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ABSTRACT. — In the usual right-censored data situation fletn € N, denote the convolution
of the Kaplan—Meier product limit estimator with the kernerlK(-/a,,), wherek is a smooth
probability density with bounded support ang — 0. That is, f,, is the usual kernel density
estimator based on Kaplan—Meier. Lgt denote the convolution of the distribution of the
uncensored data, which is assumed to have a bounded density, with the same kernels. F
eachn, let J, denote the half line with right end poit#,1_.,).,» — an., Whereg, — 0 and,
for eachm, Z,, , is themth order statistic of the censored data. It is shown that, under some mild
conditions oz, ande,, sup;, | fu(t) — fa(t)| converges a.s. to zero as— oo at least as fast as
J11og(a, A €)l/(nayey,). Fore, = constant, this rate compares, up to constants, with the exact
rate for fixed intervalsa 2001 Editions scientifiques et médicales Elsevier SAS
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RESUME. — Dans le cas des données censurées a droite, orynotes N, la convolution de
I'estimateur de Kaplan—Meier avec les noyaxX K (-/a,), oU K est une densité de probabilité
a support borné et, — 0. En d’autres termeg;, représente I'estimateur a noyau de la densité
basé sur Kaplan—Meier. De facon analogue, on nfptéa convolution de la distribution des
données non censurées, qui sera supposée avoir une densité bornée, avec ces mémes noy
Pour toutr, soit J, la demi-droite delimitée supérieurement [#&g1—¢,).» — an, OUe, — 0 et,
pour toutm, Z,, , désigne lan-éme statistique d’ordre des données censurées. Nous démontron:
dans cet article que, sous des conditions minimales,set ¢, sup;, |f,(t) — fn(1)] converge
p.s. vers zero quand— oo & une vitesse au moins égale/alog(a, A €,)|/(naye,). Poure,
constant, cette vitesse est comparable, a une constante multiplicative pres, a la vitesse exa
dans le cas d'intervalles fixes.2001 Editions scientifiques et médicales Elsevier SAS
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1. Introduction

Let X, X;, i € N, be independent and identically distributed (i.i.d.) random variables
with common distribution function (cdffr, which we assume differentiable, with
density f. Let Y, Y;, i € N, be a second i.i.d. sequence independent of the first, with
cdf G,and letZ =X AY, § = ngy, Z;=X; ANY; and §; = IX,‘QY,‘! i € N. We
denote byH the cdf of Z, by ty = inf{x: H(x) = 1} the supremum of the support
of H and by H, and H! respectively the empirical cdf and the empirical quantile
function corresponding td,, ..., Z,, n € N. Let E, (x), —00 < x < 1, be the Kaplan—
Meier [10] product limit estimator o (x). (See Section 2 for definitions.) A natural
nonparametric estimator gf is

fn(t):i/K(t_x>dﬁn(x), neN, (1.1)
a, a

where K is a probability kernel and,, is a sequence of positive constants tending to
zero. In this article we are interested in the general problem of understanding how wel
doesf, estimatef. Diehl and Stute [7] contains an exact law of the iterated logarithm
(LIL) for the variable

’

sSup| £ (1) — £ (1)
t<T

whereT < g is fixed and

)=~ 7K<t_x>dF(x) (1.2)

is the convolution off with the approximate identity 1K (x/a,) dx. (The ‘bias’ part,

f. — f,isignored as it can always be balanced with the tgfm £, by calibrating the
normalizing sequencé,}, provided enough regularity fok is assumed.) Stute [14]
introduced a.s. bounds fd#, — F| uniform over varying data driven intervals that
asymptotically cover the full domain dff, (—oo, ), and his analysis was refined in
Csordg [5] and Giné and Guillou [9]. In view of these developments it is only natural to
ask whether the same idea can be applied to kernel density estimation, that is, wheth
sensible rates of a.s. convergence to zero can be obtained for the random variables

sup| f,(t) — fu(0)| (1.3)

1<ty

with 7, = Hn‘l(l — ¢&,), for suitables, — 0. The object of this article is to provide
such rates, which are given in Theorem 3.3 and Corollary 3.4 below. When we take
£, = constant, our results nearly recover, except for multiplicative constants, the mair
result in Diehl and Stute [7], which is optimal.

We should mention here that the upper limjt= Hn‘l(l — g,) is eventually a.s.
dominated byl, = H (1 — ¢,/8) if ne, > logn for all n large enough (see e.g., any
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of the last mentioned three articles). Then, in order to obtain an asymptotic upper boun
for (1.3), it suffices to obtain one for

sup| £,(t) — fu(@®)]. (1.4)

t<T,

Hence, although our results apply to (1.3), they are stated for (1.4) (our assumption:
imply thatne, is indeed asymptotically larger than laj

This article may be considered as an application to density estimation of the method
and results from Giné and Guillou [9]. As in this last article, the main innovation with
respect to previous work consists in using sharp exponential bounds for the empirica
process (Alexander [2], Massart [11] and Talagrand [16]). The exponential bound
used here combines Talagrand’s [16] exponential bound with convenient estimates c
expected values of suprema of empirical processes over VApeikenenkis classes
of functions and their squares, also provided by Talagrand [15]. (See Einmahl anc
Mason [8] for a similar exponential bound.) In order to perform ‘blocking’ as in the
classical proofs of the law of the iterated logarithm (LIL) we found a maximal inequality
of Montgomery-Smith [12] very useful, just as in our previous work.

We became recently aware, through a referee, of the article of Bitouzé et al. [3],
published after ours had already been submitted. This article contains a LIL for the
Kaplan—Meier estimator, uniform over the whole line, obtained from van der Laan’s
identity and an exponential bound for the empirical process over classes of functions the
are not necessarily VapniGervonenkis. The results from the present article do not seem
to follow directly from those in Bitouzé et al. [3]; in fact they are more related to results
in Giné and Guillou [9] (compare, for instance their LIL, (2), with our LIL, (4.17)). The
methods in their article may well provide an alternative approach to density estimation ir
the Kaplan—Meier framework, possibly leading to results different from those presentec
here.

2. An exponential inequality and other preparatory material

The next two propositions, on empirical processes, follow from Talagrand [15,16]
with very little additional elaboration. We refer to Giné and Guillou [9], Lemma 3 and the
paragraph before it, for the definition of measurable classes of funcipW€ (Vapnik—
Cervonenkis) with respect to an envelope as well as for the covering numbers
N(T,d,¢) of a metric spaceT,d). If F is VC with respect toF = suf| f|: f € F}
then we simply say thaf is aVC class of functions. The functions jA are assumed to
be measurable real functions on a measurable s#c®), P is a probability measure
on (S,S) andg;, i € N, are the coordinate functions\ — S, in particular, they are
i.i.d. with common lawP. P, := > ; 8 /n are the empirical measures corresponding
to the sequencé;. Finally, {n;} is a sequence of independent Rademacher variables,
independent of&;}, in fact, defined on another factor of a common product probability
space. (We recall that a Rademacher variagbie one that satisfies Br= 1} = Pr{n =
—1} =1/2.) Also, || ® | 7 := Sup; = | B (f)].
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PrROPOSITION 2.1. —Let F be a measurable uniformly bounded VC class of func-
tions. Leto® > sup; Ep f2andU > sup,.# || f |« be such thad < o < U. Then there
existA, v dependent odf but not onP or n, A > 3,/€, v > 1, such that, for allz € N,

AU

E <C[leogﬂ+«/§\/ﬁa Iog—}, (2.1)
F o o

> nif &)
i=1

whereC is a universal constant.

Proof. —Since ¥ is VC, there existsA andv positive such that, i := sup,.z | f,
then for all probability measureB on (S, S) and O< 7 < 1,

A v
N(F. La(P), | Fllyr) <(;) . (2.2)

We can assumel > 3,/e andv > 1. We can also assume thateQF. Then, the
usual entropy bound for Rademacher processes (e.g., Corollary 5.1.8 in de la Pefia al
Giné [6]) gives

. IS 2@/l
E | mifE)//n|| <C / \/IogN(]-', Ly(P,), 7) dr, (2.3)
i=1 F 0

whereE, denotes integration with respect to the Rademacher variables only &nd
universal constant. On the other hand, by Talagrand [15], Corollary 3.4,

> A&
i=1

Then, combining (2.2) and (2.3) and changing variables, we have

<no?+8UE
f

E Y onif&) (2.4)

i=1

F

e @]

E)> nif&)/vn| <AcU / @ 4
=1 F

AU 0 FE I

1/2
\/Iog A202
. 10y f2E) /nllF

for another universal constagt. By Holder's inequality and concavity of the function
y =xlog?, the above gives

<C'Vv

> fAE)/n
i=1

A2U?
log

2(&.
> A& /n » CEIS f2E)/nllF

i=1

E

<C/ﬁ\lE
].‘

> onifE)/n
i=1

Then, inequality (2.4) and the fact that the functipn= xlog? is increasing for
0< x <a/eyield
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E|> nif&)/v/n
i=1 F
é A2U2
<C 24 8UE & | -
v\ <0 B PR f> O T BUEI Y f @)/l
: 8U |\ A2U?
<C\/5\ <02+WE ,Z:;mf(&)/ﬁ }_) log 52
Thus, setting
Z=E Z’?if(&) ;
i=1 F

Z satisfies the inequation

o

AU AU
72 < Cvnazlog<—) +8CvZU Iog(—) ,
o2

where(C is a universal constant. Hencg,s between the two roots of the corresponding
eguation and, since one is negative &gt 0, we conclude that

2
AU AU AU
Z<A4CvUlog— + $ 16C2v2U2 <|Og—> + Cvn<72<log —)
o o o

AU AU
<8CvwUlog— + v C Vv /noy/log—,
o o}

proving Proposition 2.1. O

For a similar proposition with a different proof see Einmahl and Mason [8],
Proposition A.1, and for the same result for indicator functions, with a similar proof,
see Talagrand [15], Proposition 6.2.

Since

n

Y (fGE) — Ef(E)

i=1

n

> ni(fE) — Ef(€)

i=1

E < 2F

F F

and since, ifF is a measurable uniformly bound&fC-type class of functions so is
F:={f—Ef(&): f € F}(asiswell known and can be seen by a simple estimation of
covering numbers), we can apply the previous propositiafi teith U replaced by &/

and o2 satisfying instead the requirements$ > supy.xVarp f and O< o < 2U. We
then conclude that there is a universal const@stich that

A A
<C{vU|og—U+\/5\/ﬁo\/log—U}, (2.5)
F g g

n

ST(fE) - Ef ()

i=1

E
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(C may be different from the constant in Proposition 2.1 as it must absorb several
numerical factors due to symmetrization and to the change frota 2U). Moreover,
this and inequality (2.4) applied t6 yield

n

S (F&) - Ef )

i=1

AU AU
E <no?+8CvU%log— +8C/vUy/log—+/no
o o

F

AU\ 2
<(ﬁa+LﬁU Iog—) , (2.6)
o
for some universal constait

Talagrand [16] proved the following exponential inequality for any measurable,

uniformly bounded class of functiorss:
1+ tU
te<Kexps———log(1+— )¢, (2.7
>} p{KUg(+V>}()

Pr{ > féE) > fE)
i=1 i=1

valid for all + > 0, and whereX is a universal constant/ is as above a~nd/ is any
number satisfyingV’ > E sup, x>/ f?(&). This inequality applied tgF, together
with the estimates (2.5) and (2.6), then gives the following:

—F
F

F

PROPOSITION 2.2. —Let F be a measurable uniformly bounded VC class of func-
tions, and leto? and U be any numbers such that? > sups.sVarp f, U >
SUpscr |1 flle @nd 0 < o < U. Then, there exist constan and K, depending only
on the VC characteristicd andv of the classF, such that the inequality

{fom-s, -

< kexpl—= L iog(1 v 2.8)
S p{_?ﬁ g( +K<ﬁo+U¢logi<AU/o)2>} '

t>C{Ulogﬂ+\/ﬁm/Iogﬂ} (2.9)
o o

If in Proposition 2.2 we assumefo < cU for somec < 1 then logA < dlog(U/o)
for somed < oo and we can replace l16g U /o) by log(U /o) in both (2.8) and (2.9) at
the price of changing the constarifsandC (that now depend on).

The exponential bound in Proposition 2.2 is much less elaborate than the bound
in Talagrand [15] but it suits our purposes: whereas it is important for us that the
multiplicative constantkX outside the exponent in (2.8) should not dependoonwe
are not presently interested in the optimal value of the multiplicative constant within the
exponent of (2.8) (here, alski). On the other hand, there are parts of the range of
for which the bound (2.8) does apply but the bounds in Alexander [2], Massart [11] and
Einmahl and Mason [8] do not.

n

S (fE) - Ef ()

i=1

is valid for all
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We will use inequality (2.8) for & o < U/2 and under the additional assumption

\/ﬁa>clU,/|ogg (2.10)
o
U

tzczﬁaw/log—, (2.11)
(o2

for fixed C; andC», with C; large, in which case, it gives

d

whereD can be taken to b® = 4C,(1+ C; 1) 2log(1+ 41C,K 1), as can be easily
checked (and thereford) — oo asC, — oo for each(; fixed). To see this, we may
proceed as follows: (i) we tak€ andC in (2.8) and (2.9) for = 1/2, so thatA =1, as
indicated below (2.9), and then note that the valuepgscribed by (2.11) satisfies (2.9)
as long asC, > C(1+ CY; (i) since x*log(1 + x) is monotone decreasing for

x>0and 4y < (x+y)?, sothatC,/n o U /Tog(U/0)/[K (/no +U/Tog(U/0))?] <
C,/(4K), we have

and then, with

n

> (f&) — Ef ()

i=1

U D U
> Coo/n Iog—}gKexp{——log—}, (2.12)
F o K o

Iog(1+ Co/noU./Tog(U/o) >>4Iog(1+ C2/(4K)) /o U /0g(U]a)
K(Jno +U/logU/0))?) =~ (Vo + UIog(UJ0) )2 ’

and (iii) inequality (2.12) follows directly from these observations together with
condition (2.10).

As a first application of these inequalities we prove a lemma that will be useful
throughout. We recall that the quantile function &f is defined asH 1(x) =
inf[z: H(z) > x] for x € (0,1), and that H(H Y(x)—) < x < H(H X(x)). It is
convenient to make the following definition: we say that a nonincreasing sequence o
numberge,} is regular if there exists a positive constaatsuch that,, > Ae, for all n.

LEMMA 2.3.—Let {¢,} be a regular nonincreasing sequence such that s, < 1
and
ne

lim Iog’;n = 0. (2.13)
Let

T,:= H (1 —¢,). (2.14)
Then,

_ — logt) vlogl
Sup m 1‘ =O<\l ( Og En) M Og Ogn) as. (215)

<, | 1—H(x—) B ney,
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and, in particular,

lim supwzl as. (2.16)
n—oo, g, 1— H(x—)
Hence, also
_ _ log L) v loglogn
supw—lFO(\l( gs") 9799 ) as. (2.15)
x<Ty 1_Hn(x_) ney
and
lim supw:l as. (2.16)

=00, LTy 1- H,(x—)

Proof. —We have

1 N R e S W Ny
m_l_ " ;(l_H(x_) El—H(X—)) -—;(fx,n(zt) Efx,n(z))

For eachn, the family of functiond f; ,: x < T,} is obviously bounded, it is measurable
because it is parametrized by a half line afd,(z) is jointly measurable inx and¢,

and it is aVC class because of its monotonicity properties (each funcfionis the
difference of a constant, and a functiong, , such that the functiong, , increase

asx increases: see, e.¢g., Lemma 3, b) and c), in Giné and Guillou [9]). Thus, we car
apply the exponential inequalities above, in this case, Talagrand's inequality (2.7) tc
F :={fin — Efy.n} In conjunction with the estimate (2.6) of. We can obviously
take U, = (ng,)~* and, sinceEf?,(Z) = (1 — H(x—))"*/n? x < T,, we can take

o2 = (n%,)"L. Hence,
PI’{ sup Z(fx,n(zi) - Efxn(Z))‘
ST | =1

—F sup
x<T,

3/2
< Kexp{ - /ey Togloglog 14— CY0A0I G )},
k (1//ne, + 2L(1/(ney))/loge;1)?

zn:(fx,n(zi) - Efx’n(z))D ~ ¢, [loglogn }

i—1 nén

which, by (2.13), is dominated by

C2
K exp{ 2K loglogn }

for all n large enough (since, as can be easily argued e.g. by contradiction, (2.13) implie
lim,_ o ne,/logn = oo). Also, given the values assigned &0 and o2, (2.5) shows
that the expected value of the sup of the process éve« T,} is of the order of
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((loge; 1)/ (ne,))Y2. We then conclude that there exist D andng such that

1-H,(x—) 1’ . A\/(Iogsn—l) Vv loglogn

p
I’{ Sup 1-Hx-) ne,

x<T,

} < Dexp{—2loglogn}

(2.17)
for all n > no. Setting, for ease of notatioB? := A?[(loge; 1) Vv loglogn)]/ (ne,), the
regularity of the sequenci,} implies that there existgd > 0 such thatBx < dB,, for
all 2¢=1 < n < 2%, for all k > logng. Then, by (2.17) and Montgomery-Smith’s [12]
maximal inequality (see, e.g., de la Pefia and Giné [6]), we have

1-H,(x—
Pr{ max B! sup 1= Hxm) 1’ > SOd}
2k—1op 2k x<Ty 1- H(X—)
1-H,(x—
< Pr{ max_ By sup 1= 8,60 1‘ > 30}
2k=1p 2k x< Tk 1- H(X—)
1— Hy(x—
< 9Pr{ sup 17 Haxm) —l‘ > sz}
x Tk 1- H(X—)
9D 1

<—— =
= (log 2)2 k2

Now (2.15) follows by Borel-Cantelli. Condition (2.13) impli@s, /loglogn — oo
since, as mentioned above, / logn — oo. Therefore the bound in (2.15) i$D, which
implies (2.16) as well a2.15) and(2.16). O

The scheme of proof of the previous lemma is used repeatedly throughout. We will
refer to the above proof rather than reproduce repetitious arguments.

Next, following Csor@ [5], we describe a bound for the product limit estimator
that follows from the classical expansion of Breslow and Crowley [4]. We need
some additional notation, borrowed from Stute [14] and G&d8). We setH (x) =
PrZ < x,8 =1}, —c0 < x < ty, and definef,, to be its empirical counterpart, that is,

~ 1
H,(x) = - Zl{zigx,a,-=1}, neN,
i—1

for —o0 < x < ty. (We should recall from the introduction thai is the cdf of Z
and that, for eact, H,(x) = >-"_, I,<./n.) The obvious facts that &l < dH and
dfln < dH, will be used without further mention. We should recall that, with this
notation and the notation set up in the introduction, the cumulative hazard function of
is

dF(y) [ dH®)

Alx) = — = —
W= 1oFe T L 1 Heo

X € (=00, TH),
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and its Nelson—Aalen estimator (Nelson [13], and Aalen [1]) is

A
M= ooy

defined forx < max <, Z; :== Z, ,. The product limit estimator (Kaplan and Meier [10])
is defined as

n

A~ 8';112- <x
1-F,(x)= {1—7” S }
) ,1_[—1 n—j+1

for all x < Z,,, where Z;, are the order statistics df4,...,Z, and§;, = & iff
Zin = Zi. Note that if we take7, as in the introduction?, < Z,, a.s. If F is
continuous, for any real functiokand for allx < Z, ,,, we have (Csor@ [5]):

F,(x) — F(x)
1-F(x)

—h(X)‘ <[(AR(x) = A(x)) = ~(x)| + | Ry 6(x)] (2.18)

where

Ry 6(x) = }IAn(X)—A(X)|2+IKn(X)|eXp(|Kn(X)I) exp(| A, (x) — A()|)  (2.19)
2

and

£(x) = —log(1— F,(x)) — An(x). (2.20)
A, — A further decomposes as:

X

M) = a0 = [

/ H,(y—) — H(y-) 3
dA,
+—‘o/o 1-H,(y-)A-H(y-)) )
= Ly1(x) + Ry(x). (2.21)

We note thatL, ; is only part of the linearizatiorL.,, of A, — A considered, e.g., in
Giné and Guillou [9].

The probability kernel&k we will consider satisfy the following condition:

d(H, — H)(y)
1—-H(y-)

K is differentiable with bounded derivative and vanisheg-eh, 1]°. (2.22)

The case ofK vanishing outsiddr, s], —co <r < s < 00, iS hot more general as it
reduces tK vanishing outsid¢—1, 1] by translation and dilation. We take the limits

and 1 just for convenience. We then have (by (1.1), (1.2), (2.21), (2.22) and integratior
by parts):
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t+ay

_ o1 Fy(x) — F(x) t—x
fn<r)—fn(t)——at/(1—F(x>)(l_7m—(An<x)—A<x))) ak ()

—ay
t+ap

_ 1 / (1— F(x))Ly1(x)dK (t — x)

n

t—ay
t+ay

_1 /(l—F(x))Rn(x)dK(t_x). (2.23)

n

t—ay

The proof of the main result in the next section consists in estimating the sizes of thes:
three terms. We anticipate that the second term dominates.

3. Theorder of magnitudeof f, — f,

In what follows we assume thdt,} and{a,} are nonincreasing regular sequences
such thatz, — 0 and both,

na,e,

lim = 3.1
n—co |og aﬂigﬂ > 3-1)
and
log —%
lim M = 00. (3.2)
n—o0 loglogn

In particular,{e,} satisfies hypothesis (2.13) from Lemma 2.3. We assume, in addition,
two conditions which may seem less natural but that nevertheless are not too restrictive
namely, that

ne,
d,logn

liminf >0 (3.3)
where d, /' oo is such thaty [kdxlogk]™ < co (such as, for instanced, =
(log log logn)+? for somes > 0), and that

a, (Iog i)2—> 0. (3.4)

Condition (3.4) is obviously satisfied if, < ¢,, and, since by (3.3) log ! < logn for
all n large enough, it also holdsf, (logn)% — 0.
We also set

T,=H 1-¢,). (2.14)

Then, condition (3.3) implies thats,/logn — oo and therefore, as mentioned in the
introduction, it follows, e.g., by Remark 3 in Giné and Guillou [9], tiatdominates
Hn‘l(l — 3¢,) eventually a.s., hence als6),1_3,).» if the numbers 8¢, are integers.
So, although the results that follow are stated in ternig,@hey are really results on the
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sup of| f, — f,| over adaptive random intervals that tendrta Finally, we also assume
that

F andG are differentiable and” := f is uniformly bounded (3.5)

LEMMA 3.1. —Let F andG be cdf’s satisfying conditio(B.5), let K be a probability
kernel satisfying conditioni2.22), and let{e,} and {a,} be two nonincreasing regular
sequences satisfying, — 0 and conditions(3.1) and (3.2). We assume also thét,, }
satisfies(3.3). Then,

t+an

Fy(x) — F(x) t—x
S o _/ (l—F(x))<7l_F(x) — (A (®) —A(x))) dK( - )’
| 1
=0<M) a.s. (3.6)
na,&,

Proof. —Takingh(x) = A,(x) — A(x) in (2.18) gives

F,(x) — F(x)
1-F(x)

’

() A(x))’ < |Rus(0)

and therefore,

t+ap A
Fo(x) — F(x) r—x

n

1
sup —
t<Ty—a, Gn

t—ay

2 /
< a—llK lloo SUP| R, 6(1)|.

1<T,

Now, Theorem 6 in Giné and Guillou [9], gives

SUp(A, (1) — A1) = o('og Iog”)

t<T, ney,

on account of (3.3) and the regularity of the sequefagzg. Moreover, by Lemma 1 in
Breslow and Crowley [4], ik < T,
Hn (t_)

0<,(t)=—log(l— F,()) — A,(t) < n(l— H.(—)

and, by Lemma 2.3,

H,(t—) 1 1- H(T) 1
sup < = O( ) as.
t<T, n(l - Hn(t_)) I’l(l— H(Tn)) 1- Hn(Tn _) ney

Then, since these bounds tend to zero by (3.1) and (3.2), combining them with (2.19
and (2.20) yields

loglogn
sup|Rn,5(t)|:O( g’o9 )
ne

t<Ty n
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Now the result follows from condition (3.2).0

LEMMA 3.2. —Under the assumptions of LemrB4. plus condition(3.4) for {a,},

we have
1 t+ay p | 1
- n AN n -
sup — /(l—F(x))Rn(x)dK< x)‘:c)(”M) as (3.7)
t<Tpy—a, Gn apy nayé&y

t—ay

Proof. —Changing variables, we can write

t+ay
1

= / (1- F(x))Rn(x)dK(t _x>

ap

t—ay

1
= ai/(l— F(t —ayu)) (R, (t — ayu) — R, (1)) K'(u) du
"1

1
+ éRn(t) /(1— F(t —ayu))K'(u)du
]

Order of magnitude ofll ,,). Sincek is a probability kernel ofi—1, 1] and, by (2.22),
K (1) = K(—1) =0, it follows by integration by parts that

1 1
sup [(1,)| < —(sup|R,()])| sup /K(u)d(l—F(t—anu))
t<T,—ay ap t<T, t<Ty—an 1

< 1 flloo SUP| R, (2)]. (3.8)
t<Ty
We consider two cases according as to whethep ¢, or a, < ¢,. First, we assume
a, > ¢, for all n (strictly, we should just consider the subsequence of those integers
for whicha, > ¢, but, for ease of notation, we will assume that this subsequerntass
the changes in the proof if it is not all &f are only formal). In this case it is convenient
to use the bound

SUP|R,(1)| < sup
th,, ngn

T, -
H(=) = H@o)| [ dH, )
1-H(-) ’4 1— H, (=)’ &9

By Lemma 2.3,

sup
t<T,

H,(1—) — H(t— log ) v loglogn
(I_)H(t_()t ) =O<\l( ’")ng > as. (3.10)
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By (2.16) and(2.16) in Lemma 2.3, we also have

A, [ dA,m
J1-H,(y-) " 1-H(-)

as., (3.11)

whereA, =< B, means thatA,/B, andB,/A, are Q1) a.s. We will estimate the right
hand side of (3.11) using Prohorov’s inequality (for convenience, Talagrand’s applied tc
a single function) and then will proceed as in the proof of Lemma 2.3. The last integral
in (3.11) is dominated as follows:

~ T, n
dHn(y) < dHn(y) _ }Z IZiSTn )
JI-HOG=-) J 1-H(G-) niZ1-H(Z)
The expected value of this average is

T,

Ir<r dH 1
_— = —:IOg—,
1-H(Z) 1-H &n

and the parameter&/ and V in Talagrand’s inequality (2.7) can be taken to be
respectivelyU,, := (ne,)~* and

Ty
1 I 2
—E( Zng ) zl/idH < 1 = Vn,
n \1-—H(Z) n . 1— H)?2 ~ ng,

Since condition (2.13) holds (as noted above, (2.13) is implied by (3.1)), Talagrand’s (or
Prohorov’'s) inequality shows that there exi€ts< co such that

dH, 1 loge;t
PK  max i>2log—+2€ 9
A-lopgt ) 1— H(y—) £k 2k g
—00

T2k
dH. 1 [logeyt
< Pr A > |og — 4+ C ﬂ
R 1- H(y—) Eok 2k82k

T.
/2k d(Hy — H)(y) loge!
2k82k

<P
r{ J T1-HGo)

1
<K exp{— log —}
Eok

for all k. By hypothesis (3.2) and the assumptigr: ¢,,

Zexp{—logi} < o0,

Eok




E. GINE, A. GUILLOU / Ann. I. H. Poincaré — PR 37 (2001) 503-522 517

and therefore, Borel-Cantelli and the regularity of the sequéngemply that

T,
dH,(y) 1 [loge1
_ V7 ol log= &% :
. 1-HOD) O(og c +C ne, as.

The term log:; * dominates (as, < a, — 0 and, by (3.1)ne, — oo) and we have

~ T,
dH, (y) dH,(y) 1

Combining (3.8)—(3.12) with (3.4), proves that

-1
sup |(Iln)|=o<‘/w> as. (3.13)
t<Ty—ay nayé&y

assuminge, > ¢,. Let nowa, < ¢, (again, without real loss of generality, we assume
this holds for allz € N). Then, we write

dA, (y)
y=N1—H(y-))

Ty
SUpIR, ()| < sup| H,(1-) — H(t-)| [ (3.14)

t<T, t<T,

SinceH, — H is the regular empirical process for the sequefi£e, it is classical that

sup \Hn(t—)—H(t—)|=O< log Iogn) as. (3.15)

—00<t <00 n

By Lemma 2.3, we can replace-1H(y—) in the integral (3.14) by + H,(y—) (as
in (3.11), where the opposite replacement is made) and then we can apply Lemma 2.
from Stute [14] to the effect that

dA,0) [ dH(G) 2
JoA=-H,(-)? ) A=H,(y-)? T 1= H(T,-)

By (2.16) in Lemma 2.3 and the definition @, this random variable is @; 1) a.s.
Hence,

dH, () ( 1 )
=0 — . 3.16
J A= mGNA-HG-) ~ \e) (340

Sincee, > \/a,¢,, combining (3.8), (3.14)—(3.16) with condition (3.2) yields

-1
sup |(Iln)|=o<‘/w) as. (3.17)
t<Ty—ay, napé,
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for a, < ¢,. Hence, by (3.13) and (3.17), we have that in all cases, the lemma is provec
for the componentll ) of the left side variable in (3.7).

Order of magnitude of1,). If in (I,) we replace the factor + F(t — a,u) by
1—- F(t +a,), the difference is dominated by

4
— SUP|R,(DIIK loc  SUP |F(t —ayu) — F(t +ay)|
Qn 1T, 1eR,ul<1

<8Il flloc 1 K lloo SUPIRA (D],

1<T,

which is a\/(na,s,)"1log(a, A e,)~1) a.s. by the first part of this proof. Hencg,
being bounded, it suffices to prove that

1
1 sup |(1—F(t+a,,))(Rn(t—a,,u)—R,,(r))|:o(,/M) (3.18)
an t<Ty—ay nap&y

—1<u<1
So, we must look at the process

1 H,(y—) — H(y-)
—(1-F .
W TR ) | T H oA Hoo)

t—ay

dA, (y)

on the parameter setoco <t < T, —a,, —1 < u < 1. For ease of notation, we will only
consider—1 < u < 0. By factoring out

N _ -1
H,(y—)—H(y—-) _ O(\/ (IOg €y ) v IOg |Ogl’l ) as. (319)
1— H(y_) ney

sup
y<Ty

(by Lemma 2.3) it suffices to consider the process

t+anu

i(1— F(t +ay)) dH, ()

— —oo<t<T,—a,, 0<u<],
an 1-H,(y-)
t

which, again by Lemma 2.3, is of the same order as

t+anu

- t+anyu ~
a(1—F(t+an)) / 1—7H(y)<a J 1-G(y)

. 1 En:lee[t,t+anM]IXf<1/i
1-G(X))

nan ;-7

(on the same parameter set). The expected value of this process foraabhsatisfies

t+anu
|1 1-6w

1 2": Ix; et tvannIx, <y

) < f oo

nan 27
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and we will apply the proof of Lemma 2.3 to show that, in fact, the sup of the
difference between the process and its expected value is asymptotically negligible. Th
corresponding class of functions is a bounded measuxéblgass and we can take

1 1 E<IXE[t,t+a,,u](1_ G(X)))
5 )

Un= ’ 02= 2
nae. n = e e 2 (1- G(X))?

Condition (2.10) holds for these parameters so that we can use inequality (2.12) an
proceed as in the proof of Lemma 2.3. Here are the details: Combining Montgomery-
Smith maximal inequality and inequality (2.12), and setting

log -
B, =Cy| —&
na,é&;,

for a conveniently chosen large consténfnotena, B, > c2*a, By for somec > 0 and
21 < n < 2), we obtain
l}

t+anu
1 - IX-e[t t+a u]IX-<Y4 /
i k] n IS _ dF
naanZ< 1-G(X) =
t

i=1

Pr¢ max  sup
k=1 L2k t<Tp—an

o<u<gl
1
<P max sup P
2k=1p2k ((t,v): thzk_GZk 2 Aok sz

O<vsag—1, tHv< T}

t+v
IX tt+v]IX<Y /
i€ Xt dF
XZ( 1-G(X) )

-}

ok t+v
IXle[t t+v]IX4<Y- c

< 9Pr; sup —\—/ dF (x) || > ==Bx

{ () 1<Ty—ay | 2%az z;( 1-G(X) / 30 °

OSvsag—1, 1+v<Ty}
1
< Kexp{— log } (3.20)
Aok Ek

Since loda,e,)~* >~ log(a, A €,)~1, condition (3.2) implies that this is the general term
of a convergent series, hence, by Borel-Cantelli, the process under consideration is a
of the order of the sup of its expected values (boundefil fi..,, which is finite), that is,

t+anu

1 dH, ()
sup —(1— F(t+a, / — =01 as 3.21
lngPan an( (t+ay)) 1= H,05) 1) ( )
o<u<1 !

Now, (3.18) follows from (3.19) and (3.21) because, by (3(®ge; ) v loglogn is
asymptotically smaller than I@g, A ¢,)~t anda, — 0. This shows that the component
(I,) of the left hand side of (3.7) is of the prescribed order, which completes the proof
of the lemma. O
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We can now proceed to prove the LIL result for densities.

THEOREM 3.3. —Assuming(a) F and G satisfy condition(3.5), (b) the probability
kernel K sastisfies conditiorf2.22) and (c) the sequenceé&:,} and {a,} are regular,
nonincreasing, satisfy conditiori8.1)—(3.4) anda, — 0; letting 7,, = H (1 —¢,) and
letting £, and f, be as defined by Eqél.1) and (1.2), we have

-1
sup | fu(0) = fu (@] =o<,/w> a.s. (3.22)
t<Ty—an napéy

Proof. —By the decomposition (2.23) and Lemmas 3.1 and 3.2, it suffices to show

t+ap _ 1
/(l—F(x))Lnyl(x)dK(ta x)’:o(,/m(;‘”a—l‘%)) (3.23)

t—

1
sup —
t<Ty—ay, apy

We decompose this integral as in the proof of Lemma 3.2:

t+ay

1 /(1_F(x))Ln,1(x)dK<t_x)

n

t—ay

1
= ai/(l— F(t - Clnbt)) (Ln’]_(t —_ anu) —_ Ln,l(t))K/(u) du
"

1
+ éLn,l(f) /(1— F(t —ayu))K'(u)du
]

= (L) + (1),

and proceed to bound the two resulting terms.

By integration by parts, we see that the absolute value of the last term is dominated b
L, 1]l flloo- By Theorem 5in Giné and Guillou [9] (actually by its proof since; is
one of the two components @&f, there, each treated separately), we then obtain, owing
to the regularity of(e,} and to (3.3), that syp,,_, 1(1,)| = O(/Toglogn/(ns,)) as.
Hence, since;, — 0 and (3.2) holds,

-1
sup |(Iln)|=o<,/M) as. (3.24)
t<Ty—ay, nané&y

Ifin (I,) we replace + F(t — a,u) by 1— F(t + a,), the difference is dominated by

4
— sup|L,1(D|IK le  SUP |F(t —ayu) — F(t +a,)|

an t<T, 1Z<ER<1
—ljUx

, log (a, A &,) 1
S8 f ool K lloo SUPILya(0)] = 0(\/ DI RE) ) as (3.25)
t<T, na,&,
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as in (3.24). Hence, we need only prove

! log (a, A &,)" L
— sup (1= F(t+ay)|Ly1(t —ayu) — L, 1(t)| = oQ/E) as
O 1oy na,e,

—1<u<l
(3.26)
Again, for ease of notation, we restrictiice [0, 1] (as the part of this sup corresponding
tou € [—1, 0) can be dealt with in the same way). If we define

i} zn: Ix;ett—amunlx;<v,(1— F( +a,))
a, n

Wa(t,u) := (1-FX)(1-G(X)))

) thn_anaO<u<l9

n i=1
then the left hand side of (3.26), with the restriction:ta [0, 1], just becomes

sup |W,(t,u) — EW,(t,u)|.
t<Ty—ay,
o<u<1

The corresponding clask is bounded measurabléC and we have

sup i}IXe[r—a,,u,r]ngy(l— F(t+a,)) < 1 < 1
t<Ty—a, An N (1_ F(X))(l_ G(X)) D nan(l_ G(Tn)) h napéy
ou<1

and
1 [Ixei—gunlx<y(= Ft +a,,)>}2 _ 1 [IXEU_W,I]} P
a2n? 1-FX)(1-GX)) San?  [1-G(X) ] T Cn%ae,

Hence the parametei$, ando? can be taken to b&, = 1/na,e,, 02 = | f|loo(1/
n®a,e,), and they satisfy inequality (2.10). Then we can apply inequality (2.12) and
proceed as in the last part of the proof of Lemma 2.3 (see also (3.20) for more details o
how to apply Montgomery-Smith’s maximal inequality) to obtain

log (a, A &,)~!
sup |Wn(t,u)—EWn(t,u)|=o< M).
thn_an nangn

o0<u<1

The same applies te1l < u < 0, proving (3.26) and, therefore, the theorenm
The previous proof and the Kolmogorov 0-1 law show the following:

COROLLARY 3.4.-Under the hypotheses of Theore®B, there exists a finite
constantC such that

lim sup lo”g“"gf sup | fu(t) — fu@)|

N _
n—00 aine, [SThi—an

. na,e, 1
= lim sup o1 Sup —(1-F(@t+ay)

n—o0 t<Ty—a, Gn

anAen
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1

/ (Lt — apit) — Lo 2(6)) K" (u) dl
X
=C a.s. (3.27)

Corollary 2 in Diehl and Stute [7] shows that the consté@nis not zero ife, is a
constant independent efand f is bounded away from zero on an interval with right
end strictly larger thari ~1(1 — &,). We do not know ifC # 0 for ¢, — 0 as well and,
although we believe this to be the case in general (or at least i71¢) is of the same
order as - H(¢) for larger and if¢, is eventually larger than,), this remains an open
question.

X
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