
Ann. Inst. H. Poincaré, Probabilités et Statistiques37, 2 (2001) 245–273

 2001 Éditions scientifiques et médicales Elsevier SAS. All rights reserved

S0246-0203(00)01063-3/FLA

MODERATE DEVIATIONS FOR FUNCTIONAL
U -PROCESSES

Peter EICHELSBACHER
Fakultät für Mathematik, Universität Bielefeld, Universitätstrasse 1,

D-33501 Bielefeld, Germany

Received in 26 November 1997, revised 15 May 2000

ABSTRACT. – The moderate deviations principle is shown for the partial sums processes built
of U -empirical measures and ofU -statistics. It is proved that in the non-degenerate case the
conditions for the fixed time principles suffice for the moderate deviations principle to carry over
to the corresponding partial sums processes. Given a uniformly bounded VC subgraph class of
functions, we obtain corresponding moderate deviations for time dependentU -processes. We
use decoupling techniques and apply an improved version of a Bernstein-type inequality for
degenerateU -statistics. Moreover, we prove and use a Lévy-type maximal inequality forU -
statistics. 2001 Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – Nous établissons le principe de déviations modérées pour les processus de sommes
partielles construits à partir desU -mesures empiriques et desU -statistiques. Nous montrons
que dans le cas non-dégénéré les conditions pour les résultats à temps fixe suffisent aussi pour
le cas des processus de sommes partielles. Etant donné une classe de fonctions de Vapnic–
Čhervonenkis uniformément bornée, nous obtenons les déviations modérées correspondantes
pour lesU -processus dépendant du temps. Nous utilisons des techniques de découplage et
appliquons une version améliorée d’une inégalité de type Bernstein pour lesU -statistiques
dégénérées. De plus nous démontrons et utilisons une ingégalité maximale de Lévy pour les
U -statistiques. 2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction and statement of the results

For a sequence ofRd -valued i.i.d. random variablesXi with a finite moment
generating function Borovkov and Mogulskii [5] investigated the moderate deviation
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behaviour of the polygonal approximation of the partial sums process

Sn(t)= 1

n

[nt ]∑
i=1

Xi, t ∈ [0,1]. (1.1)

In an appropriate topology, Dembo and Zajic [8] proved a moderate deviations principle
for the partial sums empirical process

Ln(t)= 1

n

[nt ]∑
i=1

δXi , t ∈ [0,1].

Given a class of bounded functionsF , Dembo and Zajic [8] considered the moderate
deviations principle for functional empirical processes

Ln(t, f )= 1

n

[nt ]∑
i=1

f (Xi), t ∈ [0,1], f ∈F .

The aim of this paper is to extend the moderate deviations principle when passing from
linear statistics to higher order statistics.

Let us recall the definition of the large deviations principle (LDP). A sequence of
probability measures{µn,n ∈ N} on a topological spaceX equipped withσ -field B is
said to satisfy the LDP with speedan ↓ 0 and good rate functionI (·) if the level sets
{x: I (x)� α} are compact for allα <∞ and for all� ∈ B the lower bound

lim inf
n→∞ an logµn(�)� − inf

x∈int(�)
I (x),

and the upper bound

lim sup
n→∞

an logµn(�)� − inf
x∈cl(�)

I (x)

hold. Here int(�) and cl(�) denote the interior and closure of�, respectively. We say
that a sequence of random variables satisfies the LDP when the sequence of measures
induced by these variables satisfies the LDP. Let{bn}n∈N ⊂ (0,∞) be a sequence
satisfying

lim
n→∞

bn

n
= 0 and lim

n→∞
n

b2
n

= 0. (1.2)

If X is a topological vector space then a sequence of random variables{Zn,n ∈ N}
shall satisfy the moderate deviations principle (MDP) with speedn

b2
n

and with good rate

function I (·), if the sequence{ n
bn
Zn, n ∈ N} satisfies the LDP inX with the good rate

functionI (·) and with speedn
b2
n
.

Denote byL∞([0,1],Rd) the space of (equivalence classes modulo equality a.e. of)
bounded measurable functions on[0,1], equipped with the uniform topology. Consider
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the polygonal approximation ofSn(·), that is

S̃n(t) := Sn(t)+
(
t − [nt]

n

)
X[nt ]+1. (1.3)

Note that S̃n(·) is continuous and carries the same information asSn(·). The MDP
for {S̃n(·), n ∈ N} was established inL∞([0,1],Rd): By AC0([0,1],Rd) denote the
subspace of absolutely continuous functionsφ on [0,1] with φ(0)= 0. Let {Xn,n ∈ N}
be a sequence of i.i.d. random variables on a probability space(�,A,P) with values in
R
d , common lawµ andE(X1)= 0. Borovkov and Mogulskii [5] considered (essentially)

the MDP in the i.i.d. case under the condition thatE exp(〈θ,X1〉) <∞ in some ball
centered at the origin.〈·, ·〉 denotes the Euclidean scalar product inR

d and‖ · ‖ a norm
in R

d . The sequence{ n
bn
S̃n(·), n ∈ N} satisfies the LDP inL∞([0,1],Rd), equipped with

the uniform topology, with good rate function

I∞(φ)=
1∫

0

�∗(φ̇) dt, (1.4)

if φ ∈ AC0([0,1],Rd) and I∞(φ) = ∞ otherwise (see also [22, Theorem 1] and [4,
Theorem 3.1]). Here�∗ denotes the convex dual of�(θ)= E(〈θ,X1〉2)/2, that is

�∗(x) := sup
θ∈Rd

{〈θ, x〉 −�(θ)}.
1.1. Moderate deviations for partial sums U -statistics

We will consider the MDP for different partial sums processes connected withU -
statistics. Recall that

Um
n (h) :=

1(n
m

) ∑
Cnm

h(Xi1, . . . ,Xim)=
1

n(m)

∑
I (m,n)

h(Xi1, . . . ,Xim),

is called aU -statistic. Here theXi are i.i.d. random variables andh is a measurable,
symmetric,Rd -valued function, called kernel function, where symmetric means thath

is invariant under all permutations of its arguments.Ckm with k,m ∈ N denotes the set
{(i1, . . . , im): 1 � i1 < · · · < im � k}, n(m) ≡ ∏m−1

k=0 (n − k) and I (m,n) ⊂ {1, . . . , n}m
contains allm-tuples with pairwise different components.

While U -statistics were introduced by Hoeffding [18] as a generalization of the
empirical mean to the case of multivariate functions, later different types of stochastic
processes related withU -statistics have been studied, see for example Miller and Sen
[21], Hall [17] and Mandelbaum and Taqqu [20]. There the authors basically proved
invariance principles and the weak convergence of appropriately normalized partial sums
U -statistics to Brownian motion, functionals of Brownian motion, or limit processes
expressible as multiple Wiener integrals.

To be able to formulate our results we will next describe the Hoeffding decomposition.
The operatorπµk,m = πk,m, k = 0,1, . . . ,m, acts onµ⊗m-integrable symmetric functions
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h :Sm→ R as follows:

πk,mh(x1, . . . , xk)= (δx1 −µ)⊗ · · · ⊗ (δxk −µ)⊗µ⊗(m−k)h,

where

ν1 ⊗ · · · ⊗ νmh=
∫

· · ·
∫
h(x1, . . . , xm) dν1(x1) · · ·dνm(xm)

and

µ⊗(m−1)h(x)=
∫

· · ·
∫
h(x1, . . . , xm−1, x) dµ(x1) · · ·dµ(xm−1).

A functionh is calledµ-canonicalor completely degenerateif
∫
h(x1, . . . , xm) dµ(xi)=

0 for all 1 � i � m. Note thatπk,mh is a µ-canonical function ofk variables. If
π1,mh �= 0, thenh is callednon-degenerate. With this notation we can decompose aU -
statistic into a sum ofµ-canonicalU -statistics of different orders. For allµ⊗m-integrable
functionsh :Sm→ R the following relation holds true

Um
n (h)=

m∑
k=0

(
m

k

)
Uk
n(πk,mh) (1.5)

(cf. (3.5.1) in [15]). HereU0
n (π0,mh) = µ⊗mh. Consider thepartial sumsU -statistics,

that is

Um
n (t, h) :=

1(n
m

) ∑
C
[nt]
m

h(Xi1, . . . ,Xim), t ∈ [0,1].

We will prove the MDP for the process

Wm
n (t, h)=

m∑
k=0

(
m

k

)
Uk
n (t, πk,mh), t ∈ [0,1], (1.6)

as well as forUm
n (t, h), t ∈ [0,1], in the non-degenerate case in the uniform topology.

In Hall [17] and Mandelbaum and Taqqu [20] functional limit theorems for the
processWm

n (·, h) are discussed. Remark that using (1.5) the processUm
n (t, h) gets the

representation

Um
n (t, h)=

m∑
k=0

(
m

k

) ([nt ]
m

)(n
k

)([nt ]
k

)(n
m

)Uk
n(t, πk,mh).

The additional factors(
[nt]
m )(

n
k)

([nt]k )(
n
m)

influence the behaviour of this process and we will

observe another rate function.
To be more precise, we will prove a MDP result for the polygonal approximation

process, that is

Ũm
n (t, h) :=Um

n (t, h)+
(
nt − [nt]) 1(n

m

) ∑
C
[nt]
m−1

h(Xi1, . . . ,Xim−1,X[nt ]+1),

t ∈ [0,1].
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Denote byW̃m
n (t, h) the process given by (1.6) whereUk

n (t, πk,mh) is replaced by
Ũ k
n (t, πk,mh) for everyk ∈ {0, . . . ,m}. Proving the MDP for{W̃m

n (·, h), n ∈ N}, we will
prove that the process{Ũ1

n (·, π1,mh), n ∈ N} satisfies a MDP and that the sequences
{Ũ k

n (·, πk,mh), n ∈ N} do not contribute to the moderate upper and lower bounds for
2� k �m. To this end we will use an improved Bernstein-type inequality (Lemma 2.1);
for bounded kernel functionsh this type of inequality was proved in [1] (see also [15,
Theorem 4.1.12]). Moreover we will prove and apply a Lévy-type maximal inequality
for U -statistics (Lemmas 2.5 and 2.8). The MDP for{Ũm

n (·, h), n ∈ N} can be deduced
from the MDP for{W̃m

n (·, h), n ∈ N} using the contraction principle and the concept of
exponential equivalence (see [9, Theorem 4.2.1 and Theorem 4.2.13]). Consider

Condition 1.7 (Weak Cramér condition). – For each 2� k �m there exists aδk > 0
such that ∫

Sk

exp
(
δk‖πk,mh‖2)dµ⊗k <∞

and there exists aδ > 0 such that∫
S

exp(δ‖π1,mh‖) dµ <∞. (1.8)

Here‖ · ‖ denotes the standard Euclidian norm onR
d .

Define

�∗
m(x) := sup

θ∈Rd

{〈θ, x〉 −�m(θ)
}
, (1.9)

with

�m(θ)= E
(〈θ,π1,mh(X1)〉2)/2.

THEOREM 1.10 (Moderate deviations of partial sumsU -statistics). – Assume that
Condition1.7 is satisfied for a symmetric kernel functionh, then

(a) the sequence{W̃m
n (·, h)− E(h), n ∈ N} satisfies the MDP inL∞([0,1],Rd) with

good rate function

ImW(φ) :=
1∫

0

�∗
m

(
φ̇/m

)
dt,

if φ ∈AC0([0,1],Rd) andImW(φ)=∞ otherwise. The speed isn/b2
n;

(b) the sequence{Ũm
n (·, h)− E(h), n ∈ N} satisfies the MDP inL∞([0,1],Rd) with

good rate function

ImU (φ) :=
1∫

0

�∗
m

(
φ̇/

(
mtm−1))dt,

if φ ∈ AC0([0,1],Rd) and the integral exists andImU (φ) = ∞ otherwise. The
speed isn/b2

n.



250 P. EICHELSBACHER / Ann. Inst. H. Poincaré, Probabilités et Statistiques 37 (2001) 245–273

Remark1.11. –
(a) The weak Cramér conditions in 1.7 are equivalent to the following conditions:

Assume that for each 2� k �m

E‖πk,mh‖2l � 1

2
l!Hl−2

E‖πk,mh‖4, l = 2,3, . . . ,

and

E‖π1,mh‖l � 1

2
l!Hl−2

E‖π1,mh‖2

(see for example [29, Remark 3.6.1]).
(b) We can easily adapt the result to a time interval[0, T ]. Applying Theorem 4.6.1

of [9] for T ∈ N yields a MDP for{Ũm
n (·, h) − E(h), n ∈ N} and {W̃m

n (·, h) −
E(h), n ∈ N}, respectively, inAC0(R+,Rd) equipped with the topology of
uniform convergence on compact subsets ofR+.

In the following examples we discuss the MDP for the sequence{W̃m
n (·, h)−E(h), n∈

N}.
Example1.12. – Consider thesample varianceU var

n , which is aU -statistic of degree
2 with kernel functionh(x, y)= 1

2(x − y)2. A simple calculation shows that

π1,2h(x)= 1

2

(
(x −E(X1))

2 −Var(X1)
)
,

where Var(Xi) denotes the variance ofXi underµ. It is well known, that we are in the
non-degenerate regime, if the distributionµ satisfies the conditionE(X1 − E(X1))

4 >

Var(X1)
2. If µ satisfies Condition 1.7, the rate function can be calculated as follows:

we obtain for the sample variance that�2(θ) = θ2

8 (E(X1 − E(X1))
4 − (Var(X1))

2) =:
θ2

8 c(µ). Hence the rate function is

Ivar(φ)= 1

2c(µ)

∞∫
0

(φ̇)2dt, φ ∈AC0
(
R+,Rd

)
.

Consider the coin tossing withP(X1 = 1) = p, P(X1 = 0) = 1 − p and 0< p < 1,
p �= 1/2. We are in the non-degenerate case and the corresponding rate function is

I bernoulli
var (φ)= 1

2(1− p)(p− 4p2 + 4p3)

∞∫
0

(φ̇)2dt.

Example1.13. – Note that for the kernel functionh(x, y) = xy (sample second
moment), we obtainπ1,2h(x)= E(X1)(x −E(X1)). Therefore

�2(θ)= 1

2
(EX1)

2Var(X1)θ
2 =: 1

2
θ2c(µ).
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The U -statistic is non-degenerate ifµ fulfills (EX1)
2Var(X1) �= 0. In this case the

corresponding rate function is

Isec(φ)= 1

8c(µ)

∞∫
0

(φ̇)2dt, φ ∈AC0
(
R+,Rd

)
.

In the case of Bernoulli random variables we obtain the rate18p3(1−p)
∫∞

0 (φ̇)2dt for every
0< p < 1.

Example1.14. – In the case of theWilcoxon one sample statisticthe kernel is given
by h(x, y) = 1{x+y�0}(x, y). If F(·) denotes the distribution function ofX1, we obtain
π1,2h(x)= 1−F(−x)− P

(
X1 +X2 � 0

)
and

π2,2h(x, y)= h(x, y)− (
1− F(−x))− (

1− F(−y))+ P
(
X1 +X2 � 0

)
.

We restrict ourselves to the class of distribution functionsF(·) which are continuous and
symmetric in 0. ThenE(h) = P(X1 � X2) = 1

2. Moreover a simple calculation shows
that

�2(θ)= 1

2
θ2

E

((
1− F(−x))2 − (

1−F(−x))+ 1

4

)

= 1

2
θ2

( 1∫
0

y2 dy −
1∫

0

y dy + 1

4

)
= θ2

24
.

Conditions 1.7 are fulfilled for everyµ since h is bounded. Thus we get for every
continuous distribution functionF(·), symmetric in 0, a MDP for the sequence
{W̃ 2

n (·,1{x+y�0})− 1/2, n ∈ N} with good rate function

Iwil(φ)= 3

2

∞∫
0

(φ̇)2dt.

Hence the Wilcoxon one sample statistic is asymptotically distribution free. The same
is true for theWilcoxon signed rank statistic. The MDP can be deduced from the
MDP of the one sample statistic: consider the test problem specified by the hypothesis
H0 := {F : F continuous and symmetric in 0} against all other symmetric, continuous
distribution functions. This test can be performed using the Wilcoxon signed rank
statisticW : denoteR+

i the rank of |Xi| among all |X1|, . . . , |Xn|. W is defined as
W = 1/2

∑n
i=1R

+
i (1+ sign(Xi)), and can be written as a sum of twoU -statistics:

W = nU1
n (h1)+

(
n

2

)
U2
n (1{x+y�0})
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with h1(x) := 1{x>0}(x). ConsiderW̃ (·) := nW̃ 1
n (·, h1)+ (n

2

)
W̃ 2
n

(·,1{x+y�0}
)
. Checking

the MDP for the process(W̃ (·)− E(W))/
(n

2

)
we will prove that for everyδ > 0

lim sup
n→∞

n

b2
n

logP

(
sup
t∈[0,1]

∥∥∥∥
∑[nt ]

i=1h1(Xi)

n− 1
− E(h1)

∥∥∥∥ � bnδ

)
=−∞

holds (see [9, Theorem 4.2.13]). This example already shows the impact of Bernstein
inequalities and the Lévy-type maximal inequality: applying Proposition 2.14 (which is
[15, Theorem 1.1.5]) and inequality (3.10) (which is [1, Proposition 2.3(d)]) forr = 1
we obtain

P

(
sup
t∈[0,1]

∥∥∥∥
∑[nt ]
i=1h1(Xi)

n− 1
− E(h1)

∥∥∥∥ � bnδ

)
� c1 exp

(
−c2

b2
nδ

2(n− 1)2

n

)
,

with some constantsc1 andc2. Hence the MDP follows with rateIwil (·).
The following corollary which follows directly from Theorem 1.10 does not seem to

exist in the literature.

COROLLARY 1.15. –If Condition 1.7 is satisfied for the symmetric kernel function
h, then {Um

n (h) − E(h), n ∈ N} satisfies the MDP inRd with the good rate function
�∗
m(·/m) (see(1.9))and with speedn/b2

n.

A further example demonstrating the usefulness of Theorem 1.10 is the following.
Consider the functiong :C([0,1],Rd)→ R

d (C([0,1],Rd) denotes the space of contin-
uous functions on[0,1] with values inR

d ) defined byg(x) := supt∈[0,1] x(t). The func-

tion g is continuous and we can deduce a MDP for the sequence{supt∈[0,1](W̃m
n (t, h)−

E(h)), n ∈ N} with rate function

J (y)= inf
{
ImW(φ): sup

t∈[0,1]
φ(t)= y

}
, y ∈ R

d,

whenever{W̃m
n (·, h)− E(h), n ∈ N} satisfies the MDP with rate functionImW(·). By the

convexity of�∗
m we obtainJ (y)=�∗

m(y/m).
The large deviation principle (LDP) for{Um

n (h), n ∈ N} is proved in [11].

1.2. Moderate deviations for partial sums U -empirical measures

In order to formulate the result on the empirical measure level we need some more
notations. Let(S, d) be a Polish space with metricd. Fix m ∈ N. Denote byB(Sm,Rd)

the set of bounded Borel measurable functions, byB ′(Sm,Rd) the algebraic dual of
B(Sm,Rd) and byCb(Sm,Rd) the set of bounded continuous functions.

Denote byM(Sm) and Mt (S
m), respectively, the set of Borel measures on the

Polish spaceSm which are signed and positive having total measuret , respectively.
Unless explicitly stated otherwise, these spaces are equipped with theτ -topology. Let
D1[Rd] denote the space of càdlàg functionsf :R+ → R

d equipped with the topology
of uniform convergence on compact subsets ofR+ and the corresponding Borelσ -field.
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Let D1[M(Sm)] denote the space of càdlàg functions fromR+ to M(Sm) equipped
with the weakest topology such that the mapsy(·) �→ 〈ϕ, y(·)〉 :D1[M(Sm)] �→D1[R]
are continuous and the smallestσ -field B such that these maps are measurable. Here
ϕ ∈ B(Sm,R), and〈ϕ, y(·)〉 = ∫

ϕ dy(·).
Next let D2[[0, T ],Rd], T > 0, denote the Banach space of càdlàg functions

f : [0, T ] → R
d with finite norm supt∈[0,T ] ‖f (t)‖/(t + 1). Let Dproj

2 [Rd ] denote the
space of càdlàg functionsf :R+ → R

d equipped with the projective limit topology of
the system(D2[[0, T ],Rd], T ∈ R+) and letD2[Rd ] be the Banach space of càdlàg
functions f :R+ → R

d with finite norm supt∈R+ ‖f (t)‖/(t + 1)m. All spaces are
equipped with the corresponding Borelσ -field.

Let Dproj
β [Rd ] and Dβ[Rd ], respectively, denote the space of càdlàg functions

f :R+ → R
d when in the definition of the normst + 1 is replaced byβ(t) =√

2(t ∨ 1) log log(t ∨ 3). Moreover defineDproj
2 [M(Sm)] as the space of càdlàg func-

tions y :R+ → M(Sm) such that 〈ϕ, y(·)〉 ∈ D
proj
2 [Rd] for every ϕ ∈ B(Sm,Rd),

equipped with the weakest topology such that the maps

y(·) �→ 〈ϕ, y(·)〉 :Dproj
2

[
M

(
Sm

)] �→D
proj
2

[
R
d
]

are continuous and the smallestσ -field, such that these maps are measurable. The space
D2[M(Sm)] andD2[B ′(Sm,Rd)] are defined in a similar way.

For an i.i.d. sequence{Xn,n ∈ N} with state spaceS, Dembo and Zajic proved in [8,
Theorem 1] the MDP for{Ln(·), n ∈ N} in D1[M(S)] as well as inD2[M(S)] with a
convex good rate function

J∞
(
ν(·))= ∞∫

0

J (ν̇ | µ)dt,

if ν(·) ∈ AC0[M(S)] and J∞(ν(·)) = +∞ otherwise. Here the functionalJ (· |
µ) :M(S)→[0,∞] is defined by

J (ν | µ)= 1

2

∫
S

( dν
dµ

)2
dµ

if ν(S)= 0,ν� µ andJ (ν | µ)=∞ otherwise (J is also called the Fisher information).
Using the convexity ofR � x �→ x2, it follows thatJ (· | µ) is convex.AC0[M(S)] is
defined to be the set of all mapsν :R+ → M(S) with ν(0) = 0 which are absolutely
continuous with respect to the variation norm|| · ||var and possess a weak derivative for
almost allt . The latter means that for almost everyt the expression〈f, ν(t+h)−ν(t)〉/h
converges to a limit〈f, ν̇(t)〉 for every f ∈ Cb(S,R). In [6] the moderate deviation
behaviour ofLn(·) had already been considered in a weaker form.

Consider the measuresLmn :�→M1(S
m) with n�m, defined by

Lmn = 1

n(m)

∑
(i1,...,im)∈I (m,n)

δ(Xi1,...,Xim). (1.16)
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Due to their application, we call the measures{Lmn }n�m theU -empirical measures of
orderm. We define the functionJm(· | µ) :M(Sm)→[0,∞] by

Jm(ν | µ)= 1

2

∫
S

(
dν1

dµ

)2

dµ

if ν1(S)= 0, ν1 � µ andν =∑m
i=1µ

⊗i−1 ⊗ ν1 ⊗µ⊗m−i , and we defineJm(ν | µ)=∞
otherwise. The convexity ofR � x �→ x2 implies thatJm(· | µ) is convex, too. In [14,
Theorem 1.24] the MDP for{Lmn ,n ∈ N} (with rate functionJm(· | µ)) is proved for
an arbitrary measurable space(Sm,S⊗m) on a suitable subset of all signed measures on
(Sm,S⊗m), endowed with a topology stronger than the usualτ -topology which makes
mapsν �→ ∫

Sm ϕ dν continuous even for certain unboundedϕ taking values in a Banach
space.

For technical reasons we have to consider functionsϕ :Sm → R
d which arenot

symmetric. Otherwise, forS �= {∅, S} andm � 2 we would not be able to separate the
zero measure from the measure(δ⊗m−1

x ⊗δy)−(δy⊗δm−1
x ) with x ∈A ∈ S andy ∈ S \A

for example, hence theτ -topology would loose the Hausdorff property. Givenϕ and a
nonempty subsetA of {1, . . . ,m}, defineϕA ∈L1(µ

⊗|A|) byµ-integratingϕ(s1, . . . , sm)
with respect to everysi with i ∈ {1, . . . ,m} \A. By convention,ϕ∅ ≡ ∫

Sm ϕ dµ
⊗m ∈ R

d .
Furthermore, definẽϕA ∈ L1(µ

⊗[t ]|A|) by

ϕ̃A
(
(si)i∈A

)= ∑
B⊂A

(−1)|A\B|ϕB
(
(si)i∈B

)
, (1.17)

for every nonemptyA ⊂ {1, . . . ,m}, and let ϕ̃∅ = ϕ∅. According to the inclusion–
exclusion principle or the Möbius inversion formula,

ϕ(s1, . . . , sm)=
∑

A⊂{1,...,m}
ϕ̃A

(
(si)i∈A

)
for µ⊗m-almost all(s1, . . . , sm) ∈ Sm. Hence, for everyn�m,

∫
Sm

ϕ dLmn = ϕ̃0 +
m∑
c=1

∫
Sc

ϕ̃c dL
c
n (1.18)

P-almost surely, where,

ϕ̃c ≡
∑

A⊂{1,...,m}
|A|=c

ϕ̃A (1.19)

for every c ∈ {0,1, . . . ,m}. Note that everyϕ̃A with nonemptyA ⊂ {1, . . . ,m} is
completelyµ-degenerate. For a symmetricϕ, formula (1.18) is closely related to the
Hoeffding decomposition of the correspondingU -statistic (̃ϕc = (m

c

)
πc,m(ϕ)). Define

Lmn (t) for t ∈ [0,1] as in (1.16) replacingI (m,n) by I (m, [nt]). We will prove a MDP
for the process(Lmn − µ⊗m)(·) as well as for(Mm

n − µ⊗m)(·) defined to be the process
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such that for everyn�m and everyϕ :Sm → R
d

∫
Sm

ϕ dMm
n (t)=

∫
Sm

ϕ dµ⊗m +
m∑
c=1

∫
Sc

ϕ̃c dL
c
n(t) (1.20)

holds.

THEOREM 1.21 (Moderate deviations of partial sumsU -empirical measures). –
The sequence{(Mm

n − µ⊗m)(·), n ∈ N} satisfies the MDP inDproj
2 [M(Sm)] and in

D2[M(Sm)], respectively, with good rate function

JmM
(
ν(·))= ∞∫

0

Jm(ν̇ | µ)dt

for ν(·) ∈ AC0[M(Sm)] and Jm∞(ν(·)) = +∞ otherwise. The speed isn/b2
n. The

sequence{(Lmn − µ⊗m)(·), n ∈ N} satisfies the MDP inDproj
2 [M(Sm)] with the same

speed and good rate function

JmL
(
ν(·))= ∞∫

0

Jm
(
ν̇/

(
tm−1) | µ)dt

if ν(·) ∈AC0[M(Sm)] and the integral exists andJmL (ν(·))=∞ otherwise.

Remark1.22. – Another representation for the rate functionImW(·) in Theorem 1.10
is:

ImW(φ)= inf
{ 1∫

0

Jm(ν̇ | µ)dt, ν ∈AC0
[
M

(
Sm

)]∩K∞

and
∫
Sm

h dν(·)= φ(·)
}
, (1.23)

whereK∞ :=⋃
L�0{ν(·):

∫ 1
0 Jm(ν̇ | µ)dt � L}. Therefore Theorem 1.10 can be derived

via the contraction principle [9, Section 4.2] from Theorem 1.21. A sketch of the proof
of (1.23) is given after the proof of Theorem 1.21.

For the proof of Theorem 1.21 we establish the moderate principle for{W̃m
n (·, h)−

E(h), n ∈ N} whenh is a bounded but possibly asymmetric kernel function. The neces-
sity of this step has been explained above. To this end we apply moment inequalities
for U -statistics which can be deduced from decoupling and hyper-contractive methods
(cf. [7, Sections 2.5–2.7]). Moreover, we use the MDP forLmn , established in [14, The-
orem 1.24], and apply the Lévy-type maximal inequality forU -statistics (Lemma 2.8)
and a Bernstein-type inequality for bounded kernel functions due to Arcones and Giné.
The representation of the rate function is deduced from results of Dembo and Zajic [8]
combined with an alternative representation ofJm(· | µ).
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1.3. Moderate deviations for functional U -processes

Let H⊂ B(Sm,R) be a class of functions such that 0� h� 1 for all h ∈H. TheU -
processof orderm indexed byH is defined as{Um

n (h), h ∈ H}. U -processes appear
in statistics for example as unbiased estimators of the functional{µ⊗mh: h ∈ H}.
Arcones and Giné developed the central limit theorem forU -processes in [1]. An
overview over the theory ofU -processes is [15]. Define the pseudo-metricsd2(g, h)=(∫
Sm(g−h)2dµ⊗m)1/2

. Let l∞(H) be the Banach space of all bounded real functions on
H with the supremum norm‖H‖H = suph∈H |H(h)|. LetDβ[l∞(H)] denote the Banach
space of càdlàg functionsH :R+ → l∞(H) such that

‖H‖H,β := sup
t∈R+

‖Ht‖H
β(t)m

<∞,

equipped with the Borelσ -field. Every signed measureν ∈ M(Sm) of finite variation
corresponds to an elementEν ∈ l∞(H) such thatEν(h) = ∫

hdν for all h ∈ H. We
regard the random variablesE(n/bn)(Mm

n −µ⊗m)(·) as elements ofDβ[l∞(H)]. The sequence
{E(Lmn −µ⊗m)(·), n ∈ N} is called a functional U -process. Throughout this paper we
assume that the classH is countable.

To state the result we have to introduce some more notations. Given a pseudo-metric
space(T , d), theε-covering numberN(ε,T , d) is defined as

N(ε,T , d)= min{n ∈ N: there exists a covering ofT by n balls ofd-radius � ε}.
The metric entropy of(T , d) is the function logN(ε,T , d). We defineN2(ε,H,µ) :=
N(ε,H,‖ · ‖L2(µ)). Some classes of functions satisfy a uniform bound on the entropy.
A class of real functionsH is a Vapnic–̌Chervonenkis (VC for short) subgraph class if
the subgraphs of the functions in the class form a VC class of sets (subgraph ofh ∈
H: {(x, t) ∈ Sm ×R: 0 � t � h(x1, . . . , xm) or h(x1, . . . , xm)� t � 0}). For a definition
of a VC class see for example [10]. Any finite-dimensional vector space of functions
(e.g., polynomials of bounded degree onR

d ) is a VC subgraph class. Notice moreover,
that if C is a VC class of sets andq a real function onC, then the class{1C/q(C): C ∈ C}
corresponding to a weighted empirical process is a VC subgraph class. The envelopeH

of H is defined as suph∈H |h|. It is well known [25, Proposition II 2.5] that ifH is a
VC subgraph class then there are finite constantsA andv such that, for each probability
measureµ with µ⊗m(H 2) <∞,

N2(ε,H,µ)�A
(
µ⊗m(H 2)1/2

/ε
)v
.

Consider the following type of classH:

Condition 1.24. – LetH be a measurable class of functionsh :Sm → R satisfying:
(a) H is uniformly bounded.
(b) There areA > 0 andv <∞ such thatN2(ε,H,µ) � (A/ε)v for all probability

measuresµ.

Notice that uniformly bounded VC subgraph classesH of symmetric functions satisfy
Condition 1.24.
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THEOREM 1.25 (Moderate deviations for functionalU -processes). –Assume that
H is a class of symmetric functions satisfying Condition1.24. Then the sequence
{E(Mm

n −µ⊗m)(·), n ∈ N} satisfies the MDP inDβ[l∞(H)] with speedn/b2
n and with good

rate function

JmH,M
(
H(·))= inf

{ ∞∫
0

Jm(ν̇ | µ)dt : ν(·) ∈AC0
[
M(Sm)

]∩K∞ andEν(·) =H(·)
}
.

Example1.26. – There are several examples of classesH in the literature satisfying
the assumptions of Theorem 1.25. We only mention, that the simplicial depth process,
empirical distribution functions with the structure of aU -statistic and a class of uniform
Hölder functions can be treated. A lot of these examples can be found in [1].

For the proof of Theorem 1.25 we use the MDP forLmn [14, Theorem 1.24] and apply
the Lévy-type maximal inequality forU -processes (Corollary 2.15) and the Bernstein-
type inequality in Proposition 2.24 as essential ingredients. Moreover, we apply the MDP
results of [27] as well as Talagrand’s isoperimetric inequalities for empirical processes
[26]. Again the representation of the rate function is deduced from results of Dembo and
Zajic [8] combined with an alternative representation ofJm(· | µ).

2. Decoupling inequalities and consequences

One key for the proofs is a Bernstein type inequality forµ-degenerateU -statistics. For
boundedR-valued kernel functions, the proof is given in [1, Proposition 2.3] and in a
more detailed version in [15, Theorem 4.1.12]. For bounded kernel functions with values
in a Banach space of type 2 a Bernstein type inequality is presented in [7, Theorem 8.15,
Corollary 8.1.5]. In [14] the following Bernstein type inequality for unbounded kernel
functions with squared norm satisfying the weak Cramér condition is proved.

LEMMA 2.1 (Bernstein-type inequality). –Consider a symmetric and completelyµ-
degenerate kernel functionϕ :Sr → R

d . Assume that there exists anα > 0 such that

a ≡
∫
Sr

exp
(
α‖ϕ‖2)dµ⊗r <∞. (2.2)

Defineσ 2 = E[‖ϕ(X1, . . . ,Xr)‖2]. If E[ϕ(X1, . . . ,Xr)] = 0, then there exist constants
c1, c2, c3, depending onr only, and a constantH depending ona andα only such that

P
(∥∥nr/2Ur

n(ϕ)
∥∥ � x

)
� c1 exp

(
− c2x

2/r

σ 2/r + (c3Hx1/rn−1/2)2/(r+1)

)
(2.3)

for all x > 0 and all n � r . Let {Xk
n, n ∈ N}, k = 1, . . . , r, be r independent copies of

{Xn, n ∈ N}. Then the same inequality(2.3)holds for the decoupledU -statistics, that is
for

1

n(r)

∑
I (r,n)

ϕ
(
X1
i1
, . . . ,Xr

ir

)
.
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We sketch the proof. Using Chebychev’s inequality we obtain for everyt > 0

P
(∥∥nr/2Ur

n(ϕ)
∥∥ � x

)
� exp

(− tx2/(r+1))
×E

[
exp

((
rr r!)2/(r+1)

t

∥∥∥∥n−r/2 ∑
1�i1<···<ir�n

ϕ(Xi1, . . . ,Xir )

∥∥∥∥2/(r+1))]
,

since
(n
r

)−1 � n−rrr r!. Now we apply Borell’s inequality [7, (2.6.5)], the decoupling
technique [7, Theorem 2.5.4], a symmetrization lemma [7, Lemma 2.4.5] as well as
Hoeffding’s formula [7, (1.1.16)]. We get as in the proof of [7, Theorem 8.1.2]:

E

[
exp

((
rr r!)2/(r+1)

t

∥∥∥∥n−r/2 ∑
1�i1<···<ir�n

ϕ(Xi1, . . . ,Xir )

∥∥∥∥2/(r+1))]
� c1 exp

(
c2σ

2t r+1)
×E

[
exp

(
2rc2t

r+1n−1
$n/r%∑
i=1

(‖ϕ(X(i−1)r+1, . . . ,Xir)‖2 − σ 2))]
. (2.4)

Since a < ∞ by (2.2), we obtain for eachl � 2 the inequality
∫
Sr ‖ϕ‖2l dµ⊗r �

1
2l!Hl−2

∫
Sr ‖ϕ‖4dµ⊗r with H ≡ supl�3(2a)

1/(l−2)(αl
∫
Sr ‖ϕ‖4 dµ⊗r )−1/(l−2) < ∞, cf.

[29, Remark 3.6.1]. Thus we can apply [28, Theorem 2.1], especially formula [28, (2.7)]:
We obtain

E

[
exp

(
h

$n/r%∑
i=1

(‖ϕ(X(i−1)r+1, . . . ,Xir)‖2 − σ 2))]
� exp

(
h2B2

n

2(1− hH)
)

for everyh ∈ [0,1/(H)), whereB2
n = $n/r% ∫Sr ‖ϕ‖4dµ⊗r . Consideringh= 2rc2t

r+1/n

we obtain

E

[
exp

((
rrr!)2/(r+1)

t

∥∥∥∥n−r/2 ∑
1�i1<···<ir�n

ϕ(Xi1, . . . ,Xir )

∥∥∥∥2/(r+1))]

� c1 exp
(
c2t

r+1σ 2 + 2rc2
2t

2(r+1)
∫
Sr ‖ϕ‖4dµ⊗r

n− 2rc2t r+1H

)
for all t r+1 � n(2rc2H)

−1. Notice that ther-dependent constants change from step
to step. Thus we get estimates similar to [1, (2.7), (2.8)] and the result follows by
adopting the calculations of the proof of [1, Proposition 2.3(c), p. 1503]. Letm ∈ N

and {Xk
i : i ∈ N}mk=1 be i.i.d. copies of{Xi: i ∈ N}. Regarding notation, we writei for

(i1, . . . , im), h(Xi) for h(Xi1, . . . ,Xim), andh(Xdec
i ) for h(X1

i1
, . . . ,Xm

im
) (“dec” standing

for “decoupled”).
Another key is a Lévy-type maximal inequality for the tails ofU -statistics. Although

the decoupling method is used to prove some kind of maximal inequalities several times
in the literature (see for example [3, Lemma 2.4], [16, Lemma 3.3]), the following result
does not seem to exist. The proof was suggested by E. Giné in a private communication.

LEMMA 2.5 (Lévy-type maximal inequality,m = 2). – Let {Xn,n ∈ N} be a
sequence of independent identically distributed random variables with values in a
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measurable space(S,S) and suppose that the kernel functionh :S2 → R is symmetric
and measurable. Let{Xk

n, n ∈ N}, k = 1,2, be two independent copies of{Xn, n ∈ N}.
Then there exist universal constantse1, e2 andf1, f2 (finite and positive) such that

P

(
max
k�n

∥∥∥∥ ∑
I (2,k)

h(Xi,Xj)

∥∥∥∥> t)

� e1P

(∥∥∥∥ ∑
I (2,n)

h(Xi,Xj )

∥∥∥∥> e2 t

)
+ f1P

(∥∥∥∥∥
n∑
i=1

h
(
X1
i ,X

2
i

)∥∥∥∥∥> f2t

)
. (2.6)

Due to the influence of the diagonals, results forU -statistics of arbitrary degreem
are more complicated to formulate. Let us define

∑∗
(c) h(X

1
i1
, . . . ,Xm

im
) for c= 1, . . . ,m,

where
∑∗

(c) is taken over allm-tuples(i1, . . . , im) formed from the set{1, . . . , c} having
exactly c indices distinct. The sum

∑∗
(c) contains exactlyc!S(c)m summands, where the

quantitiesS(c)m are Stirling numbers of the second kind. We obtain

n∑
i1,...,im=1

h
(
Xdec

i

)= m∑
c=1

∑
i:camongi1,...,im

distinct

h
(
Xdec

i

)

=
m∑
c=1

∑
1�i1<···<ic�n

∗∑
(c)

h
(
Xdec

i

)
. (2.7)

For simplicity let us denote by
(
hc∗(Xdec

i )
)

the family of all elements of the sum
∑∗

(c).

For example ifm= 3, we obtain
∑∗
(1) h(X

dec
i )= h(X1

i1
,X2

i1
,X3

i1
),

∗∑
(2)

h
(
Xdec

i

)= h(X1
i1
,X2

i1
,X3

i2

)+ h(X1
i1
,X2

i2
,X3

i1

)+ h(X1
i2
,X2

i1
,X3

i1

)
+ h(X1

i1
,X2

i2
,X3

i2

)+ h(X1
i2
,X2

i1
,X3

i2

)+ h(X1
i2
,X2

i2
,X3

i1

)
and

∗∑
(3)

h
(
Xdec

i

)= h(X1
i1
,X2

i2
,X3

i3

)+ h(X1
i1
,X2

i3
,X3

i2

)+ h(X1
i2
,X2

i1
,X3

i3

)
+ h(X1

i2
,X2

i3
,X3

i1

)+ h(X1
i3
,X2

i1
,X3

i2

)+ h(X1
i3
,X2

i2
,X3

i1

)
.

LEMMA 2.8 (Lévy-type maximal inequality). –Let {Xn,n ∈ N} be a sequence of
independent identically distributed random variables with values in a measurable space
(S,S) and suppose that the kernel functionh is a symmetric measurableRd -valued
function. Let{Xk

n, n ∈ N}, k = 1, . . . ,m, bem independent copies of{Xn,n ∈ N}. Then
there exist universal constantsemc andf mc , c = 1, . . . ,m (finite, positive and depending
onm only) such that

P

(
max
k�n

∥∥∥∥ ∑
I (m,k)

h(Xi1, . . . ,Xim)

∥∥∥∥> t)
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� emmP

(∥∥∥∥ ∑
I (m,n)

h(Xi)

∥∥∥∥> fmm t)+
m−1∑
c=1

∗∑
(c)

emc P

(∥∥∥∥ ∑
I (c,n)

hc∗
(
Xdec

i

)∥∥∥∥> fmc t). (2.9)

Remark2.10. – Lemmas 2.5 and 2.8 are true for any symmetric kernelh with values
in any separable Banach space.

A decoupling inequality for the tail probabilities of multivariateU -statistics is the key
for the proof of Lemmas 2.5 and 2.8. We state here the pertinent result from de la Peña
and Montgomery-Smith [24, Theorem 1]:

PROPOSITION 2.11 (Decoupling for tails). –For natural numbersn � m, let
{Xn, n ∈ N} be a sequence of independent random variables with values in a measurable
space(S,S), and let {Xk

n, n ∈ N}, k = 1, . . . ,m, be m independent copies of this
sequence. LetE be a separable Banach space and, for each(i1, . . . , im) ∈ I (n,m),
let hi1,...,im :Sm → E be measurable functions. Then there are constantscm ∈ (0,∞),
depending onm only, such that for allt > 0

P

(∥∥∥∥ ∑
I (m,n)

hi1,...,im(Xi)

∥∥∥∥
E

> t

)
� cmP

(
cm

∥∥∥∥ ∑
I (m,n)

hi1,...,im
(
Xdec

i

)∥∥∥∥
E

> t

)
. (2.12)

If, moreover, the functionshi1,...,im are symmetric in the sense that, for allx1, . . . , xm ∈ S
and all permutationsπ of {1, . . . ,m},

hi1,...,im(x1, . . . , xm)= hiπ(1),...,iπ(m)(xπ(1), . . . , xπ(m)),

then the reverse inequality holds true. In particular, there are constantsdm ∈ (0,∞)

depending onm only, such that for allt > 0

P

(∥∥∥∥ ∑
I (m,n)

hi1,...,im
(
Xdec

i

)∥∥
E
> t

)
� dmP

(
dm

∥∥∥∥ ∑
I (m,n)

hi1,...,im(Xi)

∥∥∥∥
E

> t

)
. (2.13)

Furthermore, for the proof of Lemmas 2.5 and 2.8 we use an extension of the
classical Lévy inequality for sums of independent symmetric random vectors to sums
of not necessarily symmetric i.i.d. random vectors. The proof has been found in [23,
Theorem 1, Corollary 4] (see also [15, Section 2.4]).

PROPOSITION 2.14 (Lévy’s inequality for asymmetric random vectors). –There
exist universal constantsc1 and c2 such that if {Xi}i∈N are i.i.d. E-valued random
variables, where(E,‖ · ‖E) is a separable Banach space, then, for1� k � n,

P

(
max
k�n

∥∥∥∥∥
k∑
i=1

Xi

∥∥∥∥∥
E

> t

)
� c1P

(∥∥∥∥∥
n∑
k=1

Xi

∥∥∥∥∥
E

> c2t

)
.

For example we can choosec1 = 9 andc2 = 1/30.

Propositions 2.11 and 2.14 can be extended to Banach spacesE not necessarily
separable, a situation that arises in the context ofU -processes. A good reference for
details is [15] and references therein. Thus we obtain (details of the proof are omitted):



P. EICHELSBACHER / Ann. Inst. H. Poincaré, Probabilités et Statistiques 37 (2001) 245–273261

COROLLARY 2.15. – There are versions of Proposition2.11, Proposition2.14and
Lemma2.8 for U -processes indexed by arbitrary families of kernels.

Proof of Lemmas 2.5 and 2.8. –For eachk ∈ N define functionshk taking values in
(ln∞,‖ · ‖∞), the space(Rd)n endowed with the supremum norm, as follows:

hk := (0, . . . ,0︸ ︷︷ ︸
k times

, h, h, . . . , h).

Thus it is obvious that

max
k�n

∥∥∥∥ ∑
I (m,k)

h(Xi1, . . . ,Xim)

∥∥∥∥= ∥∥∥∥ ∑
I (m,n)

hi1∨i2∨···∨im(Xi1, . . . ,Xim)
∥∥∥∥∞. (2.16)

Applying first (2.16), then Proposition 2.11 forE = ln∞, and again (2.16) it follows that

P

(
max
k�n

∥∥∥∥ ∑
I (m,k)

h(Xi)

∥∥∥∥> t)� cmP

(
cm

∥∥∥∥ ∑
I (m,n)

hi1∨i2∨···∨im
(
Xdec

i

)∥∥∥∥> t)

= cmP

(
cm max

k�n

∥∥∥∥ ∑
I (m,k)

h
(
Xdec

i

)∥∥∥∥> t). (2.17)

For the clarity of exposition we present only the proof of Lemma 2.5. This is notationally
much less involved than the general case and already contains the main idea. The general
case is proved by iteration. Remark that

P

(
max
k�n

∥∥∥∥ ∑
I (2,k)

h
(
X1
i ,X

2
j

)∥∥∥∥> t)

� P

(
max
k�n

∥∥∥∥∥
k∑

i,j=1

h
(
X1
i ,X

2
j

)∥∥∥∥∥> t/2
)
+ P

(
max
k�n

∥∥∥∥∥
k∑
i=1

h
(
X1
i ,X

2
i

)∥∥∥∥∥> t/2
)
. (2.18)

The result can now be obtained by conditionally applying Lévy’s inequality (Proposi-
tion 2.14) twice: For every 1� l � n let sl be an element in(ln∞,‖ · ‖∞), defined by

sl :=
(

k∑
i=1

h
(
X1
i ,X

2
l

))n

k=1

.

We denote byP2 the conditional probability given{X1
i , i ∈ N}. Now Lévy’s inequality

applied to the conditionally independent and identically distributed random variablessl
gives

P

(
max
k�n

∥∥∥∥∥
k∑

i,j=1

h
(
X1
i ,X

2
j

)∥∥∥∥∥> t/2
)

� EP2

(
max
k�n

∥∥∥∥∥
k∑
l=1

sl

∥∥∥∥∥∞ > t/2

)

� 9EP2

(
30

∥∥∥∥∥
n∑
l=1

sl

∥∥∥∥∥∞ > t/2

)
= 9P

(
max
k�n

∥∥∥∥∥30
k∑
i=1

n∑
j=1

h
(
X1
i ,X

2
j

)∥∥∥∥∥> t/2
)
. (2.19)
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The inequality follows now by iteration and by (2.13) of Proposition 2.11: the first
summand in (2.18) can be bounded by

92d2P

(
302d2

∥∥∥∥ ∑
I (2,n)

h(Xi,Xj)

∥∥∥∥> t/4)+ 92
P

(
302

∥∥∥∥∥
n∑
i=1

h
(
X1
i ,X

2
i

)∥∥∥∥∥> t/4
)
.

We apply Proposition 2.14 for the second term in (2.18). Using (2.17) we obtain
the asserted inequality with constantse1 = c2 d292 and e2 = (4c2 d2302)−1 as well as
f1 = c2(9+ 92) andf2 = (4c2302)−1. Using (2.7) we obtain the result. To this end we
decompose these statistics again and again and conditionally apply Lévy’s inequality.
The constantsemc andf mc can be calculated explicitly as a function of the degreem. We
omit this calculation, since for our applications it suffices to know, that the constants
depend only onm. ✷

Remark2.20. – We have to take care of the diagonal terms in the maximal inequality
for U -statistics we presented in (2.9). However, since the arguments of these diagonal
terms are decoupled, we don’t need any additional information about integrability of
diagonal terms for our results as we will see in the proof of Theorem 1.10.

Remark2.21. – Let{εi}i∈N be a sequence of i.i.d. random variables defined on the
space(SN,SN,P) with P(εi = ±1) = 1/2, independent of the underlying sequence
{Xi}i∈N. Let {εki : i ∈ N}k=1,2 be independent copies of{εi: i ∈ N}, independent of
{Xk

i : i ∈ N}k=1,2. For a symmetrized kernel functionε1
i ε

2
jh(X

1
i ,X

2
j ) we can neglect the

diagonal terms in the maximal inequality (2.9). This is an immediate consequence of
the proof of Lemma 3.3 in [16]. However, inequalities comparing tail probabilities for
the random variables

∑
I (2,n) h(Xi,Xj) and

∑
I (2,n) ε

1
i ε

2
j h(Xi,Xj) (which are referred

to as randomization inequalities) have been obtained only one sided: Theorem 3.5.6,
Chapter 3, in [15] yields:

P

(∥∥∥∥ ∑
I (2,n)

ε1
i ε

2
jh

(
X1
i ,X

2
j

)∥∥∥∥> t) � cP

(∥∥∥∥ ∑
I (2,n)

h(Xi,Xj)

∥∥∥∥> ct)

for some constantc. There is no converse of this inequality in general, even form= 1:
see the counterexample in Chapter 3 in [15] (after Theorem 3.5.6). Thus it is not obvious
if in general one can neglect diagonal terms.

We will use the following moment inequality forU -statistics established with de-
coupling and hyper-contractive methods (see for example [7, Theorem 2.7.1, Corol-
lary 2.7.1]).

PROPOSITION 2.22. – Let E be a Banach space of typep, 1 � p � 2 with norm
‖ · ‖E . Let {Xn, n ∈ N} be a sequence of independent random variables with identical
distributions and suppose that the kernel functionh is a symmetricE-valued function
with rankm andE‖h‖qE <∞, q � 1. Then

E

∥∥∥∥ ∑
I (m,n)

h(Xi1, . . . ,Xim)

∥∥∥∥q
E
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�
(
6A1/pm3)mq(1∨ (q − 1)mq/2

)
(n(m))

1∨(q/p)
E‖h(X1, . . . ,Xm)‖qE, (2.23)

whereA is the typep constant, depending onE andp only.

Furthermore we will use the following Bernstein-type inequality forU -processes. It
is proved with decoupling techniques in [2, Theorem 3.2].

PROPOSITION 2.24 (Bernstein inequality forU -processes). –LetH be a measurable
class ofµ-canonical functionsh :Sm → R satisfying:

(a) H is uniformly bounded by1.
(b) There is a Lebesgue integrable functionλ : (0,∞)→ [0,∞) such that for each

probability measureν(
logN2(ε,H, ν)

)m/2 � λ(ε), ε > 0.

Then there are constantsc and c′, depending onm only, such that for allt > 0 and
n�m

P

(∥∥∥∥n−m/2 ∑
I (m,n)

h(Xi1, . . . ,Xim)

∥∥∥∥
H

� t

)
� cexp

(−c′t2/m). (2.25)

3. Proofs of the moderate deviations results

Proof of Theorem 1.10. –Part (a): We will check that the linear termk = 1 in (1.6) is
the leading term for the moderate deviations behaviour. Analogously to (1.3), we define
a random functionTn(t) for t ∈ [0,1] by Tn(0)= 0 and

Tn(t) :=U1
n (t, π1,mh)+

(
t − [nt]

n

)
π1,mh(X[nt ]+1).

With the help of condition (1.8) we obtain the MDP for the sample path sequence
{Tn(·), n ∈ N} (as well as for the sequence{mTn(·), n ∈ N} via the contraction
principle [9, Theorem 4.2.1]) as a consequence of [5]. Notice thatU1

n (t, π1,mh) =
1
n

∑[nt ]
i=1π1,mh(Xi). We will prove that

lim sup
n→∞

n

b2
n

logP

(
n

bn
sup
t∈[0,1]

∥∥W̃m
n (t, h)−E(h)−mTn(t)

∥∥ � δ

)
=−∞ (3.1)

for all δ > 0. Applying [9, Theorem 4.2.13] we obtain the result. Using (1.6) is suffices
to prove that

lim sup
n→∞

n

b2
n

logP

(
n

bn
max

i∈{0,1,...,n}

∥∥∥∥∥
m∑
k=2

(
m

k

)
Uk
n (i/n,πk,mh)

∥∥∥∥∥ � δ

)
=−∞ (3.2)

for all δ > 0. By definition the values ofUk
n(·, πk,mh) are constant on each interval

[i/n, (i + 1)/n) for i ∈ {0, . . . , n − 1} andUk
n(t, πk,mh) = Uk

n (i/n,πk,mh) for all t ∈
[i/n, (i + 1)/n). Lemma 2.8 yields
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P

(
max
i

n

bn

∥∥Uk
n (i/n,πk,mh)

∥∥ � δ

)
� ekkP

(
n

bnn(k)

∥∥∥∥ ∑
I (k,n)

(πk,mh)(Xi)

∥∥∥∥ � f kk δ

)

+
k−1∑
c=1

∗∑
(c)

ekcP

(
n

bnn(k)

∥∥∥∥ ∑
I (c,n)

(πk,mh)c∗
(
Xdec

i

)∥∥∥∥ � f kc δ

)
. (3.3)

Lemma 2.1 applied to the first summand yields for each fixed 2� k �m and sufficiently
largen:

P

(∥∥∥∥ nbnUk
n(1, πk,mh)

∥∥∥∥ � f kk δ

)
= P

(∥∥nk/2Uk
n(1, πk,mh)

∥∥ � f kk bnδn
k/2

n

)
� c1 exp

(
− c2δ

2/kb2/k
n n1−2/k

σ 2/k + (δ1/kHck3)
2/(k+1)(bn/n)2/(k(k+1))

)
,

(3.4)
where the constantsci depend onk, δ andh only and which might change from step to
step. Forn sufficiently large this implies

n

b2
n

logP

(∥∥∥∥ nbnUk
n (1, πk,mh)

∥∥∥∥ � f kk δ

)

� n

b2
n

logc1 − c2

(
c1

(
n

bn

)2−2/k)(
σ 2/k + c2

(
bn

n

)2/(k(k+1)))−1

. (3.5)

The right hand side decreases to−∞ asn tends to∞ by the assumptions on{bn}n∈N. For
c= 1, . . . , k−1 and for every(πk,mh)c∗ we obtain that each summand in the double-sum
in (3.3) can be bounded by

P

(
nk−(c/2)

n(k)

∥∥∥∥ ∑
I (c,n)

(πk,mh)c∗
(
Xdec

i

)∥∥∥∥ � f kc δbnn
k−(c/2)

n

)
. (3.6)

The assumption that the squared norm of theπk,mh, k � 2, satisfies the weak Cramér
conditions, enables us to apply the Bernstein-type inequality for the functions(πk,mh)c∗
for every c ∈ {1, . . . , k − 1} without any additional assumption for(πk,mh)c∗. This
can be done since we obtain in (2.4) in the proof of Lemma 2.1 terms of the form
‖(πk,mh)c∗(X1

(i−1)k+1, . . . ,X
k
ik)‖2. Hence the application of [28, Theorem 2.1] works

with these decoupled entries:
∫
Sk exp(δk‖πk,mh‖2) dµ⊗k <∞ implies∫

Sk

exp
(
δk

∥∥(πk,mh)c∗(X1
i1
, . . . ,Xk

ik

)∥∥2)
dL

(
X1
i1

)⊗ · · · ⊗ dL
(
Xk
ik

)
<∞

for every c ∈ {1, . . . , k − 1}, whereL(Xi
1) denotes the law ofXi

1. Thus (3.2) follows
applying Lemma 2.1 in (3.6) and Lemma 1.2.15 in [9].
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Part (b): Proving the MDP for{Ũm
n (·, h)− E(h), n ∈ N} first we check that

lim sup
n→∞

n

b2
n

logP

(
n

bn
sup
t∈[0,1]

∥∥Ũm
n (t, h)−E(h)− T̂n(t)

∥∥ � δ

)
=−∞ (3.7)

for all δ > 0, whereT̂n(t) := mTn(t)
n([nt]m )
[nt ](nm)

. Using the representation of̃Um
n (t, h) via

Hoeffding’s decomposition, this follows from (3.2), since∥∥∥∥∥
m∑
k=2

(
m

k

) ([nt ]
m

)(n
k

)([nt ]
k

)(n
m

)Uk
n (i/n,πk,mh)

∥∥∥∥∥ �
m∑
k=2

(
m

k

)∥∥Uk
n (i/n,πk,mh)

∥∥.
The result follows from the contraction principle (using that multiplying withtm−1 is
a continuous operation onL∞([0,1],Rd) with respect to the supremum norm) and the
(easily proven) fact that

lim sup
n→∞

n

b2
n

logP

(
n

bn
sup
t∈[0,1]

∥∥T̂n(t)−mTn(t)tm−1∥∥ � δ

)
=−∞

for everyδ > 0. Here we use∣∣∣∣ n
([nt ]
m

)
[nt](n

m

) − tm−1
∣∣∣∣ � C

n
for t ∈ [0,1], nt � 1

and apply [1, Proposition 2.3(d)].✷
Proof of Theorem 1.21. –We follow the lines of the proof of Theorem 1(b) in

[8]. We will first check that for fixedd ∈ N and f ∈ B(Sm,Rd) the sequence
{〈f, (Mm

n −µ⊗m)(·)〉, n ∈ N} satisfies a MDP inD1[Rd] with a convex good rate function

If (φ)=
∞∫

0

�∗(φ̇) dt

for φ ∈ AC0(R+,Rd) and If (φ) = +∞ otherwise. Here�∗(θ) = supλ∈Rd
{〈λ, θ〉 −

1
2

∫
(〈λ, f̃1 − ∫

f̃1dµ〉)2 dµ}, where f̃1 denotes the completelyµ-degenerate function
for f as in (1.19). To do this we first prove the MDP on the spaceD([0,1],Rd), the
space of càdlàg functions from[0,1] to R

d , equipped with the topology of uniform
convergence: if we can show that the non-linear terms of the decomposition (1.20)
do not contribute to the MDP the result follows from [5] (see also [22] and [4]).
The polygonal approximatioñTn(·) of Tn(t) := 〈f̃1,L

1
n(t)〉 satisfies the MDP and the

MDP for {Tn(·), n ∈ N} follows since supt∈[0,1]
∥∥n/bn(Tn(t)− T̃n(t))∥∥ � L/bn for some

constantL <∞ (cf. [9, Theorem 4.2.13]). Hence the result onD([0,1],Rd) follows if
for everyη > 0 and everya ∈ {2, . . . ,m}

lim sup
n→∞

n

b2
n

logP

(
n

bn
sup
t∈[0,1]

∥∥∥∥∫
Sa

f̃a dL
a
n(t)

∥∥∥∥ � η

)
=−∞, (3.8)
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where f̃a denotes the completelyµ-degenerate function forf as in (1.19). Define
kn = b2

n/n. Due to (1.2), we may assume thatkn � 2 for all n ∈ N. Using Chebychev’s
inequality for the first step and Proposition 2.22 for the second step we obtain the
estimate

P

(
n

bn

∥∥∥∥∫
Sa

f̃a dL
a
n(1)

∥∥∥∥ � η

)
�

(
n

bnηn(a)

)kn
E

[∥∥∥∥ ∑
(i1,...,ia )∈I (a,n)

f̃a(Xi)

∥∥∥∥kn
]

�
(

n

bnη
√
n(a)

)kn(
6a3

√
const(kn − 1)

)akn ∫
Sa

‖f̃a‖kn dµ⊗a.

Moreover with the notations of (2.7) we obtain for everyc= 1, . . . , a−1 a similar bound
for

P

(
n

bnn(a)

∥∥∥∥ ∑
I (c,n)

(f̃a)c∗
(
Xdec

i

)∥∥∥∥ � η

)
via Chebychev’s inequality and Proposition 2.22. Using Lemma 2.8 this implies (3.8),
sincef is bounded. The result can easily be adapted to cover the time interval[0, T ]
instead of[0,1]. Next we apply the projective limit approach Theorem 4.6.1 of [9]
for T ∈ N and the MDP inD1[Rd ] for the sequence{〈f, (Mm

n − µ⊗m)(·)〉, n ∈ N}
follows (the representation of the rate function follows as in [9, (5.1.11)]). The MDP
for {〈f, (Mm

n − µ⊗m)(·)〉, n ∈ N} with the same rate function extends to the space
D

proj
β [Rd] (and hence also toDproj

2 [Rd ]). To this end first note that almost surely

(n/bn)〈f, (Mm
n − µ⊗m)(·)〉 ∈ Dβ[Rd] ⊂ D

proj
β [Rd ] (this is the LIL for non-degenerate

U -statistics, see for example [2, Corollary 3.5]). Moreover, we will show thatDIf :=
{φ: If (φ) <∞} ⊂ Dβ[Rd] ⊂D

proj
β [Rd]. Let φ be chosen such thatIf (φ) � L, L > 0.

It follows that φ(t) �
√
LMt for every t ∈ R+, whereM is a constant such that

�∗(y)� ‖y‖2/M . Thusφ ∈Dβ[Rd ]. Notice that the topology onDproj
β [Rd] is generated

by the family of metricsdT (y, z) := supt∈[0,T ] ‖y(t) − z(t)‖/(β(t)), y, z ∈ Dproj
β [Rd]

with T > 0. This family is separating. We apply the concept of exponential equivalence
in completely regular topological spaces [13, Theorem 1.6]: By Chebychev’s inequality,
Lemma 2.8 and Proposition 2.22 we obtain that for everyη > 0 and everyT > 0

lim sup
n→∞

n

b2
n

logP

(
n

bn
sup
t∈[0,T ]

∥∥∥∥∫
Sa

f̃a dL
a
n(t)

∥∥∥∥/β(t)� η

)
=−∞ (3.9)

using similar arguments as in the proof of (3.8). Applying the contraction principle
[9, Theorem 4.2.23], Etemadi’s maximal inequality and Hoeffdings’s inequality, we
get the MDP for {∫S f̃1dLn(·), n ∈ N} (even) in D1

β[Rd ] as in the proof of [8,
Theorem 1(b)]. HereD1

β[Rd] denotes the space of all càdlàg functionsf :R+ → R
d

such that supt∈R+ ‖f (t)‖/β(t) <∞. The MDP inDproj
β [Rd ] follows immediately.

In order to refine the MDP for{〈f, (Mm
n − µ⊗m)(·)〉, n ∈ N} to the topology induced

by the norm‖f ‖β := supt∈R+ ‖f (t)‖/(β(t)m) (and hence also toD2[Rd ]), we apply
the contraction principle [9, Theorem 4.2.23]. LetF denote a measurable extension
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to D1[Rd] of the identity map onDβ[Rd] and consider its continuous approximations
Fl :D1[Rd] → Dβ[Rd] such thatFl(y)(t) = y(t)1[0,l)(t). We have already checked
that P( n

bn
〈f, (Mm

n − µ⊗m)(·)〉 ∈ Dβ[Rd]) = 1 and sinceφ(t) �
√
LMt for all φ with

If (φ)�L, we obtain for everyL<∞

lim
l→∞ sup

{φ: If (φ)�L}
‖Fl(φ)−F(φ)‖β = 0.

Thus the MDP extends to the Banach spaceDβ[Rd ] (and hence also toD2[Rd ]) if we
can show that for everyη > 0 and for eacha ∈ {1, . . . ,m}

lim
l→∞ lim sup

n→∞
n

b2
n

logP

(
n

bn
sup
t�l

∥∥∫
Sa f̃a dL

a
n(t)

∥∥
β(t)m

� η

)
=−∞.

Notice that for a symmetric and completelyµ-degenerate functiong :Sr → R
d with

‖g‖ � c we get by [1, Proposition 2.3(d)]:

P

(∥∥∥∥n−r/2 ∑
(i1,...,ir )∈I (r,n)

g(Xi)

∥∥∥∥ � x

)
� c1 exp

(−c2(x/c)
2/r) (3.10)

for all x > 0 and alln� r , where the constantsci depend only onr . The same inequality
holds forXi replaced byXdec

i . Lemma 2.8 and (3.10) yield

P

(
n

bn
sup
t�l

∥∥∫
Sa f̃a dL

a
n(t)

∥∥
β(t)m

� η

)

�
∞∑
k=0

P

(
max

nl2k�j�nl2k+1

∥∥∥∥ ∑
(i1,...,ia )∈I (a,j)

f̃a(Xi)

∥∥∥∥ � ηn(a)bnβ(l2k)m

n

)

�
∞∑
k=0

(
a−1∑
c=1

∗∑
(c)

eacP

(
1

(nl2k+1)c/2

∥∥∥∥ ∑
i∈I (c,l2k+1)

(f̃a)c∗
(
Xdec

i

)∥∥∥∥ � ηf ac n(a)bnβ(l2
k)m

n(nl2k+1)c/2

)

+ eaaP
(

1

(nl2k+1)a/2

∥∥∥∥ ∑
i∈I (a,l2k+1)

f̃a(Xi)

∥∥∥∥ � ηf aa n(a)bnβ(l2
k)m

n(nl2k+1)a/2

))

�
∞∑
k=0

a∑
c=1

ẽac exp
(
−η2f̃ ac

(bnn(a))
2/c

n1+2/c
log(logl + k log 2)

)
, (3.11)

where we have assumed thatη < 1 and thereforeη2/c > η2. Hence

P

(
n

bn
sup
t�l

∥∥∫
Sa f̃a dL

a
n(t)

∥∥
β(t)m

� η

)

�
∞∑
k=0

c1(a)exp
(
−η2c2(a)

(bnn(a))
2/c

n1+2/c
log(log l + k log 2)

)
.
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Now we use that

(bnn(a))
2/c

n1+2/c
� 1

n

(
bnn(a)

n

)2/a

= n1−1/a
(
b2
nn

2
(a)

n2a+1

)1/a

→∞,

and that
∑∞
k=0 exp(−C log(log l + k log 2)) <∞ if and only ifC > 1. We obtain

n

b2
n

logP

(
n

bn
sup
t�l

∥∥∫
Sa f̃a dL

a
n(t)

∥∥
β(t)m

� η

)

� n

b2
n

logc1(a)− n

b2
n

(bnn(a))
2/c

n1+2/c
log logl + n

b2
n

const.

Fora = 1, takingn→∞ and thenl→∞ yields the result. Since fora ∈ {2, . . . ,m} the
right hand side converges to−∞ for n→∞, independent ofl, we actually have proved
that all terms of ordera � 2 do not contribute to the MDP inDβ[Rd] and therefore the
result inDβ[Rd ] is proved.

We equipD2[B ′(Sm,R)], the space of all càdlàg functions fromR+ toB ′(Sm,R)with
the weakest topology such that the mapsy(·) �→ 〈φ,y(·)〉 :D2[B ′(Sm,R)] �→ D2[R]
are continuous and with the minimalσ -field B2 for which these maps are measurable.
Hereφ ∈ B(Sm,R). Moreover chooseB2 such thatD2[M(Sm)] ∈ B2. We apply the
projective limit approach for càdlàg function spaces, introduced in [8, Theorem A.1].
Hence we obtain the MDP for{(Mm

n − µ⊗)(·), n ∈ N} in the spaceD2[B ′(Sm,R)]. The
corresponding good rate function has the form

Jm∞
(
ν(·))= sup

l∈N,0<t1<···<tl<∞

l∑
i=1

(ti − ti−1)Jm

(
ν(ti)− ν(ti−1)

ti − ti−1

∣∣∣∣µ). (3.12)

Since{Lmn (1), n ∈ N} satisfies the MDP inB ′(Sm,Rd) with the convex rate function
Jm(· | µ) (cf. [14, Theorem 1.21]), this representation follows from Lemma A.3 in [8].
Moreover since both,{(n/bn)(Mm

n − µ⊗m)(·), n ∈ N} and {ν(·): Jm∞(ν(·)) <∞}, are
subsets ofD2[M(Sm)] the MDP also holds in this space by Lemma 4.1.5 in [9]. Next
we define

Km(ν | µ⊗m)= 1

2

∫
Sm

(
dν

dµ⊗m

)2

dµ⊗m,

if ν � µ⊗m andν(Sm) = 0 andKm(ν | µ⊗m) = ∞ otherwise. Letν ∈ M(Sm) satisfy
Jm(ν | µ) <∞. Then the representationν =∑m

i=1µ
⊗i−1 ⊗ ν̃ ⊗µ⊗m−i implies that

dν

dµ⊗m (s1, . . . , sm)=
m∑
i=1

dν̃

dµ
(si) µ⊗m-a.s.

Using the definition ofKm(· | µ⊗m), ν̃(S)= 0 and the definition ofJm(· | µ), it follows
that

Km(ν | µ⊗m)=mJm(ν | µ).
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SinceKm(ν | µ⊗m) � ‖ν‖2
var/2 we obtainJm(ν | µ) � ‖ν‖2

var/2m. Using again the
convexity of Jm(· | µ), we can apply Lemma A.6 in [8] to getJm∞(ν(·)) = JmM(ν(·))
for all relevant paths. Remark that the result inDproj

2 [M(Sm)] as well as inD1[M(Sm)]
follows by the same arguments.

In order to proof the MDP for the sequence{(Lmn − µ⊗m)(·), n ∈ N} we use the fact
that the weak topology onDproj

2 [M(Sm)] is generated by the family of pseudo-metrics

df,T (y, z) := sup
t∈[0,T ]

∥∥∥∥∫
Sm

f dy(t)−
∫
Sm

f dz(t)

∥∥∥∥/(t + 1), y, z ∈Dproj
2

[
M

(
Sm

)]
,

with f ∈ B(Sm,Rd) andT > 0. This family is separating. With [13, Theorem 1.6] the
proof is an adaption of the proof of part (b) in the proof of Theorem 1.10. We omit the
details. ✷

Remark3.13. – The calculations in (3.11) show that

lim
l→∞ lim sup

n→∞
n

b2
n

logP

(
sup
t�l

(
n

bn

)a∥∥∥∫
Sa

f̃a dL
a
n(t)

∥∥∥/(β(t))a � η

)
=−∞

for all 1� a �m.

Proof of Remark 1.22. –We only give a sketch of the proof of (1.23). A similar proof
was already given in [12, Corollary 2.7]. We have to check that

inf
{ 1∫

0

Jm(ν̇ | µ)dt, ν ∈AC0
[
M

(
Sm

)]∩K∞ and
∫
Sm

h dν(·)= φ(·)
}
= ImW(φ). (3.14)

Assume that the right hand side is finite. UsingJm∞(ν(·)) = JmM(ν(·)) and the identity
(3.12) we obtain that the left hand side is greater than or equal to

inf
{ k∑
i=1

(ti − ti−1)Jm

(
ν(ti)− ν(ti−1)

ti − ti−1

∣∣∣µ);∫
Sm

h dν(ti)= φ(ti), 1 � i � k

}
(3.15)

for arbitrary 0= t0 < t1 < · · · < tk � 1. Consider the casek = 1 and t1 = 1, then we
obtain

inf
{
Jm(ν(1) | µ);

∫
Sm

h dν(1)= φ(1), ν(1) ∈K1,∞
}
=�∗

m(φ(1)/m),

whereK1,∞ = ⋃
L�0{D ∈ M(Sm): Jm(D | µ) � L} and�∗

m(·) is the convex dual in
the statement of Theorem 1.10. This fixed-time variational identity follows from [14,
Lemma 3.19]. A simple argument, using the linearity ofν �→ ∫

Sm h dν and the convexity
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of Jm(· |µ) yields that (3.15) is equal to

k∑
i=1

(ti − ti−1)�
∗
m

(
φ(ti )− φ(ti−1)

m(ti − ti−1)

)
.

Since this is true for every(t0, . . . , tk) we obtain by Lemma 5.1.6 in [9] that the right
hand side in (3.14) is smaller than the left hand side. In the case

∫ 1
0 �

∗(φ̇) dt = ∞ it
follows easily that{ν(·): ν(·) ∈ K∞ and

∫
hdν = φ(·)} = ∅. The other inequality,

which is actually more involved, can be proved following step by step the proof of [12,
Corollary 2.7]. ✷

Proof of Theorem 1.25. –First we will check that in our scaling the non-linear terms of
the Hoeffding decomposition do not contribute to the MDP. Denote byRmn the empirical
measure process such that for everyn�m and everyϕ :Sm → R

d

∫
Sm

ϕ dRmn (t)=
m∑
c=2

∫
Sc

ϕ̃c dL
c
n(t).

Let us define

Lm,1n :=
m∑
i=1

µ⊗i−1 ⊗L1
n⊗µ⊗m−i . (3.16)

It suffices to prove that everyη > 0

lim
n→∞

n

b2
n

logP
(‖E(n/bn)Rmn ‖H,β > η)=−∞. (3.17)

Assume thatH satisfies Condition 1.24. Note that for any probability measureν on
Sa the quantity‖πa,mh1 − πa,mh2‖L2(ν) is dominated by the sum of 2a L2-distances.
Thus the conditionN2(ε,H,µ) � (A/ε)v (for all probability measuresµ) implies that
the classes of canonical functions{πa,mh: h ∈ H} satisfy part (b) of the conditions in
Proposition 2.24. With (2.25) and Corollary 2.15 (maximal inequality) we get a bound
for

P

(
sup
t�l

n

bn

∥∥Rmn (t)∥∥H/(β(t)m)� η

)
similar to (3.11) and since the calculations are true for anyl � 0, we get (3.17). In
the remaining part we prove that the sequence{E

L
m,1
n (·), n ∈ N} satisfies the MDP

with the correct rate function. IfH satisfies Condition 1.24 we can use the proof of
Corollary 5.7 and the following remark in [1], using the uniform boundedness ofH,
to get the following remarkable fact: all projectionsπa,mH = {πa,mh: h ∈ H}, a =
1, . . . ,m, satisfy the Central Limit Theorem inl∞(H). Especially this implies using [19,
Theorem 14.6] that the class{π1,mh: h ∈ H} satisfies the sufficient (and necessary)
conditions of Theorem 2 in [27]: the class is totally bounded andE

(n/bn)L
m,1
n (·) → 0 in

probability in l∞(H) for n→ ∞. Notice that{π1,mh: h ∈ H} is uniformly bounded.
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For fixedk ∈ N let Fk ∈H be finite 1/k-nets ofH, i.e. suph∈H minf∈Fk d2(h, f )� 1/k.
Definefk(h) via d2(h, fk(h))= minf∈Fk d2(h, f ) with tie-breaking such thath �→ fk(h)

is Borel measurable in(H, d2). Moreover, denoteEk,ν(·) = 〈fk(·), ν〉 ∈ l∞(H). Adopting
the arguments of [8, Theorem 2(b)], which uses the isoperimetric inequality of [26,
Theorem 3.5] as well as Etemadi’s maximal inequality, we obtain

lim
k→∞ lim sup

n→∞
n

b2
n

logP

(∥∥E n
bn
L
m,1
n

−E
k, n
bn
L
m,1
n

∥∥
H,β > η

)
=−∞.

For the last step of the proof we adapt the proof of [8, Theorem 2(b)] using some
properties of the rate functionJm(· | µ). Let Fk = {f1, . . . , fd} for somed = dk and
denotef = (f1, . . . , fd). By Theorem 1.21, applying the contraction principle, we know
that 〈f, (Mm

n − µ⊗m)(·)〉 satisfies the MDP inD2[Rd ] with the good rate function
If (φ(·))= inf{ν(·): φ(·)=〈f,ν(·)〉} JmM(ν(·)). Denote by

KL := {
ν(·): JmM

(
ν(·)) �L

}⊂D2
[
M

(
Sm

)]
.

With (3.12) it follows thattJm
(
ν(t)

t

∣∣µ) � JmM(ν(t)) for every t > 0. For eachν(·) ∈ KL

and everyt > 0 there exists a densitydν(t)/dµ⊗m such that

1

2t

∫
Sm

(
dν(t)

dµ⊗m

)2

dµ⊗m = tKm

(
ν(t)

t

∣∣∣∣µ⊗m
)
= tmJm

(
ν(t)

t

∣∣∣∣µ) � L m.

Thus φ(t) �
√

2tLm for If (φ(·)) <∞ and is follows that{φ(·): If (φ(·)) <∞} ⊂
Dβ[Rd ]. We have seen in the proof of Theorem 1.21 that〈f, (Mm

n − µ⊗m)(·)〉 satisfies
the MDP inDβ[Rd]. The uniqueness of the rate function (cf. [9, Lemma 4.1.4]) and [9,
Lemma 4.1.5] imply that the rate function isIf (·). Identifying Ek,ν(·) with 〈f, ν(·)〉
(remember thatf depends onk) the MDP inDβ[l∞(H)] with the good rate

JmH,k
(
H(·))= inf

{
JmM

(
ν(·)): ν(·) ∈AC0

[
M

(
Sm

)]∩K∞ andEk,ν(·) =H(·)}
follows via the contraction principle [9, Theorem 4.2.23]. The mappingν(·) �→
Ek,ν(·) :KL →Dβ[l∞(H)] is continuous for everyk. Define

Hη := {h− g: h,g ∈H andd2(h, g)� η}.
Forν(·) ∈KL it follows that

‖ν(t)‖H1/k � sup
{h:

∫
Sm
h2dµ⊗m�1/k2,‖h‖�1}

∥∥∥∥∫
Sm

h
dν(t)

dµ⊗m dµ
⊗m

∥∥∥∥ � c(m)

√
2Ltm

k
,

wherec(m) is a constant, depending only onm. Sinceh−fk(h) ∈H1/k for everyh ∈H
we conclude that‖Eν(t) − Ek,ν(t)‖H � ‖ν(t)‖H1/k for everyν(t) ∈ M(Sm). Hence we
obtain that‖Eν −Ek,ν‖H,β → 0 ask→∞, uniformly overKL. Thus we can apply the
contraction principle [9, Theorem 4.2.23] and the result is proved.✷
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