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ABSTRACT. – Letµ = µω be the branching measure on the boundary∂T of a supercritical
Galton–Watson treeT = T(ω). Denote byd(µ,u) and d(µ,u) the lower and upper local
dimensions ofµ at u ∈ ∂T. It is well known that almost surely,d(µ,u) = d(µ,u) = logm for
µ-almost allu ∈ ∂T, wherem is the expected value of the offspring distribution. Here we find
exactly when the result holds forall u ∈ ∂T, and obtain some limit theorems about the uniform
local dimensions ofµ. We also find the exact local dimension ofµ atu ∈ ∂T for µ-almost allu.
 2001 Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – Soitµ = µω la mesure de branchement sur le bord∂T d’un arbre super-critique
de Galton–WatsonT = T(ω). Notonsd(µ,u) et d(µ,u) les dimensions locales inférieures et
supérieures deµ enu ∈ ∂T. Il est bien connu que presque sûrement,d(µ,u)= d(µ,u)= logm
pourµ-presque toutu ∈ ∂T, oùm est la moyenne de la loi de reproduction. Ici nous trouvons
exactement quand le résultat vaut pourtout u ∈ ∂T, tout en établissant des théorèmes limites
pour les dimensions locales uniformes deµ. Nous trouvons aussi la dimension locale exacte de
µ enu ∈ ∂T pourµ-presque toutu.  2001 Éditions scientifiques et médicales Elsevier SAS

0. Introduction

Set N∗ = {1,2, . . .} and N = {0} ∪ N∗, and writeU = {∅} ∪ ⋃∞
n=1 (N

∗)n for the set
of all finite sequencesu = u1 . . . un = (u1, . . . , un) including the null sequence∅. If
u = u1 . . .un (uk ∈ N∗), we write |u| = n and u|k = u1 . . . uk, k � n; by convention
|∅| = 0 and u|0 = ∅. For two sequencesu = u1 . . . um and v = v1 . . . vn, we write
uv = u1 . . . umv1 . . . vn for the juxtaposition; by conventionu∅ = ∅u = u. If uu′ = v

for some sequenceu′, we writeu < v or v > u; otherwise we writeu≮ v or v ≯ u. The
notations are extended to infinite sequences in an evident manner.

E-mail address:liu@univ-rennes1.fr, Quansheng.Liu@univ-ubs.fr (Q. Liu).
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Let (�,F,P ) be a probability space,{pn: n ∈ N} be a probability distribution on
N, and{Nu: u ∈ U} be a family of independent random variables defined on�, each
distributed according to the law{pn}. Let T = T(ω) be the correspondingGalton–
Watson tree[19] with defining elements{Nu: u ∈ T}: we have∅ ∈ T and, if u ∈ T
andi ∈ N∗, thenui ∈ T if and only if 1� i �Nu. We shall write

zn = {u ∈ T: |u| = n}
for the set of individuals innth generation, andZn for its cardinality. Let

∂T = {u1u2 . . . : ∀n� 0, u1 . . . un ∈ T}
be theboundaryof T endowed with the ultra-metric

d(u, v)= e−n, wheren= max{k ∈ N: u|k = v|k}, u, v ∈ ∂T.

We always assume thatp0 = 0, thatN =N∅ is not almost surely (a.s.) constant, and that

EN logN <∞, (0.1)

unless otherwise specified. Write

m=EN and α = logm. (0.2)

It is well known that the limit

W = lim
n→∞Zn/m

n

exists a.s. withEW = 1 andP(W > 0)= 1.
For allu ∈ U, let Tu be theshifted treeof T atu: this is the tree with defining elements

{Nuv: v ∈ U}: we have∅ ∈ Tu and, if v ∈ Tu, then for alli ∈ N∗, vi ∈ Tu if and only
if 1 � i � Nuv. Let ∂Tu = {v1v2 . . . : ∀n � 0, v1 . . . vn ∈ Tu} be the boundary ofTu,
and letBu = {uv: v ∈ ∂Tu} be the set of infinite descendants ofu. ThereforeT = T∅,
∂T = ∂T∅ and if u ∈ T, thenBu = {v ∈ ∂T: u < v} is a ball in∂T with centeru ∈ T
and diameter|Bu| = e−|u|. Letµ= µω be thebranching measureon∂T: it is the unique
Borel measure such that for allu ∈ T,

µ(Bu)=W lim
n→∞

#{v ∈ Tu: |v| = n}
#{v ∈ T: |v| = n} , (0.3)

where #{.} denotes the cardinality of the set{.}. Equivalently,µ is the unique Borel
measure on∂T(ω) such that for allu ∈ T,

µ(Bu)=m−|u|Wu, (0.4)

where

Wu = lim
n→∞ #{v ∈ Tu: |v| = n}/mn if u ∈ U. (0.5)
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It proves convenient to defineµ(Bu) by (0.4) for allu ∈ U, and it will be useful to remark
thatW =W∅, thatWu andWv are independent of each other if neitheru < v nor v < u,
and that each of them follows the law ofW .

The branching measure plays an essential role in the study of branching processes,
and has been studied by many authors: see for example [9,11,13,16,18,20,15] and [17].

For eachu ∈ ∂T, let d(µ,u) andd(µ,u) be the lower and upper local dimensions of
µ atu:

d(µ,u)= lim inf
n→∞

− logµ(Bu|n)
n

, d(µ,u)= lim sup
n→∞

− logµ(Bu|n)
n

. (0.6)

Whend(µ,u)= d(µ,u), we writed(µ,u) for the common value. It is well-known (see
[9] and [18]) that a.s.

d(µ,u) = α (0.7)

for µ-almost allu ∈ ∂T. A natural question is to know when (0.7) holds forall u ∈ ∂T.
We shall answer this question in Theorem 4.1, where we give a necessary and sufficient
condition, and where we also establish a similar result ford(µ,u) instead ofd(µ,u).

Our approach to Theorem 4.1 is divided into two steps.
First, we establish some limit theorems about the uniform local dimensions ofµ; in

other words we obtain asymptotic properties of

mn = min
u∈zn

µ(Bu)= min
u∈∂T

µ(Bu|n) and Mn = max
u∈zn

µ(Bu)= max
u∈∂T

µ(Bu|n) (0.8)

asn → ∞. In fact, we shall prove that there are some constantsα− � α andα+ � α,
explicitly determined by the given distribution{pn}, such that a.s.

lim
n→∞

− logmn

n
= α− and lim

n→∞
− logMn

n
= α+

(Theorems 2.1 and 3.1).1 Sincemn � d(µ,u)� d(µ,u)�Mn for all u, α+ is a uniform
lower bound ofd(µ,u) while α− is a uniform upper bound ofd(µ,u) (Lemma 4.1).
The conditionα− = α+ is then sufficient for (0.7) to hold forall u. Our proof of the
asymptotic properties uses two basic tools given in Section 1: one is an interesting
convergence result about the convergence of iterations of a probability generating
function (Proposition 1.1), the other is the “first moment method” (Proposition 1.2).

Secondly, we prove that there are exceptional points ifα+ < α− (Lemma 4.3). The
main idea of the proof is to construct a non-homogeneous branching process by choosing
“good” generations and “good” individuals of the initial branching process, and to prove
that the new process does not terminate (cf. the proof of Lemma 4.3). In the proof, we
need the fact that the martingale{Zn/m

n}n converges inLp (p > 1) at a geometric rate,
which is shown in Section 1.

1 We use the symbolsα−, β−, . . . (respectivelyα+, β+, . . .) to stand for numbers which are related to
some exponents of the left (respectively right) tail ofW .
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Since the study of asymptotic properties ofmn andMn is interesting by its own, we
shall also find exact equivalents ofmn andMn in the case where the limit variable
W has exponential left or right tails (Theorems 5.1 and 6.1). These results give exact
uniform local dimensions ofµ, and lead to exact uniform bounds of the local dimensions
(Theorem 7.1).

Our final result concerns the exact local dimension ofµ at typical u ∈ ∂T
(Theorem 8.1): it gives a precise estimation of the large values ofµω(Bu|n) for P -almost
all ω ∈� andµω-almost allu ∈ ∂T(ω), and solves a conjecture of Hawkes [9, p. 382].

An interesting phenomenon revealed by our results is that, in some cases, the
branching measure behaves like the occupation measure of a stable subordinator or
a Brownian motion: for example, our Theorems 4.1(a)(ii), 5.1 and 6.1 correspond to
Theorem 3.1 of Hu and Taylor [10], Theorems 1 and 2 of Hawkes [8] and Théorème 52.2
of Lévy [12]; but in other cases the branching measure has some properties which the
occupation measure does not share: cf. parts (b)(i) and (b)(iii) of Theorem 4.1.

1. Iteration of a probability generating function and the first moment method.
Exponential convergence rate in Lp of Zn/mn

The following three propositions will be used several times in the paper. The first is
an interesting result about the convergence of then-fold composition of a probability
generating function, evaluated at a pointan which converges to 1 at a geometric rate; the
second concerns the “first moment method”; the third says that the sequence{Zn/m

n}
converges inLp (p > 1) at a geometric rate, if ENp <∞.

Throughout the paper,f denotes the probability generating function ofN : f (x)=∑
n�0pnx

n, andfn is its n-fold composition. In the following proposition we do not
need the condition (0.1).

PROPOSITION 1.1. –Assume onlyp0 = 0 andm = f ′(1) < ∞, and letρ, c be two
numbers in(0,1]. Then the following assertions hold:

(i) if 1/m < ρ, then there are some constantsλ < 1 and 0<K < ∞ such that for
all n� 1 large enough,fn(1− cρn)�Kλn;

(ii) if 1/m = ρ, thenlim inf n→∞ fn(1− cρn)� e−c;
(iii) if 1/m > ρ, thenlimn→∞ fn(1− cρn)= 1.

In particular,
∑

n�1fn(1− cρn) <∞ if and only if 1/m< ρ.

Remark. – If ρ < 1, the conclusions also hold for eachc > 1, and so for all 0< c <∞;
of course in this case in the series we should change “n� 1” to “n� n0”, wheren0 > 0
is large enough such that 1−cρn � 0 for all n� n0. This will be easily seen by the proof.
If ρ = 1, we naturally need the conditionc � 1 to ensure that 1− cρn � 0.

Proof. –(a) We first prove that for allc ∈ (0,1] and allρ ∈ (1/m,1],

lim
n→∞fn

(
1− cρn

)= 0.

By the famous Seneta–Heyde theorem, there is a sequence (Cn) of positive numbers
which converges to∞ with n, such thatCn+1/Cn → m and thatZn/Cn converges a.s.
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to a strictly positive random variable (recall thatp0 = 0). Therefore limZ1/n
n = m a.s.

Consequently,

limZn log
(
1− cρn

)= −∞ a.s. if 1/m< ρ � 1.

The conclusion then follows by the dominated convergence theorem and the fact that
fn(1− cρn)=EeZn log(1−cρn).

(b) We next prove that ifc ∈ (0,1] andρ ∈ (1/m,1], then there are some constants
λ < 1 and 0< K < ∞ such thatfn(1 − cρn) � Kλn for all n � 1 large enough. Let
δ ∈ (0,1) be sufficiently close to 1 such thatρ1 = ρ1/δ > 1/m. Denote by{δn} the least
integer� δn. Then

fn
(
1− cρn

)= fn−{δn}
(
f{δn}

(
1− cρn

))
� fn−{δn}

(
f{δn}

(
1− cρ

{δn}
1

))
.

Because limk→∞ fk(1− cρk) = 0, there isn0 ∈ N large enough such that for alln � n0,
f{δn}(1− cρ

{δn}
1 )� 1/2. It follows that

fn
(
1− cρn

)
� fn−{δn}(1/2), n� n0.

Now sincef (x) � x, fk(1/2) decreases to a limit< 1; this limit is equal to 0 because
it is a fixed point off . Let ε > 0 be small enough such thatf ′(ε) < 1, and letkε be
large enough such thatfk(1/2) � ε for all k � kε. Therefore, usingf (x) � xf ′(x) gives
fk+1(1/2) � f ′(fk(1/2)) � f ′(ε)fk(1/2), k � kε. It follows that for someK0 > 0 and
all k ∈ N,

fk
(
1/2

)
�K0f

′(ε)k.

Using this fork = n−{δn} and the preceding inequality forfn(1− cρn), we see that for
all n� n0,

fn
(
1− cρn

)
�K0f

′(ε)n−{δn} �Kλn,

whereK =K0/f
′(ε) andλ= f ′(ε)1−δ < 1.

(c) Finally by Jensen’s inequality, we have

fn
(
1− cρn

)=EeZn log(1−cρn) � em
n log(1−cρn),

from which lim inffn(1− cρn)� 1 if ρ < 1/m, and� e−c if ρ = 1/m. The proof of the
proposition is then finished, remarking that we have alwaysfn(1− cρn)� 1. ✷

PROPOSITION 1.2. – Let B be a Borel set on the real line and setA = {W ∈ B}.
Define, forn� 0,

An = {∃u ∈ zn,m
nµ(Bu) ∈ B

}
, and A′

n = {∀u ∈ zn,m
nµ(Bu) ∈ B

}
.

ThenA0 =A′
0 =A, and for alln� 1, P(An)�mnP (A) andP(A′

n)= fn(P (A)).
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Proof. –If {.} is a set or a statement, we write1{.} or 1{.} for its indicator function. It
is easily seen that

1An
�
∑
u∈zn

1
{
mnµ(Bu) ∈ B

}= ∑
u∈zn

1{Wu ∈ B}

and

1A′
n
= ∏

u∈zn
1
{
mnµ(Bu) ∈ B

}= ∏
u∈zn

1{Wu ∈ B}.

The conclusion then follows by taking expectations on each side of the above displays,
using the fact that for each fixedn, the random variablesWu, |u| = n, are independent
of each other and have the same distribution asW . ✷

PROPOSITION 1.3. – Fix p > 1 and writeW(k) = Zk/m
k (k � 1). If ENp <∞, then

for some constantc > 0 and all k � 1,

E |W(k) −W |p �
{
cm−(p−1)k if 1<p � 2,
cm−pk/2 if p > 2.

The result is well-known forp = 2 (cf. [7, p.13]), and seems to be unknown forp �= 2.
The proof uses the following very useful inequality.

LEMMA 1.4. –If {Xi: i � 1} are independent and integrable real random variables
with EXi = 0 (∀i), then for alln� 1 and allp > 1,

E

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p)

�
{
(Bp)

pE(
∑n

i=1 |Xi |p) if 1<p � 2,
(Bp)

pE(
∑n

i=1 |Xi |p)n(p/2)−1 if p > 2,

whereBp = 2min{k1/2: k ∈ N, k � p/2} (so thatBp = 2 if 1<p � 2).

It is a direct consequence of the Marcinkiewicz–Zigmund inequality [3, p. 356]:
E(|∑n

i=1Xi|p) � Bp
pE(|

∑n
i=1X

2
i |p/2), remarking that(

∑n
i=1X

2
i )

p/2 � ∑n
i=1 |Xi|p if

1< p � 2 (sub-additivity), and( 1
n

∑n
i=1X

2
i )

1/2 � ( 1
n

∑n
i=1 |Xi |p)1/p if p > 2 (Hölder).

Proof of Proposition 1.3. –By the construction of the Galton–Watson process, we can
write

W(k+n) −W(k) =m−k

Zk∑
i=1

(Wn,i − 1), k, n� 1,

where{Wn,i}i�1 are independent of each other and independent ofZk , and have the same
distribution asW(n). So by the preceding lemma,

E
[|W(k+n) −W(k)|p|Zk

]
�
{
m−kp2pZkE|W(n) − 1|p if 1 < p � 2,
m−kp(Bp)

p(Zk)
p/2E|W(n) − 1|p if p > 2.

Therefore

E
[|W(k+n) −W(k)|p]�

{
m−k(p−1)2pE|W(n) − 1|p if 1 <p � 2,
m−kp/2(Bp)

pE[W(k)]p/2E|W(n) − 1|p if p > 2.
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Using the inequality forn = 1 and an easy argument of induction on[p] (the integral
part of p), we obtain the following classical result: for each fixedp > 1, ENp < ∞
implies supk E[W(k)]p < ∞, so thatW(k) → W in Lp; therefore lettingn → ∞ in the
preceding inequality, we obtain the desired result.✷

2. An equivalent of log mn

In this section, we prove that without any condition other than (0.1), almost surely
(logmn)/n has a constant limit that we determine explicitly.

Let p− > 0 be defined by

p− = − logp1

logm
if p1 > 0, and p− = ∞ if p1 = 0. (2.1)

It is known that: (a) ifp1 > 0, then for some constantsc1, c2 > 0 and allx > 0 small
enough,

c1x
p− � P(W � x) � c2x

p− (2.2)

(see, for example, [1], p. 217); (b) whetherp1 > 0 or not,

p− = sup
{
b > 0: EW−b <∞}= lim

x→0

logP(W � x)

logx
. (2.3)

In the following theorem and in all this paper, we shall write 1/∞ = 0 by convention.

THEOREM 2.1. –With probability1,

lim
n→∞

− logmn

n
=
(

1+ 1

p−

)
α. (2.4)

We need two lemmas for the proof.

LEMMA 2.1. – If there exist some constantsb > 0 andc > 0 such thatP [W � x] �
cxb for all x > 0 small enough, then for allη > (1+ 1/b)α,

P
[
mn � e−nη for all n ∈ N large enough

]= 1. (2.5)

Proof. –Notice thatmn � e−nη if and only if µ(Bu) < e−nη for someu ∈ zn. So by
Proposition 1.2, we have, for alln ∈ N,

P
[
mn < e−nη

]
� enαP

[
W < e−n(η−α)

]
.

By our condition, there is a constantC > 0 large enough such that for allx > 0,
P [W � x] � Cxb. Hence by the preceding inequality,P [mn < e−nη] � Ce−n[b(η−α)−α].
Therefore

∑∞
n=1P [mn < e−nη] < ∞ wheneverη > (1 + 1/b)α, and the desired

conclusion follows by Borel–Cantelli’s lemma.✷
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LEMMA 2.2. –
(i) With probability1, mn < e−nα for all n ∈ N large enough;

(ii) if P [W � x] � cxb for some constantsb, c > 0 and all x > 0 small enough, then
for all η < (1+ 1/b)α,

P
[
mn < e−nη for all n ∈ N large enough

]= 1. (2.6)

Proof. –By Borel–Cantelli’s lemma, it suffices to prove that the series
∑∞

n=1P [mn �
e−nη] converges in each of the following cases: (a)η = α, (b) the condition of (ii) is
satisfied andα < η < (1+ 1/b)α. Notice thatmn � e−nη if and only ifµ(Bu)� e−nη for
all u ∈ zn; so by Proposition 1.2, for alln� 1,

P
[
mn � e−nη

]= fn
(
P
(
W � e−n(η−α)

))
.

Therefore by Proposition 1.1 (withρ = 1), the series converges in case (a). In case (b),
there is a constantc1 ∈ (0,1) small enough such thatP(W < x) � c1x

b for all x ∈ (0,1],
so thatP(W � e−n(η−α))� 1−c1ρ

n, whereρ = e−b(η−α) > e−α = 1/m; hence the series
also converges, again by Proposition 1.1.✷

Proof of Theorem 2.1. –If p1 > 0, then (2.2) holds, so that the conclusion follows
from Lemmas 2.1 and 2.2(ii). Ifp1 = 0, then for eachb > 0, there is a constantc > 0
such thatP(W � x) � cxb for all x > 0 small enough, so that the conclusion follows
from Lemmas 2.1 and 2.2(i).✷

3. An equivalent of log Mn

In this section we find an equivalent of logMn which is similar to that of logmn

obtained in the last section.
Let p+ ∈ [1,∞] be defined by

p+ = sup
{
a � 1: ENa <∞}

. (3.1)

Thereforep+ = ∞ if and only ifENa <∞ for all a > 1. Recall that for all fixeda > 1,
ENa <∞ if and only ifEWa <∞ (cf. [2]). So we can replaceN byW in the definition
of p+. Consequently by Theorem 3.1 of Ramachandran [21],

p+ = lim inf
x→∞

− logP(N > x)

logx
= lim inf

x→∞
− logP(W > x)

logx
. (3.2)

We shall sometimes need the condition that

p+ = lim
x→∞

− logP(W > x)

logx
. (3.3)

Notice that by (3.2), condition (3.3) holds automatically ifp+ = ∞; whenp+ <∞, it is
equivalent to the condition that for alla > p+, there is a constantc > 0 such that

P(W > x) � cx−a (3.4)
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for all x > 0 large enough. Standard results from [2] and [5] show that (3.4) holds if
p+ > 1 and if the functionx �→ P(N > x)xp+ slowly varies at∞.

The following result is the counter part of Theorem 2.1. Recall that 1/∞ = 0 by our
convention.

THEOREM 3.1. –Letp+ be defined by(3.1), then

lim inf
n→∞

− logMn

n
=
(

1− 1

p+

)
α a.s. (3.5)

If, furthermore, condition(3.3)holds, then thelim inf above is in fact alim: we have

lim
n→∞

− logMn

n
=
(

1− 1

p+

)
α a.s. (3.6)

For the proof, just as in the proof of Theorem 2.1, we first establish two lemmas.

LEMMA 3.1. – If P(W > x) � cx−a for some constantsa, c > 0 and all x > 0 large
enough, then for allη < (1− 1/a)α,

P
[
Mn � e−nη for all n ∈ N large enough

]= 1. (3.7)

Proof. –Notice thatMn > e−nη if and only if there isu ∈ zn such thatµ(Bu) > e−nη.
Therefore by Proposition 1.2,

P
[
Mn > e−nη

]
� enαP

[
W > e−n(η−α)

]
.

By the condition we can choose a constantK > 0 large enough such thatP [W > x] �
Kx−a for all x > 0, so thatP [W > e−n(η−α)] � Ken(η−α)b. Therefore

∑∞
n=1P [Mn >

e−nη] < ∞ wheneverη < (1 − 1/a)α. So the desired conclusion follows by Borel–
Cantelli’s lemma. ✷

LEMMA 3.2. –
(i) With probability1, Mn > e−nα for all n ∈ N large enough;
(ii) if P(W > x) � cx−a for some constantsa, c > 0 and all x > 0 large enough,

then for allη > (1− 1/a)α,

P
[
Mn > e−nη for all n ∈ N large enough

]= 1; (3.8)

(iii) if P(W > x)� cx−a for some constantsa, c > 0 and a non-bounded set of values
of x > 0, then for allη > (1− 1/a)α,

P
[
Mn > e−nη for infinitely manyn ∈ N

]= 1. (3.9)

Proof. –SinceMn � e−nη if and only if µ(Bu) � e−nη for all u ∈ zn, by Proposi-
tion 1.2, we have

P
[
Mn � e−nη

]= fn
(
P
[
W � en(α−η)

])= fn
(
1− P

[
W > en(α−η)

])
.
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Under the condition of (ii), there is a constantc1 ∈ (0,1) such thatP(W > x) �
c1x

−a for all x � 1. ThereforeP [W > en(α−η)] � c1e−na(α−η) if α > η, so that by
Proposition (1.1), the series

∑∞
n=1P [Mn � e−nη] converges if either (a)η = α, or (b) the

condition of (ii) is satisfied andα > η > (1− 1/a)α. Hence the conclusions in parts (i)
and (ii) follow from Borel–Cantelli’s lemma.

For part (iii), notice that if (3.9) holds for someη = η0, then it also holds for allη > η0;
therefore we need only prove the result forα > η > (1− 1/a)α. By the monotonicity of
P(W � x), it is easily seen that

lim inf
x→∞

− logP [W > x]
logx

= lim inf
n→∞

− logP [W > en(α−η)]
log en(α−η)

.

By the condition, their common value is bounded bya. Therefore, for allε > 0, there
are infinitely manyn ∈ N∗ such that

P
[
W > en(α−η)

]
� e−n(α−η)(a+ε),

so that by the preceding argument, for all thesen,

P
[
Mn � e−nη

]
� fn

(
1− e−n(a+ε)(α−η)

)
.

Notice that by Proposition (1.1) , the term on the right hand side tends to 0 ifρ :=
e−(a+ε)(α−η) > e−α = 1/m. Therefore for allη > α[1− 1/(a + ε)],

P
(
lim inf

[
Mn � e−nη

])
� lim inf P

[
Mn � e−nη

]
� lim fn

(
1− e−n(a+ε)(α−η)

)= 0.

This implies that (3.9) holds for allα > η > α[1 − 1/(a + ε)], and hence for all
α > η > α(1− 1/a) sinceε > 0 is arbitrary. ✷

Proof of Theorem 3.1. –Notice that by (3.2), for each fixed 0< a < p+ (� ∞),
P(W > x) � x−a for all x > 0 large enough, so that by Lemma 3.1,
lim infn→∞(− logMn/n)� (1− 1

p+ )α a.s. By Lemma 3.2(i), lim supn→∞(− logMn/n)�
α a.s. Hence the proof is finished ifp+ = ∞. Assumep+ < ∞ and let a′ > p+
be arbitrarily fixed. ThenP(W > x) � xa

′
for a non-bounded set ofx > 0 by

(3.2), and for allx > 0 large enough if (3.3) is satisfied. So by Lemma 3.2(iii),
lim infn→∞(− logMn/n)� (1− 1

a′ )α a.s., and by Lemma 3.2(ii), lim supn→∞(− logMn/

n)� (1− 1
a′ )α a.s. if (3.3) is satisfied. The proof is then finished by lettinga′ → p+. ✷

4. A necessary and sufficient condition for no exceptional point, and uniform
bounds of local dimensions

The main result of the present section is the following theorem.
Recall thatp− andp+ are defined by (2.1) and (3.1), thatp− = ∞ if and only if

p1 = 0, and thatp+ = ∞ if and only if ENa < ∞ for all a > 1; recall also that the
condition(3.3) automatically holds ifp+ = ∞.

THEOREM 4.1. –If EN1+δ <∞ for someδ > 0 and if (3.3)holds, then:
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(a) The following assertions hold:
(i) a.s.d(µ,u)= d(µ,u)= α for all u ∈ ∂T if and only ifp+ = p− = ∞;
(ii) a.s.d(µ,u)= α for all u ∈ ∂T if and only ifp+ = ∞.

(b) More precisely, we have:
(i) if p+ = p− = ∞, then a.s.d(µ,u)= d(µ,u)= α for all u ∈ ∂T;
(ii) if p+ = ∞ andp− < ∞, then a.s.d(µ,u) = α for all u ∈ ∂T but d(µ,u) >

α for someu ∈ ∂T;
(iii) if p+ <∞, then a.s.d(µ,u) < α for someu ∈ ∂T.

(c) Moreover, a.s.supu∈∂T d(µ,u) = α and infu∈∂T d(µ,u)= (1− 1
p+ )α.

Remark. – As we shall see in the proof, Part (b)(i), the conclusions ford(µ,u) in
parts (b)(ii) and (c), and therefore the “if” parts of (a)(i) and (a)(ii), all hold without the
conditions of the theorem.

Part (a)(i) gives a necessary and sufficient condition under which there isno
exceptional pointu in (0.7), for almost allω. Similarly, part (a)(ii) gives a criterion
for {u ∈ ∂T: d(µ,u) �= α} = ∅ a.s. We conjecture that a similar result would also hold
for the upper local dimension: the conditionp− = ∞ would be necessary and sufficient
for {u ∈ ∂T: d(µ,u) �= α} = ∅ a.s.

Part (b)(ii) shows that, whenp+ = ∞ andp− < ∞, the branching measure and the
occupation measure of a stable process [10] have the same property that a.s. the lower
local dimension is constant but the upper local dimension is not so. Parts (b)(i) and
(b)(iii) show that in the other cases, a new phenomenon occurs for the branching measure
compared with the stable occupation measure.

Part (c) gives the exact uniform bounds of the lower local dimension. We presume that
the following similar result for the upper local dimension would also hold: a.s.

inf
u∈∂T

d(µ,u)= α and sup
u∈∂T

d(µ,u)=
(

1+ 1

p−

)
α.

(This conjecture is of course sharper than the preceding one about a necessary and suffi-
cient condition for{u ∈ ∂T: d(µ,u) �= α} = ∅.) Therefore, since a.s. supu∈∂T d(µ,u) =
α, in the case wherep− <∞ or p+ <∞, a.s. there would be no pointu ∈ ∂T for which
d(µ,u) = d(µ,u) �= α; in other words, a.s. the limit in (0.7) would not exist at every
point where (0.7) is false.

One would be able to calculate explicitly the Hausdorff dimensions of some sets of
exceptional pointsu where (0.7) fails; in some special cases this has been done very
recently by Shieh and Taylor [23], using Theorem 4.1.2

We need three lemmas for the proof of our Theorem.

LEMMA 4.1. –With probability1, for all u ∈ ∂T, (1− 1
p+ )α � d(µ,u) � d(µ,u) �

(1+ 1
p− )α.

2 Note added in Proof. – A more complete description of the multifractal spectra of the branching measure
is recently given by Quansheng Liu and Zhiying Wen:Analyse multifractale de la mesure de branchement
(in preparation).
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Proof. –The conclusion comes directly from Theorems 2.1 and 3.1, remarking that
for all u ∈ ∂T, mn � µ(Bu|n) � Mn, n ∈ N, so that lim supn→∞(− logMn/n) �
d(µ,u) � lim supn→∞(− logmn/n) and lim infn→∞(− logMn/n) � d(µ,u) �
lim infn→∞(− logmn/n). ✷

LEMMA 4.2. –With probability1, for all u ∈ ∂T, d(µ,u)� α.

Proof. –Let η > α be arbitrarily fixed. We need to prove thatP [supu∈∂T d(µ,u) �
η] = 1. Notice thatd(µ,u)� η if µ(Bu|n) > e−nη for infinitely manyn ∈ N. Hence[

ω: sup
u∈∂T

d(µ,u) � η
]= ⋂

u∈∂T

[d(µ,u)� η]

⊃ ⋂
u∈∂T

[
µ(Bu|n) > e−nη for infinitely manyn ∈ N

]
= ⋂

u∈∂T

⋂
k�1

⋃
n�k

[
µ(Bu|n) > e−nη

]= ⋂
k�1

⋂
u∈∂T

⋃
n�k

[
µ(Bu|n) > e−nη

]
.

Therefore we need only to prove that for allk � 1,P(
⋂

u∈∂T
⋃

n�k[µ(Bu|n) > e−nη])= 1,
or, equivalently,

P

( ⋃
u∈∂T

⋂
n�k

[
µ(Bu|n)� e−nη

])= 0. (4.1)

Denote byAk the event in the left hand side of (4.1). For allk � 1 and alll � k, we have

Ak ⊂ ⋃
u∈∂T

⋂
k�n�l

[
µ(Bu|n)� e−nη

]= ⋃
u∈zl

⋂
k�n�l

[
µ(Bu|n)� e−nη

]

⊂ ⋃
u∈zl

⋂
k�n<l

{{[Nu|n > 1] ∩ [µ(Bu|n)� e−nη]}∪ [Nu|n = 1]
}
. (4.2)

Now for eachn� 0 and eachu= (u1, . . . , un+1)= (u|n,un+1) ∈ N∗(n+1), given{Nu|(n)},
we defineu∗ = (u|n,un+1 + 1) if either 1� un+1 < Nu|n, or Nu|n = 1, or un+1 > Nu|n,
and u∗ = (u|n,1) if un+1 = Nu|n > 1. Then a.s. for eachu ∈ N∗(n+1), µ(Bu|n) �
µ(B(u|(n+1))∗) if Nu|n > 1 andun+1 � Nu|n. If Nu|n = 1 or un+1 > Nu|n, the sequence
(u|(n + 1))∗ will play no role for our purpose; we have defined it as well only for the
sake of convenience. By (4.2), for allk � 1 and alll > k,

P(Ak)�E
∑
u∈zl

∏
k�n<l

[
1{Nu|n > 1}1{µ(Bu|n)� e−nη

}+ 1{Nu|n = 1
}]

�E
∑
u∈zl

∏
k�n<l

[
1{Nu|n > 1}1{µ(Bu|(n+1)∗)� e−nη

}+ 1{Nu|n = 1}]. (4.3)

Denote byIk(l) the last expectation. We shall prove that liml→∞ Ik(l)= 0 for all k � 1.
For convenience, let us only consider the case wherek = 1, the general case being very
similar. By the definition ofzl, we have

I1(l)=E
∑

u1...ul∈N∗l
1{u1 �N}1{u2 �Nu1}

×[1{Nu1 > 1}1{µ(Bu1u2∗)� e−η
}+ 1{Nu1 = 1}]1{u3 �Nu1u2}



Q. LIU / Ann. Inst. H. Poincaré, Probabilités et Statistiques 37 (2001) 195–222 207

×[1{Nu1u2 > 1}1{µ(Bu1u2u3∗)� e−2η}+ 1{Nu1u2 = 1}] · · ·1{ul �Nu1...ul−1}
×[1{Nu1...ul−1 > 1}1{µ(Bu1...ul∗)� e−(l−1)η}+ 1{Nu1...ul−1 = 1}]. (4.4)

Notice that for each fixedu1 . . . ul ∈ N∗l and for given{N,Nu1, . . . ,Nu1...ul−1}, the
random variables

µ(Bu1u2∗),µ(Bu1u2u3∗), . . . ,µ(Bu1...ul∗)

are (conditionally) independent each other, and their conditional distributions are the
same as

e−2αW,e−3αW, . . . ,e−lαW,

respectively. Therefore by exchanging the order of the expectationE and the sum
∑

in
(4.4) and by calculating the conditional expectation of each general term conditional on
the family of random variables{N,Nu1, . . . ,Nu1...ul−1}, we obtain

I1(l)=
∑

u1...ul∈N∗l
E1{u1 �N}1{u2 �Nu1}

[
1{Nu1 > 1}P{W � eαe−(η−α)

}+ 1{Nu1 = 1}]

× 1{u3 �Nu1u2}
[
1{Nu1u2 > 1}P{W � eαe−2(η−α)

}+ 1{Nu1u2 = 1}]× · · ·
× 1{ul �Nu1...ul−1}

[
1{Nu1...ul−1 > 1}P{W � eαe−(l−1)(η−α)

}+ 1{Nu1...ul−1 = 1}].
That is

I1(l)=E
∑

u1...ul∈zl

l−1∏
n=1

[
1{Nu1...un > 1}P{W �me−n(η−α)

}+ 1{Nu1...un = 1}]. (4.5)

Now for each fixedu1 . . . ul−1 ∈ N∗(l−1),

xl :=E
∑

1�ul�Nu1...ul−1

[
1{Nu1...ul−1 > 1}P{W �me−(l−1)(η−α)

}+ 1{Nu1...ul−1 = 1}]

= ENu1...ul−1

[
1{Nu1...ul−1 > 1}P{W �me−(l−1)(η−α)

}+ 1{Nu1...ul−1 = 1}]
= EN

[
1{N > 1}P{W �me−(l−1)(η−α)

}+ 1{N = 1}]
= (m− p1)P

{
W �me−(l−1)(η−α)

}+ p1.

Therefore by calculating the conditional expectation ofI1(l) given{Nv: |v|< l− 1}, we
see that

I1(l)

I1(l − 1)
= xl → p1, asl → ∞.

Since p1 < 1, this implies liml→∞ I1(l) = 0. A similar argument implies that
lim l→∞ Ik(l) = 0 for all k � 1. BecauseP(Ak) � Il(k) for all l > k, we see that (4.1)
holds, so that the proof is finished.✷

LEMMA 4.3. –The following assertions hold:
(i) if EN1+δ < ∞ for someδ > 0 and if (3.3) holds, then a.s.{u ∈ ∂T: d(µ,u) �

a} �= ∅ for all a > α(1− 1/p+);
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(ii) if EN1+δ < ∞ for someδ > 0, then a.s.{u ∈ ∂T: d(µ,u) � a} �= ∅ for all

a < ᾱ0 := α
[
1 +

(
p+−1
p+

)
1

p−+1

]
, where one setsp+−1

p+ = 1 if p+ = ∞, and
1

p−+1 = 0 if p− = ∞.

Notice that (ii) implies that a.s. supu∈∂T d(µ,u) � ᾱ0, so that supu∈∂T d(µ,u) > α if
p− <∞, and supu∈∂T d(µ,u)= α if p− = ∞, using Lemma 4.1.

The conclusion in part (i) may seem to be a direct consequence of Theorem 3.1.
But a difficulty occurs when we use the standard argument by compactness: by
Theorem 3.1 a.s. for eachε > 0, there is a sequence(un)n ⊂ ∂T such that, for alln,
−n−1 logµ(Bun|n) � (1 − 1/p+)α + ε; by the compactness of∂T, we can assume that
un → u for someu ∈ ∂T; however all these implies nothing for the sequenceµ(Bu|n).
We therefore present a new approach; the main idea is to construct a non-homogeneous
branching process whose infinite descendants satisfy the desired property.

Proof. –(i) We shall prove the following slightly more general result: whether (3.3)
holds or not, we have, with probability 1,

{u ∈ ∂T: d(µ,u) � a} �= ∅ for all a > α0 := α

[
1−

(
p+ − 1

p+

)
1

p̄+ − 1

]
, (4.6)

wherep̄+ = lim supx→∞ − logP(W > x)/ logx, and one setsα0 = α if p̄+ = ∞. The
result is evident ifp̄+ = ∞, since a.s.d(µ,u)= α for µ-a.e.u. So we assumēp+ <∞.
By (3.2) and the definition of̄p+, if 0 < b < p+ � p̄+ < b < ∞, then there is some
x0 > 0 large enough such that for allx > x0,

x−b � P(W > x) � x−b. (4.7)

SinceEN1+δ < ∞, p+ > 1. Fix α > a > 0, b > p̄+ and 1< b < p+. Setnk = λk for
k � 1, whereλ ∈ N∗ will be chosen large enough. Writeδ1 = n1 andδk = nk − nk−1 if
k > 1. For simplicity, let us assume that forall ω ∈�,µ(Bu) is well-defined for all finite
sequenceu ∈ U with limk→∞µBu|k = µ({u}) = 0 for all u ∈ ∂T (recall thatµ has no
atom a.s. [16]); otherwise we can restrict ourselves to a subset of� with probability 1.
Define a sub-treeD = ⋃

k�0Dk of T as follows (Dk represents the nodes inkth level):
D0 = {∅}, D1 = {u1 ∈ T: |u1| = n1}, and fork � 1,

Dk+1 = {
u1 . . . uk+1 ∈ T: u1 . . .uk ∈Dk, |uk+1| = δk+1,

µ(Bu1...uk )−µ(Bu1...uk+1) > e−ank − e−ank+1
}
.

Then for allk � 1,

#Dk+1 = ∑
u1...uk+1∈T,
∀i |ui |=δi

k∏
i=1

1
{
µ(Bu1...ui )−µ(Bu1...ui+1) > e−ani − e−ani+1

}

= ∑
u1...uk∈Dk

Xu1...uk ,
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where

Xu1...uk = ∑
uk+1∈Tu1...uk ,|uk+1|=δk+1

1
{
µ(Bu1...uk )−µ(Bu1...uk+1) > e−ank − e−ank+1

}
.

Notice that for each fixedu1 . . . uk+1 ∈ U with |ui| = δi , the random variable

µ(Bu1...uk )−µ(Bu1...uk+1)= ∑
v∈Tu1...uk ,|v|=δk+1,v �=uk+1

µ(Bu1...ukv)

is independent ofµ(Bu1...uk+1); similarly, {µ(Bu1...ui ) − µ(Bu1...ui+1)} (1 � i � k) is a
sequence of independent random variables. This is the reason why we consider the
events{µ(Bu1...ui ) − µ(Bu1...ui+1) > e−ani − e−ani+1}i rather than{µ(Bu1...ui ) > e−ani }i .
It is easily seen that for each fixedu1 . . . uk+1 ∈ U with |ui | = δi , the random variable
µ(Bu1...uk )−µ(Bu1...uk+1) (which depends only on{Nv: v > u1 . . . uk}) is independent of
each of the following three families:

(a) {µ(Bu1...ui ) − µ(Bu1...ui+1): i � k − 1} (which is independent of{Nv: v >

u1 . . . uk}),
(b) {µ(Bv1...vi )−µ(Bv1...vi+1): i � k − 1, v1 . . . vi+1 ≮ u1 . . . uk, |vj | = δj ∀j � i + 1}

(which is also independent of{Nv: v > u1 . . . uk}), and
(c) {1{v1 . . . vk ∈ T}: |vi | = δi ∀i � k} (which depends only on{Nv: |v|< nk}).

ThereforeXu1...uk is independent of the family{1{v ∈ Dk}: v ∈ U}, so that it is
independent of#Dk. It is then clear that(#Dk) (k � 0) forms a branching process
with varying environments; each individualu1 . . . uk ∈ Dk (k � 1) gives birth toXu1...uk

children whose distribution does not depend on the choice of the sequenceu1 . . .uk
(but only on the generational numberk). We shall claim that with positive probability,
the genealogical treeD does not terminate at finite time. Putm0 = E#D1, m

(1+ε)
0 =

E[(#D1)
1+ε] and, fork � 1,

mk =EXu1...uk , m
(1+ε)
k =EX1+ε

u1...uk
, ε > 0.

By the argument of the proof of Theorem 3(ii) of [6] about the survival probability of a
branching process in varying environments, it can be easily shown that for allk � 1 and
all 0< ε � 1,

P(#Dk > 0) �
{

1+
k−1∑
i=0

P−ε
i

[
m

(1+ε)
i

m1+ε
i

− 1
]}−1/ε

, (4.8)

whereP0 = 1,Pi = ∏i−1
j=0mj if i � 1. Consequently limk→∞ P(#Dk > 0) > 0 if for

some 0< ε � 1,
∞∑
i=0

P−ε
i

m
(1+ε)
i

m1+ε
i

<∞. (4.9)

To prove (4.9), we need a lower bound ofmi and an upper bound ofm(1+ε)
i . Using

1
{
µ(Bu1...uk )−µ(Bu1...uk+1) > e−ank − e−ank+1

}
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� 1
{
µ(Bu1...uk ) > e−ank

}− 1
{
µ(Bu1...uk+1) > e−ank+1

}
,

we obtain that

mk �E1
{
µ(Bu1...uk ) > e−ank

}#{uk+1 ∈ Tu1...uk : |uk+1| = δk+1}
−E

∑
uk+1∈Tu1...uk , |uk+1|=δk+1

1
{
µ(Bu1...uk+1) > e−ank+1β}

=E1
{
W > e(α−a)nk

}#
zδk+1 −P

[
W > e(α−a)nk+1

]
mδk+1,

where the last equality holds because for each fixedu1 . . . uk+1 ∈ U with |ui | = δi ,
the random variableµ(Bu1...uk+1) is independent of the event{u1 . . . uk+1 ∈ T}, and
P {µ(Bu1...uk+1) > e−ank+1} = P [W > e(α−a)nk+1]. Therefore for allk � 1,

mk �
(
lk − P

[
W > e(α−a)nk+1

])
mδk+1, (4.10)

wherelk = E1{W > e(α−a)nk}W(δk+1), with W(j) = (#zj )m
−j if j ∈ N∗. UsingW(δk+1) �

W − |W(δk+1) − W | and the lower bound ofP(W > x) (cf. (4.7)), we see that if
e(α−a)n1 � x0, then for allk � 1,

lk �E1
{
W > e(α−a)nk

}
W −E1

{
W > e(α−a)nk

}|W(δk+1) −W |
� e(α−a)nkP

{
W > e(α−a)nk

}− rk

� e−(α−a)(b−1)nk − rk,

where rk = E1{W > e(α−a)nk}|W(δk+1) − W |. By our condition,ENp < ∞ for some
p ∈ (1,2]; therefore by Proposition 1.3, there is a constantC > 0 such that for allj ∈ N∗,
E|W(j) −W |p � Cm−(p−1)j . Using this together with the upper bound ofP(W > x) (cf.
(4.7)), we obtain

rk �
(
P
{
W > e(α−a)nk

})1/q(
E
[|W(δk+1) −W |p])1/p (

where
1

p
+ 1

q
= 1

)

� e−(α−a)bnk/qC1/pm−(p−1)δk+1/p

=C1/p exp{−(α − a)bnk/q − α(p − 1)δk+1/p}.
It follows that if λ is large enough, sayλ � λ0, then for some constantc1 > 0 and all
k � 1,

lk � c1 exp{−(α − a)(b− 1)nk}.
Therefore by (4.10) together with the upper bound ofP(W > x) given in (4.7), if
λ is large enough, sayλ � λ1 (it suffices to chooseλ1 such thatλ1 � λ0 and that
(b− 1) < bλ1), then there is some constantc2 > 0 such that for allk � 1,

mk

mδk+1
� c2 exp{−(α − a)(b− 1)nk}. (4.11)

Let 0< η < 1 be small enough such thatε := (b − 1)η � 1. UsingXu1...uk �# {uk+1 ∈
Tu1...uk : |uk+1| = δk+1} and Hölder’s inequality (withp′ = 1/(1 − η) andq ′ = 1/η), we
have
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m
(1+ε)
k �E

{
X1−η

u1...uk
(#{uk+1 ∈ Tu1...uk : |uk+1| = δk+1})ε+η

}
� (EXu1...uk )

1−η
{
E(#{uk+1 ∈ Tu1...uk : |uk+1| = δk+1})(ε+η)/η

}η
=m

1−η
k

{
E
[
(#zδk+1)

(ε+η)/η
]}η

.

Remarking thatε + η = bη and dividing the above display bym1+ε
k , we obtain

m
(1+ε)
k

m1+ε
k

�
[
EW

b

(δk+1)

]η(mδk+1

mk

)ε+η

.

SinceENb < ∞, the sequence(W(j)) is bounded inLb. Therefore for some constant
C1 > 0 and allk � 1,

m
(1+ε)
k

m1+ε
k

�C1

(
mδk+1

mk

)ε+η

. (4.12)

Remark thatm0 = mn1. It then follows from (4.11) and (4.12) that ifλ � λ1 is large
enough and ifε = (b−1)η � 1 is small enough, then for some constantC2 = C2(λ, ε) >

0 and allk � 2,

P−ε
k

m
(1+ε)
k

m1+ε
k

�Ck
2 exp{−εαnk + ε(α − a)(b − 1)(n1 + · · · + nk−1)

+ (α − a)(b − 1)(ε + η)nk}. (4.13)

Using this and the fact thatnk = λk andn1 + · · · + nk−1 = (λk − λ)/(λ− 1), it is easily
seen that (4.9) holds whenever

εα > ε(α − a)(b− 1)
1

λ− 1
+ (α − a)(b− 1)(ε + η). (4.14)

Notice thatε + η = εb/(b − 1). We can always chooseλ � λ1 large enough for (4.14)
to be true if

α > (α − a)(b− 1)
b

b− 1
, (4.15)

which is equivalent to

a > a0 := α

[
1−

(
b− 1

b

)
1

b− 1

]
. (4.16)

Notice thata0 → α0 if b → p+ andb → p̄+. So if α > a > α0, then we can choose
1 < b < p+ and b > p̄+ for which α > a > a0. We have therefore proved that if
α > a > α0, then we can chooseλ ∈ N∗ large enough such that (4.9) holds, so that

P

( ∞⋂
k=1

{Dk �= ∅}
)

= lim
k→∞P(#Dk > 0) > 0.
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Let ∂D = {u ∈ ∂T: ∀k � 1, u|nk ∈ Dk} be the set of infinite descendants of the non-
homogeneous branching process(Dk)k . What we have proved above implies that

P(∂D �= ∅) > 0 (4.17)

if α > a > α0 and ifλ ∈ N∗ is large enough. Ifu ∈ ∂D, then by the definition of∂D and
Dk, for all k � 1,

µ(Bu1...uk )−µ(Bu1...uk+1) > e−ank − e−ank+1.

Adding up the consecutive inequalities, we obtain

µ(Bu1...uk )−µ(Bu1...ul ) > e−ank − e−anl if l > k.

Letting l → ∞ gives

µ(Bu1...uk )� e−ank .

Clearly this impliesd(µ,u)� a. Therefore writing

Aa = {u ∈ ∂T: d(µ,u)� a},
we have∂D ⊂Aa , so{∂D �= ∅} ⊂ {Aa �= ∅}. Hence by (4.17), ifα > a > α0, then

P({Aa �= ∅}) > 0. (4.18)

By the monotonicity of the event{Aa �= ∅} in a, if (4.18) holds for somea = a1 then it
also holds for alla > a1. Therefore (4.18) holds for alla > α0.

Now by considering the sub-trees ofT beginning with the nodesi ∈ {1, . . . ,N},
it can be easily checked that the probabilityqa := P(Aa = ∅) is a fixed point of
f (x) = ∑∞

i=1pix
i . Sincef has only two fixed points 0 and 1 on[0,1] (recall that

p0 = 0), the assertionqa < 1 (cf. (4.18)) impliesqa = 0. Therefore we have proved that
for all a > a0, a.s.Aa �= ∅. Hence a.s.Aa �= ∅ for all rationala > α0. By the monotonicity
of Aa (in a), this implies that a.s.Aa �= ∅ for all a > α0.

(ii) The proof of part (ii) is similar: by (0.7) the conclusion is evident ifp− =
∞; so we assumep− < ∞, fix a > α, and consider the the events{µ(Bu1...uk ) −
µ(Bu1...uk+1) � e−ank − e−ank+1}, {µ(Bu1...uk ) � e−ank } and {W � e−(a−α)nk} instead of
{µ(Bu1...uk )−µ(Bu1...uk+1) > e−ank − e−ank+1}, {µ(Bu1...uk ) > e−ank } and{W > e(α−a)nk}
(k � 1) respectively, using

c3x
p− � P(W � x) � c4x

p− and c5x
p−+1 �EW1{W � x} � c6x

p−+1,

whereci (3 � i � 6) are some positive constants independent ofx, 0< x � 1. Here to
see thatc5x

p−+1 � EW 1{W � x}, it suffices to takeη ∈ (0,1) small enough such that
c5 := η(c3 − ηp−c4) > 0, remarking that for allx ∈ (0,1],

EW1{Z � x} �EW 1{ηx <W � x}
� ηx[P(W � x)−P(W � ηx)] � ηx

(
c3 − ηp−c4

)
xp− . (4.19)
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The displays corresponding to (4.11), (4.14) and (4.16) are, respectively,

mkm
−δk+1 � c7 exp{−(a − α)(p− + 1)nk}, (4.20)

εα > ε(a − α)(p− + 1)
1

λ− 1
+ (a − α)(p− + 1)(ε + η) (4.21)

and

a < ā0 := α

[
1+

(
b− 1

b

)
1

p− + 1

]
. ✷ (4.22)

Proof of Theorem 4.1. –The assertions of part (a) follow easily from those of part (b).
In part (b), the assertion (i) is a direct consequence of Lemma 4.1, and holds without
the conditions of the theorem; in the assertion (ii), the conclusion ford(µ,u) is a
combination of Lemmas 4.1 and 4.2, and also holds without the conditions of the
theorem, while the conclusion ford(µ,u) follows from Lemma 4.3(ii), remarking that
the number̄α0 defined in that lemma is strictly greater thanα; the assertion (iii) comes
immediately from Lemma 4.3(i).

It remains to prove part (c). Since a.s.d(µ,u) = α for µ-a.e.u ∈ ∂T, we have a.s.
supu∈∂T d(µ,u) � α; by Lemma 4.2, supu∈∂T d(µ,u) � α. So we have proved the first
assertion without the conditions of the theorem. By Lemma 4.1, a.s. infu∈∂T d(µ,u) �
(1− 1/p+)α; by Lemma 4.3(i), a.s. infu∈∂T d(µ,u) � (1 − 1/p+)α if EN1+δ < ∞ for
someδ > 0 and if (3.3) holds. This gives the second assertion.✷

5. An equivalent of mn

We shall see that Theorem 2.1 can be improved whenW has exponential left tail.
Assumep1 = 0 and write

m= ess infN and β− = 1− logm/ logm. (5.1)

Then−∞<β− < 0. Define

r− = sup
{
t � 0: E exp

(
tW 1/β−)<∞}; (5.2)

just as in (3.2), an equivalent definition ofr− is

r− = lim inf
x→0

− logP {W < x}
x1/β−

. (5.3)

It is known that 0< r− <∞ (wheneverp1 = 0). We shall sometimes need the condition
that

r− = lim
x→0

− logP {W < x}
x1/β−

. (5.4)

THEOREM 5.1. –Assumep1 = 0, let β− andr− be defined in(5.1)and(5.3), and put
C− := (α/r−)β− . Then a.s.

lim inf
n→∞

mnmn

nβ−
= C−. (5.5)
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If furthermore(5.4)holds, then thelim inf above is in fact alim: we have a.s.

lim
n→∞

mnmn

nβ−
=C−. (5.6)

Remark. – The result (5.6) can be re-written as limn→∞ infu∈∂Tµ(Bu|n)/ψ−(|Bu|n|)=
C−, whereψ−(t)= tα(log(1/t))β− . This result is similar to a property of the occupation
mesure of a stable subordinator with indexα ∈ (0,1), cf. Theorem 1 of Hawkes [8] and
the display (3.1) of Hu and Taylor [10] .

Proof of Theorem 5.1. –(a) We first prove that a.s. lim infn→∞ mnmn

nβ− � C−. Let 0<
C <C− be arbitrarily fixed, and letε > 0 be small enough such that(r− − ε)C1/β− > α.
This is possible sincer−C1/β− > r−C

1/β−− = α. (Recall thatβ− < 0.) By (5.3), for alln
large enough,

P
{
W < nβ−C

}
� exp

{−(r− − ε)C1/β−n
}
.

Therefore by Proposition 1.2,

P

[
mnmn

nβ−
<C

]
� enαP

{
W < nβ−C

}
� exp

{−[(r− − ε)C1/β− − α
]
n
}
.

Since (r− − ε)C1/β− − α > 0, the series
∑∞

n=1P [mnmn

nβ− < C] converges, so that the
conclusion follows by Borel–Cantelli’s lemma and by lettingC →C−.

(b) We next prove that a.s. lim infn→∞ mnmn

nβ− � C−. Let ∞ > C > C− be arbitrarily
fixed, and letε > 0 be small enough such that

ρ := e−(r− + ε)C1/β−
> e−α = 1/m (5.7)

(this is possible becauser−C1/β− < r−C
1/β−− = α). Since (5.3) also holds withx replaced

by nβ−C (n→ ∞), there are infinitely manyn ∈ N such that

P
(
W � nβ−C

)
� e−(r− + ε)C1/β−n = ρn, (5.8)

so that by Proposition 1.2, for all thesen,

P

[
mnmn

nβ+
>C

]
= fn

(
1−P

{
W � nβ−C

})
� fn

(
1− ρn

)
. (5.9)

Therefore by Proposition (1.1),

lim inf
n→∞ P

[
mnmn

nβ−
<C

]
� lim

n→∞fn
(
1− ρn

)= 0.

UsingP(lim infn→∞[mnmn

nβ− < C] � lim inf n→∞ P [mnmn

nβ− < C] and then lettingC → C−,
we obtain the desired conclusion.

(c) We finally prove that if (5.4) holds, then a.s. lim supn→∞
mnmn

nβ− � C−. Let C and
ε be as in the proof (b) above. By (5.4), we know that (5.8) and so (5.9) holds for all
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n ∈ N large enough; by Proposition (1.1), this implies that the series
∑∞

n=1P [mnmn

nβ− >C]
converges, so that the conclusion follows by Borel–Cantelli’s lemma and by letting
C → C−. ✷

6. An equivalent of Mn

Just as in the case formn, Theorem 3.1 can also be improved whenW has exponential
right tail. Write

m= ess supN and β+ = 1− logm/ logm. (6.1)

Then 0< β+ � 1. (By convention,β+ = 1 if m= ∞.) Define

r+ = sup
{
t � 0: E exp

(
tW 1/β+)<∞}

, (6.2)

or, equivalently,

r+ = lim inf
x→∞

− logP {W > x}
x1/β

. (6.3)

Of courser+ ∈ [0,∞]. We shall sometimes need the condition that

r+ = lim
x→∞

− logP {W > x}
x1/β+

. (6.4)

The first part of the following theorem was proved in Liu and Shieh [17]. But for
convenience of readers, we shall give a complete proof of the theorem. The result is the
counter part of Theorem 5.1.

THEOREM 6.1. –Let β+ ∈ (0,1] and r+ ∈ [0,∞] be defined in(6.1) and (6.3), and
putC+ = (α/r+)β+ . Then a.s.

lim sup
n→∞

mnMn

nβ+
= C+. (6.5)

If furthermore(6.4)holds, then thelim supabove is in fact alim: we have a.s.

lim
n→∞

mnMn

nβ+
= C+. (6.6)

Remarks. – (i) If either m < ∞ or E exp(tN) < ∞ for some but not allt > 0,
then 0< r+ < ∞ (cf. [13]), so that 0< C+ < ∞, and hence Theorem 6.1 improves
Theorem 3.1.

(ii) If N is of geometric distribution:P(N = k) = p(1 − p)k−1 for somep ∈ (0,1)
and allk � 1, we haveC+ = 1; in this case (6.6) was proved by Hawkes [9, Theorem 3].

(iii) As in the case formn (cf. the remark following Theorem 5.1), we may
rewrite the result (6.6) as limn→∞ supu∈∂Tµ(Bu|n)/ψ+(|Bu|n|) = C+, whereψ+(t) =
tα(log(1/t))β+ ; in this form the result is consistent with some well-known uniform
asymptotic laws associated with Brownian motions or stable processes, see for example
[12, Théorème 52.2, p. 172], [8, Theorem 2] and [22, Lemma 2.3 and Corollary 5.2].
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Proof of Theorem 6.1. –The proof is similar to that of Theorem 5.1.
We first prove that a.s. lim supn→∞

mnMn

nβ+ � C+. If C+ = ∞ (i.e. r+ = 0), there is
nothing to prove. AssumeC+ < ∞ (i.e. r+ > 0), and let∞ > C > C+ be arbitrarily
fixed. Let ε > 0 be small enough such that(r+ − ε)C1/β+ > α. This is possible since
r+C1/β+ > r+C

1/β++ = α. By Proposition 1.2, we have

P

[
mnMn

nβ+
>C

]
� enαP

{
W > nβ+C

};
by (6.3), we have, for alln large enough,

P
{
W >nβ+C

}
� exp

{−(r − ε)C1/β+n
}
.

Therefore
∑∞

n=1P [mnMn

nβ+ > C] < ∞ and the conclusion follows by Borel–Cantelli’s
lemma and by lettingC → C+.

We next prove that lim supn→∞
mnMn

nβ+ � C+ a.s., and that lim infn→∞ mnMn

nβ+ � C+ a.s.
if (6.4) holds. IfC+ = 0 (i.e.r+ = ∞), there is nothing to prove. So we assumeC+ > 0
(i.e. r+ <∞). Let 0<C <C+ be arbitrarily fixed. By Proposition 1.2, we have

P

[
mnMn

nβ+
<C

]
= fn

(
1− P

{
W � nβ+C

})
. (6.7)

Let ε > 0 be small enough such thatρ := e−(r+ + ε)C1/β+
> e−α = 1/m. This is possible

becauser+C1/β+ < r+C
1/β++ = α. Then

P
(
W � nβ+C

)
� e−(r + ε)C1/β+n = ρn

for infinitely many n ∈ N by (6.3), and for alln ∈ N large enough if(6.4) holds.
Therefore by Proposition 1.1, we see that lim infn→∞ P [mnMn

nβ+ < C] = 0, and that∑∞
n=1P [mnMn

nβ+ < C] < ∞ if (6.4) holds. This implies that lim supn→∞
mnMn

nβ+ � C a.s.,

and that lim supn→∞
mnMn

nβ+ � C a.s. if (6.4) holds. LettingC → C+ gives the desired
conclusion. ✷

Let us give an example where Theorem 6.1 applies easily. If the probability generating
function ofN has the form

f (s)= s/
[
m− (m− 1)sk

]1/k
,

wherem > 1, andk ∈ N∗ is a positive integer, thenW has a7(1/k,1/k) distribution
with density

d(u) = k1/k

7(1/k)
u1/k−1e−u/k, u > 0
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(see [7, p. 17]),m = f ′(1), α = logm, β+ = 1, r+ = 1/k, C+ = k logm, and the
condition (6.4) holds. So by Theorem 6.1,

lim
n→∞

mnMn

n
= k logm a.s.

If k = 1 (i.e. the geometric case), this was proved by Hawkes [9].

7. More on uniform bounds of local dimensions

The results in Sections 5 and 6 can be used to obtain uniform bounds for the local
dimension ofµ. Sincemn � µ(Bu|n)�Mn for all u ∈ ∂T, by Theorem 6.1, we have

sup
u∈∂T

lim sup
n→∞

mnµ(Bu|n)
nβ+

� C+ a.s.; (7.1)

and by Theorem 5.1, we have

inf
u∈∂T

lim inf
n→∞

mnµ(Bu|n)
nβ+

� C− a.s. ifp1 = 0. (7.2)

The following result shows thatC+ andC− are the exact uniform bounds:

THEOREM 7.1. –
(i) If (6.4)holds, then

sup
u∈∂T

lim sup
n→∞

mnµ(Bu|n)
nβ+

= C+ a.s.

(ii) Assume thatp1 = 0 andENp <∞ for all p > 1. If (5.4)holds, then

inf
u∈∂T

lim inf
n→∞

mnµ(Bu|n)
nβ−

= C− a.s.

The proof relies on the following result, together with (7.1) and (7.2).

PROPOSITION 7.1. –
(i) A.s. {u ∈ ∂T: lim supn→∞

mnµ(Bu|n)
nβ+ � a} �= ∅ for all 0 < a < C+ := ( α

r̄+ )
β+ , if

r̄+ := lim supx→∞
− logP(Z>x)

x1/β+ <∞;

(ii) a.s.{u ∈ ∂T : lim inf n→∞
mnµ(Bu|n)

nβ− � a} �= ∅ for all a > C− := ( α
r̄− )

β−(p+−1
p+ )β−, if

r̄− := lim supx→∞
− logP(W<x)

x1/β− < ∞ and if EN1+ε < ∞ for someε > 0. (Where
p+−1
p+ is interpreted to be1 if p+ = ∞.)

Proof. –(i) The argument is similar to that of the proof of Lemma 4.3. Instead of (4.7),
we have

c8 exp
{−rx1/β+}� P(W > x) � c9 exp

{−rx1/β+}, (7.3)
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where 0< r < r+ and∞ > r > r̄+ are arbitrarily fixed,c8, c9 > 0 are some constants
independent ofx ∈ (0,∞); this implies clearly that for eachδ > 0, there is some constant
c10> 0 such that for allx ∈ (0,∞),

E[1{W > x}W ] � c10exp
{−(r + δ)x1/β+}. (7.4)

Instead of the events{µ(Bu1...uk )−µ(Bu1...uk+1) > e−ank −e−ank+1}, {µ(Bu1...uk ) > e−ank }
and{W > e(α−a)nk} considered in the proof of Lemma 4.3, we now consider the events
{µ(Bu1...uk )− µ(Bu1...uk+1) > an

β+
k m−nk − an

β+
k+1m

−nk+1}, {µ(Bu1...uk ) > an
β+
k m−nk } and

{W > an
β+
k }, where the value ofa > 0 is to be determined. The displays corresponding

to (4.11), (4.15) and (4.16) are

mk

mδk+1
� c11exp

{−(r + δ)a1/β+nk
}
, (7.5)

α > (r + δ)a1/β+ b

b− 1
(7.6)

and

a <

(
α

r + δ

)β(
b− 1

b

)β

, (7.7)

respectively. The conclusion then follows, remarking that the right hand side of the last
display tends to( α

r̄+ )
β(

p+−1
p+ )β = C+ (notice thatr+ <∞ impliesp+ = ∞) whenδ → 0,

r → r̄+ andb → p+.
(ii) The argument is very similar to the above one, by considering the events

{µ(Bu1...uk ) − µ(Bu1...uk+1) � an
β−
k m−nk − an

β−
k+1m

−nk+1}, {µ(Bu1...uk ) � an
β−
k m−nk }

and {W � an
β−
k } instead of{µ(Bu1...uk ) − µ(Bu1...uk+1) > an

β+
k m−nk − an

β+
k+1m

−nk+1},
{µ(Bu1...uk ) > an

β+
k m−nk } and{W > an

β+
k } respectively. (For a lower bound ofE[1{W �

x}W ] we use an argument similar to (4.19).)✷
Proof of Theorem 7.1. –For part (i), the upper bound is given in (7.1). For the lower

bound, by Proposition 7.2 (i), ifr+ <∞ (⇔C+ > 0) and if (6.4) holds, then

sup
u∈∂T

lim sup
n→∞

mnµ(Bu|n)
nβ+

� C+ a.s.;

if r+ = ∞ (⇔C+ = 0), the inequality is evident.
The proof of part (ii) is similar: the lower bound is given by (7.2), while the upper

bound comes from Proposition 7.2(ii).✷
The bounds infu∈∂T lim supn→∞

mnµ(Bu|n)
nβ+ and supu∈∂T lim inf n→∞

mnµ(Bu|n)
nβ− are easier

to get, but less interesting because they are respectively 0 and∞ under some mild
conditions, as is explained in the following. By Proposition 3.1(ii) of [13] and its proof,
we know that:

(a) if θ > 0 andEW 1+θ <∞, then limn→∞
mnµ(Bu|n)

n1/θ = 0 for P -a.e.ω ∈� andµ-a.e.
u ∈ ∂T;
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(b) if θ < 0 andEW 1+θ < ∞, then limn→∞
mnµ(Bu|n)

n1/θ = ∞ for P -a.e.ω ∈ � andµ-
a.e.u ∈ ∂T.

This implies clearly that:
(c) if p+ = ∞, then infu∈∂T lim supn→∞

mnµ(Bu|n)
nβ+ = 0 a.s.;

(d) if p1 = 0 (⇔ p− = ∞), then supu∈∂T lim inf n→∞
mnµ(Bu|n)

nβ− = ∞ a.s.
Of course, (a) and (b) are more precise than (c) and (d), and the conditions in (c) and (d)
can be relaxed.

8. Exact local dimension at typical u ∈ ∂T

Recall that (cf. (0.7)) forP -almost allω ∈ � andµω-almost allu ∈ ∂T, µω has lower
local dimensionα: d(µω,u) = α. But this gives only a rough idea about large values
of µ(Bu|n) at a typicalu ∈ ∂T: it says that forP -almost allω ∈ � andµω-almost all
u ∈ ∂T,

lim sup
n→∞

mnδµω(Bu|n)=
{

0 if δ < 1,
∞ if δ > 1.

A deeper question is to find the exact dimension of large values ofµω(Bu|n): that is, find
a functionφ such that forP -almost allω ∈� andµω-almost allu ∈ ∂T,

lim sup
n

mnµ(Bu|n)/φ(n)= c for some constant 0< c <∞.

In [9], Hawkes solved this question in the case whereN has a geometric distribution on
N∗ [9, Theorem 4], and conjectured that there would be a similar result in a general case
under some conditions [9, p. 382]. The following result shows that this is indeed the case
whenever the numberr+ defined by (6.2) is strictly positive and finite.

THEOREM 8.1. –Letβ+ ∈ (0,1] andr+ ∈ [0,∞] be defined by(6.1)and(6.2). Then
for P -almost allω ∈ � and forµω-almost allu ∈ ∂T, we have

lim sup
n→∞

mnµ(Bu|n)
(logn)β+

= 1

r
β++
. (8.1)

Proof. –The upper bound is easy, and is a consequence of (3.4a) of [13]. We therefore
need only to prove that with probability 1,

lim sup
n→∞

mnµ(Bu|n)
(logn)β+

� 1

r
β++

for µω-a.e.u ∈ ∂T(ω). (8.2)

If r+ = ∞, there is nothing to prove. Suppose thatr+ < ∞. It was proved in [13,
Theorem 1] that a.s.

φ+ −H(∂T)= r
β++ W = r

β++ µω(∂T), (8.3)

where φ+(t) = tα(log log 1
t
)β+ , and φ+ − H(.) denotes theφ+-Hausdorff measure.

Similarly, we can prove that a.s. for allu ∈ T(ω),

φ+ −H(Bu)= r
β++ µω(Bu). (8.4)
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Therefore for almost allω,

φ+ −H(A)= r
β++ µω(A) for all Borel setA⊂ ∂T(ω). (8.5)

Fix ω for which (8.5) holds. By an argument similar to that used in the proof of
Theorem 5.3 of Dai and Taylor [4], we can easily prove that for all BorelA⊂ ∂T(ω),

µω(A) inf
u∈A lim inf

n→∞
φ+(|Bu|n|)
µω(Bu|n)

� φ+−H(A). (8.6)

Using (8.4), this implies that

inf
u∈A lim inf

n→∞
φ+(|Bu|n|)
µω(Bu|n)

� r
β++ if µω(A) > 0. (8.7)

Let us deduce from (8.7) that

lim inf
n→∞

φ+(|Bu|n|)
µω(Bu|n)

� r
β++ for µω-a.e.u ∈ ∂T(ω). (8.8)

Of course, it suffices to prove that for eachε > 0,

lim inf
n→∞

φ+(|Bu|n|)
µω(Bu|n)

� r
β++ + ε for µω-a.e.u ∈ ∂T(ω). (8.9)

In fact, if this were not true, there would exist a numberε0 > 0 and a Borel setA with
µω(A) > 0, such that for allu ∈A,

lim inf
n→∞

φ+(|Bu|n|)
µω(Bu|n)

� r
β++ + ε0,

which is a contradiction with (8.7). Therefore (8.9), so that (8.8) holds. Notice that (8.8)
is just (8.2), so the proof is finished.✷

The exact lower local dimension ofµ is of course closely related to the exact
Hausdorff dimension of its support. It is well-known that we can deduce the exact
dimension of the support by the exact local dimension of the measure. Our argument
in the proof above shows that we can also do the contrary.

Similarly, the exact upper local dimension is also closely related to the exact packing
dimension. Liu [15] proved that ifp1 = 0, then the correct function for packing measure
is

φ−(t)= tα
(

log log
1

t

)β−
.

One might expect to prove the following: ifp1 = 0, then for P-almost allω ∈� and for
µω almost allu ∈ ∂T,

lim inf
n→∞

mnµω(Bu|n)
(logn)β−

= 1

r
β−−
.
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The lower bound is easy: in the same way as in the proof of (3.4(a)) of Liu [13], we can
prove that ifp1 = 0, then for P-almost allω ∈� and forµω almost allu ∈ ∂T,

lim inf
n→∞

mnµω(Bu|n)
(logn)β−

� 1

r
β−−
.
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