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ABSTRACT. – The stability properties of a class of interacting measure valued processes arising
in nonlinear filtering and genetic algorithm theory is discussed.

Simple sufficient conditions are given for exponential decays. These criteria are applied to
study the asymptotic stability of the nonlinear filtering equation and infinite population models
as those arising in Biology and evolutionary computing literature.

On the basis of these stability properties we also propose a uniform convergence theorem
for the interacting particle numerical scheme of the nonlinear filtering equation introduced in
a previous work. In the last part of this study we propose a refinement genetic type particle
method with periodic selection dates and we improve the previous uniform convergence results.
We finally discuss the uniform convergence of particle approximations including branching and
random population size systems. 2001 Éditions scientifiques et médicales Elsevier SAS

Keywords:Interacting random processes; Nonlinear filtering; Asymptotic stability; Measure
valued processes; Genetic algorithms; Stochastic approximation

AMS classification:60B10; 62E25; 62G09; 60G35; 93E11; 62L20

RÉSUMÉ. – Cet article porte sur la stabilité d’une classe de processus à valeurs mesures et en
interaction liée au filtrage non linéaire et à la théorie des algorithmes génétiques.

Nous présentons des conditions suffisantes simples permettant d’obtenir des taux de conver-
gence et des décroissances exponentielles. Nous illustrons notre démarche en appliquant ces
critères à l’étude de la stabilité asymptotique des équations du filtrage non linéaire et d’une
classes de systèmes à population infinie utilisés en biologie et dans la littérature sur les algo-
rithmes de type génétique. En s’appuyant sur ces propriétés de stabilité nous démontrons un
théorème de convergence uniforme dans le temps de schémas numériques basés sur des sys-
tèmes de particules en interaction. Dans la partie finale nous proposons un algorithme génétique
plus performant associé à des sélections périodiques et pour lequel il est possible d’améliorer
les précédentes estimations. Nous clôturons notre étude en étudiant le comportement en temps
long d’une classe de méthodes particulaires basées sur des mécanismes de branchements avec
des tailles de population aléatoires. 2001 Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

In this paper, we study the long time behavior of a class of interacting measure
valued processes arising in biology (and particularly in genetic models) and evolutionary
computing, in Physics, in advanced signal processing and particularly in nonlinear
filtering problems. The main results of the present work is to establish a theorem on
the stability properties of the limiting process and a uniform convergence result with
respect to the time parameter for the finite particle approximating model.

We shall consider the following discrete time evolution on the spaceP(E) of
probability measures on a measurable space(E,E) given by

πn = φn(πn−1), ∀n � 1, (1)

where π0 ∈ P(E) and the one step mappingφn :P(E) → P(E) associates to any
π ∈P(E), the probability measureφn(π) given for anyf :E→R in the set of bounded
measurable functionsBb(E) by

φn(π)(f )= π(gn(Knf ))

π(gn)
with (Knf )(x)

def.=
∫
E

Kn(x, dy)f (y)

with some transition probability kernels(Kn,n � 0) and nonnegative measurable
functions(gn, n � 0).

Such discrete evolutions arise in the analysis of some conditioned Markov processes
(and in particular in those showing up in nonlinear filtering problems) and in biology.

Let us present first its connection with nonlinear filtering theory. Recall that the
nonlinear filtering problem consists in computing the conditional distributions of
internal states in dynamical systems when partial observations are made, and random
perturbations are present in the dynamics as well as in the sensors.

Several presentations of the discrete time filtering model are available in the literature,
here we follow rather closely [10]. Some collateral readings such as [4,24–26] will be
useful in appreciating the relevance of our study.

In discrete time settings the signal{Xn; n � 0} is anE valued nonhomogeneous
Markov chain with one step transition probabilities{Kn; n � 1} and initial lawπ0. The
observation sequence{Yn; n � 1} takes its values inRd , d � 1, and it takes the form

Yn =Hn (Xn−1, Vn) , n � 1,

for some measurable functionHn :E × R
d → R

d . The sequenceV = {Vn; n � 1} are
R

d -valued, independent ofX, and independent random variables. For eachx ∈ E and
n � 0 we assume that the variableHn(x,Vn) admits a densityy→ gn(y, x) with respect
to Lebesgue measure onR

d .
Let E(.) denotes the expectation on the original space on which the chain(X,Y ) is

Markov with the prescribed initial condition.
For any fixed observation sequencey1, y2, . . . Bayes’ formula gives a Feynman–Kac

expression for the desired conditional distributions, namely for any bounded measurable
functionf we have
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πy
n (f )=E

(
f (Xn) | Y1= y1, . . . , Yn = yn

)
= E(f (Xn)Zn(X,y))

E(Zn(X,y))

with

Zn(X,y)
def.=

n∏
k=1

gk(yk,Xk−1).

It is transparent from this description that

πy
n (f )= φn

(
yn,π

y
n−1

)
(f )

def.= π
y
n−1(g

y
n(Knf ))

π
y
n−1(g

y
n)

with gy
n

def.= gn(yn, x). (2)

In these settings the dynamical system (2) is called the nonlinear filtering equation. In
some particular situations it can be solved explicitly but in general its simulation requires
extensive calculations.

The discrete dynamics (1) also appears when one considers a killed inhomogeneous
Markov process. Indeed, let{Xn; n � 0} be a Markov chain taking values inE with
initial distributionπ0 ∈P(E) and transition probability kernels

∀A ∈ E P(Xn ∈A |Xn−1)=Kn(Xn−1,A).

Using the Markov property we can verify that the Feynman–Kac type distributions given
for anyf ∈ Bb(E) by

πn(f )= E(f (Xn)Zn(X))

E(Zn(X))
, with Zn(X)

def.=
n∏

k=1

gk(Xk−1) (3)

(with the usual convention
∏
∅ = 1) satisfy the desired recursion (1), that is

πn(f )= E(gn(Xn−1)(Knf )(Xn−1)Zn−1(X))/E(Zn−1(X))

E(gn(Xn−1)Zn−1(X))/E(Zn−1(X))

= πn−1(gn(Knf ))

πn−1(gn)
= φn(πn−1)(f ).

These “un-normalized” Feynman–Kac formulae arise naturally in the study of the
distributions laws of a Markov process killed particle. We begin by noting that there is
no loss of generality to assume that the fitness functionsgn take values in(0,1]. Next,
the fitness functions will be regarded as the killing rates of a nonhomogeneous Markov
particle. We adjoin classically toE a cemetery point� and we define the Markov
transitions kernels{K̃n; n � 1} by setting for anyA ∈ E andn � 1 andx ∈E

K̃n(x,A)= gn(x) .Kn(x,A)

and

∀x ∈E K̃n(x, {�})= 1− gn(x) and K̃n({�}, {�})= 1.
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If {X̃n; n � 0} denotes the corresponding Markov process onE ∪ {�} then we have for
any subsetA ∈ E

P
(
X̃n ∈A | T � > n

)= E(f (Xn)Zn(X))

E(Zn(X))
,

whereT � = inf{n � 0; X̃n =�} is the life time ofX̃.
We shall now interpret (1) as the limit of a finite, weakly interacting particle systems

encountered in discrete generation genetic models. This discrete approximation of (1)
can be as well used as a numerical approximating model of (2). The advantage of
this approximation scheme among the numerous existing ones is that it guarantees an
occupation of the probability space regions proportional to their fitness thus providing a
well behaved adaptative and stochastic grid approximating model.

To our knowledge the Feynman–Kac interpretation (3) of the limiting system (1) of
the genetic algorithm has never been covered in genetic and evolutionary computing
literature but only in numerical filtering papers [12,13].

The class of measure valued processes described by (1) arises naturally as the
deterministic limit of the empirical measures of a finite interacting particle system
(abbreviateIPS). To make this more precise we recall that theN -IPS approximating
model associated to (1) is the Markov process(�, (Fn)n�0, (ξn)n�0,P ) taking values in
the product spaceEN and defined by

P(ξ0 ∈ dz)=
N∏

p=1

π0
(
dzp

)
and

P(ξn ∈ dz/ξn−1= x)=
N∏

p=1

φn

(
1

N

N∑
i=1

δxi

)(
dzp

)
, (4)

where dz
def.= dz1 × · · · × dzN is an infinitesimal neighborhood of the pointz =

(z1, . . . , zN) ∈EN andx = (x1, . . . , xN ) ∈ EN .
Since

φn

(
1

N

N∑
i=1

δxi

)
=

N∑
i=1

gn(x
i)∑N

j=1gn(xj )
Kn

(
xi, .)

we see that the motion of the particles is decomposed into two stages

ξn−1= (
ξ1
n−1, . . . , ξ

N
n−1

)−→ ξ̂n−1= (
ξ̂1
n−1, . . . , ξ̂

N
n−1

)−→ ξn = (
ξ1
n , . . . , ξ

N
n

)
.

The first one updates the positions in accordance with the fitness functions{gn; n � 1}
and the current configuration. More precisely, at each timen � 1, each particle examines
the system of particlesξn−1 = (ξ1

n−1, . . . , ξ
N
n−1) and chooses randomly a siteξ i

n−1,
1� i � N , with a probability which depends on the entire configurationξn−1, namely

gn(ξ
i
n−1)∑N

j=1gn(ξ
j
n−1)

.
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This mechanism is called the Selection/Updating transition as the particles are selected
for reproduction the more fit individuals being more likely to be selected. In other words
this transition allows particles to give birth to some particles at the expense of light
particle which die.

The second mechanism is called the Mutation/Prediction. During this stage each
particle evolves randomly according a given transition probability kernel.

This scheme is clearly a system of interacting particles undergoing adaptation in a
time non-homogeneous environment represented by the fitness functions{gn; n � 1}.

In biology and evolutionary computing literature thisN -IPS model corresponds to
a discrete generation genetic model with haploid selection. The term,haploid, refers
to the fact that the selection function depends only on the type of one “parent” rather
than two. TheN -IPS model (4) is sometimes referred as a simple or canonical genetic
algorithm mainly because it does not involve cross-over transitions and it simply uses
a proportional selection mechanism. In this connection the limiting system (1) is also
referred, in genetic terminology, as the infinite population model.

Let us briefly survey some different works related to our subject and motivate our
work.

In view of the previous discussion the measure valued dynamical system (1) and its
N -IPS approximating model (4) arise in a variety of research areas and similar problems
have been studied by many authors.

In evolutionary computing literature the connections between the long time behavior
of the finite and infinite population models are discussed for instance in [28,31–
36] but no satisfactory analysis was done to obtain precise stability properties and/or
convergence results. Some authors have made the sanguine assumption that the one step
mappingsφn are contractive (see for instance [32], p. 401). As we shall see in the further
development of Section 2 this assumption is very restrictive and the resulting stability
results do not apply to many situations of interest.

In measure valued processes and IPS literature the connections between the stability
properties of the limiting system (1) and the convergence of theN -IPS scheme have
also been studied in [23]. The author gives an ergodicity criterion on the limiting system
under which theN -IPS scheme converges uniformly with respect to the time parameter.
This result also applies to related genetic algorithms such as the Wright–Fisher model
but it relies on the fact that the limiting system is homogeneous and uniformly converges
to a distribution (with respect to its initial conditions) and it does not discuss any rates
of convergence.

In nonlinear filtering settings the study of the long time behavior of the filtering
equation is a more active research area. The motivations here come from the fact that the
initial law of the signal is usually unknown and it is therefore essential to check whether
or not the nonlinear filtering equation “forgets” any erroneous initial distribution. The
papers [21,22,29,30] are mainly concerned with the existence of invariant probability
measures and in [25] the authors prove that the filtering equation “forgets” any erroneous
initial condition if the unknown initial law of the signal is absolutely continuous with
respect to this new starting point. In the following chain of papers [1–3,5,9,18] the
authors discuss the stability properties of (2) using Hilbert projective metrics and/or
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Oseledec’s Theorem when the state space is finite. The first place in which such Hilbert
projective metrics have been used in filtering settings seems to be [9].

In this paper we propose a new approach based on semi-group techniques and
Dobrushin ergodic coefficient (cf. [19]). In contrast to the previous referenced papers
an advantage of our methodology is that it is not restricted to filtering or genetic
algorithms and it allows to study any nonhomogeneous systems of the form (1). The
other main result of the paper is to connect the long time behavior of (1) with the uniform
convergence of theN -IPS approximating model.

Let us state the main results of this paper more explicitly. Our first goal is to study the
long time behavior of the limiting process (1). Let{φn/p; 0 � p � n} be the nonlinear
semi-group associated to (1) and defined by the composite mappings

φn/p = φn ◦ · · · ◦ φp+1, 0� p � n,

with the conventionφn,n = Id. If we denote by

‖µ− ν‖tv def.= sup
A∈E

∣∣µ(A)− ν(A)
∣∣, ∀µ,ν ∈ P(E),

the total variation distance onP(E) then our main result will then be basically stated
under the following form.

THEOREM 1.1. – If the functions{gn, n � 1} and the Markov operators{Kn, n � 1}
are “good enough” then

∀µ,ν ∈ P(E), lim
n→∞‖φn/0(µ)− φn/0(ν)‖tv = 0. (5)

The crucial point is to specify the assumptions needed on the fitness functions
{gn, n � 1} and the Markov operators{Kn, n � 1} for such result to hold. Throughout
this paper we shall weaken these hypotheses as much as we can in order to include as
many examples encountered in nonlinear filtering and genetic algorithm theory.

We will also propose a mixing type condition on the transition probability kernelsKn

under which the convergence in (5) takes place exponentially fast in the sense that there
exists some positive constantλ > 0 such for any 0� p � n

sup
µ,ν∈P(E)

‖φn/p(µ)− φn/p(ν)‖tv � e−λ . (n−p).

The other main result of the paper is to connect the stability properties of the limiting
system (1) with the long time behavior of the empirical measuresπN

n associated to the
N -IPS scheme (4). Recall that it was proven in [12,13,15] that the empirical measure

πN
n =

1

N

N∑
i=1

δξin

converges in finite time intervals towards the desired distribution{πn,n � 0} asN goes
to infinity. The large deviations and the fluctuations for this convergence are developed
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in [16,17], but we let open the question of the long time behavior of this particle
approximations. Here, we shall prove that

THEOREM 1.2. – When the functions{gn; n � 1} and the Markov transitions
{Kn; n � 1} are “sufficiently regular” there exists a convergence exponentα > 0 such
that for any bounded measurable functionf

sup
n�0

E
(∣∣πN

n f − πnf
∣∣)� Cte

Nα
‖f ‖.

1.1. Notations and terminology

In view of the previous development the interpretation of (1) and the corresponding
particle scheme (4) may vary considerably. Most of the terminology we will use is drawn
from mean field IPS and genetic algorithm theory.

The deterministic nonlinear evolution equation (1) will be regarded as the limiting
measure-valued process associated with a sequence ofN -IPS schemes. With reference
to genetic algorithm theory the functions{gn; n � 1} will be called the fitness functions
and the transitions{Kn; n � 1} will be referred as the mutation transitions.

With a slight abuse of the classical mathematical terminology, we shall say that the
limiting system is asymptotically stable when its long time time behavior does not
depend on its initial condition.

To describe more precisely the dynamical structure of (1) we need to introduce some
additional notations. We first recall that any Markov transition kernelK(x, dy) on E

generates two integral operators one acting on functionsf ∈ Bb(E) and the other on
probability distributionsµ ∈P(E)

(Kf )(x)=
∫
E

K(x, dy)f (y), (µK)(dy)=
∫
E

µ(dx)K(x, dy).

As usualBb(E) is regarded as a Banach space endowed with the supremum norm

‖f ‖ = sup
x∈E
|f (x)|.

If K1, K2 are two Markov transition kernels onE we writeK1K2 the composite Markov
transition kernel given by

K1K2(x, dz)=
∫
E

K1(x, dy)K2(y, dz).

As announced our approach is based on semi-group techniques and we will use the
powerful tools developed by R.L. Dobrushin to study central limit Theorems for
nonstationary Markov chains [19]. We recall that ifK is a Markov transition onE then
the ergodic coefficient ofK is the quantityα(K) ∈ [0,1] given by

α(K)= 1− β(K) with β(K)
def.= sup

x,y∈E,A∈E
|K(x,A)−K(z,A)|.
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We shall call the numberα(K) the Dobrushin ergodic coefficient ofK (see [19]). It can
also be defined as

α(K)= inf
m∑
i=1

min
(
K(x,Ai),K(z,Ai)

)
, (6)

where the infimum is taken over allx, z ∈ E and all finite partitions ofE, {Ai; 1 � i �
m} with m � 1.

The quantityα(K) is a measure of contraction of the distance of probability measures
induced by the Markov operatorK . Namely, for anyµ,ν ∈ P(E) we have the well
known formula (see [19])

β(K)= sup
µ,ν∈P(E)

‖µK − νK‖tv
‖µ− ν‖tv . (7)

An outline of the development of the article is as follows:
The main result on the asymptotic stability of the limiting system (1) is given in

Section 2. In a preliminary Section 2.1 we examine in more details the dynamical
structure of (1). In a short Section 2.2 we present a very basic proof of Theorem 1.1
in the situation where the state spaceE is finite. In Section 2.3 we present a semi-group
technique to study the stability properties of (1) when the state spaceE is an arbitrary
measurable space. Several examples including nonlinear filtering problems are studied
in some details in Section 2.4. The uniform convergence result of theN -IPS scheme as
N →∞ is discussed in Section 3. In Section 3.1 we state and prove our main theorem.
In Section 3.2 we present a novel genetic algorithm with periodic selections and we
improve the uniform convergence decays given in Section 3.1. The last Section 3.3 we
propose a comparison of genetic type variants recently suggested in nonlinear filtering
literature including branching transitions and random population size models.

2. Asymptotic stability theorems

2.1. Introduction

In this section we discuss the asymptotic stability properties of the limiting system (1).
Before getting into the details it may be useful to make a couple of remarks regarding
the dynamical structure of (1).

In the first place it should be recalled that the limiting system (1) is a two stage process.
More precisely, the one step mappingsφn can be rewritten as follows

∀π ∈P(E), φn(π)=ψn(π)Kn, with ∀f ∈ Bb(E), ψn(π)(f )
def.= π(gnf )

π(gn)

with a selectionψn and a mutationKn.
This first observation already indicates that the resulting system (1) may have

completely different kinds of long time behavior.
For instance, if the fitness functions are constant functions then (1) is simply based on

mutation transitions and it describes the time evolution of the distributions of the Markov
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process{Xn; n � 0} with transition(Kn,n � 0). In this very special case the theory of
Markov processes and stochastic stability can be applied.

On the other hand, if the transition probability kernels{Kn; n � 1} are trivial, that
is Kn = Id for any n � 1, then (1) is only based on selection transitions and its long
time behavior is strongly related on its initial value. For instance, ifgn = exp(−U), for
someU :E→R+, then for any bounded continuous functionf :E→R+ with compact
support

πn(f )= π0(f e−nU )

π0(e−nU )
−−−−→

n→∞
π0(f 1U0)

π0(U0)
,

where, at least ifπ0(U
∗) > 0,

U0 def.= {x ∈E; U(x)= essinfπ0U }.
The second remark is the fact that the one step mappingsφn usually fail to be

contractive and the classical tools of dynamical system theory cannot be used to study
the stability properties of the system (1).

By way of example, let us suppose that the one step mappingsφn are time
homogeneous (i.e.,gn = g and Kn = K) and the Markov operatorK is a strict
contraction with respect (w.r.t.) to the total variation norm, that is

∀µ,ν ∈ P(E) ‖µK − νK‖tv � β(K)‖µ− ν‖tv with β(K) < 1.

Using the above inequality we obtain

‖φ(µ)− φ(ν)‖tv = ‖ψ(µ)K −ψ(ν)K‖tv � β(K)‖ψ(µ)−ψ(ν)‖tv.
It is therefore tempting to check thatψ is nonexpansive w.r.t. the total variation norm.
Unfortunately, this property is intimately related to the form of the functiong. Let us
examine a situation in whichψ is not contractive.

Namely, let us assume that

E = {0,1}, µ= 1

2
δ0+ 1

2
δ1, and ν = δ0. (8)

In this situation it is easily checked that

‖µ− ν‖tv = 1

2
and ‖ψ(µ)−ψ(ν)‖tv = g(1)

g(1)+ g(0)

so that

g(1) > g(0)�⇒‖ψ(µ)−ψ(ν)‖tv > ‖µ− ν‖tv
and consequentlyψ is not contractive. Let us also remark that in this simple example we
have that

‖µK − νK‖tv = β(K)‖µ− ν‖tv with β(K)= |K(0,0)−K(1,0)|,
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for any Markov operatorK on E. When the distributionsµ andν are given by (8) it
does follow that

‖φ(µ)− φ(ν)‖tv = 2β(K)
g(1)

g(1)+ g(0)
‖µ− ν‖tv,

and hence that(
1

2
< β(K) and g(0) < 2(β(K)− 1/2)g(1)

)
�⇒‖φ(µ)− φ(ν)‖tv > ‖µ− ν‖tv.

In the last example, the homogeneous one step mappings(φn, n � 0) are not contractive
but we shall see that the composite mappings{φn/p; 0 � p � n} can still be stable.
To do so, we need to investigate more closely the dynamical structure of the limiting
system (1). Our analysis will be based on the following lemma which roughly says that
the composite mappings{φn/p; 0 � p � n} have essentially the same form as the one
step mappings{φn; n � 1}.

LEMMA 2.1 [12]. – For any0� p � n, µ ∈P(E) andf ∈ Bb(E) we have

φn/p(µ)f = µ(gn/p (Kn/pf ))

µ(gn/p)
,

where the fitness functions{gn/p; 0 � p � n} and the Markov transitions{Kn/p; 0 �
p � n} satisfy the backward formulae

Kn/p−1f = Kp(gn/p(Kn/pf ))

Kp(gn/p)
, gn/p−1= gpKp(gn/p), (9)

with the conventionsgn/n = 1 andKn/n = Id.

For the convenience of the reader we indicate that this lemma can be proved using a
clear backward induction on the parameterp(� n).

It is transparent from the backward recursions (9) that the Markov operators
{Kn/p; 0 � p � n} are composite operators of time-inhomogeneous but linear Markov
operators. More precisely it can be checked directly that

Kn/p−1= Sn/pKn/p = Sn/pSn/p+1 · · ·Sn/n−1Sn/n, (10)

with

Sn/pf = Kp(gn/pf )

Kp(gn/p)
, 0� p � n.

2.2. Finite state space

In this short subsection we consider the case whereE is finite. We introduce this result
in the article since it shows in a natural and very simple way how some simple properties
on the functions{gn; n � 1} and the stochastic matrices{Kn; n � 1} combine to give
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the desired asymptotic stability of (1). However, the present result will be strengthened
in the next subsection. For simplicity we will always assume that

(A) There exists an0< ε � 1 such that

∀n � 1, x, z ∈ E ε � gn(x) � 1 ε � Kn(x, z) � 1.

In this situation a clear combination of (9) yields that

gn/p(z)Kp(x, z)

gn/p(z′)Kp(x, z′)
= gp+1(z)Kp(x, z)Kp+1(gn/p+1)(z)

gp+1(z′)Kp(x, z′)Kp+1(gn/p+1)(z′)
� 1/ε3.

Thus

Sn/p(x, z)= gn/p(z)Kp(x, z)∑
z′ gn/p(z′)Kp(x, z′)

� λ, (11)

with

λ−1= 1+ (|E| − 1)ε−3.

This gives us the following theorem

THEOREM 2.2. – Under assumption(A) we have that

∀x ∈E,µ, ν ∈P(E) |φn/0(µ)(x)− φn/0(ν)(x)|� (1− λ)n.

Proof. –If we put

K+
n/p(x)= sup

z∈E
Kn/p(z, x), K−

n/p(x)= inf
z∈EKn/p(z, x),

and

K+
n/p(x)=Kn/p(x

+
n/p, x), K−

n/p(x)=Kn/p(x
−
n/p, x)

using the decomposition (10) we find that

K+
n/p−1(x) � K−

n/p(x)Sn/p(x
+
n/p−1, x

−
n/p)+K+

n/p(x)
(
1− Sn/p(x

+
n/p−1, x

−
n/p)

)
and

K−
n/p−1(x) � K+

n/p(x)Sn/p(x
−
n/p−1, x

+
n/p)+K−

n/p(x)
(
1− Sn/p(x

−
n/p−1, x

+
n/p)

)
.

Thus, from (11) one gets the inequality(
K+

n/p−1(x)−K−
n/p−1(x)

)
� (1− λ)

(
K+

n/p(x)−K−
n/p(x)

)
.

It is then an elementary matter to prove that

sup
z,z′
|Kn/p(z, x)−Kn/p(z

′, x)|� (1− λ)n−p.

The end of proof of the theorem is now straightforward.✷
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2.3. Measurable state space

The purpose of this section is to present a natural sufficient condition for asymptotic
stability of (1) when the state spaceE is an arbitrary measurable space. The starting
point to do it is to use the Dobrushin ergodic coefficient (6) to obtain the following
pivotal lemma

LEMMA 2.3. – For any0� p � n we have

sup
µ,ν∈P(E)

‖φn/p(µ)− φn/p(ν)‖tv = β(Kn/p) �
n∏

q=p+1

(
1− α(Sn/q)

)
and therefore for anyp � 0

• lim
n→∞

n∑
q=p+1

α(Sn/q)=∞�⇒ lim
n→∞β(Kn/p)= 0.

• lim
n→∞

1

n

n∑
q=p+1

α(Sn/q)
def.= α(S)�⇒ lim sup

n→∞
1

n
logβ(Kn/p) �−α(S).

• inf
0�p1�p2

α(Sp2/p1)
def.= α(S)�⇒∀n � p β(Kn/p) � e−α(S).(n−p).

Proof. –In the first place, note that for anyµ ∈P(E) and 0� p � n

φn/p(µ)= µn/pKn/p with µn/p(f )= µ(gn/pf )

µ(gn/p)
.

Recalling that

Kn/p = Sn/p+1Sn/p+2 · · ·Sn/n

and using (7) we obtain

‖φn/p(µ)− φn/p(ν)‖tv =‖µn/pKn/p − νn/pKn/p‖tv
� β(Kn/p)‖µn/p − νn/p‖tv. (12)

Since for anyx ∈E

φn/p(δx)=Kn/p(x, .)
it follows that

β(Kn/p)= sup
x,y
‖Kn/p(x, .)−Kn/p(y, .)‖tv

� sup
µ,ν∈P(E)

‖φn/p(µ)− φn/p(ν)‖tv.

The reverse inequality is a consequence of (12). Taking into account that

Kn/q−1= Sn/qKn/q, ∀1� q � n,
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it is easily seen that

β(Kn/q−1) �
(
1− α(Sn/q)

)
β(Kn/q), ∀1� q � n,

from which one concludes that

β(Kn/p) �
n∏

q=p+1

(
1− α(Sn/q)

)
and the first part of the lemma is proved. On the other hand if we use the inequality

n∏
q=p+1

(
1− α(Sn/q)

)
� exp−

(
n∑

q=p+1

α(Sn/q)

)

the end of the proof of the lemma is straightforward.✷
In view of the previous considerations we see that the collection of Markov transitions

{Sn/p; 0 � p � n} plays a pivotal role in the study of the asymptotic stability properties
of the limiting system (1).

To control the Dobrushin coefficients of{Sn/p; 0 � p � n}, we shall now make the
following natural assumptions

(B) For any timen � 1, there exists a reference probability measureλn ∈P(E) and a
positive numberεn ∈ (0,1] so thatKn(x, .)∼ λn for anyx ∈E and

εn � dKn(x, .)
dλn

� 1

εn
.

In contrast to (A) condition (B) doesn’t depend anymore on the fitness functions
{gn; n � 1}. One way to relax (B) is to take advantage of the specific structure of the
fitness functions{gn/p; 0 � p � n} defined in Lemma 2.1. The price to pay is that the
resulting condition now depends on the boundedness of the fitness functions. In this
situation we will use the next condition.

(C) For anyn � 1 there exists anan ∈ [1,∞) such that

1

an
� gn(x) � an, ∀x ∈E, ∀n � 1.

In addition, the mutation transitions are homogeneous(that isKn =K) and there exists
anm � 1 andε > 0 and a reference probability measureλ ∈P(E) such that

ε � dKm(x, .)
dλ

� 1

ε
, ∀x ∈E.

In the last condition the mutation transitions are assumed to be homogeneous, the
generalization to nonhomogeneous Markov transitions will be straightforward.

We can now show the
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THEOREM 2.4. –
• If condition (B) holds for some sequence of nonnegative numbers{εn; n � 1} such

that ∑
n�1

ε2
n =∞,

then we have

lim
n→∞ sup

µ,ν∈P(E)

‖φn/0(µ)− φn/0(ν)‖tv = 0.

In addition, suppose that

lim
n→∞

1

n

n∑
p=1

ε2
p

def.= ε2,

then

lim sup
n→∞

1

n
log sup

µ,ν∈P(E)

‖φn/0(µ)− φn/0(ν)‖tv �−ε2.

Moreover when

inf
n�1

en
def.= ε

one concludes that for any0 � p � n

sup
µ,ν∈P(E)

‖φn/p(µ)− φn/p(ν)‖tv < exp−(ε2 . (n− p)
)
.

• When the fitness functions and the mutation transitions satisfy condition(C) for

somem � 1, ε > 0 anda
def.= supn an <∞ then we have for anyn � m � 0

1

n
log sup

µ,ν∈P(E)

‖φn/0(µ)− φn/0(ν)‖tv �−
(

1− m

n

)
α(K)

(
ε

am

)2

. (13)

Proof. –Under (B) we first note that each coefficientα(Sn/p) is lower bounded byε2
p.

To see this claim, note that for anyx ∈E andA ∈ E

Sn/p(x,A)= Kp(gn/p1A)(x)

Kp(gn/p)(x)
� ε2

p

λp(gn/p1A)

λp(gn/p)

so that (6) implies that

α(Sn/p) � ε2
p. (14)

The end of the proof of the first part of the theorem is then is clear consequence
of Lemma 2.1. Let us assume that condition (C) holds for somem � 1, ε > 0 and
a

def.= supn an <∞. An induction on the parameterm yields

a−2mK(Km(gn/p+m)ϕ)

K(Km(gn/p+m))
� Sn/pϕ � a2mK(Km(gn/p+m)ϕ)

K(Km(gn/p+m))
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for any 0� p+m � n and any bounded nonnegative functionϕ :E→R+. This in turn
implies that (

ε

am

)2

α(K) � α(Sn/p) �
(
am

ε

)2

α(K)

and inequality (13) is again a consequence of Lemma 2.1.✷
Next we consider a corollary of Theorem 2.4 in the time homogeneous situation which

is particularly important in genetic algorithm theory. When the fitness functions and the
mutation transitions are homogeneous (that isgn = g andKn =K) the resulting one step
mapping of the limiting system (1) is again homogeneous and it is defined by

φ(µ)=ψ(µ)K with ψ(µ)(f )= µ(gf )

µ(g)

for anyf ∈ Bb(E) andµ ∈P(E).

COROLLARY 2.5. – Let E be a finite state space. Assume that the fitness functions
and the Markov transitions are homogeneous.
• If condition (B) holds for someε > 0 then the corresponding homogeneous one

step mappingφ has a unique fixed point, that is

∃!π∞ ∈P(E): π∞ = φ(π∞),

and for any0� p � n we have that

sup
µ∈P(E)

‖φn/p(µ)− π∞‖tv < exp−(ε2 . (n− p)
)
.

• When the fitness functions and the mutation transitions satisfy condition(C) for
somem � 1, ε > 0 andan = a <∞ then the corresponding homogeneous one step
mappingφ has a unique fixed pointπ∞ = φ(π∞) and for anyn � m � 0 we have
that

1

n
log sup

µ∈P(E)

‖φn/0(µ)− π∞‖tv �−
(

1− m

n

)
α(K)

(
ε

am

)2

.

Proof. –Under our assumptions the one step mappingφ is clearly continuous onP(E)

(for the weak topology). Since the state spaceE is assumed to be finite the setP(E) is
a compact and convex subset ofR

|E| and Brouwer fixed-point theorem tells us that there
exist one fixed pointπ∞ = φ(π∞) ∈ P(E). The end of the proof of the corollary is a
straightforward application of Theorem 2.4.✷

We conclude this section with an asymptotic stability result when the fitness function
gn tends to 1 asn tends to infinity, corresponding to the degenerate situation in filtering
theory where the noise can become huge.
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THEOREM 2.6. – Let {gn; n � 1} be a collection of measurable and positive
functions such that

l(g)
def.= ∑

n�1

‖ loggn‖<∞. (15)

If the Dobrushin coefficients{α(Kn); n � 1} of the mutations transitions are such that∑
n�1

α(Kn)=∞,

then

lim
n→∞ sup

µ,ν∈P(E)

‖φn/0(µ)− φn/0(ν)‖tv = 0.

In addition, if

lim
n→∞

1

n

n∑
p=1

α(Kp)
def.= α(K),

then

lim sup
n→∞

1

n
log sup

µ,ν∈P(E)

‖φn/0(µ)− φn/0(ν)‖tv �−α(K)exp−l(g).

Moreover when

inf
n�1

α(Kn)
def.= α(K)

one concludes that for any0� p � n

sup
µ,ν∈P(E)

‖φn/p(µ)− φn/p(ν)‖tv < exp−(α(K)e−l(g)(n− p)
)
.

Proof. –Under our assumptions we first notice that

∀n � 0 ‖ loggn‖<∞,

and therefore for anyn � 0 andx ∈ E we clearly have

1

an
� gn(x) � an with an = exp‖ loggn‖.

By definition of the fitness functions{gn/p; 0 � p � n} we also have for any 0� p � n

andx ∈E

e−l(g) � gn/p(x) � el(g),

from which one concludes that

Sn/p(ϕ)(x)= Kp(gn/pϕ)(x)

Kp(gn/p)(x)
� e−2l(g)Kp(ϕ)(x) (16)
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for any bounded nonnegative functionϕ :E→R+. Recalling that (16) implies that

α(Sn/p) � e−2l(g)α(Kp)

the end of the proof is now a consequence of Lemma 2.1.✷
Remark2.7. – It is noteworthy that when (15) is satisfied then the condition∑

n�1

α(Kn)=∞

is a sufficient condition for the asymptotic stability of the limiting system (1). This
condition is in fact a necessary and sufficient condition for a nonhomogeneous Markov
transition to be strongly ergodic (see for instance [19], part II, p. 76).

2.4. Applications

As we said in the introduction the study of the asymptotic behavior of the limiting
system (1) is motivated by nonlinear filtering and genetic algorithm theory. The purpose
of this section is to indicate some consequences of the previous asymptotic stability
properties. In order to illustrate the assumptions of Theorems 2.4 and 2.6 we start with
some simple examples.

Example1. – SupposeE =R andKn, n � 1, are given by

Kn(x, dz)= 1

2
αn exp

(−αn|z− bn(x)|)dz, αn > 0, bn ∈ Cb(R).

Note thatKn may be written

Kn(x, dz)= exp
(
αn(|z| − |z− bn(x)|))λn(dz)

with

λn(dz)= 1

2
αn exp(−αn|z|) dz.

It follows that (B) holds with logεn =−αn‖bn‖.
Example2. – In nonlinear filtering settings the system (1) represents the dynamical

structure of the conditional distribution of a Markov process given its noisy observations.
For instance the unknown Markov process may be a noncooperative target evolving
randomly and the filtering problem is concerned with estimating its position at each
time.

In some practical situations such as the so-called proportional navigation for
manoeuvring targets the number of strategies used by the target may be finite. In this
situation |E| < ∞ and the action of the process can be modeled with a transition
probability kernel of the form

Kn(x, z)=
M∑

m=1

αn(m,x) 1Fm(x)(z),
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where {αn(m, .); n � 1, 1 � m � M} is a sequence of positive functions satisfying∑M
m=1αn(m,x)= 1 and{Fm; 1� m � M} is a sequence of transformations onE.
At each timen and in a new positionx ∈E the system uses a new strategyαn(m,x) for

choosing the next directionFm(x). In this case a sufficient condition for the exponential
stability of (1) is to assume that, for any 1� m � M , n � 1 andx ∈ E the following
hold

M⋃
m=1

Fm(x)=E and αn(m,x) > 0.

Example3. – In gene analysis each individual represents a chromosome and it is
modeled by a binary string of a fixed lengthL. In this setting the fitness functions
represent the performance of the set of genes in a chromosome.

The corresponding genetic model can be defined as in (4) with the finite state space
E = {0,1}L with cardinality|E| = 2L. As a parenthesis, we recall that if the state space
is finite thenP(E) coincide with the unit|E|-simplex� with

�=
{
p ∈R

|E|; pi � 0 and
|E|∑
i=1

pi = 1

}
.

For time homogeneous fitness and mutations Corollary 2.5 gives sufficient conditions
under which the homogeneous one step mappingφ has a unique fixed point and it also
presents exponential decays.

By way of example, if the mutation transition matrix is such that

∀x, y ∈ E K(x, y) > 0,

then (B) holds for the uniform distributionλ on the finite setE and

ε =min
(
|E|min

x,y
K(x, y),

1

|E|maxx,y K(x, y)

)
.

Example4. – Assume that the fitness functions take the form

gn(x)= exp−(βnU(x)
)

for some bounded nonnegative functionU :E→ R+ and some sequence of parameters
βn→ 0 asn→∞. It is easily verified that condition (15) of Theorem 2.6 holds as soon
as ∑

n�1

βn <∞.

Next we present an easily verifiable sufficient condition for (C).

(C)′ For anyn � 1 there exists anan ∈ [1,∞) such that

1

an
� gn(x) � an, ∀x ∈E, ∀n � 1.
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In addition, the mutation transitions are time homogeneous(that isKn =K) and there
exist a subsetA ∈ E , a reference probability measureλ ∈ P(E) and a positive number
ε ∈ (0,1) such that

ε � dK(x, .)
dλ

(z) � 1

ε
, ∀x ∈E, ∀z ∈A.

In addition there exists a decompositionAc = B1 ∪ · · · ∪ Bm, m � 1 and 2m reference
probability measuresλ1, . . . , λm, γ1, . . . , γm ∈P(E) such that for any1 � k � m

ε � dK(x, .)
dλk

(z) � 1

ε
, ∀x ∈ Bk, ∀z ∈E

and

γk(Bk) > 0 and
dK(x, .)

dγk

(z) � ε, ∀x ∈E, ∀z ∈ Bk.

Under (C)′ one can check that (C) holds withm = 2. To see that this sufficient
condition is a reasonable assumption let us present an example of Gaussian transition
which can be handled in this framework.

Example5. – LetK be the Markov transition onE =R given by

K(x, dz)= 1√
2π

exp−1

2

(
z− f (x)

)2
dz, (17)

where the drift functionf :R→R is bounded and satisfies

f (x)= f (sign(x)M), ∀|x|� M.

This transition corresponds to the Markov chain determined by

Xn+1= f (Xn)+Wn,

where theWn are independent and standard normal. In this situation it is not difficult to
check that the mixing type conditions in(C)′ hold with

A= [−M,M], B1= (−∞,−M), B2= (M,+∞),

and

λ1 = δ−MK, λ2 = δ−MK,

γ1(dz) = 1√
2π

exp−1

2
(z−M)2 dz, γ2(dz) = 1√

2π
exp−1

2
(z+M)2 dz.

When(C)′ holds for someε > 0 and some sequence of positive numbers{an; n � 1}
such thata def.= supn an <∞ then Theorem 2.4 applies to study the stability properties of
the limiting system (1).
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Much more is true. We can use the full force of(C)′ to prove useful asymptotic
stability results even whenan→∞.

PROPOSITION 2.8. – Assume that(C)′ holds. Then, for anyµ,ν ∈ P(E) we have
that ∑

n�1

a−2
n =∞�⇒ lim

n→∞‖φn/0(µ)− φn/0(ν)‖tv = 0,

lim
n→∞

1

n

n∑
p=1

a−2
p > 0�⇒ lim sup

n→∞
1

n
log‖φn/0(µ)− φn/0(ν)‖t < 0.

Proof. –For any bounded positive functionϕ we first notice that

K(gn/pϕ) � ελ(gn/pϕ1A)+ ε2

ap+1

m∑
k=1

λk(gn/p+1)γk(ϕ1Bk
)

and

K(gn/p) � 1

ε
λ(gn/p1A)+ ap+1

ε

m∑
k=1

λk(gn/p+1).

This yields

Sn/pϕ �
(

ε3

a2
p+1

)
λ(gn/pϕ1A)+∑m

k=1λk(gn/p+1)γk(ϕ1Bk
)

λ(gn/p1A)+∑m
k=1λk(gn/p+1)

,

which in turns implies that

α(Sn/p) �
(

ε3

a2
p+1

)
λ(gn/p1A)+ ε

∑m
k=1λk(gn/p+1)

λ(gn/p1A)+∑m
k=1λk(gn/p+1)

� ε4

a2
p+1

as soon asε is chosen so that

inf
1�k�m

γk(Bk) � ε.

The end of the proof is straightforward.✷
Until the end of this section we investigate more closely the consequences of the

asymptotic stability results of Section 2 in the study of the long time behavior of the
nonlinear filtering equation (2) when the observation sequence takes the form

Yn = hn (Xn−1)+ Vn, n � 1, (18)

for some bounded measurable functionhn :E ×R
d →R

d . The sequenceV = {Vn; n �
1} areR

d -valued, independent ofX, and independent random variables with continuous
and positive densities{g̃n; n � 1} with respect to Lebesgue measure. In this situation
and using the notations of Section 1 one can check that the functionsg̃n, gn andhn are
connected by

∀(x, y) ∈ E ×R
d gn(y, x)= g̃n

(
y − hn(x)

)
.
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We start with some comments on how the previous results can be used to study the
“memory length” of the optimal filter. The so-called optimal filter of fixed memory
lengthT is the measure valued process{πY,T

n ; n � 0} given by

πY,T
n (f )=

{
πY
n (f ) if n � T ,

E(f (Xn) | Yn−T+1, . . . , Yn) otherwise

for any bounded test functionf . In other wordsπY,T
n is the conditional distribution

of Xn given the last current observations{Yn−p; p = 0, . . . , T − 1}. For practical and
theoretical reasons (see for instance [11,14,25]), it is natural to seek conditions which
ensures that the optimal filter of memory lengthT will converge in a sense to be defined
to the optimal filter asT →∞ and uniformly w.r.t. time. The following corollary of
Theorem 2.4 answers to this question.

COROLLARY 2.9. –Assume that the signal transition probability kernels{Kn; n � 1}
satisfy condition(B) for a sequence of positive numbers{εn; n � 1} so that infn εn =
ε ∈ (0,1). Then we have

sup
n�0

1

T
log

∥∥πY,T
n − πY

n

∥∥
tv

�−ε2.

Proof. –Let us fix the observation processY . To clarify the presentation we also
suppress the observation parameterY so that we simply noteφn andπn andπT

n instead
of φn(Yn, .) andπY

n andπY,T
n . Coming back to the definitions of the composite mappings

{φn/p; 0 � p � n} and the distributions{πn,π
T
n ; n � 0} it is easy to see that

πn = φn/n−T (πn−T ) and πT
n = φn/n−T

(
π0K

n−T
)
, ∀0� T � n.

As a consequence of the results of Section 2 we have that

sup
n�0

∥∥πT
n − πn

∥∥
tv

�
(
1− ε2)T � exp−(T ε2). ✷

In our setting the fitness functions are random in the observation parameter. Instead
of (C) we will use the following assumption

(C)′′ For any timen � 1 there exists a positive functionan :Rd → [1,∞) and a
nondecreasing functionθ :R→R such that

1

an(y)
� gn(y − hn(x))

gn(y)
� an(y), ∀x ∈E,y ∈ R

d (19)

and

| logan(y + u)− logan(y)|� θ(‖u‖).
In addition, the mutation transitions are homogeneous(that isKn =K) and there exists
anm � 1 andε > 0 and a reference probability measureλ ∈P(E) such that

ε � dKm(x, .)
dλ

� 1

ε
, ∀x ∈E.
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As usual and to clarify the presentation we suppress the observation parameterY so
that we simply noteφn andπn instead ofφn(Yn, .) andπY

n . Let us select another initial
conditionµ ∈ P(E) and denote by{πµ

n ; n � 0} the solution of (2) starting atµ (i.e.
π

µ
0 =µ). Next results are simple corollaries of Theorem 2.4 and Proposition 2.8.

COROLLARY 2.10. – Assume that(C)′′ holds for somem � 1. If α(K) > 0 and
supn�1 ‖hn‖<∞ then for anyµ ∈P(E) we have

∑
p�0

m∏
q=1

a−2
p+q(Vp+q)=∞�⇒ lim

n→∞
∥∥πµ

n − πn

∥∥
tv
= 0,

lim
n→∞

1

n

n−1∑
p=0

m∏
q=1

a−2
p+q(Vp+q) > 0�⇒ lim sup

n→∞
1

n
log

∥∥πµ
n − πn

∥∥
tv
< 0

and

sup
n�1

E
(
logan(Vn)

)
<∞�⇒ lim

n→∞E
(∥∥πµ

n − πn

∥∥
tv

)= 0.

Proof. –It is useful here to replace the functionsgn(y − hn(.)) by the “normalized”
onesgn(y−hn(.))

gn(y)
. This choice does not alter the structure of (2).

Let us fix the observation sequenceY . Using the same arguments as in the proof of
Theorem 2.4 we first note that for any 0� m+ p � n

ε2α(K)

m∏
q=1

a−2
p+q(Yp+q) � α(Sn/p) � α(K)

ε2

m∏
q=1

a2
p+q(Yp+q).

SinceYn = h(Xn)+ Vn, it follows that

∥∥πµ
n − πn

∥∥
tv

�
n−m∏
p=0

(
1− εα(K)e−2mθ(M)

m∏
q=1

a−2
p+q(Vp+q)

)

for anyµ ∈ P(E) andn � m � 1 as soon as supn�1 ‖hn‖� M . The end of proof of the
first two implications is now straightforward. Let us prove the third and last one. Writing

C = εα(K)e−2mθ(M), ϕ(p)(V )=
m∏

q=1

a−2
p+q(Vp+q)

we first notice that for anyt > 0

E
((

1−Cϕ(p)(V )
)n−m+1)�

m∑
q=1

P

(
logap+q(Vp+q) � t

2m

)
+ (

1−Ce−t
)n−m+1

.

Hence

E
((

1−Cϕ(p)(V )
)n−m+1)� 2m2

t
sup
n�1

E
(
logan(Vn)

)+ (
1−Ce−t

)n−m+1
. (20)
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The final step is to note that repeated use of Holder inequality gives

E
(∥∥πµ

n − πn

∥∥
tv

)
�

n−m∏
p=0

E
((

1−Cϕ(p)(V )
)n−m+1) 1

n−m+1 . (21)

Combining (20) and (21) one concludes that

lim
n→∞E

(∥∥πµ
n − πn

∥∥
tv

)
� 2m2

t
sup
n�1

E
(
logan(Vn)

) ∀t > 0.

Letting t→∞ we end the proof of the corollary.✷
COROLLARY 2.11. – Assume that(C)′′ holds. Ifsupn�1 ‖hn‖<∞ then we have∑

n�1

E
(
a−2
n (Vn)

)=∞�⇒ lim
n→∞E

(‖πµ
n − πn‖tv)= 0,

lim
n→∞

1

n

n∑
p=1

E
(
a−2
p (Vp)

)
> 0�⇒ lim sup

n→∞
1

n
logE

(‖πµ
n − πn‖tv)< 0.

Proof. –The basic ideas of the proof were already given in the proof of Proposi-
tion 2.8. Under our assumptions one can check that

α(Sn/p) � ε4

a2
p+1(Yp+1)

� ε4

a2
p+1(Vp+1)

e−2θ(M)

as soon as supn�1 ‖hn‖� M . Thus we have

E
(‖πµ

n − πn‖tv)�
n∏

p=1

(
1− ε4 e−2θ(M)E

(
a−2
p+1(Vp+1)

))
from which the end of the proof is straightforward.✷

Let us now investigate assumption(C)′′ through some examples of nonlinear sensor.

Example6. – As a typical example of nonlinear filtering problem assume the
functionshn :E→R

d , n � 1, are bounded continuous and the densitiesgn given by

g̃n(v)= 1

((2π)d |Rn|)1/2
exp

(
−1

2
v′R−1

n v

)
,

whereRn is ad × d symmetric positive matrix. This corresponds to the situation where
the observations are given by

Yn = hn(Xn−1)+ Vn, ∀n � 1, (22)

where (Vn)n�1 is a sequence ofRd -valued and independent random variables with
Gaussian densities.
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After some easy manipulations one gets the bounds (19) with

logan(y)= 1

2

∥∥R−1
n

∥∥‖hn‖2+ ∥∥R−1
n

∥∥‖hn‖|y|,

where‖R−1
n ‖ is the spectral radius ofR−1

n . In addition we have

| logan(y + u)− logan(y)|� Ln|u| with Ln =
∥∥R−1

n

∥∥‖hn‖.
It is therefore not difficult to check that the assumptions of Theorem 2.11 are satisfied
when

sup
n�1

(‖hn‖,
∥∥R−1

n

∥∥)<∞.

To see this claim it suffices to note that Jensen’s inequality yields that

logE
(
a−2
n (Vn)

)
�−∥∥R−1

n

∥∥‖hn‖2− 2
∥∥R−1

n

∥∥‖hn‖E(|Vn|).
Finally we note that the last assertion of Theorem 2.10 holds since we have

E
(
logan(Vn)

)= 1

2

∥∥R−1
n

∥∥‖hn‖2+ ∥∥R−1
n

∥∥‖hn‖E(|Vn|).

Example7. – Our result is not restricted to Gaussian noise sources. For instance, let
us assume thatd = 1 andgn is a bilateral exponential density

g̃n(v)= αn

2
exp−(αn|v|), αn > 0.

In this case one gets the bounds (19) with

logan(y)= αn‖hn‖
which is independent of the observation parametery. One concludes easily that the
conditions of Theorems 2.10 and 2.11 are satisfied as soon as

sup
n�1
{αn,‖hn‖}<∞.

Finally, if ∑
n�1

(αn‖hn‖) <∞

one can also check that condition (15) of Theorem 2.6 is satisfied.

3. Uniform convergence of genetic algorithm

3.1. A uniform convergence theorem

In the present section the asymptotic stability results presented in Section 2 are applied
to prove uniform convergence results for the finiteIPSmodel.
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THEOREM 3.1. – Let {gn; n � 1} be a collection of bounded and positive functions
on E such that for anyn � 1 there exists anan ∈ [1,∞) such that for anyx ∈ E and
n � 1

1

an
� gn(x) � an. (23)

If the sequence{an; n � 1} is uniformly bounded, so that

a
def.= sup

n�1
an <∞

and the limiting system(1) satisfies the following asymptotic stability assumption

∀f ∈ Bb(E) lim
T→∞ sup

µ,ν∈P(E)

sup
p�0

∣∣φp+T/p(µ)(f )− φp+T/p(ν)(f )
∣∣= 0, (24)

then we have the following uniform convergence result with respect to the time parameter

∀f ∈ Bb(E) lim
N→∞sup

n�0
E
(|πN

n f − πnf |)= 0. (25)

In addition, if the limiting system is exponentially asymptotically stable in the sense that
there exists someT0 � 1 andγ > 0 such that for anyf ∈ Bb(E), ‖f ‖� 1, µ,ν ∈P(E)

andT � T0

sup
p�0

∣∣φp+T/p(µ)(f )− φp+T/p(ν)(f )
∣∣� e−γ.T , (26)

then we have for anyf ∈ Bb(E), ‖f ‖� 1, the following uniform bounds

sup
n�0

E
(∣∣πN

n f − πnf
∣∣)� 5exp(2γ ′)

Nα/2
(27)

for anyN � 1 so that

T (N)
def.=

[
1

2

logN

γ + γ ′

]
+ 1 � T0,

whereα andγ ′ are given by

α = γ

γ + γ ′
with γ ′ = 1+ 2 loga.

Proof. –In what follows we denote byf :E → R a bounded measurable function
such that‖f ‖� 1. To prove our result we will use repeatedly formula (9). For instance
and for later use we immediately notice that

1

an/p
� gn/p(x) � an/p, ∀x ∈E, ∀0� p � n,
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with

an/p =
n∏

q=p+1

aq

and the usual convention
∏
∅ = 1. On the other hand, using the above simplified notations

we have the decomposition

πN
n f − πnf =

n∑
p=0

(
φn/p

(
πN
p

)
f − φn/p

(
φp

(
πN
p−1

))
f
)

with the conventionφ0(π
N−1)= π0. Therefore we also have the inequality

∣∣πN
n f − πnf

∣∣� n∑
p=0

∣∣φn/p

(
πN
p

)
f − φn/p

(
φp

(
πN
p−1

))
f
∣∣. (28)

Using (9) we see that each term∣∣φn/p

(
πN
p

)
f − φn/p

(
φp

(
πN
p−1

))
f
∣∣

is bounded by

a2
n/p

(∣∣πN
p f1− φp

(
πN
p−1

)
f1
∣∣+ ∣∣πN

p f2− φp

(
πN
p−1

)
f2
∣∣) (29)

with

f1= gn/p

an/p
Kn/p(f ), f2= gn/p

an/p

so that‖f1‖,‖f2‖� 1.
By recalling that πN

p is the empirical measure associated toN conditionally
independent random variables with common lawφp(π

N
p−1) we clearly have the estimate

E
(∣∣πN

p f − φp

(
πN
p−1

)
f
∣∣)� 1√

N
.

Collecting the above inequalities one concludes that

E
(∣∣πN

n f − πnf
∣∣)� 2√

N

(
1+ n a2

n/0

)
.

This yields for anyT � 0

sup
n=0,...,T

E
(∣∣πN

n f − πnf
∣∣)�

4T a2
T/0√
N

.

Under our assumptions this implies that

sup
n=0,...,T

E
(∣∣πN

n f − πnf
∣∣)� 4T a2T

√
N
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and

sup
n=0,...,T

E
(∣∣πN

n f − πnf
∣∣)� 4eγ

′ T
√
N

with γ ′ = 1+ 2 loga. (30)

For anyn � 0 we also have the decomposition

πN
n f − πnf =

n∑
p=n−T+1

(
φn/p

(
πN
p

)
f − φn/p

(
φp

(
πN
p−1

))
f
)

+ (
φn/n−T

(
πN
n−T

)
f − φn/n−T (πn−T )f

)
.

Under our assumptions this implies that

∣∣πN
n f − πnf

∣∣� n∑
p=n−T+1

∣∣φn/p

(
πN
p

)
f − φn/p

(
φp

(
πN
p−1

))
f
∣∣+ εT (f ),

where

εT (f )
def.= sup

µ,ν∈P(E)

sup
p�0

∣∣φp+T/p(µ)(f )− φp+T/p(ν)(f )
∣∣.

In the same way that we deduce (30) from (28) we can establish that for anyn � T

E
(∣∣πN

n f − πnf
∣∣)� 4eγ

′ T
√
N
+ εT (f ). (31)

If we combine (30) with (31) we arrive at

sup
n�0

E
(∣∣πN

n f − πnf
∣∣)� 4eγ

′ T
√
N
+ εT (f )

for anyT � T0. LettingN→∞ and thenT →∞ we prove (25).
If the exponential bound (26) holds then using the same line of arguments as before

one can check that for anyT � T0

sup
n�0

E
(∣∣πN

n f − πnf
∣∣)� 4eγ

′ T
√
N
+ e−γ.T .

Now, if we put

T = T (N)
def.=

[
1

2

logN

γ + γ ′

]
+ 1,

where[a] denotes the integer part ofa ∈R, we find that

sup
n�0

E
(∣∣πN

n f − πnf
∣∣)� 5exp(2γ ′)

Nα/2
with α = γ

γ + γ ′

as soon asT (N) � T0. ✷
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The preceding theorem shows that under some mild assumptions on the signal semi-
group the confidence intervals[

πN
n (A)− λb

Nα/2
, πN

n (A)+ λb

Nα/2

]
, A ∈ E,

whereb= 5e2γ ′ , have reliability 1− 1
λ

for any timen � 0. Namely

P

(∣∣πN
n (A)− πn(A)

∣∣� λb

Nα/2

)
� 1− 1

λ
, ∀A ∈ E, ∀n � 0.

For instance we can say at each timen � 0, with a probability greater than 0,9 that the
exact values ofπn(A), A ∈ E , are in the intervals[

πN
n (A)− 10b

Nα/2
, πN

n (A)+ 10b

Nα/2

]
, A ∈ E .

This statement is usually written in the symbolic form

∀n � 0, ∀A ∈ E, πN
n (A)� πn(A)± 10b

Nα/2
(� 0,9).

Condition (26) guarantees that the measure valued process (1) is asymptotically stable
and corrects with a exponential rate any erroneous initial condition. Sufficient conditions
for (26) to hold are given in Section 2. For instance, if (B) holds for someε ∈ (0,1) then
we have

sup
p�0

∣∣φp+T/p(µ)f − φp+T/p(ν)f
∣∣� (

1− ε2)T
for anyT � 1,µ,ν ∈P(E) and for any bounded test functionf so that‖f ‖� 1.

Let us discuss some consequences of Theorem 3.1 when the state spaceE is a Polish
space (that is a complete separable metric space). In this situation we first recall that
P(E) with the topology of weak convergence can be considered as a metric space with
metricd defined forµ,ν ∈P(E) by

d(µ, ν)=∑
m�1

2−(m+1)|µfm − νfm|,

where {fm; m � 1} is a suitable sequence of uniformly continuous functions such
that ‖fm‖ � 1 for anym � 1 (see for instance Theorem 6.6 p. 47 in [27]). Now the
Kantorovitch–Rubinstein or Vaserstein metric onP(P(E)) and associated to the metric
d is defined by

D(D1,D2)= inf E
(
d(µ, ν)

)
, (32)

where the infimum is taken over all pair of random variables(µ, ν) with values inP(E)

and such thatµ has distributionD1 and ν has distributionD2. The metricd being a
bounded function, formula (32) defines a complete metric onP(P(E)) which gives to
P(P(E)) the topology of weak convergence (see Theorem 2 in [20]).
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If we noteDN
n the law of the random measuresπN

n andDn the Dirac distribution at
the pointπn Theorem 3.1 leads to

sup
n�0

D
(
DN

n ,Dn

)
� Cte

Nα/2
.

In nonlinear filtering settings the fitness functions depend on the observation delivered
by the sensors and the previous theorems cannot be applied directly. Let us come back
to the nonlinear filtering problem described in Section 2.4 with the observation sequence
given by (18). To clarify the presentation we will also suppress the observation parameter
Y and we simply noteφn andπn instead ofφn(Yn, .) andπY

n . As in Section 2.4, it is
convenient to replace the boundedness assumptions (23) by the following condition

(G) For any timen � 1 there exists a positive functionan :Rd → [1,∞) and a
nondecreasing functionθ :R→R such that for any(x, y) ∈E ×R

d

1

an(y)
� gn(y − hn(x))

gn(y)
� an(y), (33)

| logan(y + u)− logan(y)|� θ(‖u‖)
and

sup
n�1

logE
(
a2
n(Vn)

)1/2 def.= L<∞ and sup
n�1
‖hn‖ def.= M <∞.

Under the boundedness condition (G), if we replace the limiting condition (24) by

lim
T→∞ sup

µ,ν∈P(E)

sup
p�0

E
(∣∣φp+T/p(µ)(f )− φp+T/p(ν)(f )

∣∣ | Y1, . . . , Yp

)= 0 (34)

then, using the same line of arguments as in the proof of Theorem 3.1, one can check
that (25) holds. In much the same way, if we replace in Theorem 3.1 the exponential
bound (26) by the following inequality

sup
p�0

E
(∣∣φp+T/p(µ)(f )− φp+T/p(ν)(f )

∣∣ | Y1, . . . , Yp

)
� e−γ.T , (35)

then one can check that the uniform convergence result (27) holds with

loga = L+ θ(M).

Example8. – It can be directly checked that the Gaussian and bi-exponential
examples of noise sources given in Examples 6 and 7 satisfy condition (G).

3.2. A genetic algorithm with periodic selections

Our present purpose is to understand why the selection mechanism plays a very special
role in the behavior of the particle filter. What is important is that each particle interacts
selectively with the system in accordance with the environment represented by the fitness
functions.
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This remark underlines the very interesting role played by the updating/selection
transition. In nonlinear filtering settings each fitness function is related to the current
observation data and intuitively the selection mechanism stabilizes the particles’ motion
around certain values of the real signal which are determined by the noisy observation
and thus provides a well behaved adaptative stochastic grid.

We also remark that the updating transition is used at each time and only depends on
the current fitness. Another idea is to use the selection mechanism from time to time.
In this case the interaction depends on the series of fitness functions and on the path
particles between two selection dates. The choice of the selection/updating times then
requires a criterion for optimality. It will now be shown that one can take advantage
of the stability properties of the limiting system (1) to develop a more efficient genetic
algorithm.

In the last part of this paper the genetic type scheme presented in Section 2 are
generalized. The prediction/mutation mechanisms of the former will include exploration
paths of a given lengthT � 1 and the corresponding updating/selection procedure will
be used everyT steps and it will considerT fitness functions.

This new algorithm with periodic selection is particularly important in nonlinear
filtering settings since in this situation each selection transition depends onT observation
values and the resulting genetic algorithm appears to be more efficient in practice.

Our immediate goal is to show that the former genetic algorithm can be reduced to
the latter through a suitable state space basis. To this end we need to introduce some
additional notations. To anyp ∈ {1, . . . , T } andT � 1 we associate a sequence of meshes
{t (T ,p)

n ; n � 0} by setting

t
(T ,p)
0 = 0, t (T ,p)

n = (n− 1)T + p, ∀n � 1.

The parameterT will be the selection/updating period,n will denote the time steps and
the parameterp will only be used to cover all the time space basis so that⋃

1�p�T

{
t (T ,p)
n ; n � 0

}=N.

The construction below will depend on the pair parameter(T ,p) and on the obser-
vationsY . To clarify the presentation the mutation transition is assumed to be time-
homogeneous, that isKn =K and we simplify the notations suppressing the pair para-
meter(T ,p) so that we simply notetn instead oft (T ,p)

n . If, we write for anyn � 0

�n = tn − tn−1, n � 1,

then we clearly have that

�1= p, and �n = T ∀n > 1.

We also notice that the distributions given by

ηn = πtn ⊗K ⊗ · · · ⊗K︸ ︷︷ ︸
�n+1−1

∈P
(
E�n+1

)
, n � 0, (36)
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are solution of the measure valued process

ηn =Fn(ηn−1), n � 1, (37)

whereFn :P(E�n)→ P(E�n+1) is the continuous function given by

Fn(η)=Gn(η)Kn

and
• Gn :P(E�n)→ P(E�n) is the continuous function defined by

∀f ∈ Cb

(
E�n

)
Gn(η)(f )= η(Gn f )

η(Gn)

with

Gn(x)=
�n∏
q=1

gtn+q(xq).

• Kn is a Markov transition probability kernel fromE�n to E�n+1 given by

Kn

(
(x1, . . . , x�n

), d(z1, . . . , z�n+1)
)=K(x�n

, dz1)× · · · ×K(z�n+1−1, dz�n+1).

Remark3.2. – To check that this model generalizes the one given in Section 2 observe
that it coincide with the previous one whenT = 1 andp = 1.

It is interesting to note that in nonlinear filtering settings each fitness functiongn is
related to the current observation data, that is

∀x ∈E gn(x)= gn(Yn, x)

and the distributions (36) represent the conditional distribution ofXn given the random
variablesY1, . . . ,Yn where

Xn = (Xtn, . . . ,Xtn+1−1) and Yn+1= (Ytn+1, . . . , Ytn+1), n � 0.

Now, the genetic type algorithm associated to (37) is a Markov chain{ζn; n � 1}
with product state spaces{(E�n+1)N ; n � 0} whereN is the number of particles and
{�n+1; n � 0} the selection/updating periods.

The initial particle systemζ0 = (ζ 1
0 , . . . , ζ

N
0 ) takes values in(E�1)N = (Ep)N and it

is given by

PY (ζ0 ∈ dx)=
N∏

q=1

η0
(
dxq

)= N∏
q=1

π0
(
dx

q
1

)
K
(
x
q
1 , dx

q
2

)
. . .K

(
x
q
�1−1, dx

q
�1

)
and the transition of the chain is given by

PY (ζn ∈ dx | ζn−1= z)=
N∏

q=1

Fn

(
1

N

N∑
i=1

δzi

)(
dxq

)
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=
N∏

q=1

N∑
i=1

Gn(z
i)∑N

j=1Gn(z
j)
K
(
zi�n

, dx
q
1

) · · ·K(
x
q
T−1, dx

q
T

)
,

where dx = dx1 × · · · × dxN is an infinitesimal neighborhood of the pointx =
(x1, . . . , xN) ∈ (E�n+1)N and for any 1� i � N , zi = (zi1, . . . , z

N
�n

) ∈E�n .

If we denote

ζn = (ξtn, . . . , ξtn+1−1), ∀n � 0

we see that the former algorithm is a genetic type algorithm withT -periodic selec-
tion/updating transitions:

Between the datestn andtn+1 the particles evolve randomly according to the mutation
transition and the selection mechanism takes place at each timetn, n � 1.

The approximation of the desired conditional distributions{πtn; n � 0} by the particle
density profiles

πN,T
tn

= 1

N

N∑
i=1

δξitn

is guaranteed by the following theorem

THEOREM 3.3. – Let {gn; n � 1} be a collection of bounded and positive functions
on E such that for anyn � 1 there exists anan ∈ [1,∞) such that for anyx ∈ E and
n � 1

1

an
� gn(x) � an.

If the sequence{an; n � 1} is uniformly bounded, so that

a
def.= sup

n�1
an <∞

and the limiting system(1) is exponentially asymptotically stable in the sense that there
exists someT0 � 1 andγ > 0 such that for anyf ∈ Bb(E), ‖f ‖� 1, µ,ν ∈ P(E) and
T � T0

sup
p�0

∣∣φp+T/p(µ)(f )− φp+T/p(ν)(f )
∣∣� e−γ.T ,

then we have for anyf ∈ Bb(E), ‖f ‖� 1, the following uniform convergence rates

sup
n�0

E
(∣∣πN,T (N)

tn
f − πtnf

∣∣)� 5exp(2γ ′)
Nβ/2

(38)

for anyN � 1 so that

T (N)
def.=

[
1

2

logN

γ + γ ′′

]
+ 1� T0,
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whereβ andγ ′′ are given by

β = γ

γ + γ ′′
with γ ′′ = 2 loga.

Proof. –The proof will only be sketched since we will follow essentially the same line
of proof of Theorem 3.1.

First we note that the definition of

ηN
n−1=

1

N

N∑
i=1

δζ i
n−1

, ζn−1= (ξtn−1, . . . , ξtn−1) ∈ (EN
)�n

and the weak law of large numbers yield

E
(∣∣ηN

n−1(ϕ)− ηN
n−1(ϕ)

∣∣)� ‖ϕ‖√
N

, ∀ϕ ∈ Cb

(
E�n

)
,

whereηN
n is the random measure

ηN
n−1=

1

N

N∑
i=1

δξitn−1
⊗K ⊗ · · · ⊗K︸ ︷︷ ︸

�n−1

∈M1
(
E�n

)
.

Similar to (29) and (30) we obtain for anyϕ ∈ Cb(E
�n+1)

E
(∣∣Fn

(
ηN
n−1

)
(ϕ)−Fn

(
ηN
n−1

)
(ϕ)

∣∣)=E
(∣∣Gn

(
ηN
n−1

)
(Knϕ)−Gn

(
ηN
n−1

)
(Knϕ)

∣∣)
� 2‖ϕ‖√

N
exp

(
2(loga)�n

)
. (39)

On the other hand we have the decomposition

πN
tn
(f )− πtn(f )= ηN

n (f1)− ηn(f1)= I 1
N + I 2

N + I 3
N,

where

f1= f ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
�n+1−1

and

I 1
N = ηN

n (f1)−Fn

(
ηN
n−1

)
(f1),

I 2
N =Fn

(
ηN
n−1

)
(f1)−Fn

(
ηN
n−1

)
(f1),

I 3
N =Fn

(
ηN
n−1

)
(f1)−Fn(ηn−1)(f1).

In order to derive a bound forI 3
N we simply note that

Fn(π ⊗K ⊗ · · · ⊗K︸ ︷︷ ︸
�n

)(f1)= φtn+1/tn(π)(f ).
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Indeed, under our assumptions, this yields

E
(∣∣I 3

N

∣∣)=E
(∣∣φtn/tn−1

(
πN
tn−1

)
(f )− φtn/tn−1(πtn−1)(f )

∣∣)� e−γ�n. (40)

Finally, by definition ofηN
n we have that

E
(∣∣I 1

N

∣∣)� 1√
N

. (41)

Combining (39), (40) and (41) one can check that

sup
n�0

E
(∣∣πN,T (N)

n f − πnf
∣∣)� 1+ 2eγ

′T

N1/2
+ e−γ T with γ ′ = 2 loga

from which the end of the proof is straightforward.✷
Remark3.4. – We note that the error bound (38) is an improvement of (27). More

precisely, using the notations of Theorem 3.3 we have that

β

α
= 1+ 1

γ + 2 loga
> 1.

In view of the preceding construction the genetic type algorithm with periodic selection
T (N) depends on a parameterp = 1, . . . , T (N) so that we needT (N) genetic
algorithms to describe the conditional distributions{πn; n � 0}.

In other words we needNT (N) particles to approximate the whole solution of the
limiting system (1) with an error bound (38). It is therefore natural to ask how rapid the
approach is in (27) when we useNT (N) particles. In this last situation it is clear that
the convergence rate is proportional to

Dα(N)= 1

(NT (N))α/2
.

If we write Dβ(N)=N−β/2 the decay rate of the genetic scheme with periodic selection
T (N) we find that

Dα(N)

Dβ(N)
=
(
N

1
γ+2 loga

T (N)

)α/2

−−−−→
N→∞ ∞.

Remark3.5. – Theorem 3.3 also applies to the nonlinear filtering problem described
in Section 2.4 with the observation sequence given by (18).

Arguing as before, under (G) and (35) the uniform convergence result (38) holds with

loga = L+ θ(M).

3.3. Comparison of genetic-type schemes

In this work we have presented a way to combine the stability properties of the limiting
system (1) with the long time behavior of a class of genetic algorithms.
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It remains to discuss the extensions and limitations of genetic-type approximating
schemes. Several variants of the particle scheme studied in this paper have been recently
suggested to approximate the nonlinear filtering equation (see for instance [6–8] and
references therein).

These variants are less “time consuming” mainly because they use independent
branching corrections but as a result the size of the system is no longer fixed but random.

To be more precise, let us briefly recall these constructions. As before the natural
and classical idea is to approximate the two steps transition of the limiting dynamical
system (1)

πn

Updating−−−−→ π̂n
def.= Gn(πn)

Prediction−−−−→ πn+1= π̂nKn

by a two steps Markov chain taking values in the set of discrete and finite measures.
Namely,

πN
n =

1

N0

Nn∑
i=1

δξin
Branching−−−−→ π̂N

n =
1

N0

N̂n∑
i=1

δ
ξ̂ in

Mutation−−−−→ πn+1= 1

N0

Nn+1∑
i=1

δξi
n+1

,

where{(Nn, ξn), (N̂n, ξ̂n); n � 0} is a suitably chosen Markov chain with state space
E = ⋃

α∈N({α} × Eα) (with the conventionE0 = {�} a cemetery point). Here the
parameterα ∈ N represents the size of the system and the initial number of particles
N0 ∈ N is a fixed nonrandom number which represents the precision parameter of the
scheme.

To check that this abstract formulation contains the genetic algorithm presented in
Section 1 it suffices to note that it coincides with (5) when the size of the population
N0=Nn is fixed and

P(ξ̂n ∈ dx/ξn = z)=
N0∏
p=1

N0∑
i=1

gn(z
i)∑N0

j=1gn(zj)
δzi
(
dxp

)
,

P (ξn+1 ∈ dx/ξ̂n = z)=
N0∏
p=1

Kn+1
(
zp, dxp

)
.

In this situation, if we put

Mi
n =Card

{
1� p � Nn: ξ̂ p

n = ξ i
n

}
thenπ̂N

n =
1

N0

Nn∑
i=1

Mi
nδξin,

where, conditionaly onFn = σ (Nn, ξn)(
M1

n, . . . ,M
Nn
n

)=Multinomial
(
Nn;W 1

n , . . . ,W
Nn
n

)
,

Wi
n=

gn(ξ
i
n)∑Nn

j=1gn(ξ
j
n )
= 1

Nn

E
(
Mi

n/Fn

)
. (42)

Sampling according to a multinomial branching law may be “time consuming” mainly
because the random numbers(M1

n, . . . ,M
Nn
n ) are negatively correlated in order to keep
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fixed the size of the system. Another idea is to use independent numbers (conditionally
with respect toFn) with a suitable law so that the nonbias condition (42) still holds. Let
us present some classical examples of independent branching numbers

Poisson branching numbers:

∀k � 0 P
(
Mi

n = k | Fn

)= exp
(−NnW

i
n

)(NnW
i
n)

k

k! .

Binomial branching numbers:

∀0� k � Nn P
(
Mi

n = k | Fn

)=Ck
Nn

(
Wi

n

)k(
1−Wi

n

)Nn−k
.

Bernoulli branching numbers:

P
(
Mi

n = k | Fn

)=
 {NnW

i
n} if k = [NnW

i
n] + 1,

1− {NnW
i
n} if k = [NnW

i
n],

where[a] is the integer part ofa ∈R and{a} = a − [a] .
In the resulting particle schemes the mutation transition is unchanged and consists on

sampling independent transitions according to the kernels{Kn; n � 1}.
As a results during the mutation transition the size of the system is unchanged and we

haveNn+1= N̂n.
We note that the multinomial genetic scheme arises by conditioning the branching

particle scheme with Poisson branching to have constant population size (see [6]).
Theses three variants of the genetic algorithm are known to approximate the desired
distribution at each timen � 0 but their long time behavior is still an open question.

In view of the preceding development it is tempting to apply our approach to prove
uniform convergence with respect to time. Unfortunately when we move from the
genetic scheme with constant size to the branching schemes with random population
size we find that we no longer have a uniform convergence with respect to time. More
precisely, in view of (42) the total size process{Nn; n � 0} is anF -martingale with
predictable quadratic variation

An =N2
0 +

n∑
p=1

E
(|Np −Np−1|2/Fp−1

)=N2
0 +

n−1∑
p=0

Np∑
i=1

E
((
Mi

p −NpW
i
p

)2
/Fp

)
.

To see that the integrability of this increasing process completely determines the long
time behavior of such schemes it suffices to note that

E
((
πN
n (1)− πn(1)

)2)=E
(|1−Nn/N0|2)= 1

N2
0
E
(
(An −A0)

2)
and therefore a uniform convergence result will take place if and only if

sup
n�0

E
(
A2

n

)= ∞∑
p=1

E
(|Np −Np−1|2)<∞.
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The increasing process{An; n � 0} is usually not uniformly integrable and therefore
one cannot expect to obtain a uniform convergence result. For instance, when we use
Poisson branching numbers the following basic result

E
((
Mi

p −NpW
i
p

)2
/Fp

)=NpW
i
p, ∀1� i � Np−1

describes a “typical situation” of independent branching numbers in which the uniform
convergence fails. To see this claim we simply observe that

E
((
πN
n (1)− πn(1)

)2)= n

N0
−−−−→

n→∞ ∞.

This simple example shows that the particle scheme with independent branchings
presented in [7] for solving the nonlinear filtering equation does not converge uniformly
with respect to time.

We continue our discussion and examine the long time behavior of the particle scheme
with binomial branching numbers. In this situation one can check that

E
((
Mi

p −NpW
i
p

)2
/Fp

)=NpW
i
p

(
1−Wi

p

)
.

If we assume that

1

a
� gn(x) � a, ∀n � 1, ∀x ∈E

for somea � 1, then one gets

Np∑
i=1

NpW
i
p

(
1−Wi

p

)
� Np − a2

which in turns implies that

E
((
πN
n (1)− πn(1)

)2)� n

(
1

N0
− a2

N2
0

)
−−−−→

n→∞ ∞

as soon asN0 > a2.
The Bernoulli branching law seems to be the most efficient one since the independent

random variables(M1
p, . . . ,M

Np
p ) have minimal variance and the population size cannot

vanish (see [6–8]). Nevertheless the following simple example shows that even in this
case one cannot expect to approximate the desired system (1) uniformly with respect to
time.

Let us assume that the state spaceE = {0,1}, the fitness functions{gn; n � 1} and
the transition kernels{Kn; n � 1} are time homogeneous and given by

g(1)= 3g(0) > 0, K(x, dz)= ν(dz)
def.= 1

2
δ0(dz)+ 1

2
δ1(dz).
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In this simple situation the systemξp = (ξ1, . . . , ξ
Np
p ) consists ofNp i.i.d. particles with

common lawν. This yields

∀ε > 0 P

(∣∣∣∣∣ 1

Np

Np∑
i=1

g
(
ξ i
p

)− ν(g)

∣∣∣∣∣� εg(0)/Np

)
� 5

ε2Np

. (43)

Noticing thatν(g)/g(0)= 2= 3ν(g)/g(1) andg(0) � g(1), on the set

�ε =
{∣∣∣∣∣ 1

Np

Np∑
i=1

g
(
ξ i
p

)− ν(g)

∣∣∣∣∣� εg(0)

}

we have that ∣∣∣∣ g(0)
1
Np

∑Np

i=1g(ξ
i
p)
− 1

2

∣∣∣∣� ε

2(2− ε)
� ε

2
and

∣∣∣∣ g(1)
1
Np

∑Np

i=1g(ξ
i
p)
− 3

2

∣∣∣∣� 3ε

2(2/3− ε)
� 9ε

2

as soon asε ∈ (0,1/9). This in turns implies that[
g(0)

1
Np

∑Np

i=1g(ξ
i
p)

]
= 0 and

[
g(1)

1
Np

∑Np

i=1g(ξ
i
p)

]
= 1,

and

ξ i
p = 0�⇒ {

NpW
i
p

}(
1− {

NpW
i
p

})
� 1

4
(1− ε)2,

ξ i
p = 1�⇒ {

NpW
i
p

}(
1− {

NpW
i
p

})
� 1

4
(1− 9ε)2.

It is then clear that on the set�ε we have the lower bounds

E
((
Mi

p −NpW
i
p

)2
/Fp

)= {
NpW

i
p

}(
1− {

NpW
i
p

})
� 1

4
(1− 9ε)2.

This, together with (43), shows that

E

( Np∑
i=1

(
Mi

p −NpW
i
p

)2

)
� 1

4
(1− 9ε)2

(
N0− 5

ε2

)
.

As soon asN0 > 5ε−2 one concludes that

E
((
πN
n (1)− πn(1)

)2)� n

4
(1− 9ε)2

(
1

N0
− 5

N2
0ε

2

)
.
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Hence it follows that for sufficiently largeN0

E
((
πN
n (1)− πn(1)

)2)� nN0

5
−−−−→

n→∞ ∞.

In contrast to the situation described above in this simple case the genetic algorithm (5)
will consist at each time ofN0 i.i.d. particles with common lawν and

∀n � 0 E
((
πN
n (f )− πn(f )

)2)� 1

N0

for any bounded test function such that‖f ‖� 1.

Acknowledgements

We gratefully acknowledge the European Community for the research fellowships
CEC Contract No ERB-FMRX-CT96-0075 and INTAS-RFBR 95-0091. We also thank
the anonymous referee for his comments and suggestions that improve the presentation
of the paper.

REFERENCES

[1] Atar R., Exponential stability for nonlinear filtering of diffusion processes in a noncompact
domain, Ann. Probab. 26 (4) (1998) 1552–1574.

[2] Atar R., Zeitouni O., Liapunov exponents for finite state space nonlinear filtering, SIAM J.
Control Optim. 35 (1) (1997) 36–55.

[3] Atar R., Zeitouni O., Exponential stability for nonlinear filtering, Ann. Inst. H.
Poincare 33 (6) (1997) 697–725.

[4] Bucy R.S., Lectures on discrete time filtering, Signal Processing and Digital Filtering,
Springer Verlag, 1994.

[5] Budhiraja A., Ocone D., Exponential stability of discrete time filters for bounded observa-
tion noise, Systems and Control Letters 30 (1997) 185–193.

[6] Crisan D., Del Moral P., Lyons T.J., Discrete filtering using branching and interacting
particle systems, Markov Processes and Related Fields 5 (3) (1999) 293–319.

[7] Crisan D., Lyons T.J., Nonlinear filtering and measure valued processes, Probab. Theory
Related Fields 109 (1997) 217–244.

[8] Crisan D., Gaines J., Lyons T.J., A particle approximation of the solution of the Kushner–
Stratonovitch equation, SIAM J. Appl. Math. 58 (5) (1998) 1568–159.

[9] Da Prato G., Furhman M., Malliavin P., Asymptotic ergodicity for the Zakai filtering
equation, C.R. Acad. Sci. Paris, Série I 321 (1995) 613–616.

[10] Del Moral P., Jacod J., Interacting Particle Filtering With Discrete Observations, Publica-
tions du Laboratoire de Statistiques et Probabilités, Université Paul Sabatier, No 11-99,
1999.

[11] Del Moral P., Nonlinear filtering using random particles, Theor. Prob. Appl. 40 (4) (1995).
[12] Del Moral P., Non-linear filtering: interacting particle solution, Markov Processes and

Related Fields 2 (4) (1996) 555–581.
[13] Del Moral P., Measure valued processes and interacting particle systems. Application to

nonlinear filtering problems, Ann. Appl. Probab. 8 (2) (1998) 438–495.



194 P. DEL MORAL, A. GUIONNET / Ann. Inst. H. Poincaré, Probab. et Stat. 37 (2001) 155–194

[14] Del Moral P., A uniform theorem for the numerical solving of nonlinear filtering problems,
J. Appl. Probab. 35 (1998) 873–884.

[15] Del Moral P., Filtrage non linéaire par systèmes de particules en intéraction, C.R. Acad. Sci.
Paris, Série I 325 (1997) 653–658.

[16] Del Moral P., Guionnet A., Large deviations for interacting particle systems. Applications to
nonlinear filtering problems, Stochastic Processes and their Applications 78 (1998) 69–95.

[17] Del Moral P., Guionnet A., A central limit theorem for nonlinear filtering using interacting
particle systems, Ann. Appl. Probab. 9 (2) (1999) 275–297.

[18] Delyon B., Zeitouni O., Liapunov exponents for filtering problems, in: Davis M.H.A., Elliot
R.J. (Eds.), Applied Stochastic Analysis, 1991, pp. 511–521.

[19] Dobrushin R.L., Central limit theorem for nonstationnary Markov chains, I,II, Theory
Probab. Appl. 1 (1,4) (1956) 66–80 and 330–385.

[20] Dobrushin R.L., Prescribing a system of random variables by conditional distributions,
Theor. Prob. Appl. 15 (3) (1970).

[21] Kunita H., Asymptotic behavior of the nonlinear filtering errors of Markov processes,
J. Multivariate Analysis 1 (1971) 365–393.

[22] Kunita H., Ergodic properties nonlinear filtering processes, in: Alexander K.C., Watkins J.C.
(Eds.), Spatial Stochastic Processes, 1991.

[23] Norman M.F., Ergodicity of diffusion and temporal uniformity of diffusion approximations,
J. Appl. Prob. 14 (1977) 399–404.

[24] Ocone D.L., Topics in nonlinear filtering theory, Ph.D. Thesis, MIT Press, Cambridge, MA,
1980.

[25] Ocone D., Pardoux E., Asymptotic stability of the optimal filter with respect to its initial
condition, SIAM J. Control Optim. 34 (1996) 226–243.

[26] Pardoux E., Filtrage Non Linéaire et Equations aux Dérivés Partielles Stochastiques
Associées, Ecole d’été de Probabilités de Saint-Flour XIX-1989, Lecture Notes in
Mathematics, Vol. 1464, Springer-Verlag, 1991.

[27] Parthasarathy K.R., Probability Measures on Metric Spaces, Academic Press, New York,
1968.

[28] Rowe J.R., Population fixed points for functions of unitation, in: Barzhaf W., Reeves C.
(Eds.), Foundations of Genetic Algorithms 5, Morgan Kauffmann, 1999, pp. 69–84.

[29] Stettner L., On invariant measures of filtering processes, in: Helmes K., Kohlmann N. (Eds.),
Stochastic Differential Systems, Proc. 4th Bad Honnef Conference, 1988, Lecture Notes
in Control and Inform. Sci., 1989, pp. 279–292.

[30] Stettner L., Invariant measures of pair state/approximate filtering process, Colloq.
Math. LXII (1991) 347–352.

[31] Van Nimwegen E., Crutchfield J.P., Michell M., Finite populations induce metastability in
evolutionary search, Physics Letters A 229 (2) (1997) 144–150.

[32] Vose M.D., Logarithmic convergence of random heuristic search, Evolutionary Computa-
tion 4 (4) (1997) 395–404.

[33] Vose M.D., Modelling simple genetic algorithms, in: Foundations of Genetic Algorithms,
Morgan Kaufmann, 1993.

[34] Vose M.D., Modelling simple genetic algorithms, Elementary Computations 3 (4) (1995)
453–472.

[35] Vose M.D., Liepins G.E., Punctuated equilibra in genetic search, Complex Systems 5 (1993)
31–44.

[36] Vose M.D., Wright A.H., Simple genetic algorithms with linear fitness, Elementary
Computations 2 (4) (1995) 347–368.


