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ABSTRACT. – In the usual right-censored data situation, letfn, n ∈ N, denote the convolution
of the Kaplan–Meier product limit estimator with the kernelsa−1

n K(·/an), whereK is a smooth
probability density with bounded support andan → 0. That is,fn is the usual kernel density
estimator based on Kaplan–Meier. Letf̄n denote the convolution of the distribution of the
uncensored data, which is assumed to have a bounded density, with the same kernels. For
eachn, let Jn denote the half line with right end pointZn(1−εn),n − an, whereεn → 0 and,
for eachm, Zm,n is themth order statistic of the censored data. It is shown that, under some mild
conditions onan andεn, supJn |fn(t)− f̄n(t)| converges a.s. to zero asn → ∞ at least as fast as√| log(an ∧ εn)|/(nanεn). Forεn = constant, this rate compares, up to constants, with the exact
rate for fixed intervals. 2001 Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – Dans le cas des données censurées à droite, on notefn, n ∈ N, la convolution de
l’estimateur de Kaplan–Meier avec les noyauxa−1

n K(·/an), oùK est une densité de probabilité
à support borné etan → 0. En d’autres termes,fn représente l’estimateur à noyau de la densité
basé sur Kaplan–Meier. De façon analogue, on notef̄n la convolution de la distribution des
données non censurées, qui sera supposée avoir une densité bornée, avec ces mêmes noyaux.
Pour toutn, soitJn la demi-droite délimitée supérieurement parZn(1−εn),n − an, oùεn → 0 et,
pour toutm,Zm,n désigne lam-ème statistique d’ordre des données censurées. Nous démontrons
dans cet article que, sous des conditions minimales suran et εn, supJn |fn(t) − f̄n(t)| converge
p.s. vers zero quandn → ∞ à une vitesse au moins égale à

√| log(an ∧ εn)|/(nanεn). Pourεn
constant, cette vitesse est comparable, à une constante multiplicative près, à la vitesse exacte
dans le cas d’intervalles fixes. 2001 Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

Let X,Xi, i ∈ N, be independent and identically distributed (i.i.d.) random variables
with common distribution function (cdf)F , which we assume differentiable, with
densityf . Let Y,Yi, i ∈ N, be a second i.i.d. sequence independent of the first, with
cdf G, and letZ = X ∧ Y , δ = IX�Y , Zi = Xi ∧ Yi and δi = IXi�Yi , i ∈ N. We
denote byH the cdf ofZ, by τH = inf{x: H(x) = 1} the supremum of the support
of H and byHn andH−1

n respectively the empirical cdf and the empirical quantile
function corresponding toZ1, . . . ,Zn, n ∈ N. Let F̂n(x), −∞< x < τH , be the Kaplan–
Meier [10] product limit estimator ofF(x). (See Section 2 for definitions.) A natural
nonparametric estimator off is

fn(t)= 1

an

∞∫
−∞

K

(
t − x

an

)
dF̂n(x), n ∈ N, (1.1)

whereK is a probability kernel andan is a sequence of positive constants tending to
zero. In this article we are interested in the general problem of understanding how well
doesfn estimatef . Diehl and Stute [7] contains an exact law of the iterated logarithm
(LIL) for the variable

sup
t�T

∣∣fn(t)− f̄n(t)
∣∣,

whereT < τH is fixed and

f̄n(t)= 1

an

∞∫
−∞

K

(
t − x

an

)
dF(x) (1.2)

is the convolution off with the approximate identitya−1
n K(x/an)dx. (The ‘bias’ part,

f̄n − f , is ignored as it can always be balanced with the termfn − f̄n by calibrating the
normalizing sequence{an}, provided enough regularity forK is assumed.) Stute [14]
introduced a.s. bounds for|F̂n − F | uniform over varying data driven intervals that
asymptotically cover the full domain ofH , (−∞, τH ), and his analysis was refined in
Csörg̋o [5] and Giné and Guillou [9]. In view of these developments it is only natural to
ask whether the same idea can be applied to kernel density estimation, that is, whether
sensible rates of a.s. convergence to zero can be obtained for the random variables

sup
t�τn

∣∣fn(t)− f̄n(t)
∣∣ (1.3)

with τn = H−1
n (1 − εn), for suitableεn → 0. The object of this article is to provide

such rates, which are given in Theorem 3.3 and Corollary 3.4 below. When we take
εn = constant, our results nearly recover, except for multiplicative constants, the main
result in Diehl and Stute [7], which is optimal.

We should mention here that the upper limitτn = H−1
n (1 − εn) is eventually a.s.

dominated byTn = H−1(1 − εn/8) if nεn � logn for all n large enough (see e.g., any
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of the last mentioned three articles). Then, in order to obtain an asymptotic upper bound
for (1.3), it suffices to obtain one for

sup
t�Tn

∣∣fn(t)− f̄n(t)
∣∣. (1.4)

Hence, although our results apply to (1.3), they are stated for (1.4) (our assumptions
imply thatnεn is indeed asymptotically larger than logn).

This article may be considered as an application to density estimation of the methods
and results from Giné and Guillou [9]. As in this last article, the main innovation with
respect to previous work consists in using sharp exponential bounds for the empirical
process (Alexander [2], Massart [11] and Talagrand [16]). The exponential bound
used here combines Talagrand’s [16] exponential bound with convenient estimates of
expected values of suprema of empirical processes over Vapnik–Červonenkis classes
of functions and their squares, also provided by Talagrand [15]. (See Einmahl and
Mason [8] for a similar exponential bound.) In order to perform ‘blocking’ as in the
classical proofs of the law of the iterated logarithm (LIL) we found a maximal inequality
of Montgomery-Smith [12] very useful, just as in our previous work.

We became recently aware, through a referee, of the article of Bitouzé et al. [3],
published after ours had already been submitted. This article contains a LIL for the
Kaplan–Meier estimator, uniform over the whole line, obtained from van der Laan’s
identity and an exponential bound for the empirical process over classes of functions that
are not necessarily Vapnik–Červonenkis. The results from the present article do not seem
to follow directly from those in Bitouzé et al. [3]; in fact they are more related to results
in Giné and Guillou [9] (compare, for instance their LIL, (2), with our LIL, (4.17)). The
methods in their article may well provide an alternative approach to density estimation in
the Kaplan–Meier framework, possibly leading to results different from those presented
here.

2. An exponential inequality and other preparatory material

The next two propositions, on empirical processes, follow from Talagrand [15,16]
with very little additional elaboration. We refer to Giné and Guillou [9], Lemma 3 and the
paragraph before it, for the definition of measurable classes of functionsF , VC (Vapnik–
Červonenkis) with respect to an envelopeF , as well as for the covering numbers
N(T, d, ε) of a metric space(T , d). If F is VC with respect toF = sup{|f |: f ∈ F}
then we simply say thatF is aVC class of functions. The functions inF are assumed to
be measurable real functions on a measurable space(S,S), P is a probability measure
on (S,S) and ξi , i ∈ N, are the coordinate functionsSN �→ S, in particular, they are
i.i.d. with common lawP . Pn :=∑n

i=1 δξi /n are the empirical measures corresponding
to the sequenceξi . Finally, {ηi} is a sequence of independent Rademacher variables,
independent of{ξi}, in fact, defined on another factor of a common product probability
space. (We recall that a Rademacher variableη is one that satisfies Pr{η = 1} = Pr{η =
−1} = 1/2.) Also,‖!‖F := supf∈F |!(f )|.
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PROPOSITION 2.1. –Let F be a measurable uniformly bounded VC class of func-
tions. Letσ 2 � supf EPf

2 andU � supf∈F ‖f ‖∞ be such that0< σ � U. Then there
existA, v dependent onF but not onP or n, A� 3

√
e, v � 1, such that, for alln ∈ N,

E

∥∥∥∥∥
n∑

i=1

ηif (ξi)

∥∥∥∥∥
F

� C

[
vU log

AU

σ
+ √

v
√
nσ

√
log

AU

σ

]
, (2.1)

whereC is a universal constant.

Proof. –SinceF is VC, there existsA andv positive such that, ifF := supf∈F |f |,
then for all probability measuresP on (S,S) and 0< τ < 1,

N
(
F,L2(P ), τ‖F‖L2(P )

)
�
(
A

τ

)v

. (2.2)

We can assumeA � 3
√

e and v � 1. We can also assume that 0∈ F . Then, the
usual entropy bound for Rademacher processes (e.g., Corollary 5.1.8 in de la Peña and
Giné [6]) gives

Eη

∥∥∥∥∥
n∑

i=1

ηif (ξi)/
√
n

∥∥∥∥∥
F

� C

‖∑n

i=1
f 2(ξi )/n‖1/2

F∫
0

√
logN

(
F,L2(Pn), τ

)
dτ, (2.3)

whereEη denotes integration with respect to the Rademacher variables only andC is a
universal constant. On the other hand, by Talagrand [15], Corollary 3.4,

E

∥∥∥∥∥
n∑

i=1

f 2(ξi)

∥∥∥∥∥
F

� nσ 2 + 8UE

∥∥∥∥∥
n∑

i=1

ηif (ξi)

∥∥∥∥∥
F
. (2.4)

Then, combining (2.2) and (2.3) and changing variables, we have

Eη

∥∥∥∥∥
n∑

i=1

ηif (ξi)/
√
n

∥∥∥∥∥
F

�ACU

∞∫
AU/‖∑n

i=1
f 2(ξi )/n‖1/2

F

√
v logτ

τ 2
dτ

�C ′√v

∥∥∥∥∥
n∑

i=1

f 2(ξi)/n

∥∥∥∥∥
1/2

F

√
log

A2U2

‖∑n
i=1f

2(ξi)/n‖F
for another universal constantC ′. By Hölder’s inequality and concavity of the function
y = x log a

x
, the above gives

E

∥∥∥∥∥
n∑

i=1

ηif (ξi)/
√
n

∥∥∥∥∥
F

�C ′√v

√√√√E

∥∥∥∥∥
n∑

i=1

f 2(ξi)/n

∥∥∥∥∥
F

log
A2U2

E‖∑n
i=1f

2(ξi)/n‖F .

Then, inequality (2.4) and the fact that the functiony = x log a
x

is increasing for
0� x � a/e yield
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E

∥∥∥∥∥
n∑

i=1

ηif (ξi)/
√
n

∥∥∥∥∥
F

�C ′√v

√√√√(σ 2 + 8UE

∥∥∥∥∥
n∑

i=1

ηif (ξi)/n

∥∥∥∥∥
F

)
log

A2U2

σ 2 + 8UE‖∑n
i=1ηif (ξi)/n‖F

�C ′√v

√√√√(σ 2 + 8U√
n
E

∥∥∥∥∥
n∑

i=1

ηif (ξi)/
√
n

∥∥∥∥∥
F

)
log

A2U2

σ 2
.

Thus, setting

Z =E

∥∥∥∥∥
n∑

i=1

ηif (ξi)

∥∥∥∥∥
F
,

Z satisfies the inequation

Z2 � Cvnσ 2 log

(
AU

σ

)
+ 8CvZU log

(
AU

σ

)
,

whereC is a universal constant. Hence,Z is between the two roots of the corresponding
equation and, since one is negative andZ � 0, we conclude that

Z � 4CvU log
AU

σ
+
√√√√16C2v2U2

(
log

AU

σ

)2

+Cvnσ 2

(
log

AU

σ

)

� 8CvU log
AU

σ
+ √

C
√
v

√
nσ

√
log

AU

σ
,

proving Proposition 2.1. ✷
For a similar proposition with a different proof see Einmahl and Mason [8],

Proposition A.1, and for the same result for indicator functions, with a similar proof,
see Talagrand [15], Proposition 6.2.

Since

E

∥∥∥∥∥
n∑

i=1

(
f (ξi)−Ef (ξ1)

)∥∥∥∥∥
F

� 2E

∥∥∥∥∥
n∑

i=1

ηi
(
f (ξi)−Ef (ξ1)

)∥∥∥∥∥
F

and since, ifF is a measurable uniformly boundedVC-type class of functions so is
F̃ := {f −Ef (ξ1): f ∈F} (as is well known and can be seen by a simple estimation of
covering numbers), we can apply the previous proposition toF̃ with U replaced by 2U
andσ 2 satisfying instead the requirementsσ 2 � supf∈F VarPf and 0< σ � 2U . We
then conclude that there is a universal constantC such that

E

∥∥∥∥∥
n∑

i=1

(
f (ξi)−Ef (ξ1)

)∥∥∥∥∥
F

� C

[
vU log

AU

σ
+ √

v
√
nσ

√
log

AU

σ

]
, (2.5)
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(C may be different from the constant in Proposition 2.1 as it must absorb several
numerical factors due to symmetrization and to the change fromU to 2U ). Moreover,
this and inequality (2.4) applied tõF yield

E

∥∥∥∥∥
n∑

i=1

(
f (ξi)−Ef (ξ1)

)2∥∥∥∥∥
F

� nσ 2 + 8CvU2 log
AU

σ
+ 8C

√
vU

√
log

AU

σ

√
nσ

�
(√

nσ +L
√
vU

√
log

AU

σ

)2

, (2.6)

for some universal constantL.
Talagrand [16] proved the following exponential inequality for any measurable,

uniformly bounded class of functionsF :

Pr

{∣∣∣∣∣
∥∥∥∥∥

n∑
i=1

f (ξi)

∥∥∥∥∥
F

−E

∥∥∥∥∥
n∑

i=1

f (ξi)

∥∥∥∥∥
F

∣∣∣∣∣> t

}
�K exp

{
− 1

K

t

U
log
(

1+ tU

V

)}
, (2.7)

valid for all t > 0, and whereK is a universal constant,U is as above andV is any
number satisfyingV � E supf∈F

∑n
i=1f

2(ξi). This inequality applied toF̃ , together
with the estimates (2.5) and (2.6), then gives the following:

PROPOSITION 2.2. –Let F be a measurable uniformly bounded VC class of func-
tions, and let σ 2 and U be any numbers such thatσ 2 � supf∈F VarPf , U �
supf∈F ‖f ‖∞ and 0 < σ � U . Then, there exist constantsC and K , depending only
on the VC characteristicsA andv of the classF , such that the inequality

Pr

{∥∥∥∥∥
n∑

i=1

(
f (ξi)−Ef (ξ1)

)∥∥∥∥∥
F
> t

}

�K exp
{

− 1

K

t

U
log
(

1+ tU

K(
√
nσ +U

√
log(AU/σ)2

)}
(2.8)

is valid for all

t �C

[
U log

AU

σ
+ √

nσ

√
log

AU

σ

]
. (2.9)

If in Proposition 2.2 we assume 0< σ � cU for somec < 1 then logA� d log(U/σ )

for somed <∞ and we can replace log(AU/σ) by log(U/σ ) in both (2.8) and (2.9) at
the price of changing the constantsK andC (that now depend onc).

The exponential bound in Proposition 2.2 is much less elaborate than the bounds
in Talagrand [15] but it suits our purposes: whereas it is important for us that the
multiplicative constantK outside the exponent in (2.8) should not depend onσ , we
are not presently interested in the optimal value of the multiplicative constant within the
exponent of (2.8) (here, alsoK). On the other hand, there are parts of the range oft

for which the bound (2.8) does apply but the bounds in Alexander [2], Massart [11] and
Einmahl and Mason [8] do not.
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We will use inequality (2.8) for 0< σ �U/2 and under the additional assumption

√
nσ � C1U

√
log

U

σ
(2.10)

and then, with

t = C2
√
nσ

√
log

U

σ
, (2.11)

for fixedC1 andC2, with C2 large, in which case, it gives

Pr

{∥∥∥∥∥
n∑

i=1

(
f (ξi)−Ef (ξ1)

)∥∥∥∥∥
F
>C2σ

√
n

√
log

U

σ

}
�K exp

{
−D

K
log

U

σ

}
, (2.12)

whereD can be taken to beD = 4C2(1+C−1
1 )−2 log(1+ 4−1C2K

−1), as can be easily
checked (and therefore,D → ∞ asC2 → ∞ for eachC1 fixed). To see this, we may
proceed as follows: (i) we takeK andC in (2.8) and (2.9) forc = 1/2, so thatA = 1, as
indicated below (2.9), and then note that the value oft prescribed by (2.11) satisfies (2.9)
as long asC2 � C(1 + C−1

1 ); (ii) since x−1 log(1 + x) is monotone decreasing for
x > 0 and 4xy � (x+y)2, so thatC2

√
nσU

√
log(U/σ )/[K(

√
nσ +U

√
log(U/σ ))2] �

C2/(4K), we have

log
(

1+ C2
√
nσU

√
log(U/σ )

K(
√
nσ +U

√
log(U/σ ) )2

)
� 4 log(1+C2/(4K))

√
nσU

√
log(U/σ )

(
√
nσ +U

√
log(U/σ ) )2

;

and (iii) inequality (2.12) follows directly from these observations together with
condition (2.10).

As a first application of these inequalities we prove a lemma that will be useful
throughout. We recall that the quantile function ofH is defined asH−1(x) =
inf[z: H(z) � x] for x ∈ (0,1), and thatH(H−1(x)−) � x � H(H−1(x)). It is
convenient to make the following definition: we say that a nonincreasing sequence of
numbers{εn} is regular if there exists a positive constantA such thatε2n �Aεn for all n.

LEMMA 2.3. –Let {εn} be a regular nonincreasing sequence such that0 < εn < 1
and

lim
n→∞

nεn

log 1
εn

= ∞. (2.13)

Let

Tn :=H−1(1− εn). (2.14)

Then,

sup
x�Tn

∣∣∣∣1−Hn(x−)

1−H(x−)
− 1

∣∣∣∣= O

(√√√√( log 1
εn

)∨ log logn

nεn

)
a.s. (2.15)
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and, in particular,

lim
n→∞ sup

x�Tn

1−Hn(x−)

1−H(x−)
= 1 a.s. (2.16)

Hence, also

sup
x�Tn

∣∣∣∣ 1−H(x−)

1−Hn(x−)
−1
∣∣∣∣= O

(√√√√(log 1
εn

)∨ log logn

nεn

)
a.s. (2.15′)

and

lim
n→∞ sup

x�Tn

1−H(x−)

1−Hn(x−)
= 1 a.s. (2.16′)

Proof. –We have

1−Hn(x−)

1−H(x−)
−1= 1

n

n∑
i=1

(
IZi�x

1−H(x−)
−E

IZ�x

1−H(x−)

)
:=

n∑
i=1

(
fx,n(Zi)−Efx,n(Z)

)
.

For eachn, the family of functions{fx,n: x � Tn} is obviously bounded, it is measurable
because it is parametrized by a half line andfx,n(t) is jointly measurable inx and t ,
and it is aVC class because of its monotonicity properties (each functionfx,n is the
difference of a constantcx and a functiongx,n such that the functionsgx,n increase
asx increases: see, e.g., Lemma 3, b) and c), in Giné and Guillou [9]). Thus, we can
apply the exponential inequalities above, in this case, Talagrand’s inequality (2.7) to
F̃ := {fx,n − Efx,n} in conjunction with the estimate (2.6) ofV . We can obviously
take Un = (nεn)

−1 and, sinceEf 2
x,n(Z) = (1 − H(x−))−1/n2, x � Tn, we can take

σ 2 = (n2εn)
−1. Hence,

Pr

{
sup
x�Tn

∣∣∣∣∣
n∑

i=1

(
fx,n(Zi)−Efx,n(Z)

)∣∣∣∣∣
−E

(
sup
x�Tn

∣∣∣∣∣
n∑

i=1

(
fx,n(Zi)−Efx,n(Z)

)∣∣∣∣∣
)
>C

√
log logn

nεn

}

�K exp
{

−C

K

√
nεn log logn log

(
1+ C

√
log logn/(nεn)3/2

(1/
√
nεn + 2L(1/(nεn))

√
logε−1

n )2

)}
,

which, by (2.13), is dominated by

K exp
{

− C2

2K
log logn

}

for all n large enough (since, as can be easily argued e.g. by contradiction, (2.13) implies
limn→∞ nεn/ logn = ∞). Also, given the values assigned toU and σ 2, (2.5) shows
that the expected value of the sup of the process over{x � Tn} is of the order of
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((logε−1
n )/(nεn))

1/2. We then conclude that there existA, D andn0 such that

Pr

{
sup
x�Tn

∣∣∣∣1−Hn(x−)

1−H(x−)
− 1

∣∣∣∣>A

√
(logε−1

n )∨ log logn

nεn

}
�D exp{−2 log logn}

(2.17)
for all n � n0. Setting, for ease of notation,B2

n := A2[(logε−1
n )∨ log logn)]/(nεn), the

regularity of the sequence{εn} implies that there existsd > 0 such thatB2k � dBn for
all 2k−1 < n � 2k , for all k > logn0. Then, by (2.17) and Montgomery-Smith’s [12]
maximal inequality (see, e.g., de la Peña and Giné [6]), we have

Pr
{

max
2k−1<n�2k

B−1
n sup

x�Tn

∣∣∣∣1−Hn(x−)

1−H(x−)
− 1

∣∣∣∣> 30d
}

� Pr
{

max
2k−1<n�2k

B−1
2k sup

x�T2k

∣∣∣∣1−Hn(x−)

1−H(x−)
− 1

∣∣∣∣> 30
}

� 9Pr
{

sup
x�T2k

∣∣∣∣1−H2k (x−)

1−H(x−)
− 1

∣∣∣∣>B2k

}

� 9D

(log 2)2

1

k2
.

Now (2.15) follows by Borel–Cantelli. Condition (2.13) impliesnεn/ log logn → ∞
since, as mentioned above,nεn/ logn → ∞. Therefore the bound in (2.15) is o(1), which
implies (2.16) as well as(2.15′) and(2.16′). ✷

The scheme of proof of the previous lemma is used repeatedly throughout. We will
refer to the above proof rather than reproduce repetitious arguments.

Next, following Csörg̋o [5], we describe a bound for the product limit estimator
that follows from the classical expansion of Breslow and Crowley [4]. We need
some additional notation, borrowed from Stute [14] and Csörgő [5]. We setH̃ (x) =
Pr{Z � x, δ = 1}, −∞< x � τH , and defineH̃n to be its empirical counterpart, that is,

H̃n(x) = 1

n

n∑
i=1

I{Zi�x,δi=1}, n ∈ N,

for −∞ < x � τH . (We should recall from the introduction thatH is the cdf ofZ
and that, for eachn, Hn(x) = ∑n

i=1 IZi�x/n.) The obvious facts that d̃H � dH and
dH̃n � dHn will be used without further mention. We should recall that, with this
notation and the notation set up in the introduction, the cumulative hazard function ofX

is

2(x) =
x∫

−∞

dF(y)

1− F(y−)
=

x∫
−∞

dH̃ (y)

1−H(y−)
, x ∈ (−∞, τH ),
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and its Nelson–Aalen estimator (Nelson [13], and Aalen [1]) is

2n(x) =
x∫

−∞

dH̃n(y)

1−Hn(y−)
,

defined forx < maxi�n Zi := Zn,n. The product limit estimator (Kaplan and Meier [10])
is defined as

1− F̂n(x) =
n∏

j=1

[
1− δj,nIZj,n�x

n− j + 1

]

for all x < Zn,n, whereZj,n are the order statistics ofZ1, . . . ,Zn and δj,n = δk iff
Zj,n = Zk . Note that if we takeTn as in the introduction,Tn < Zn,n a.s. If F is
continuous, for any real functionh and for allx < Zn,n, we have (Csörg̋o [5]):

∣∣∣∣ F̂n(x)−F(x)

1− F(x)
− h(x)

∣∣∣∣� ∣∣(2n(x)−2(x))− h(x)
∣∣+ ∣∣Rn,6(x)

∣∣ (2.18)

where

Rn,6(x) =
[

1

2

∣∣2n(x)−2(x)
∣∣2 + ∣∣6n(x)∣∣exp

(|6n(x)|)
]

exp
(∣∣2n(x)−2(x)

∣∣) (2.19)

and

6n(x)= − log
(
1− F̂n(x)

)−2n(x). (2.20)

2n −2 further decomposes as:

2n(x)−2(x) =
x∫

−∞

d(H̃n − H̃ )(y)

1−H(y−)

+
x∫

−∞

Hn(y−)−H(y−)

(1−Hn(y−))(1−H(y−))
dH̃n(y)

:=Ln,1(x)+Rn(x). (2.21)

We note thatLn,1 is only part of the linearizationLn of 2n − 2 considered, e.g., in
Giné and Guillou [9].

The probability kernelsK we will consider satisfy the following condition:

K is differentiable with bounded derivative and vanishes on[−1,1]c. (2.22)

The case ofK vanishing outside[r, s], −∞ < r < s < ∞, is not more general as it
reduces toK vanishing outside[−1,1] by translation and dilation. We take the limits−1
and 1 just for convenience. We then have (by (1.1), (1.2), (2.21), (2.22) and integration
by parts):
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fn(t)− f̄n(t)= − 1

an

t+an∫
t−an

(
1− F(x)

)( F̂n(x)− F(x)

1− F(x)
− (2n(x)−2(x)

))
dK
(
t − x

an

)

− 1

an

t+an∫
t−an

(
1− F(x)

)
Ln,1(x)dK

(
t − x

an

)

− 1

an

t+an∫
t−an

(
1− F(x)

)
Rn(x)dK

(
t − x

an

)
. (2.23)

The proof of the main result in the next section consists in estimating the sizes of these
three terms. We anticipate that the second term dominates.

3. The order of magnitude of fn − f̄n

In what follows we assume that{εn} and {an} are nonincreasing regular sequences
such thatan → 0 and both,

lim
n→∞

nanεn

log 1
an∧εn

= ∞ (3.1)

and

lim
n→∞

log 1
an∧εn

log logn
= ∞. (3.2)

In particular,{εn} satisfies hypothesis (2.13) from Lemma 2.3. We assume, in addition,
two conditions which may seem less natural but that nevertheless are not too restrictive,
namely, that

lim inf
n

nεn

dn logn
> 0 (3.3)

where dn ↗ ∞ is such that
∑[kd2k logk]−1 < ∞ (such as, for instance,dn =

(log log logn)1+δ for someδ > 0), and that

an

(
log

1

εn

)2

→ 0. (3.4)

Condition (3.4) is obviously satisfied ifan � εn, and, since by (3.3) logε−1
n < logn for

all n large enough, it also holds ifan(logn)2 → 0.
We also set

Tn =H−1(1− εn). (2.14)

Then, condition (3.3) implies thatnεn/ logn → ∞ and therefore, as mentioned in the
introduction, it follows, e.g., by Remark 3 in Giné and Guillou [9], thatTn dominates
H−1

n (1 − 3εn) eventually a.s., hence alsoZn(1−3εn),n if the numbers 3nεn are integers.
So, although the results that follow are stated in terms ofTn they are really results on the
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sup of|fn − f̄n| over adaptive random intervals that tend toτH . Finally, we also assume
that

F andG are differentiable andF ′ := f is uniformly bounded. (3.5)

LEMMA 3.1. –LetF andG be cdf’s satisfying condition(3.5), letK be a probability
kernel satisfying condition(2.22), and let{εn} and {an} be two nonincreasing regular
sequences satisfyingan → 0 and conditions(3.1) and (3.2). We assume also that{εn}
satisfies(3.3). Then,

sup
t�Tn−an

1

an

∣∣∣∣∣
t+an∫

t−an

(
1−F(x)

)( F̂n(x)−F(x)

1− F(x)
− (2n(x)−2(x)

))
dK
(
t − x

an

)∣∣∣∣∣
= o

( log 1
an∧εn

nanεn

)
a.s. (3.6)

Proof. –Takingh(x)=2n(x)−2(x) in (2.18) gives

∣∣∣∣ F̂n(x)−F(x)

1− F(x)
− (2n(x)−2(x)

)∣∣∣∣� ∣∣Rn,6(x)
∣∣,

and therefore,

sup
t�Tn−an

1

an

∣∣∣∣∣
t+an∫

t−an

(
1−F(x)

)( F̂n(x)−F(x)

1− F(x)
− (2n(x)−2(x)

))
dK
(
t − x

an

)∣∣∣∣∣
� 2

an
‖K ′‖∞ sup

t�Tn

∣∣Rn,6(t)
∣∣.

Now, Theorem 6 in Giné and Guillou [9], gives

sup
t�Tn

(
2n(t)−2(t)

)2 = O
(

log logn

nεn

)
a.s.

on account of (3.3) and the regularity of the sequence{εn}. Moreover, by Lemma 1 in
Breslow and Crowley [4], ifx � Tn,

0< 6n(t)= − log
(
1− F̂n(t)

)−2n(t)� Hn(t−)

n(1−Hn(t−))
a.s.

and, by Lemma 2.3,

sup
t�Tn

Hn(t−)

n(1−Hn(t−))
� 1

n(1−H(Tn))

1−H(Tn)

1−Hn(Tn−)
= O

(
1

nεn

)
a.s.

Then, since these bounds tend to zero by (3.1) and (3.2), combining them with (2.19)
and (2.20) yields

sup
t�Tn

∣∣Rn,6(t)
∣∣= O

(
log logn

nεn

)
a.s.
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Now the result follows from condition (3.2).✷
LEMMA 3.2. –Under the assumptions of Lemma3.1 plus condition(3.4) for {an},

we have

sup
t�Tn−an

1

an

∣∣∣∣∣
t+an∫

t−an

(
1− F(x)

)
Rn(x)dK

(
t − x

an

)∣∣∣∣∣= o

(√
log(an ∧ εn)−1

nanεn

)
a.s. (3.7)

Proof. –Changing variables, we can write

1

an

t+an∫
t−an

(
1−F(x)

)
Rn(x)dK

(
t − x

an

)

= 1

an

1∫
−1

(
1− F(t − anu)

)(
Rn(t − anu)−Rn(t)

)
K ′(u)du

+ 1

an
Rn(t)

1∫
−1

(
1− F(t − anu)

)
K ′(u)du

= (In)+ (II n).

Order of magnitude of(II n). SinceK is a probability kernel on[−1,1] and, by (2.22),
K(1)=K(−1) = 0, it follows by integration by parts that

sup
t�Tn−an

|(II n)| � 1

an

(
sup
t�Tn

|Rn(t)|)
(

sup
t�Tn−an

∣∣∣∣∣
1∫

−1

K(u)d
(
1−F(t − anu)

)∣∣∣∣∣
)

� ‖f ‖∞ sup
t�Tn

|Rn(t)|. (3.8)

We consider two cases according as to whetheran � εn or an < εn. First, we assume
an � εn for all n (strictly, we should just consider the subsequence of those integersn

for whichan � εn but, for ease of notation, we will assume that this subsequence isN as
the changes in the proof if it is not all ofN are only formal). In this case it is convenient
to use the bound

sup
t�Tn

|Rn(t)| � sup
t�Tn

∣∣∣∣Hn(t−)−H(t−)

1−H(t−)

∣∣∣∣
Tn∫

−∞

dH̃n(y)

1−Hn(y−)
. (3.9)

By Lemma 2.3,

sup
t�Tn

∣∣∣∣Hn(t−)−H(t−)

1−H(t−)

∣∣∣∣= O

(√√√√(log 1
εn

)∨ log logn

nεn

)
a.s. (3.10)
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By (2.16) and(2.16′) in Lemma 2.3, we also have

Tn∫
−∞

dH̃n(y)

1−Hn(y−)
�

Tn∫
−∞

dH̃n(y)

1−H(y−)
a.s., (3.11)

whereAn � Bn means thatAn/Bn andBn/An are O(1) a.s. We will estimate the right
hand side of (3.11) using Prohorov’s inequality (for convenience, Talagrand’s applied to
a single function) and then will proceed as in the proof of Lemma 2.3. The last integral
in (3.11) is dominated as follows:

Tn∫
−∞

dH̃n(y)

1−H(y−)
�

Tn∫
−∞

dHn(y)

1−H(y−)
= 1

n

n∑
i=1

IZi�Tn

1−H(Zi)
.

The expected value of this average is

E
IZ�Tn

1−H(Z)
=

Tn∫
−∞

dH

1−H
= log

1

εn
,

and the parametersU and V in Talagrand’s inequality (2.7) can be taken to be
respectivelyUn := (nεn)

−1 and

1

n
E

(
IZ�Tn

1−H(Z)

)2

= 1

n

Tn∫
−∞

dH

(1−H)2
� 1

nεn
=: Vn.

Since condition (2.13) holds (as noted above, (2.13) is implied by (3.1)), Talagrand’s (or
Prohorov’s) inequality shows that there existsC <∞ such that

Pr

{
max

2k−1<n�2k

Tn∫
−∞

dHn(y)

1−H(y−)
> 2 log

1

ε2k
+ 2C

√
logε−1

2k

2kε2k

}

� Pr

{ T2k∫
−∞

dH2k (y)

1−H(y−)
> log

1

ε2k
+C

√
logε−1

2k

2kε2k

}

� Pr

{∣∣∣∣∣
T2k∫

−∞

d(H2k −H)(y)

1−H(y−)

∣∣∣∣∣>C

√
logε−1

2k

2kε2k

}

�K exp
{

− log
1

ε2k

}

for all k. By hypothesis (3.2) and the assumptionan � εn,

∑
exp
{

− log
1

ε2k

}
<∞,
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and therefore, Borel–Cantelli and the regularity of the sequence{εn} imply that

Tn∫
−∞

dHn(y)

1−H(y−)
= O

(
log

1

εn
+C

√
logε−1

n

nεn

)
a.s.

The term logε−1
n dominates (asεn � an → 0 and, by (3.1),nεn → ∞) and we have

Tn∫
−∞

dH̃n(y)

1−H(y−)
�

Tn∫
−∞

dHn(y)

1−H(y−)
= O

(
log

1

εn

)
a.s. (3.12)

Combining (3.8)–(3.12) with (3.4), proves that

sup
t�Tn−an

|(II n)| = o

(√
log(an ∧ εn)

−1

nanεn

)
a.s. (3.13)

assumingan � εn. Let nowan < εn (again, without real loss of generality, we assume
this holds for alln ∈ N). Then, we write

sup
t�Tn

|Rn(t)| � sup
t�Tn

∣∣Hn(t−)−H(t−)
∣∣ Tn∫
−∞

dH̃n(y)

(1−Hn(y−))(1−H(y−))
. (3.14)

SinceHn −H is the regular empirical process for the sequence{Zi}, it is classical that

sup
−∞<t<∞

∣∣Hn(t−)−H(t−)
∣∣= O

(√
log logn

n

)
a.s. (3.15)

By Lemma 2.3, we can replace 1− H(y−) in the integral (3.14) by 1− Hn(y−) (as
in (3.11), where the opposite replacement is made) and then we can apply Lemma 2.1
from Stute [14] to the effect that

Tn∫
−∞

dH̃n(y)

(1−Hn(y−))2
�

Tn∫
−∞

dHn(y)

(1−Hn(y−))2
� 2

1−Hn(Tn−)
.

By (2.16) in Lemma 2.3 and the definition ofTn, this random variable is O(ε−1
n ) a.s.

Hence,
Tn∫

−∞

dH̃n(y)

(1−Hn(y−))(1−H(y−))
= O

(
1

εn

)
a.s. (3.16)

Sinceεn � √
anεn, combining (3.8), (3.14)–(3.16) with condition (3.2) yields

sup
t�Tn−an

|(II n)| = o

(√
log(an ∧ εn)

−1

nanεn

)
a.s. (3.17)
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for an < εn. Hence, by (3.13) and (3.17), we have that in all cases, the lemma is proved
for the component(II n) of the left side variable in (3.7).

Order of magnitude of(In). If in (In) we replace the factor 1− F(t − anu) by
1−F(t + an), the difference is dominated by

4

an
sup
t�Tn

|Rn(t)|‖K ′‖∞ sup
t∈R,|u|�1

∣∣F(t − anu)− F(t + an)
∣∣

� 8‖f ‖∞‖K ′‖∞ sup
t�Tn

|Rn(t)|,

which is o(
√
(nanεn)

−1 log(an ∧ εn)
−1 ) a.s. by the first part of this proof. Hence,K ′

being bounded, it suffices to prove that

1

an
sup

t�Tn−an−1�u�1

∣∣(1−F(t + an)
)(
Rn(t − anu)−Rn(t)

)∣∣= o

(√
log(an ∧ εn)−1

nanεn

)
. (3.18)

So, we must look at the process

1

an

(
1− F(t + an)

) t∫
t−anu

Hn(y−)−H(y−)

(1−Hn(y−))(1−H(y−))
dH̃n(y)

on the parameter set−∞< t � Tn − an,−1� u� 1. For ease of notation, we will only
consider−1� u� 0. By factoring out

sup
y�Tn

∣∣∣∣Hn(y−)−H(y−)

1−H(y−)

∣∣∣∣= O

(√(
logε−1

n

)∨ log logn

nεn

)
a.s. (3.19)

(by Lemma 2.3) it suffices to consider the process

1

an

(
1− F(t + an)

) t+anu∫
t

dH̃n(y)

1−Hn(y−)
, −∞< t � Tn − an, 0� u� 1,

which, again by Lemma 2.3, is of the same order as

1

an

(
1−F(t + an)

) t+anu∫
t

dH̃n(y)

1−H(y)
� 1

an

t+anu∫
t

dH̃n(y)

1−G(y)

= 1

nan

n∑
i=1

IXi∈[t,t+anu]IXi�Yi

1−G(Xi)

(on the same parameter set). The expected value of this process for eacht andu satisfies

∣∣∣∣∣ 1

nan
E

n∑
i=1

IXi∈[t,t+anu]IXi�Yi

1−G(Xi)

∣∣∣∣∣=
∣∣∣∣∣ 1

an

t+anu∫
t

1−G(x)

1−G(x)
dF(x)

∣∣∣∣∣� ‖f ‖∞,
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and we will apply the proof of Lemma 2.3 to show that, in fact, the sup of the
difference between the process and its expected value is asymptotically negligible. The
corresponding class of functions is a bounded measurableVC class and we can take

Un = 1

nanεn
, σ 2

n = ‖f ‖∞
1

n2anεn
� 1

n2a2
n

E

(
IX∈[t,t+anu](1−G(X))

(1−G(X))2

)
.

Condition (2.10) holds for these parameters so that we can use inequality (2.12) and
proceed as in the proof of Lemma 2.3. Here are the details: Combining Montgomery-
Smith maximal inequality and inequality (2.12), and setting

Bn = C

√√√√ log 1
anεn

nanεn

for a conveniently chosen large constantC (notenanBn � c2ka2kB2k for somec > 0 and
2k−1 < n� 2k), we obtain

Pr

{
max

2k−1<n�2k
sup

t�Tn−an
0�u�1

∣∣∣∣∣ 1

nanBn

n∑
i=1

(
IXi∈[t,t+anu]IXi�Yi

1−G(Xi)
−

t+anu∫
t

dF(x)

)∣∣∣∣∣> 1

}

� Pr

{
max

2k−1<n�2k
sup

{(t,v): t�T2k−a2k
0�v�a2k−1, t+v�T2k }

∣∣∣∣∣ 1

2ka2kB2k

×
n∑

i=1

(
IXi∈[t,t+v]IXi�Yi

1−G(Xi)
−

t+v∫
t

dF(x)

)∣∣∣∣∣> c

}

� 9Pr

{
sup

{(t,v): t�T2k−a2k
0�v�a2k−1, t+v�T2k }

∣∣∣∣∣ 1

2ka2k

2k∑
i=1

(
IXi∈[t,t+v]IXi�Yi

1−G(Xi)
−

t+v∫
t

dF(x)

)∣∣∣∣∣> c

30
B2k

}

�K exp
{

− log
1

a2k ε2k

}
. (3.20)

Since log(anεn)−1 � log(an ∧ εn)
−1, condition (3.2) implies that this is the general term

of a convergent series, hence, by Borel–Cantelli, the process under consideration is a.s.
of the order of the sup of its expected values (bounded by‖f ‖∞, which is finite), that is,

sup
t�Tn−an
0�u�1

1

an

(
1−F(t + an)

) t+anu∫
t

dH̃n(y)

1−Hn(y−)
= O(1) a.s. (3.21)

Now, (3.18) follows from (3.19) and (3.21) because, by (3.2),(logε−1
n ) ∨ log logn is

asymptotically smaller than log(an ∧ εn)
−1 andan → 0. This shows that the component

(In) of the left hand side of (3.7) is of the prescribed order, which completes the proof
of the lemma. ✷
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We can now proceed to prove the LIL result for densities.

THEOREM 3.3. –Assuming: (a) F andG satisfy condition(3.5), (b) the probability
kernelK sastisfies condition(2.22) and (c) the sequences{εn} and {an} are regular,
nonincreasing, satisfy conditions(3.1)–(3.4) andan → 0; lettingTn =H−1(1− εn) and
letting fn and f̄n be as defined by Eqs.(1.1) and(1.2), we have

sup
t�Tn−an

∣∣fn(t)− f̄n(t)
∣∣= O

(√
log(an ∧ εn)−1

nanεn

)
a.s. (3.22)

Proof. –By the decomposition (2.23) and Lemmas 3.1 and 3.2, it suffices to show

sup
t�Tn−an

1

an

∣∣∣∣∣
t+an∫

t−an

(
1− F(x)

)
Ln,1(x)dK

(
t − x

an

)∣∣∣∣∣= O

(√
log(an ∧ εn)−1

nanεn

)
. (3.23)

We decompose this integral as in the proof of Lemma 3.2:

1

an

t+an∫
t−an

(
1−F(x)

)
Ln,1(x)dK

(
t − x

an

)

= 1

an

1∫
−1

(
1−F(t − anu)

)(
Ln,1(t − anu)−Ln,1(t)

)
K ′(u)du

+ 1

an
Ln,1(t)

1∫
−1

(
1− F(t − anu)

)
K ′(u)du

= (In)+ (II n),

and proceed to bound the two resulting terms.
By integration by parts, we see that the absolute value of the last term is dominated by

|Ln,1(t)|‖f ‖∞. By Theorem 5 in Giné and Guillou [9] (actually by its proof sinceLn,1 is
one of the two components ofLn there, each treated separately), we then obtain, owing
to the regularity of{εn} and to (3.3), that supt�Tn−an

|(II n)| = O(
√

log logn/(nεn) ) a.s.
Hence, sincean → 0 and (3.2) holds,

sup
t�Tn−an

|(II n)| = o

(√
log(an ∧ εn)−1

nanεn

)
a.s. (3.24)

If in (In) we replace 1−F(t − anu) by 1− F(t + an), the difference is dominated by

4

an
sup
t�Tn

|Ln,1(t)|‖K ′‖∞ sup
t∈R−1�u�1

∣∣F(t − anu)−F(t + an)
∣∣

� 8‖f ‖∞‖K ′‖∞ sup
t�Tn

|Ln,1(t)| = o

(√
log(an ∧ εn)

−1

nanεn

)
a.s. (3.25)
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as in (3.24). Hence, we need only prove

1

an
sup

t�Tn−an−1�u�1

(
1− F(t + an)

)∣∣Ln,1(t − anu)−Ln,1(t)
∣∣= O

(√
log(an ∧ εn)−1

nanεn

)
a.s.

(3.26)
Again, for ease of notation, we restrict tou ∈ [0,1] (as the part of this sup corresponding
to u ∈ [−1,0) can be dealt with in the same way). If we define

Wn(t, u) := 1

an

1

n

n∑
i=1

IXi∈[t−anu,t ]IXi�Yi (1−F(t + an))

(1−F(Xi))(1−G(Xi))
, t � Tn − an, 0� u� 1,

then the left hand side of (3.26), with the restriction tou ∈ [0,1], just becomes

sup
t�Tn−an
0�u�1

∣∣Wn(t, u)−EWn(t, u)
∣∣.

The corresponding classF is bounded measurableVC and we have

sup
t�Tn−an
0�u�1

1

an

1

n

IX∈[t−anu,t ]IX�Y (1− F(t + an))

(1− F(X))(1−G(X))
� 1

nan(1−G(Tn))
� 1

nanεn

and

1

a2
nn

2
E

[
IX∈[t−anu,t ]IX�Y (1−F(t + an))

(1−F(X))(1−G(X))

]2

� 1

a2
nn

2
E

[
IX∈[t−anu,t ]
1−G(X)

]
� ‖f ‖∞

1

n2anεn
.

Hence the parametersUn and σ 2
n can be taken to beUn = 1/nanεn, σ 2

n = ‖f ‖∞(1/
n2anεn), and they satisfy inequality (2.10). Then we can apply inequality (2.12) and
proceed as in the last part of the proof of Lemma 2.3 (see also (3.20) for more details on
how to apply Montgomery-Smith’s maximal inequality) to obtain

sup
t�Tn−an
0�u�1

∣∣Wn(t, u)−EWn(t, u)
∣∣= O

(√
log(an ∧ εn)−1

nanεn

)
.

The same applies to−1� u� 0, proving (3.26) and, therefore, the theorem.✷
The previous proof and the Kolmogorov 0–1 law show the following:

COROLLARY 3.4. –Under the hypotheses of Theorem3.3, there exists a finite
constantC such that

lim sup
n→∞

√
nanεn

log 1
an∧εn

sup
t�Tn−an

∣∣fn(t)− f̄n(t)
∣∣

= lim sup
n→∞

√
nanεn

log 1
an∧εn

sup
t�Tn−an

1

an

(
1− F(t + an)

)
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×
∣∣∣∣∣

1∫
−1

(
Ln,1(t − anu)−Ln,1(t)

)
K ′(u)du

∣∣∣∣∣
= C a.s. (3.27)

Corollary 2 in Diehl and Stute [7] shows that the constantC is not zero ifεn is a
constant independent ofn andf is bounded away from zero on an interval with right
end strictly larger thanH−1(1− εn). We do not know ifC �= 0 for εn → 0 as well and,
although we believe this to be the case in general (or at least if 1−G(t) is of the same
order as 1−H(t) for larget and if εn is eventually larger thanan), this remains an open
question.
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