) = fl2<Mly —xl2<Mr <p, [f(z)=fX)]2<p,
lfO) = f@I2<8, |f(Y) = f)2<M]y —zl2.

We apply next a classical lemma of differential calculus (see [37], I, 4, Corollary 2) to
the mapf—! and the interval £ (z), f(y)] (which is included inB(f(x), p) C f(A))
and the pointf (z):

ly—z=df 1 (f@)(f» - f@)],
<IfO) = f@lzsupl||df @) —df HF@)|: ¢ elf @), FDI}.

The right-hand member is less thafy — z|»¢. Sincez + df 1(f ) (f () — f(2))
belongs to tafl, z), we are done. O
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