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ABSTRACT. — The moderate deviations principle is shown for the partial sums processes built
of U-empirical measures and &f-statistics. It is proved that in the non-degenerate case the
conditions for the fixed time principles suffice for the moderate deviations principle to carry over
to the corresponding partial sums processes. Given a uniformly bounded VC subgraph class
functions, we obtain corresponding moderate deviations for time depebdpriicesses. We
use decoupling techniques and apply an improved version of a Bernstein-type inequality fo
degeneratd/-statistics. Moreover, we prove and use a Lévy-type maximal inequality/for
statistics 0 2001 Editions scientifiques et médicales Elsevier SAS
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RESUME. — Nous établissons le principe de déviations modérées pour les processus de somm
partielles construits & partir dé€g-mesures empiriques et désstatistiques. Nous montrons
gue dans le cas non-dégénéré les conditions pour les résultats a temps fixe suffisent aussi p
le cas des processus de sommes partielles. Etant donné une classe de fonctions de Vapn
Chervonenkis uniformément bornée, nous obtenons les déviations modérées correspondan
pour lesU-processus dépendant du temps. Nous utilisons des techniques de découplage
appliquons une version améliorée d'une inégalité de type Bernstein podr-&atistiques
dégénérées. De plus nous démontrons et utilisons une ingégalité maximale de Lévy pour le
U -statistiquest 2001 Editions scientifiques et médicales Elsevier SAS

1. Introduction and statement of the results

For a sequence oR’-valued i.i.d. random variableX; with a finite moment
generating function Borovkov and Mogulskii [5] investigated the moderate deviation
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behaviour of the polygonal approximation of the partial sums process

1 n
Sn(t)=;;Xi, t €[0,1]. (1.1)

In an appropriate topology, Dembo and Zajic [8] proved a moderate deviations principle
for the partial sums empirical process

["t]

L,(t)== Z&, 1.

Given a class of bounded functiot’s, Dembo and Zajic [8] considered the moderate
deviations principle for functional empirical processes

1 [nt]
La(t, )==> f(Xp), t€l01] feF.
i=1

The aim of this paper is to extend the moderate deviations principle when passing fron
linear statistics to higher order statistics.

Let us recall the definition of the large deviations principle (LDP). A sequence of
probability measuregu,, n € N} on a topological spac&’ equipped witho -field 5 is
said to satisfy the LDP with speeq | 0 and good rate functioti(-) if the level sets
{x: I(x) <a}are compact for alk < co and for alll" € B the lower bound

liminfa,logu,(T') > — inf I(x),
n—oo xeint(T")

and the upper bound

limsupa, logu, (T < — inf I(x)

n— 00 xeclI)
hold. Here intI") and c(I") denote the interior and closure Bf respectively. We say
that a sequence of random variables satisfies the LDP when the sequence of measul
induced by these variables satisfies the LDP. {gt,.n C (0,00) be a sequence
satisfying

b, .

im 2 =0 and _lim > =0. (1.2)

n—-oo p n—00
If X is a topological vector space then a sequence of random varighles € N}
shall satisfy the moderate deviations principle (MDP) with spbéealnd with good rate
function I(.), if the sequence&b Z,,n € N} satisfies the LDP inX’ with the good rate
function 7 (-) and with spee({—

Denote byL .. ([0, 1], R?) the space of (equivalence classes modulo equality a.e. of)

bounded measurable functions @) 1], equipped with the uniform topology. Consider
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the polygonal approximation ¢, (-), that is

§n(t) =8,0) + <t - [l;l/l—t]> X[nt]Jrl' (13)

Note~that§,,(-) is continuous and carries the same informationSas). The MDP
for {S,(-),n € N} was established i, ([0, 1], RY): By ACo([0, 1], R¢) denote the
subspace of absolutely continuous functignen [0, 1] with ¢(0) =0. Let{X,,,n € N}

be a sequence of i.i.d. random variables on a probability s@cel, P) with values in
R4, common law: andE (X 1) = 0. Borovkov and Mogulskii [5] considered (essentially)
the MDP in the i.i.d. case under the condition tligexp((6, X1)) < oo in some ball
centered at the origin;, -) denotes the Euclidean scalar producRthand|| - || a norm

in R¢. The sequencg;-S, (), n € N} satisfies the LDP il « ([0, 1], R%), equipped with
the uniform topology, with good rate function

1
Io($) = / A*(@) dr, (1.4)

0

if ¢ € ACo([0, 1], RY) and I.(¢) = oo otherwise (see also [22, Theorem 1] and [4,
Theorem 3.1]). Here\* denotes the convex dual of(9) =E((6, X1)?)/2, that is

A*(x) 1= sup{(6, x) — A(®)}.
feRd

1.1. Moderate deviationsfor partial sums U-statistics

We will consider the MDP for different partial sums processes connected tiith
statistics. Recall that

1 1
U;;n(h)=T E h(Xi]_a""Xim)z— E h(Xi]_a""Xim)a
(m) cn m) 1)

is called aU-statistic. Here theX; are i.i.d. random variables aridis a measurable,
symmetric,R¢-valued function, called kernel function, where symmetric means/that
is invariant under all permutations of its argumer@$, with k, m € N denotes the set
{1y o) L<in <o <y <Kk}, ngmy =119 (n — k) and I (m,n) C (1,...,n}"
contains alln-tuples with pairwise different components.

While U-statistics were introduced by Hoeffding [18] as a generalization of the
empirical mean to the case of multivariate functions, later different types of stochastic
processes related witti-statistics have been studied, see for example Miller and Sen
[21], Hall [17] and Mandelbaum and Taqqu [20]. There the authors basically proved
invariance principles and the weak convergence of appropriately normalized partial sum
U -statistics to Brownian motion, functionals of Brownian motion, or limit processes
expressible as multiple Wiener integrals.

To be able to formulate our results we will next describe the Hoeffding decomposition.
The operatow,ﬁfm =mm, k=0,1,...,m, acts onu®"-integrable symmetric functions
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h:S"™ — R as follows:
Temh(X1, .. X)) = 5, — W) ® -+ ® (8, — 1) @ u®" ",
where

v1®---®vmh=/---/h(xl,...,xm)dvl(m)---dvm(xm)

and
UV (x) = / - / B(eL <y X1, X) A (31) -~ d (1)

A function 4 is calledu-canonicalor completely degenerate [ i (x, ..., x,) du(x;) =
0 for all 1 <i < m. Note thatm; s is a p-canonical function ofk variables. If
mimh # 0, thenh is callednon-degenerateWith this notation we can decomposé/a
statistic into a sum ofi-canonicall -statistics of different orders. For al®"-integrable
functionsh : ™ — R the following relation holds true

OB (’") UK () (1.5)

k=0 k

(cf. (3.5.1) in [15]). HereU°(mq,,h) = u®"h. Consider thepartial sumsU -statistics
that is

1
Urt,h):=—=> h(Xy,....X;,), t€[01].
(m) C[nr]

We will prove the MDP for the process

m

wr =Y (’Z) UKt memh), 1 €0, 1], (1.6)

k=0

as well as forU)' (¢, h), t € [0, 1], in the non-degenerate case in the uniform topology.
In Hall [17] and Mandelbaum and Taqqu [20] functional limit theorems for the
processW, (-, h) are discussed. Remark that using (1.5) the prot&ss, i) gets the
representation

m [nt]\ (n
Ui,y =3 ('Z) %AU,C‘(L Temh).

=0 \K/) (G
The additional factors%t]])% influence the behaviour of this process and we will

k
observe another rate function.
To be more precise, we will prove a MDP result for the polygonal approximation
process, that is

~ 1
U;qm(ta h) = U;qm(ta h) + (l/lt - [nt]>T Z h(Xi]_a B Xim,]_a X[nl]+l)a
[nt]

() :

m—1

t €[0,1].
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Denote byW,’ﬁ(t,h) the process given by (1.6) whelé!(z, ;. ,,h) is replaced by
l7,f(t, e.mh) for everyk € {0, ..., m}. Proving the MDP for{Wg"(-, h),n € N}, we will
prove that the proces{sﬁ,}(-,nl,mh), n € N} satisfies a MDP and that the sequences
{U,f(-,nk,mh), n € N} do not contribute to the moderate upper and lower bounds for
2 < k < m. To this end we will use an improved Bernstein-type inequality (Lemma 2.1);
for bounded kernel functions this type of inequality was proved in [1] (see also [15,
Theorem 4.1.12]). Moreover we will prove and apply a Lévy-type maximal inequality
for U-statistics (Lemmas 2.5 and 2.8). The MDP {of)(-, h), n € N} can be deduced
from the MDP for{W,’f’(-, h), n € N} using the contraction principle and the concept of
exponential equivalence (see [9, Theorem 4.2.1 and Theorem 4.2.13]). Consider

Condition 1.7 Weak Cramér conditign— For each X k < m there exists &, > 0
such that

/ exp(8i lmx mh [1?) du® < oo

Sk
and there exists &> 0 such that

/exp(aunl,mhn)du < 00. (1.8)
S

Here| - | denotes the standard Euclidian normih
Define
A% (x) := sup{(8, x) — A (0)}, (1.9)
9cR4
with
Aw(©) =E((0, 11mh(X1))?) /2.
THEOREM 1.10 (Moderate deviations of partial surtisstatistics). —Assume that
Conditionl1.7is satisﬂed for a symmetric kernel functibnthen
(@) the sequencéW” (-, h) — E(h), n € N} satisfies the MDP ir ([0, 1], R?) with
good rate function

1
1@ = [ A @/m)ar
0

if ¢ € ACo([0, 1], R?) and I (¢) = oo otherwise. The speedigb?;
(b) the sequenceﬁf(-, h) —E(h), n € N} satisfies the MDP il ([0, 1], RY) with
good rate function
1
1"(¢) = /A;; (¢/(mt™Y)) dt,
0

if ¢ € ACo([0, 1], R?) and the integral exists and;} (¢) = oo otherwise. The
speed ist /b2,
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Remark1.11. —
(@) The weak Cramér conditions in 1.7 are equivalent to the following conditions:
Assume that for each2 k < m

1
Ellmemhl® < SUHEllmenhl®, 1=23,...,

and
! 1 -2 2
Ellmymhl|l” < E“H Ellwymhll

(see for example [29, Remark 3.6.1]).

(b) We can easily adapt the result to a time intef@all’]. Applying Theorem 4.6.1
of [9] for T € N yields a MDP for{U)'(-, h) — E(h),n € N} and{W" (-, h) —
E(h),n € N}, respectively, in ACo(R,, RY) equipped with the topology of
uniform convergence on compact subset®R of

In the following examples we discuss the MDP for the seque{aﬁ?;é(-, h)y—E(h),ne
N}.

Example 1.12. — Consider theample variancé/'®, which is aU -statistic of degree
2 with kernel functiom: (x, y) = %(x — y)2. A simple calculation shows that

1 2
m12h(x) = 5(()6 —E(X1))* — Var(Xy)),

where VarX;) denotes the variance of; underu. It is well known, that we are in the
non-degenerate regime, if the distributipnsatisfies the conditioft(X; — E(X1))* >
Var(X1)?. If u satisfies Condition 1.7, the rate function can be calculated as follows:
we obtain for the sample variance tha(6) = %(}E(Xl —E(X1)* — (Var(X1))?) =:
%c(u). Hence the rate function is

— 1 i 12 d
e ) = 57 0/ @)2dt, ¢ € ACo(R,. RY).

Consider the coin tossing with(X; =1) = p, P(X; =0 =1—- p and O< p < 1,
p #1/2. We are in the non-degenerate case and the corresponding rate function is

Ibernoulli(¢) —

var

172
20— p)(p — 497 + 40 0/ o

Example 1.13. — Note that for the kernel functiol(x, y) = xy (sample second
momeny, we obtainr 2k (x) = E(X;)(x — E(X;)). Therefore

A0 1 EX )2 2_. 12
2(0) = S(EXy)"Var(Xy)o® =: 50%c(u).
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The U-statistic is non-degenerate jf fulfills (EX;)?Var(X;) # 0. In this case the
corresponding rate function is

1 7, .
ledd) = g O/ @2di, ¢ ACo(R,,RY).

Ion the calse of Bernoulli random variables we obtain theg}@ééfm I (¢)2dt for every
<p<l1l

Example 1.14. — In the case of th&Vilcoxon one sample statistibe kernel is given
by h(x,y) = Ly 1y>0(x, y). If F(-) denotes the distribution function &f,, we obtain
mi2h(x) =1— F(—x) — P(Xl + X > O) and

maoh(x,y) =h(x,y) — (1= F(=x)) — (L= F(-=y)) + P(X1+ X2 >0).

We restrict ourselves to the class of distribution functiétis which are continuous and
symmetric in 0. TherE(h) =P(X1 > X5) = % Moreover a simple calculation shows
that

1 1
A20) = EGZE((l— F(=0)" = (1= F(=0) + Z)

1

1
1 : 1 62
:—92/2 —/d -l =.
2<.ydy yay+ =24

0 0

Conditions 1.7 are fulfilled for every. since i is bounded. Thus we get for every
C@tinuous distribution functionF(-), symmetric in 0, a MDP for the sequence
{W2(, 1z4y>0) — 1/2, n € N} with good rate function

37 .
T (9) = / ($)2d1.
0

Hence the Wilcoxon one sample statistic is asymptotically distribution free. The same
is true for theWilcoxon signed rank statisticThe MDP can be deduced from the
MDP of the one sample statistic: consider the test problem specified by the hypothesi
Hy := {F: F continuous and symmetric in} Ggainst all other symmetric, continuous
distribution functions. This test can be performed using the Wilcoxon signed rank
statistic W: denote R;" the rank of|X;| among all|X4],...,|X,|. W is defined as

W =1/2%", R"(1+ sign(X;)), and can be written as a sum of twostatistics:

n

W =nUxhy) + (2

)U,,z(l{x+y>(>})
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With A1(x) := 1j,~0)(x). ConsiderW (-) := nWk(-, h1) + (3) W2(-, Ly, 50)- Checking
the MDP for the proceseW (-) — E(W))/(,) we will prove that for every > 0

S ha (X))

L~ E(h)

. n
lim supﬁ IogIP( sup

n— o0 n t€[0,1]

> bné) = -0

holds (see [9, Theorem 4.2.13]). This example already shows the impact of Bernstei
inequalities and the Lévy-type maximal inequality: applying Proposition 2.14 (which is
[15, Theorem 1.1.5]) and inequality (3.10) (which is [1, Proposition 2.3(d)]y ferl

we obtain

Z,[n:th(xi)

S~ Eh)

’

2¢2 _12
IP)( Sup M)

t€[0,1]

> b,,é) <c exp(—cz

with some constants; andc,. Hence the MDP follows with ratéy (-).

The following corollary which follows directly from Theorem 1.10 does not seem to
exist in the literature.

CoOROLLARY 1.15. —If Condition 1.7 is satisfied for the symmetric kernel function
h, then{U™(h) — E(h),n € N} satisfies the MDP ifR¢ with the good rate function
AZ (-/m) (see(1.9))and with speed /b?.

A further example demonstrating the usefulness of Theorem 1.10 is the following.
Consider the functiog : C ([0, 1], RY) — R? (C([0, 1], R?) denotes the space of contin-
uous functions oii0, 1] with values inR?) defined byg (x) := SURj0.11x(1). The func-

tion g is continuous and we can deduce a MDP for the sequgnge. o 1,(W," (¢, h) —
E(h)), n € N} with rate function

J(y) =inf{ I} (¢): s[gri]aﬁ(t) =y}, yeR’

whenever{ W” (-, h) — E(h), n € N} satisfies the MDP with rate functioH:(-). By the
convexity of A we obtainJ (y) = A} (y/m).
The large deviation principle (LDP) fqU,' (h), n € N} is proved in [11].

1.2. Moderate deviationsfor partial sums U-empirical measures

In order to formulate the result on the empirical measure level we need some more
notations. Let( S, d) be a Polish space with metrit Fix m € N. Denote byB(S™, R?)
the set of bounded Borel measurable functions,B§5”, RY) the algebraic dual of
B(S™,R?%) and byC, (5™, R?) the set of bounded continuous functions.

Denote by M(5§™) and M,(S™), respectively, the set of Borel measures on the
Polish spaceS™ which are signed and positive having total measyresspectively.
Unless explicitly stated otherwise, these spaces are equipped withttdpology. Let
D1[R“] denote the space of cadlag functiofisR, — R¢ equipped with the topology
of uniform convergence on compact subset®afand the corresponding BorekHield.
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Let D.[M(S™)] denote the space of cadlag functions frém to M(S™) equipped
with the weakest topology such that the mags — (¢, y(-)) : D1 [M(S™)] — D1[R]

are continuous and the smallestfield B such that these maps are measurable. Here
@ € B(S",R), and(gp, y(-)) = [ @dy(").

Next let D,[[0, T],RY], T > 0, denote the Banach space of cadlag functions
£:00,T] — R? with finite norm sup.o 7 | f(®)Il/(t + 1). Let DY[R] denote the
space of cadlag functiong: R, — R? equipped with the projective limit topology of
the system(D,[[0, T1,R?], T € R,) and let D,[R¢] be the Banach space of cadlag
functions f:R, — R with finite norm supg, IfF @I/ + 1™. All spaces are
equipped with the corresponding Boteffield.

Let DF[RY] and Dg[R?], respectively, denote the space of cadlag functions
f:Ry — RY when in the definition of the norms + 1 is replaced byg(r) =
V2t vI)loglog( v 3). Moreover defineDy" (M (5™)] as the space of cadlag func-
tions y:R, — M(S™) such that(g, y(-)) € D[R] for every ¢ € B(S™,RY),
equipped with the weakest topology such that the maps

YO > (@, y()) : DEPIM(S™)] > DR

are continuous and the smallesfield, such that these maps are measurable. The space
D[ M(S™)] and D[ B'(S™, RY)] are defined in a similar way.

For an i.i.d. sequencgX,,, n € N} with state spacé&, Dembo and Zajic proved in [8,
Theorem 1] the MDP fofL,(-),n € N} in D;[M(S)] as well as inD,[ M (S)] with a
convex good rate function

Jao(v) = [ I G wyr,
0

if v(-) € ACo[M(S)] and J(v(-)) = +oo otherwise. Here the functional (- |
w): M(S) — [0, oo] is defined by

T w) = %/(Z—Z)zdu
S

if v(S)=0,v<pandJ(v|un) = oo otherwise ( is also called the Fisher information).
Using the convexity ofR 5 x — x?2, it follows that J (- | u) is convex.ACo[M(S)] is
defined to be the set of all mapsR, — M(S) with v(0) = 0 which are absolutely
continuous with respect to the variation nofm||var and possess a weak derivative for
almost allz. The latter means that for almost evetye expressionf, v(t+h) —v(t))/h
converges to a limit f, v(¢)) for every f € C,(S, R). In [6] the moderate deviation
behaviour ofL,(-) had already been considered in a weaker form.

Consider the measurds’ : Q — M4 (5™) with n > m, defined by

LZ = — Z (S(Xil ..... Xip)+ (116)



254 p. EICHELSBACHER/ Ann. Inst. H. Poincaré, Probabilités et Statistiques 37 (2001) 245-273

Due to their application, we call the measuiés'},~,, the U-empirical measures of
orderm. We define the functior,,, (- | i) : M(8™) — [0, o] by

1 [/dv\?
Jm(V|M)=§/<m> du
S

if v1(S)=0,v <K pandv=3",u® v, @ue i, and we defing,, (v | 1) = oo
otherwise. The convexity dR > x — x? implies thatJ,, (- | 1) is convex, too. In [14,
Theorem 1.24] the MDP fofL”,n € N} (with rate functionJ,, (- | 1)) is proved for
an arbitrary measurable spac®’, S®") on a suitable subset of all signed measures on
(8™, 8®™), endowed with a topology stronger than the ustbpology which makes
mapsv — [,. ¢ dv continuous even for certain unboundedaking values in a Banach
space.

For technical reasons we have to consider functipns” — R which arenot
symmetric Otherwise, forS # {#, S} andm > 2 we would not be able to separate the
zero measure from the meas@$€” 1 ®4,) — (5, ® " H withx € A e Sandy € S\ A
for example, hence the-topology would loose the Hausdorff property. Giverand a
nonempty subset of {1, ..., m}, definep, € L1(u®4) by p-integratinge(sa, . .., s,)
with respect to every; with i € {1,...,m}\ A. By conventiongy = [, ¢ du®" € R?.
Furthermore, defing, € L. (u®141) by

n ((Si)ieA) = Z(_l)lA\Bl(pB((si)ieB)’ (1.17)

BCA

for every nonemptyA c {1,...,m}, and letgs = ¢y. According to the inclusion—
exclusion principle or the Mébius inversion formula,

OS2, -0y Sp) = Z Pa((si)iea)

Ac{1,...,m}
for u®m-almost all(sy, ..., s,,) € S™. Hence, for every. > m,
[vary =@+ [ (1.18)
sm Czlszr
P-almost surely, where,
Ge= >, @a (1.19)
AcC{1,...,m}
|Al=c

for every c € {0,1,...,m}. Note that everyp, with nonemptyA C {1,...,m} is
completelyu-degenerate. For a symmetkic formula (1.18) is closely related to the
Hoeffding decomposition of the correspondibgstatistic ¢, = ("')7c. (¢)). Define
L7 (¢) fort € [0, 1] as in (1.16) replacing (m, n) by I (m, [nt]). We will prove a MDP
for the procesgL” — u®")(-) as well as fonM" — n®")(-) defined to be the process
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such that for every > m and everyy: S” — R¢

/@den—/¢m@m+§l/%duu) (1.20)

sm sm c=1 Sc

holds.

THEOREM 1.21 (Moderate deviations of partial sunis-empirical measures). —
The sequencé(M” — u®")(-),n € N} satisfies the MDP inDY" [ M(S™)] and in
D,[M(8™)], respectively, with good rate function

T (o)) = [ I ) d
0

for v(-) € ACo[M(S™)] and JZ(v(-)) = +oo otherwise. The speed is/b;. The
sequence (L" — u®m)(-), n € N} satisfies the MDP inD5" [ M (5™)] with the same
speed and good rate function

I O) = [ (/") | 12) di
0

if v(-) € ACo[M(S™)] and the integral exists and” (v(-)) = oo otherwise.

Remark1.22. — Another representation for the rate functigit-) in Theorem 1.10
is:

1@ =int{ [ 4,1 dr, v e ACo[M(S™)] N K
0

mm/%dwo=¢o}, (1.23)

whereK o, :=U;>of{v(): fo J.(V | ) dt < L}. Therefore Theorem 1.10 can be derived
via the contraction principle [9, Section 4.2] from Theorem 1.21. A sketch of the proof
of (1.23) is given after the proof of Theorem 1.21.

For the proof of Theorem 1.21 we establish the moderate principleﬁg}’r(-, h) —

E(h), n € N} whenh is a bounded but possibly asymmetric kernel function. The neces-
sity of this step has been explained above. To this end we apply moment inequalitie
for U-statistics which can be deduced from decoupling and hyper-contractive method:
(cf. [7, Sections 2.5-2.7]). Moreover, we use the MDP ¢, established in [14, The-
orem 1.24], and apply the Lévy-type maximal inequality fbrstatistics (Lemma 2.8)

and a Bernstein-type inequality for bounded kernel functions due to Arcones and Giné
The representation of the rate function is deduced from results of Dembo and Zajic [8
combined with an alternative representatior/gf. | u).
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1.3. Moderate deviations for functional U-processes

Let H C B(S™,R) be a class of functions such thakQh < 1 forallh € H. TheU-
processof orderm indexed byH is defined aqU!"(h), h € H}. U-processes appear
in statistics for example as unbiased estimators of the functign&!'h: h € H}.
Arcones and Giné developed the central limit theorem toprocesses in [1]. An
overview over the theory af/-processes is [15]. Define the pseudo-metig&, h) =

(fom(g— h)zdu‘z’”')l/z. Letl. (H) be the Banach space of all bounded real functions on
‘H with the supremum normhH || = sup,cy | H (). Let Dg[lo(H)] denote the Banach
space of cadlag functiond : R, — I, (H) such that

I1H, |17
1H |75 := SUp——-= < oo,
teR+t ,B(t)

equipped with the Boreb-field. Every signed measutec M (S™) of finite variation
corresponds to an element, € [, (H) such thatE, (k) = [hdv for all h € H. We
regard the random variablds,, ;v —em () as elements abDg[l (H)]. The sequence
{E@m_,omyy, n € N} is called a functional U-process Throughout this paper we
assume that the claggis countable.

To state the result we have to introduce some more notations. Given a pseudo-metr
spaceT, d), thee-covering numbeW (¢, T, d) is defined as

N(e, T,d) =min{n € N: there exists a covering df by n balls ofd-radius < ¢}.

The metric entropy of T, d) is the function logV (e, T, d). We defineNx(e, H, u) :=

N(e, H, || - llL,))- Some classes of functions satisfy a uniform bound on the entropy.
A class of real functiong{ is a Vapnic-€hervonenkis (VC for short) subgraph class if
the subgraphs of the functions in the class form a VC class of sets (subgra@pt of
H: {(x,0) € S" xR: 0<t <h(xy,...,x,) Ofh(xy,...,x,) <t <0}). For adefinition

of a VC class see for example [10]. Any finite-dimensional vector space of functions
(e.g., polynomials of bounded degreeRf) is a VC subgraph class. Notice moreover,
that if C is a VC class of sets anga real function ort, then the clas§l:/¢(C): C €C}
corresponding to a weighted empirical process is a VC subgraph class. The ernfifelope
of H is defined as syp,, |x|. It is well known [25, Proposition Il 2.5] that it{ is a

VC subgraph class then there are finite constanémdv such that, for each probability
measurex with u®” (H?) < oo,

1/2

Na(e, H, 1) < A(u®" (H?) " /e)".

Consider the following type of clagsg:

Condition 1.24. — LetH be a measurable class of functionsS” — R satisfying:

(&) H is uniformly bounded.

(b) There areA > 0 andv < oo such thatNV,(e, H, u) < (A/¢e)v for all probability
measuregt.

Notice that uniformly bounded VC subgraph classesf symmetric functions satisfy
Condition 1.24.
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THEOREM 1.25 (Moderate deviations for functionél-processes). -Assume that
‘H is a class of symmetric functions satisfying Conditib24 Then the sequence
{E - uomy(), n € N} satisfies the MDP imDg[l(H)] with speeds/b? and with good
rate function

Ji m(H () =inf {/Jm(f) | w)dt: v(-) € ACo[M(S™)] N Ko andE, ) = H(-)}.
0

Example 1.26. — There are several examples of claggdn the literature satisfying
the assumptions of Theorem 1.25. We only mention, that the simplicial depth process
empirical distribution functions with the structure ot/astatistic and a class of uniform
Holder functions can be treated. A lot of these examples can be found in [1].

For the proof of Theorem 1.25 we use the MDP fdgjf [14, Theorem 1.24] and apply
the Lévy-type maximal inequality fal/-processes (Corollary 2.15) and the Bernstein-
type inequality in Proposition 2.24 as essential ingredients. Moreover, we apply the MDF
results of [27] as well as Talagrand’s isoperimetric inequalities for empirical processes
[26]. Again the representation of the rate function is deduced from results of Dembo anc
Zajic [8] combined with an alternative representation/gf- | ).

2. Decoupling inequalities and consequences

One key for the proofs is a Bernstein type inequalityedegenerat’ -statistics. For
boundedR-valued kernel functions, the proof is given in [1, Proposition 2.3] and in a
more detailed version in [15, Theorem 4.1.12]. For bounded kernel functions with values
in a Banach space of type 2 a Bernstein type inequality is presented in [7, Theorem 8.1°
Corollary 8.1.5]. In [14] the following Bernstein type inequality for unbounded kernel
functions with squared norm satisfying the weak Cramér condition is proved.

LEMMA 2.1 (Bernstein-type inequality). €onsider a symmetric and completely
degenerate kernel functian: S — R¢. Assume that there exists an> 0 such that

a= /exp(allcp||2) dp® < oo. (2.2)
ST

Definec? = E[|l¢(X1, ..., X)|I?]. If E[p(X1, ..., X,)] = 0, then there exist constants
c1, ¢2, c3, depending om only, and a constané/ depending o and« only such that

2/r
r/2yyr _ c2X
IP)(Hn U" (QD)H Z )C) Sa eXp< a2lr + (Cstl/rn—l/Z)Z/(r-‘rl)) (23)
forall x >0and alln >r. Let{X’,f,n eN}, k=1,...,r, ber independent copies of
{X,, n € N}. Then the same inequalif?.3) holds for the decoupled -statistics, that is
for

1

> e(Xi. .. X)),
e 1o
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We sketch the proof. Using Chebychev’s inequality we obtain for everpd

P(||n"?U; (9)]| = x) < exp(—1x?/ D)
2/(r+1))]

x E [exp((r’r!)z/(r+l)t
since (’:)*l < n7"r"r!. Now we apply Borell's inequality [7, (2.6.5)], the decoupling
technique [7, Theorem 2.5.4], a symmetrization lemma [7, Lemma 2.4.5] as well as
Hoeffding’s formula [7, (1.1.16)]. We get as in the proof of [7, Theorem 8.1.2]:

2/(rJr1)> :|

ln/r]
X E [eXp<2rCzlr+ln_l Z (le(X—prsts -, Xi) 1> — Uz))] . (24)

i=1

‘n_r/z Z QD(Xila---’Xi,-)

1<iz<<iy<n

E {exp( ()2

’nr/z Z (p(Xil"--in,)

1<ip<<ir<n

<cy eXp(czazt’H)

Sincea < oo by (2.2), we obtain for eact > 2 the inequality [, [l¢[|¥ du®" <
SUH'2 [ llo*du® with H = sup.3(2a)Y =2 @ [g l@|*dpu® )72 < oo, cf.

[29, Remark 3.6.1]. Thus we can apply [28, Theorem 2.1], especially formula [28, (2.7)]:
We obtain

n/r] hZBZ
E [GXF)(h Z (lo(X—1yr+1s - - - X2 — 02))] < exp<7")

— 2(1— hH)
foreveryh € [0,1/(H)), whereB? = |n/r]| [y llpl|*dpn® . Considerings = 2rcpt"*/n

we obtain
2/(r+1)
E [exp((r’r!)z/(rﬂ)t )]

—r/2
’l’l / Z (p(Xi]_a""Xir)
1<ig<<ir<n
zrcth(r+l) fS’ ||(0||4 dl/L@r )
n—2rct't1H

for all '+ < n(2rc;H)™L. Notice that ther-dependent constants change from step
to step. Thus we get estimates similar to [1, (2.7), (2.8)] and the result follows by
adopting the calculations of the proof of [1, Proposition 2.3(c), p. 1503].nLetN
and{X*: i e N}, be i.i.d. copies of X;: i € N}. Regarding notation, we writefor
(i1, - im), ROX) fOr R(Xoy, ..., X3,), andh (X9 for h(Xl.ll, ..., X1") ("dec” standing
for “decoupled”).

Another key is a Lévy-type maximal inequality for the tailsldfstatistics. Although
the decoupling method is used to prove some kind of maximal inequalities several time
in the literature (see for example [3, Lemma 2.4], [16, Lemma 3.3]), the following result
does not seem to exist. The proof was suggested by E. Giné in a private communicatior

<c exp(czt’“Lla2 +

LEMMA 2.5 (Lévy-type maximal inequalitym = 2). — Let {X,,n € N} be a
sequence of independent identically distributed random variables with values in a
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measurable spaceS, S) and suppose that the kernel functibnS? — R is symmetric
and measurable. LtX*, n € N}, k = 1, 2, be two independent copies of,,, n € N}.
Then there exist universal constamise, and f1, f> (finite and positive such that

1)
’ > ezt) —|—f11P’<

Due to the influence of the diagonals, results fbistatistics of arbitrary degree
are more complicated to formulate. Let us defEQ) h(Xl.ll, XM fore=1,...,m,
WhereZ’{C) is taken over alln-tuples(iy, ..., i,,) formed from the setl, ..., ¢} having
exactly ¢ indices distinct. The sum_;,, contains exactly'!S© summands, where the

quantitiesS(© are Stirling numbers of the second kind. We obtain

> h(Xi. X))

<
ksl iz

IP’(max

n

S h(XE X?)

i=1

> h(Xi, X))

< €1P <
1(2,n)

> f2t>. (2.6)

n

SO =3 Y A

i1,.0im=1 c=1 i:camongz,...,in
distinct

=‘Z? > ih(x:’“)- 2.7)

c=11<ip<<i.<n (c¢)

For simplicity let us denote by, (X{®9) the family of all elements of the sui;,,.
For example ifn = 3, we obtainy_{;, h(X™9) = h(X}, X2, X3),

11° 11°

> h(X*)=h(X}, X2, X2)+h(X}, X2, X3) + (X}, X2, X3)

11° 11’ 11° 27 127 11°
2

+h(XL X2, X2)+h(XE, X2, X3) +h(XE, X2, X3)

11’ 27 127 11’ 127 27

and

*
S Oh(X®) =h(X} X2, X3) +h(XE, X2, X2)+h(X

11’ 2° 1’ 13°
3

1 2 3
X; Xig)

ip? “tip?

1 2 3
+h(X;. X2, X;) +h(X

ip? “*igz?

1 2 3 1 2 3
i3’ Xil’ Xiz) + h(Xig’ Xiz’ Xil)‘

LEMmMA 2.8 (Lévy-type maximal inequality). tet {X,,n € N} be a sequence of
independent identically distributed random variables with values in a measurable space
(S,S) and suppose that the kernel functiénis a symmetric measurabl?-valued
function. Let{Xfl, neNLk=1,...,m, bem independent copies ¢X,,n € N}. Then
there exist universal constarg¢® and f*, c =1, ..., m (finite, positive and depending
onm only) such that

-)

P(max

k<n

> (X, ... X))

I(m,k)
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m—1 x
<eZl‘IP>< 3 h(Xi)H o f;fz) +Zzegﬂp< S hen (X899 ‘ o fg"z). 2.9)
I(m,n) c=1 (¢) I(c,n)

Remark2.10. — Lemmas 2.5 and 2.8 are true for any symmetric kérméth values
in any separable Banach space.

A decoupling inequality for the tail probabilities of multivarigie statistics is the key
for the proof of Lemmas 2.5 and 2.8. We state here the pertinent result from de la Pefi
and Montgomery-Smith [24, Theorem 1]:

PropPOSITION 2.11 (Decoupling for tails). —For natural numbersn > m, let
{X,., n € N} be asequence of independent random variables with values in a measurable
space(S,S), and let{X*,n e N}, k =1,...,m, be m independent copies of this
sequence. LeE be a separable Banach space and, for eagh...,i,) € I(n, m),
let a4, :S" — E be measurable functions. Then there are constaptg (0, o0),
depending om: only, such that for alt > 0

IF’( >t> échP’(cm
E

If, moreover, the functionk;, _; are symmetric in the sense that, forall ..., x,, € S
and all permutationsr of {1, ..., m},

> t). (2.12)

E

I(m,n) I(m,n)

hil,...,im (Xl, ) Xm) = hin(l),...,in(m) (xn(l)a LR -xﬂ(m))’

then the reverse inequality holds true. In particular, there are constdpts (0, co)
depending om: only, such that for alt > 0

7

Furthermore, for the proof of Lemmas 2.5 and 2.8 we use an extension of the
classical Lévy inequality for sums of independent symmetric random vectors to sum¢
of not necessarily symmetric i.i.d. random vectors. The proof has been found in [23,
Theorem 1, Corollary 4] (see also [15, Section 2.4]).

S by (X9, > r) < dmn»(dm

I(m,n)

i > t>. (2.13)

I(m,n)

PROPOSITION 2.14 (Lévy’'s inequality for asymmetric random vectors).There
exist universal constants; and ¢, such that if{X;};cn are i.i.d. E-valued random
variables, wherdE, || - ||g) is a separable Banach space, then, fo€ k < n,

>t> <01P< in >czt>.
E k=1 E

For example we can choose=9 andc, = 1/30.

Propositions 2.11 and 2.14 can be extended to Banach sgaces necessarily
separable, a situation that arises in the context/ gfrocesses. A good reference for
details is [15] and references therein. Thus we obtain (details of the proof are omitted):

k

>

kesn i=1

P (max
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COROLLARY 2.15. — There are versions of Propositidh11, Proposition2.14and
Lemma2.8for U-processes indexed by arbitrary families of kernels.

Proof of Lemmas 2.5 and 2.8Fer eachk € N define functions:, taking values in
(%, |l - o), the spacéR?)" endowed with the supremum norm, as follows:

hi:=(0,....,0,h h,....h).
5/_/
ktimes

Thus it is obvious that

max (2.16)

<n

§ hilvi2v~~~vim (Xils ey

I(m,n)

> h(Xiy. ... X,)

I(m,k)

o]

Applying first (2.16), then Proposition 2.11 fér = [, and again (2.16) it follows that

P(max 3 h(X)H >z> <enP (cm D Bigvigveei (X7 ‘ >f)
S k) I(m,n)
=cp (cm max > r(X{* ‘ >z> (2.17)
1(m,k)

For the clarity of exposition we present only the proof of Lemma 2.5. This is notationally
much less involved than the general case and already contains the main idea. The gene
case is proved by iteration. Remark that

1 2
(rpgx > h(x} X% >
1(2,k)
k k
<P<ma}lx > (X} X?) >z/2>+ ( x| Y k(X7 X7) >t/2>. (2.18)
X i,j=1 i=1

The result can now be obtained by conditionally applying Lévy's inequality (Proposi-
tion 2.14) twice: For every X/ < n lets; be an element il”,, || - ||«), defined by

k n
5= (Zh(x}, xf)) )
i=1 k=1

We denote byP, the conditional probability givefiX?}, i € N}. Now Lévy’s inequality
applied to the conditionally independent and identically distributed random varigables

gives
k k
(k<n ZZ: > t/2> gEP2<rp<a}lx ;s, ) > t/2>
< 9EP, (30 > r/2> _91P<max 3022}1 > t/2> (2.19)
oo i=1j=1
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The inequality follows now by iteration and by (2.13) of Proposition 2.11: the first
summand in (2.18) can be bounded by
> t/4>.

We apply Proposition 2.14 for the second term in (2.18). Using (2.17) we obtain
the asserted inequality with constarts= c, d>,9* and e, = (4c¢, d>307)~* as well as
f1=c2(9+ 9 and f> = (4¢,30%) 1. Using (2.7) we obtain the result. To this end we
decompose these statistics again and again and conditionally apply Lévy's inequality
The constantg!” and f" can be calculated explicitly as a function of the degre&\Ve

omit this calculation, since for our applications it suffices to know, that the constants
depend only om. O

nhx.l,x?
> h(X}, X7

Pd,P <302d2
i=1

> h(Xi, X))

1(2,n)

>t /4> + %P (302

Remark 2.20. — We have to take care of the diagonal terms in the maximal inequality
for U-statistics we presented in (2.9). However, since the arguments of these diagon:
terms are decoupled, we don’t need any additional information about integrability of
diagonal terms for our results as we will see in the proof of Theorem 1.10.

Remark2.21. — Let{¢;};en be a sequence of i.i.d. random variables defined on the
space(SY, SN, P) with P(s; = £1) = 1/2, independent of the underlying sequence
{Xi}ien. Let {ef: i € N};—1» be independent copies ¢f;: i € N}, independent of
{X}: i € N};_1,2. For a symmetrized kernel functiarte?h (X}, X%) we can neglect the
diagonal terms in the maximal inequality (2.9). This is an immediate consequence o
the proof of Lemma 3.3 in [16]. However, inequalities comparing tail probabilities for
the random variable§”; , ,, 2 (X;, X;) and ", e}efh(Xi, X ;) (which are referred
to as randomization inequalities) have been obtained only one sided: Theorem 3.5.

Chapter 3, in [15] yields:
> t) < cP( > ct>

p( S ede2n (X2, X2)

1(2,n)
for some constant. There is no converse of this inequality in general, evemfes 1.
see the counterexample in Chapter 3 in [15] (after Theorem 3.5.6). Thus it is not obviou:
if in general one can neglect diagonal terms.

> h(Xi, X))

1(2,n)

We will use the following moment inequality fdv-statistics established with de-
coupling and hyper-contractive methods (see for example [7, Theorem 2.7.1, Corol
lary 2.7.1]).

PROPOSITION 2.22. — Let E be a Banach space of type 1 < p < 2 with norm
I llz. Let{X,, n € N} be a sequence of independent random variables with identical
distributions and suppose that the kernel functiois a symmetricE-valued function
with rankm andE||k||% < oo, ¢ > 1. Then

E| > h(Xi.....X,)

q
1(m,n) E
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< (6AYPm®) ™ (1v (g — ") (nu) ' VPEIA (X1, ..., X)E, (2.23)
whereA is the typep constant, depending oB and p only.

Furthermore we will use the following Bernstein-type inequality §bprocesses. It
is proved with decoupling techniques in [2, Theorem 3.2].

PROPOSITION 2.24 (Bernstein inequality fdr -processes). +tetH be a measurable
class ofu-canonical functiong: : S — R satisfying
(&) H is uniformly bounded b¥.
(b) There is a Lebesgue integrable functidn(0, co) — [0, co) such that for each
probability measure

(log Na(e, H, v))m/2 <Ai(e), e>0.

Then there are constantsand ¢/, depending onn only, such that for alk > 0 and

n=>m
B

N (X X )H >t> < cexp(—c't?™). (2.25)

I(m,n)
3. Proofs of the moder ate deviations results

Proof of Theorem 1.10. Rart (a): We will check that the linear terin= 1 in (1.6) is
the leading term for the moderate deviations behaviour. Analogously to (1.3), we define
a random functior¥;, (¢) for r € [0, 1] by 7,,(0) = 0 and

To(t) = U, o) + ( _ [n—])nlmmx[mm

With the help of condition (1.8) we obtain the MDP for the sample path sequence
{T,(),n € N} (as well as for the sequencgnT,(-),n € N} via the contraction
principle [9, Theorem 4.2.1]) as a consequence of [5]. Notice thet, 1,,h) =
15 w1 mh(X;). We will prove that

lim supb IogIP’(b— supHW’"(t h) —E(h) —mT,(1)|| > 6) —00 (3.1

n—00 n t€[0,1]

for all § > 0. Applying [9, Theorem 4.2.13] we obtain the result. Using (1.6) is suffices
to prove that

n—oo

> ( >U,’;(i/n, Temh)

k=

i >8|=— ,
Ilmsupb2 IogIP( b, 601 ..... " /8> o0 3.2)

for all § > 0. By definition the values ot/*(., 7, ,,h) are constant on each interval
li/n, i+ 1)/n) forie{0,...,n — 1} and U*(¢, s nh) = UX(Gi/n, i ,h) for all ¢ €
[i/n, (i +1)/n). Lemma 2.8 yields
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[p)(m_axblHU,’f(i/n, Temh)|| = 5)

n
<eP(— | S b x| > £t5)
k bnn(k) 1(k,n) b I k
k=1
n
+ g E efP(bnl’l(k) E (ﬂk,mh)c*(xgec) ‘ = f¢k8> (33)

c=1 (c) I(c,n)

Lemma 2.1 applied to the first summand yields for each fixedk2< m and sufficiently
largen:

kb S k/2
P(| vk mn| > st5) = (I 20t ] > B2
., n
_ 6282/kb,2l/knl*2/k
S exp<_o2/k Ty ("“)(bn/n)z/"‘("“”)’

(3.4)
where the constants depend ork, § andi only and which might change from step to
step. Fom sufficiently large this implies

2o P(‘KU"(l 7 h)H>fk<S>
b,z, g bn n\L Mk m = Jk

" o\ 22k b\ 2kt ~1
< b_,z, logcy — cz<cl<a> > (oz/k + cz<;") > . (3.5)

The right hand side decreases-too asn tends toco by the assumptions di,, },cn. FOr
c=1,...,k—1and for everym; ,h).. We obtain that each summand in the double-sum
in (3.3) can be bounded by

k—(c/2)
n
e

o)

3,12
L) ) (3.6)

n

> i) e (X9

I(c,n)

E

The assumption that the squared norm of #he,h, k > 2, satisfies the weak Cramér
conditions, enables us to apply the Bernstein-type inequality for the funatiQpgh)..

for every c € {1,...,k — 1} without any additional assumption fdrr ,,/)... This

can be done since we obtain in (2.4) in the proof of Lemma 2.1 terms of the form
e mm)ex(XGi_1yesas - --» X5 112 Hence the application of [28, Theorem 2.1] works
with these decoupled entriefy exp(Sx e/ [1%) du®* < oo implies

/exp(sku(nk,mmc*(x}l,...,x;;)HZ) dL(XL)® - ® dL(X}) < 0o
Sk

for everyc € {1,...,k — 1}, where £(X!) denotes the law ofk. Thus (3.2) follows
applying Lemma 2.1 in (3.6) and Lemma 1.2.15 in [9].
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Part (b): Proving the MDP fofU(-, h) — E(h), n € N} first we check that

Ilmsup IogIP’(b— supHU”‘(r h) —Eh) — fn(t)H > 5) = —00 (3.7)
n t€[0,1]

for all § > 0, whereT,(t) := mT, (t) ( ) . Using the representation @f”’(r h) via
Hoeffding’s decomposition, this foIIows from (3.2), since

m [nt] m
Z ( ) ([nt])(( )>Uk(l/” Tk, mh) Z (Z) HU,I:(I./I’l,JTk’mh)H.

k=2 k=2

The result follows from the contraction principle (using that multiplying with® is
a continuous operation ah. ([0, 1], R?) with respect to the supremum norm) and the
(easily proven) fact that

I|m sup- IogIP(— sup ||T (t) —mT, (" > 8) —00
—00 n te[0,1]

for everys > 0. Here we use

()

m _ tm—l

[nt]()
and apply [1, Proposition 2.3(d)].0

<

C
— forre[0,1],nt>1
n

Proof of Theorem 1.21.We follow the lines of the proof of Theorem 1(b) in
[8]. We will first check that for fixedd e N and f e B(S",RY) the sequence
{(f, (M™ —pn®™)(-)), n € N} satisfies a MDP irD;[R¢] with a convex good rate function

1A@=/®%@m
0

for ¢ € ACo(R,, RY) and I¢(¢) = +oo otherwise. HereA*(6) = sup ga{(2,0) —
I, fu— [ frdw)?dp}, where fi denotes the completely-degenerate function

for f as in (1.19). To do this we first prove the MDP on the spag¢0, 1], RY), the
space of cadlag functions frof, 1] to R¢, equipped with the topology of uniform
convergence: if we can show that the non-linear terms of the decomposition (1.20
do not contribute to the MDP the result follows from [5] (see also [22] and [4]).
The polygonal approximatiof,(-) of 7, (1) := ( f1, LL(t)) satisfies the MDP and the
MDP for {T,(-), n € N} follows since supq y||1/5x (T, (1) — T, (n))|| < L/b, for some
constantZL < oo (cf. [9, Theorem 4.2.13]). Hence the result brg[0, 1], R?) follows if

for everyn > 0 and evernyu € {2, ..., m}

limsup—

n—oo b2

IogIP’(— sup

n 1€[0,1]

/ndLaw ) o, (3.8)
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where f, denotes the completely-degenerate function fof as in (1.19). Define
k, = b?/n. Due to (1.2), we may assume thgt> 2 for all n € N. Using Chebychev’s
inequality for the first step and Proposition 2.22 for the second step we obtain the
estimate
n - n kVL - kll
P(b— /faszu)H >n) < (b ) E[ S ) ]
nll 1) (i1, -sia) €1 (a,n)
Jen
n ak ~
< (=) (8a*Vconsth, — )" [I17ull du™.
(bnn./n(a)) ( ) J
Moreover with the notations of (2.7) we obtain for evert 1, ..., a — 1 a similar bound
for
(Fer (X529 > )
(b I’l(a) 12)
via Chebychev’s inequality and Proposition 2.22. Using Lemma 2.8 this implies (3.8),
since f is bounded. The result can easily be adapted to cover the time inférza]
instead of[0, 1]. Next we apply the projective limit approach Theorem 4.6.1 of [9]
for T € N and the MDP inD;[R?] for the sequencé(f, (M™ — u®")(-)),n € N}
follows (the representation of the rate function follows as in [9, (5.1.11)]). The MDP
for {(f, (M) — u®m (), n € N} with the same rate function extends to the space
D[R] (and hence also td5[R]). To this end first note that almost surely
(n/b)(f, (M — u®™)(-)) € Dg[R?] C D[R] (this is the LIL for non-degenerate
U -statistics, see for example [2, Corollary 3.5]). Moreover, we will show that:=
{¢: 1;(¢p) < 00} C D[R] C DErOJ[]R"]. Let ¢ be chosen such thd(¢) < L, L > 0.
It follows that ¢(r) < /LMt for everyt € R,, where M is a constant such that
A*(y) = |lylI?/M. Thuse € D,g[]R"] Notice that the topology onroJ[Rd] is generated
by the family of metricsdr (v, 2) := Supo. 7 1Y) — 2(OII/(B®)), v,z € DFIRY]
with T > 0. This family is separating. We apply the concept of exponentlal equivalence
in completely regular topological spaces [13, Theorem 1.6]: By Chebychev’s inequality,
Lemma 2.8 and Proposition 2.22 we obtain that for every0 and everyl’ > 0

lim supb logP (— sup

n—oo Oy by, t€[0,T]

/ fadL“(t)H/ﬁ(t) D)=- (9

using similar arguments as in the proof of (3.8). Applying the contraction principle
[9, Theorem 4.2.23], Etemadi's maximal inequality and Hoeffdings’s inequality, we
get the MDP for{fs fidL,(-),n € N} (even) in D;[R’] as in the proof of [8,
Theorem 1(b)]. HereDé[Rd] denotes the space of all cadlag functiofisR, — R?

such that sup || £ (1)[I/B(t) < oo. The MDP inD§™[R?] follows immediately.

In order to refine the MDP fof(f, (M — u®")(-)), n € N} to the topology induced
by the norm|| f i := supcg, IIf ()II/(B@®™) (and hence also t®,[R4]), we apply
the contraction principle [9, Theorem 4.2.23]. LEtdenote a measurable extension
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to D1[R“] of the identity map onDg[R¢] and consider its continuous approximations
Fi: D1[RY] — Dg[R] such thatF;(y)(r) = y(t)1j0, (). We have already checked

that P(;-(f, (M, — w®m)(-)) € Dg[RY]) = 1 and sincep(r) < /LMt for all ¢ with
I1(¢) < < 'L, we obtain for evenl < oo

lim  sup |[Fi(¢) - F(@)llp=0.

I=o0tg: 1:(9)<LY

Thus the MDP extends to the Banach sp&gdgR?] (and hence also t®,[R?]) if we
can show that for every > 0 and for eacta € {1, ..., m}

=

lim lim sup IogIP’( " supw > 77> =—

=00 nsoo by 11 B)™

Notice that for a symmetric and completelyydegenerate functiog:S” — R with
llgll < c we get by [1, Proposition 2.3(d)]:

7

for all x > 0 and alln > r, where the constants depend only om. The same inequality
holds forX; replaced byX“. Lemma 2.8 and (3.10) yield

SEPNI TR

nt>[ B
- b2
S quox > e )

IP)( k k+1
2 < < 2k+ . : .
LEAA i (i1ia)el (@.))

i (E3 e (i

k=0 1 (o)

n~"/? Z g(Xi)H > x> < eXp(—cz(x/c)z/r) (3.10)

(i1,...,ip)EI(r,n)

N
OM8

ST (f)e(XP9

iel(c,I2k+1)

> f;(xi)H > "Jif’nm)bn/s(zzk)m))

k+1\a/2
iel (a,i2k+1) n(nl27)

’ > nffn(mbnﬁ(lZ")m)

n(nl2t+1ye/2

3

a 1
+ aP((nlzk+l)a/2
o a

<> & exp( - 2 o Bun@)”* (log! + klog 2) (3.11)
~ 1ec p 77 fc l’ll+2/c g g g ’ -

k=

o

c=

where we have assumed thak 1 and therefore? > »?. Hence

(2 aplle E01 )
by, t>l B™

> 2 (buna)?/°
<D ala) exp(—n cZ(a)W log(log! + klog 2)) .

k=0
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Now we use that

2 2/a 2.2 1/a
(bnn(a)) /e 2 E bnn(a) :nlfl/a bnn(a) — 00
nlt2/c n n n2a+l ’

and thaty ;2 jexp(—C log(log! + klog 2)) < oo if and only if C > 1. We obtain

o fadL(t
12 |OgP<£ Supw > 77)
by by 1> B)™
iy n (banw)? log | "
< b_g OgCl(a) — b—zw og Ogl + b_rzl const

Fora =1, takingn — oo and therl — oo yields the result. Since fare {2, ..., m} the
right hand side converges teco for n — oo, independent of, we actually have proved
that all terms of ordes > 2 do not contribute to the MDP iDﬁ[]R"] and therefore the
result in Dg[R] is proved.

We equipD;[B’(S™, R)], the space of all cadlag functions frdkn to B'(S™, R) with
the weakest topology such that the mags) — (¢, y(-)): Do[B'(S™, R)] — D[R]
are continuous and with the minimaltfield B, for which these maps are measurable.
Here ¢ € B(S™,R). Moreover choose3, such thatD,[M(S8™)] € B,. We apply the
projective limit approach for cadlag function spaces, introduced in [8, Theorem A.1].
Hence we obtain the MDP fd M — u®)(-), n € N} in the spaceD,[B’(S™,R)]. The
corresponding good rate function has the form

!
Jr(v()) = sup S = ti-1)dm (M

1eN,0<ty<-<fy<00 ;1 i —ti1

u) . (3.12)

Since {L"(1),n € N} satisfies the MDP inB’(S™, R?) with the convex rate function
Ja (- | ) (cf. [14, Theorem 1.21]), this representation follows from Lemma A.3 in [8].
Moreover since both{(n/b,)(M" — u®")(-),n € N} and {v(-): JZ(v(-)) < oo}, are
subsets ofD,[ M (5™)] the MDP also holds in this space by Lemma 4.1.5 in [9]. Next

we define
17/ dv \?
| ") 2 \apen 12

if v u® andv(S™) =0 andk,,(v | u®") = oo otherwise. Letv € M(S™) satisfy
Ja(v | 1) < 0o. Then the representation=>""; u® 1 ® v ® u®"~ implies that

dv “.dv
yeees Sm) = —(S; ®m_a.s.
G O 5) ;du(“ W

Using the definition of,, (- | ©®™), v(S) = 0 and the definition ofl,, (- | ), it follows
that

Kn(v| M®m) =md, (v | w).
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Since K, (v | u®™) > |v||2,/2 we obtainJ, (v | n) > [[v[|%,/2m. Using again the
convexity of J,, (- | n), we can apply Lemma A.6 in [8] to get’ (v(:)) = J;(v(-))
for all relevant paths. Remark that the resuliif ®[ M (5™)] as well as inD1[M (5™)]
follows by the same arguments.

In order to proof the MDP for the sequenfid.” — 1®")(-),n € N} we use the fact
that the weak topology o5 M (5™)] is generated by the family of pseudo-metrics

drr(y,z):= sup
te[0,T]

/fdy(t)—/fdz(t)u/(t—i—l), v,z € DEOLM(S™)].
m Sm

with f e B(S™,R%) andT > 0. This family is separating. With [13, Theorem 1.6] the
proof is an adaption of the proof of part (b) in the proof of Theorem 1.10. We omit the
details. O

Remark 3.13. — The calculations in (3.11) show that

I|m I|msupb IogIP’(sup( ) H/fadL”(t)H/ B(1)) ) —00

>0 p—seo t>1

forall 1< a <m.

Proof of Remark 1.22. We only give a sketch of the proof of (1.23). A similar proof
was already given in [12, Corollary 2.7]. We have to check that

1
inf{/ Jn (W | ) dt,v e ACo[M(S™)] N Kuo and/hdu(-) =¢(-)} =1 (¢). (3.14)
0 Sm

Assume that the right hand side is finite. Usiig(v(-)) = J;;(v(-)) and the identity
(3.12) we obtain that the left hand side is greater than or equal to

k
inf{Z(ti—ti1)Jm(M|u>;/hdv(ti)=¢(ti), 1<i<k} (3.15)
i=1

L —ti—1
Sﬂl

for arbitrary O=1 <, < --- < 1, < 1. Consider the case= 1 ands, = 1, then we
obtain

inf{fmw(l) ;[ hdv() =9, v e Kl,oo} — AL (S (D)/m),
Sm

where K3 .« = Uy oo € M(8™): Ju(o | 1) < L} and A}, () is the convex dual in
the statement of Theorem 1.10. This fixed-time varlatlonal identity follows from [14,
Lemma 3.19]. A simple argument, using the linearitwe$ [, h dv and the convexity
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of J,,(- | w) yields that (3.15) is equal to

{:(Zi DAY <¢(n) - ¢(n_1>).

y m(t; —ti—1)

Since this is true for everyr, ..., #) we obtain by Lemma 5.1.6 in [9] that the right
hand side in (3.14) is smaller than the left hand side. In the gfése*(q's)dt =oo it
follows easily that{v(:): v(-) € Ko, and [hdv =¢(-)} =@. The other inequality,
which is actually more involved, can be proved following step by step the proof of [12,
Corollary 2.7].

Proof of Theorem 1.25. First we will check that in our scaling the non-linear terms of
the Hoeffding decomposition do not contribute to the MDP. Denot& hyhe empirical
measure process such that for every m and everyy : S — R?

[vdrro s [dears.

sm c=. 2sz
Let us define

Lm 1 Zlu@l ® Ll ® M@m i (316)
i=1

It suffices to prove that eveny> 0
. n
Jim b logP (Il E /b rr ll1.p > 1) = —00. (3.17)

Assume thatH satisfies Condition 1.24. Note that for any probability measuom
S¢ the quantity |7, mh1 — 7amh2llL,w) IS dominated by the sum of*2L,-distances.
Thus the conditionVa(e, H, 1) < (A/e)Y (for all probability measureg) implies that
the classes of canonical functiofs, ,s: h € H} satisfy part (b) of the conditions in
Proposition 2.24. With (2.25) and Corollary 2.15 (maximal inequality) we get a bound
for

n m .
P(?;'OEHR” O/ (BO™) = n)

similar to (3.11) and since the calculations are true for Apy0, we get (3.17). In
the remaining part we prove that the sequet{lEgml ,n € N} satisfies the MDP
with the correct rate function. IH satisfies Condltlon 1 24 we can use the proof of
Corollary 5.7 and the following remark in [1], using the uniform boundednesH,of
to get the following remarkable fact: all projections ,,H = {n, ,h: h € H}, a =
1,..., m, satisfy the Central Limit Theorem ig, (). Especially this implies using [19,
Theorem 14.6] that the clads ,,h: h € H} satisfies the sufficient (and necessary)
conditions of Theorem 2 in [27]: the class is totally bounded and, —0in
probability inl(H) for n — oo. Notice that{r ,,h: h € H} is unlformly fjounded
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For fixedk € N let 7, € H be finite I/ k-nets ofH, i.e. SUR.y MiNser, do(h, ) < 1/k.
Define fi.(h) viada(h, fi(h)) =minscx, do(h, ) with tie-breaking such that— fi(h)

is Borel measurable i, d>). Moreover, denoté; ., = ( fi(-), v) € l(H). Adopting

the arguments of [8, Theorem 2(b)], which uses the isoperimetric inequality of [26,
Theorem 3.5] as well as Etemadi’s maximal inequality, we obtain

I|m Ilmsupb IogIP(HE,, i = Ek%w,luﬂﬂ > 77> = —00.

For the last step of the proof we adapt the proof of [8, Theorem 2(b)] using some
properties of the rate functiod,, (- | n). Let 7 = {f1,..., f4} for somed = d; and
denotef = (f1, ..., fs). By Theorem 1.21, applying the contraction principle, we know
that (f, (M™ — u®m)(-)) satisfies the MDP inD,[R¢] with the good rate function
L (@ () =infey: 6 0=rvon i (v(). Denote by

Kp:={v(): Jy(v()) <L} C Da[M(S™)].

With (3.12) it follows thatr J,, (X2|n) < Jp(v(t)) for everyt > 0. For eachv(-) € K,
and every > 0 there exists a densitjy () /du®" such that

1 f(dv)\° an ~ o)
(20 ek (i) s () <

Thus ¢(r) < ~/2tLm for I:(¢(-)) < oo and is follows that{¢(-): 17(¢(-)) < oo} C
Dg[R?]. We have seen in the proof of Theorem 1.21 that(M™ — u®™)(-)) satisfies
the MDP in D4[R]. The uniqueness of the rate function (cf. [9, Lemma 4.1.4]) and [9,
Lemma 4.1.5] imply that the rate function is(-). Identifying Ey ., with (f, v(-))
(remember thay depends o) the MDP inDg[l. (H)] with the good rate

Ji(HEO) =inf {7y (v(): v(-) € ACo[M(S™)] N Koo @NdEy ) = H () }

follows via the contraction principle [9, Theorem 4.2.23]. The mapping
Er vy KL — Dgll(H)] is continuous for every. Define

={h —g: h,g € Handdy(h, g) < n}.

Forv(.) € K, it follows that

dv(t) m ~2Ltm
1Ol < sup / I A" | < clm) 5

{hf h2dp®n<1/k2, ||| <1}

wherec(m) is a constant, depending only en Sinceh — fi(h) € Hyj, for everyh e H
we conclude thallE, ) — Ex.villn < [v(®) 7y, for everyv(r) € M(S™). Hence we
obtain that| E, — Ey .|l s — 0 ask — oo, uniformly overK, . Thus we can apply the
contraction principle [9, Theorem 4.2.23] and the result is proved.
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