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ABSTRACT. – In this paper we prove the existence of average densities for the support of
a super-Brownian motion at a fixed time. Our result establishes a dimension-dependent fractal
parameter for super-Brownian motion, which enables us to compare the local mass density of the
super-Brownian motion at a fixed time with the local mass density of the occupation measure of
a standard Brownian motion. 2001 Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – Dans cet article est démontré l’existence des densités moyennes pour le support
d’un super-mouvement brownien. Notre résultat établit un paramètre fractal dépendant de la
dimension qui permet de comparer la densité locale de masse d’un super mouvement brownien à
un instant fixe avec celle de la mesure d’occupation d’un mouvement brownien classique. 2001
Éditions scientifiques et médicales Elsevier SAS

1. Introduction

The Hausdorff dimension and the exact Hausdorff dimension gauge are important
fractal parameters, which describe the size of a fractal set. Of course, two fractal sets
of the same Hausdorff dimension may have completely different topology or shape.
Therefore it is important to study parameters which go beyond the measurement of size
and characterize finer features of the set, like its local density or its geometric regularity.
Not many such parameters are established in fractal geometry, the notion ofaverage
densityintroduced by Bedford and Fisher in [1] is one of the most popular concepts and
it has given rise to a good deal of recent publications, see for example [6] and references
therein.
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A striking example of two important random sets with the same exact Hausdorff
dimension gauge are the path of a Brownian motion on the one hand and the support of
a super-Brownian motion at a fixed positive time on the other hand. These two random
sets look entirely different, the former is a curve and hence connected, the latter is totally
disconnected (at least in higher dimensions), their Hausdorff dimension gauge, however,
is the same,

ψ(r)= r2 log log(1/r) in dimensiond > 3

and

ψ(r)= r2 log(1/r) log log log(1/r) in dimensiond = 2.

It is therefore natural to try and compare them using a parameter describing their local
density of mass like the average density of Bedford and Fisher. Whilst the average
density of the Brownian path has been investigated in recent papers of Falconer and
Xiao [7] and Mörters [17], it is the aim of this paper to do this for the support of a super-
Brownian motion. We show that, for super-Brownian motion{Zt} in dimensiond > 3
at a fixed timet > 0, the average density of order two exists atZt -almost every point
x and is equal to a constant (Theorem 1.1). This constant depends on the branching
rate γ of the super-Brownian motion and coincides with the average density of the
Brownian occupation measure of the same dimension exactly ifγ = 4. The constant
can be interpreted in terms of the equilibrium measure of the super-Brownian motion
(Theorem 5.1). In the planar case the situation is more subtle and a stronger averaging
procedure is needed to get convergence of the average densities. We show that, for super-
Brownian motion{Zt } in dimensiond = 2 at a fixed positive timet > 0, the average
density of order three exists and is constant atZt -almost every pointx. If the branching
rate isγ = 4, this constant agrees with the constant average density of the Brownian
occupation measure in the plane (Theorem 1.2).

Beyond our motivation from fractal geometry our results constitute small scale ergodic
theorems for super-Brownian motion, which are of independent interest. Our proofs are
based on an interesting statement about the decay of correlation between the mass of
concentric balls as the radii move apart (Lemma 3.2).

It should not remain unmentioned that other authors have used different fractal
parameters to compare the support of super-Brownian motion at a fixed time and
the Brownian path. Very interesting results were obtained by Le Gall, Perkins and
Taylor [12] on the exact packing dimension gauge and by Perkins and Taylor [21] on
the multifractal spectrum of super-Brownian motion.

In the remainder of this section we first introduce the notion of average densities and
recall some basic facts about it and then describe our results about the average densities
of super-Brownian motion and compare them with the known results about the Brownian
path. In Section 2 we collect some facts and results about super-Brownian motion before
embarking upon the finer details of the proofs of our results, which shall be given in
Sections 3 and 4. Section 5 is devoted to the description of the average densities in terms
of the equilibrium measure and we conclude the paper with some additional remarks and
open questions.
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1.1. Average densities

The heuristic idea of a density of a locally finite measureµ is based on the picture that
the mass in a small closed ballB(x, r) of radiusr , which is centred in a pointx of the
support, behaves likeµ(B(x, r))∼D(x)rα , in which caseα describes the dimension of
µ and the mass prefactorD(x) the local density atx. In the case of a measureµ that
is absolutely continuous with respect to Lebesgue measure this picture is correct. For
singular measures, however, several difficulties occur.

The first problem consists in the fact thatD(x) cannot be defined as limr→0µ(B(x,

r))/rα , as this limit fails to exist for all irregular measures and the function oscillates as
r ↓ 0 (see [22] or [15] for a precise statement of this fact). To handle this oscillation,
Bedford and Fisher [1] suggested to use an averaging method based on classical
summation techniques of Hardy and Riesz. Forn > 2 they define theaverage density
of ordern of µ atx as

lim
k→∞

1

k

k∫
0

µ(B(x,1/exp(n−1)(a))

(1/exp(n−1)(a))α
da,

where exp(n) is thenth iterate of the exponential function. The average densities of order
two and three may also be written as

lim
ε↓0

1

log(1/ε)

1∫
ε

µ(B(x, r))

rα

dr

r
and lim

ε↓0
1

log log(1/ε)

1/e∫
ε

µ(B(x, r))

rα

dr

r log(1/r)
.

For a large class of fractal measuresµ possessing some self-similarity the average
densities of order two were shown to exist and be equal to a constant atµ-almost everyx.
Examples include the natural measures on random and deterministic self-similar sets,
see, e.g., [19,20,8], mixing repellers, see [5], the zero set and path of Brownian motion,
see [1,7], and intersections of Brownian paths in 3-space, see [18]. It was also shown
that average densities can distinguish between differentm-part Cantor sets of equal
dimension, see [13] or [6].

In many cases, particularly in the context of stochastic processes, a further phenom-
enon occurs: the upper hull behaviour and the lower hull behaviour ofµ(B(x, r)) are
governed by different functionsψ andθ with the property

0< lim inf
r↓0

µ(B(x, r))

θ(r)
<∞ and 0< lim sup

r↓0
µ(B(x, r))

ψ(r)
<∞,

sometimes even such functions fail to exist and the lower or upper hull have to be
determined by means of an integral test. Typically, in these cases a third gauge function
ϕ enters, which governs the typical behaviour between these hulls and which allows
the definition of the average density forµ(B(x, r))/ϕ(r). Examples of fractal sets, for
which an average density of order three can be defined using a density gauge function
different from the exponential typeϕ(r)= rα are the path of a Brownian motion in the
plane, [17], and intersections of independent planar Brownian paths, [18].
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The family of average densities of ordern is consistentin the sense that existence of
average densities of ordern implies existence of average densities of all higher orders
with the same value. The minimal numbern with the property that the average density
of order n exists atµ-almost every point is sometimes called theorder of regularity
of µ. It is intuitively plausible that this parameter describes regularity properties ofµ,
although this point of view seems to have so far very little rigorous justification. There
are however interesting recent results relating the geometric regularity of measures to
the relation of the average densities and the lower and upper densities, see [6,14,16].

Let us now recall the known results about the average densities of the Brownian
path{B(t): 06 t 6 1}. The path is equipped with a natural measureµ, the occupation
measure defined by

µ(A)=
1∫

0

1A(s) ds for A⊂Rd Borel.

By classical results of Ciesielski, Taylor and Ray the occupation measure is almost surely
a constant multiple of the generalized Hausdorff measure on the Brownian path with
respect to the gauge functionsψ mentioned at the beginning of this introduction. Here
is what we know about the average densities ofµ.
• In dimensiond > 3 Falconer and Xiao [7] found that, almost surely, average

densities of ordertwo exist atµ-almost every point for the occupation measure
µ using the density gaugeϕ(r) = r2. The actual value of the average density is
deterministic and independent of the point and equal to the expectation of the total
occupation time of the Brownian path in the unit ball, which is easily seen to be
equal toD(d)= 2/(d − 2).
• In dimensiond = 2 Mörters [17] found that, almost surely, average densities

of order three exist atµ-almost every point. The appropriate density gauge is
ϕ(r) = r2 log(1/r) and the actual value of the average density is 2. The average
density of order two fails to exist, so that the order of regularity isthree.

1.2. Statement of the main theorems

Super-Brownian motion is a continuous Markov process with values in the space
MF (Rd) of finite measures onRd . It was originally defined as a high density limit
of a system of critically branching particle systems, but the enormous interest super-
Brownian motion has found in the last fifteen years is also due to its many connections
to the theory of certain semi-linear partial differential equations and to its rich and
interesting geometric phenomenology, see for example [2] for some of these aspects.

Throughout this paper we suppose that the measure valued process{Zt } is a super-
Brownian motion with arbitrary finite starting massµ and constant branching rateγ > 0.
Its precise definition and some basic properties are recalled in Section 2. We now give
the statement of our principal results.

THEOREM 1.1. – Suppose thatd > 3 and {Zt} is a super-Brownian motion inRd
with branching rateγ > 0. Then, for everyt > 0 with probability one, atZt -almost
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everyx,

lim
ε↓0

1

log(1/ε)

1∫
ε

Zt(B(x, r))

r2

dr

r
=D(d, γ ),

where the constant average density is given byD(d, γ )= γ /(2d − 4).

Remark. – A description of the average densityD(d, γ ) in terms of the equilibrium
random measureZ∞ of the super-Brownian motion will be given in Section 5. This
description connects the value ofD(d, γ ) to the long term behaviour of the super-
Brownian motion.

In the critical dimensiond = 2 we encounter a completely different situation. It
can be shown that the average density of ordertwo fails to exist for the support of a
super-Brownian motion in dimension 2. However, similarly as in the case of the planar
Brownian path, averaging of higher order helps.

THEOREM 1.2. –Suppose thatd = 2 and {Zt} is a super-Brownian motion inR2.
Then, for everyt > 0, with probability one, atZt -almost everyx,

lim
ε↓0

1

log log(1/ε)

1/e∫
ε

Zt(B(x, r))

r2 log(1/r)

dr

r log(1/r)
= γ /2.

Remark. – Both our theorems are based on an ergodic phenomenon: the scale average
over Zt(B(x, r))/ϕ(r) converges to the average over all random paths, because of
the decay in the correlation ofZt(B(x, r)) andZt(B(x, s)) as r moves away froms.
The different ways of averaging reflect qualitatively different types of decay: a decay
proportional to a power ofr/s in the cased > 3 and a decay proportional to a power of
log(s)/ log(r) in the cased = 2. All this will be made precise in Section 3.

Let us now compare the average densities of the Brownian path and the super-
Brownian motion in different dimensions. In dimensiond > 3 the order of regularity
of super-Brownian motion istwo, whereas in dimensiond = 2, it is three, which
heuristically means that the measure is less regular in the plane. We have encountered
the same behaviour already in the case of the occupation measure of the Brownian
path. For both measures the density gauge isϕ(r) = r2 in dimensionsd > 3 and
ϕ(r) = r2 log(1/r) in dimension 2 and so it makes sense to compare the actual values
of the average density. These values coincide in each dimension exactly for the super-
Brownian motion with branching rateγ = 4. This is also the natural choice in view
of Le Gall’s path valued process, see [10] and the next section. Hence, for the critical
branching rate ofγ = 4, the concept of average density is unable to distinguish between
a Brownian path and the support of a super-Brownian motion equipped with their natural
measures.

Heuristically, the smallness of the average densities of super-Brownian motion in
higher dimension can be explained by the fact that in every scale there are large massless
areas between separate clumps of mass, so that typical balls centred in the support cover
a large portion of massless area. Such an observation was made rigorous by Tribe [23]
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to prove a disconnectedness property of super-Brownian motion, but his statement is to
weak to have a direct influence on our result. The phenomenon of separation of mass in
a fractal measure by large holes has been termed “fractal lacunarity” by Mandelbrot.

2. Preliminaries on super-Brownian motion

Denote byM(Rd) the space of locally finite measures on the Borelσ -algebra onRd
equipped with the vague topology and byMF (Rd) its subspace consisting of the finite
measures. Let(Ω0,A0) be the canonical space of continuousMF (Rd)-valued paths on
[0,∞) with the Borelσ -algebra and denote the coordinate process by{Zt}. With respect
to a probability measureQγµ on (Ω0,A0), the Markov process{Zt} is asuper-Brownian
motion inRd with starting massµ ∈MF (Rd) and branching rateγ > 0 if, for every
φ :Rd→[0,∞) bounded, measurable,

Qγµ
(

exp
(
−
∫
φ dZt

))
= exp

(
−
∫
Uγ
t φ dµ

)
, (1)

whereUt =Uγ
t φ :Rd→R is the unique solution of the (integrated form of)

∂Ut

∂t
(x)= 1

2
Ut(x)− γ

2
Ut(x)

2, U0(x)= φ(x). (2)

The scaling properties of this equation show that

Qγµ(Z ∈M)=Q1
µ/γ (γZ ∈M) for M ∈A0. (3)

Hence, in our proofs, it suffices to study the average density of{Zt} for a single branching
rateγ , which we choose to beγ = 4 in the sequel. We letQµ = Q4

µ and even write
Qx =Qµ if µ= δx is the Dirac measure inx.

We point out two important properties of super-Brownian motion. Thesuperprocess
propertystates that the intensity measuresEZt evolve like a heat flow, i.e. denoting the
Brownian transition kernel byp we have

E
{∫

φ dZt

}
=
∫
p(x − z, t)φ(z) dµ(x).

The second important feature, which can be seen from (1), is the so-calledbranching
property of super-Brownian motion: If we start with a finite massµ = µ1 + µ2 the
contributions ofµ1 andµ2 evolve independently of each other. Consequently, for any
fixed timet > 0, the random measureZt is infinitely divisible and we can characterize
it via its canonical measure. Very useful (and beautiful) descriptions ofZt and its
canonical measure were given by Le Gall in [9] and [10], we briefly sketch the formulae
relevant for our purpose.

Consider the space of stopped, continuous paths inRd defined as

W = {(W, ζ ) ∈ C([0,∞),Rd)× [0,∞): W(s)=W(ζ) for s > ζ
}
,
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equipped with the metric

d
(
(W1, ζ1), (W2, ζ2)

)= ‖W1−W2‖∞ + |ζ1− ζ2|.

Most of the time we writeW for (W, ζ ), as ζ is clear from the context. Denote by
Ω1 = C([0,∞),W) the space of continuous mappings from[0,∞) to W equipped
with the Borel σ -algebraA1 coming from the compact-open topology. Denote by
W = {Ws}s>0 the coordinate process onΩ1, by ζs the lifetime ofWs and byŴs =W(ζs)
the endpoint ofWs . By Pw we denote the law on(Ω1,A1) of the path-valued process
associated withd-dimensional Brownian motion starting atw. This law was introduced
in [10]. UnderPw the process{Ws}s>0 is aW-valued continuous Markov process and
{ζs}s>0 is a one-dimensional reflecting Brownian motion. The intuitive picture is that
{Ws} grows like a Brownian motion inRd when{ζs} increases and is erased, when{ζs}
decreases (though, of course,{ζs} has strictly speaking neither points of increase, nor of
decrease). Let{Lts: s > 0} be the continuous local time of{ζs} at t normalized to be a
density of the occupation measure of{ζs}.

We identify a pointy ∈ Rd with the constant pathy of zero lifetime and writePy for
the law of the path-valued process started in the constant pathy. Every y is a regular
point for {Ws}, so that we may introduce theItô excursion measureNy of excursions of
{Ws} from y. It is convenient to define an excursion on the whole time interval by letting
it remain iny, once the excursion fromy is finished. ThenNy is a σ -finite measure
on (Ω1,A1), which we normalize so that it is the intensity measure of the Poisson
processΠy of excursions ofW from y, completed up to timeτ [W ] = inf{s: L0

s = 1}.
The distribution of{ζs} underNy is the Itô excursion measure for reflecting Brownian
motion normalized so that

Ny

(
sup
s
ζs > h

)
= 1

2h
for h > 0.

Define a continuousMF (Rd)-valued process{Xt} on the σ -finite measure space
(Ω1,A1,Ny) by

Xt [W ](A)=
σ [W ]∫
0

1A(Ŵs)L
t
·(ds) for A⊆Rd Borel andt > 0,

whereσ [W ] = inf{s > 0: ζs = 0}, and anMF (Rd)-valued process on the probability
space(Ω1,A1,Py) by

Zt [W ](A)=
τ [W ]∫
0

1A(Ŵs)L
t
·(ds) for A⊆Rd Borel.

Then, by [10, 2.1],{Zt} is a super-Brownian motion with branching rateγ = 4 started
with a unit mass iny. Furthermore,{Zt} has a Poisson representation in terms of{Xt},
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i.e. for all t > 0,

Zt [W ] =
∫
Ω1

Xt [W ]Πy(dW), Py-almost surely, (4)

and we infer from the formula for Laplace transforms of general Poisson processes, that

Qy
(

exp
(
−
∫
φdZt

))
= exp

(
−
∫ (

1− exp
(
−
∫
φ dXt [W ]

))
Ny(dW)

)
. (5)

This means that the distributionRt of Xt underNy is the canonical measure associated
with Zt underQy .

Let us now fix a time, sayt = 1, and a starting mass, sayZ0= δy . Later in this paper
we work mainly with the Campbell measure associated with the canonical measure
of Z1, that is the measure onMF (Rd) × Rd defined byP(dµ,dx) = µ(dx)R1(dµ).
A Poisson representation ofP can be found in [11, (5.4)]: Denote byPy the law of
a Brownian motion inRd started iny. For eachw ∈ C([0,1],Rd) letM2(dt, dW) be
a Poisson random measure on[0,1] × Ω1 with intensity 4dt Nw(t)(dW) and assume
thatM2 is defined on a canonical probability space(Ω2,A2,P

(w)) with w 7→ P (w)(A)

measurable for eachA ∈A2. Then, for every measurable functionφ :Rd ×MF (Rd)→
[0,∞), ∫ ∫

φ
(
x,X1[W ])X1[W ](dx)Ny(dW)

=
∫
P (w)

(
φ

(
w(1),

∫∫
X1−t [W ]M2(dt, dW)

))
Py(dw). (6)

Finally, we recall the following useful formula for the second moments of the super-
Brownian motion, which may be inferred directly from (1). Denote the transition density
of Brownian motion by

p(x − y, t)= 1√
2πtd

e
−‖x−y‖2

2t ,

and writedx for integration with respect to Lebesgue measure`d . Then

Qµ
(∫

ϕdZt

∫
ψ dZt

)
−Qµ

(∫
ϕ dZt

)
Qµ
(∫

ψ dZt

)

= 4

t∫
0

ds

∫
dz

∫
µ(dv)

{
p(v− z, t − s)

×
∫∫

ϕ(x)ψ(y)p(z− x, s)p(z− y, s) dx dy
}
. (7)

3. Main lemma: The decay of correlation

We consider the starting massµ= δ0 and the corresponding super-Brownian motion
{Zt} at time t = 1. The canonical measureR1 associated with the random measureZ1
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has been described in the previous section. We work on the spaceΩ =MF (Rd)× Rd
equipped with the Borelσ -algebraA. We define the associated Campbell measureP on
Ω by

P(M ×B)=
∫
M

X(B)R1(dX)

and observe thatP is a probability measure onΩ . On the space(Ω,A,P ) we define
the stochastic process{X(r): r > 0} by

X(r)[X,x] =X(B(x, r)).
This process describes the mass in a ball around a random point in the support of our
super-Brownian motion at time 1. We first study the expectations ofX(r).

LEMMA 3.1. –For the random variableX(r) on the probability space(Ω,A,P ) we
have

EX(r)= 4

1∫
0

dt

∫ ∫
‖v−x‖6r

p(x, t)p(v, t) dv dx

= 2

2∫
0

dt

∫
‖y‖6r

p(y, t) dy.

Furthermore, in dimensiond > 3 we have

lim
r↓0 E

{
X(r)

r2

}
= 2

d − 2
and E

{
X(ηr)−X(r)

r2

}
6 2

d − 2

(
η2− 1

)
,

for all η > 1 andr > 0. In dimensiond = 2 we have

lim
r↓0 E

{
X(r)

r2 log(1/r)

}
= 2 and E

{
X(ηr)−X(r)
r2 log(1/r)

}
6 3

(
η2− 1

)
,

for all sufficiently smallr > 0 and all 1< η < 2.

Proof. –Recall the notation from the previous section. We use the Poisson represen-
tation (6) of the Campbell measure to obtain

EX(r)=
∫ ∫

X1[W ](B(x, r))X1[W ](dx)N0(dW)

=
∫ [ 1∫

0

∫
X1−t [W ](B(w(1), r))Nw(t)(dW)4dt

]
P0(dw).

For the innermost integral we note that, by (5) and the superprocess property,∫
X1−t [W ](B(y, r))Nz(dW)=QzZ1−t

(
B(y, r)

)= ∫
B(y,r)

p(x − z,1− t) dx. (8)
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Hence we obtain∫ [ 1∫
0

∫
X1−t [W ](B(w(1), r))Nw(t)(dW)4dt

]
P0(dw)

=
∫ [ 1∫

0

∫
B(w(1),r)

p(x −w(t),1− t) dx 4dt

]
P0(dw)

=
1∫

0

[∫ ∫ ∫
‖v−x‖6r

p(x − z,1− t)p(z, t)p(v− z,1− t) dv dz dx
]

4dt

= 4

1∫
0

dt

[∫ ∫
‖v−x‖6r

p(x, t)p(v, t) dv dx

]

= 4

1∫
0

dt

[∫ ∫
‖y‖6r

p(x, t)p(y − x, t) dx dy
]

= 4

1∫
0

dt

[ ∫
‖y‖6r

p(y,2t) dy

]
= 2

2∫
0

dt

[ ∫
‖y‖6r

p(y, t) dy

]
,

where we have denotedv = w(1) and z = w(t) and used the Chapman–Kolmogorov
equation in the penultimate step. This proves the general formula. We now substitute the
space variables and change the order of integration, so that

2

2∫
0

dt

[ ∫
‖y‖6r

p(y, t) dy

]
= 2r2

∫
‖y‖61

[ 2/r2∫
0

p(y, t) dt

]
dy.

Hence, in dimensiond > 3, we obtain

lim
r↓0 E

{
X(r)

r2

}
= 2

∫
‖y‖61

[ ∞∫
0

p(y, t) dt

]
dy = Γ (d/2− 1)√

π
d

∫
‖y‖61

1

‖y‖d−2
dy = 2

d − 2
,

and similarly, for allη > 1, r > 0,

E
{
X(ηr)−X(r)

r2

}
6
(
η2− 1

)
2
∫

‖y‖61

[ ∞∫
0

p(y, t) dt

]
dy = (η2− 1

) 2

d − 2
.

In dimensiond = 2 we obtain for the inner integral an explicit solution in terms of the
integral exponential function Ei,

2/r2∫
0

p(y, t) dt = 1

2π

2/r2∫
0

e−‖y‖
2/2t dt

t
= 1

2π

∞∫
‖y‖2r2/4

e−t
dt

t
= Ei(−‖y‖2r2/4)

2π
.
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This yields, as Ei(−r)= π log(1/r)+O(r) for r ↓ 0,

lim
r↓0 E

{
X(r)

r2 log(1/r)

}
= 1

π
lim
r↓0

∫
‖y‖61

Ei(−‖y‖2r2/4)

log(1/r)
dy = 2,

and, similarly,

E
{
X(ηr)−X(r)

r2

}
6
(
η2− 1

) ∫
‖y‖61

Ei(−‖y‖2r2/4)

π
dy 6 3

(
η2− 1

)
log(1/r),

for all sufficiently smallr > 0 and 1< η < 2. 2
It is natural to conjecture a decay of the correlation ofX(r) andX(%) whenr moves

away from%. The crucial tool in the proofs of our main theorems makes this conjecture
precise, recall that the covariances refer to the Campbell measure.

LEMMA 3.2 (Main Lemma). –Define the process{X(r)} on the probability space
(Ω,A,P ) as above. Then in dimensiond > 3, for every0< α < (d − 2)/(2d − 3),
there is ar0> 0 and a constantC > 0 such that, for all0< r 6 % < r0,

Cov
{
X(r)

r2
,
X(%)

%2

}
6 C ·

(
r

%

)α
.

In dimensiond = 2 there isr0> 0 and a constantC > 0 such that, for all0< r 6 % < r0,

Cov
{

X(r)

r2 log(1/r)
,

X(%)

%2 log(1/%)

}
6 C ·

√
log(1/%)

log(1/r)
.

Remark. – I have not tried to optimize the powers appearing in the theorem, as they
are unimportant for our purpose.

The remainder of this section will be devoted to the proof of this lemma. We
start by deriving an explicit formula for the covariance of{X(r)} using the Poisson
representation provided in the previous section.

LEMMA 3.3. – For all d > 2 and0< r 6 % we have

Cov
{
X(r),X(%)

}= 16

1∫
0

dt

t∫
0

ds

∫ ∫ ∫ ∫
‖w−x‖6r
‖w−y‖6%

p(w, t)p(z, t − s)

×p(z− x, s)p(z− y, s) dw dx dy dz (9)

+ 16

1∫
0

dt

t∫
0

ds

∫ ∫ ∫ ∫
‖w−x‖6r
‖w−y‖6%

p(v, t − s)p(w− v, s)

×p(x, t)p(v − y, s) dv dw dx dy (10)
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+ 16

1∫
0

dt

t∫
0

ds

∫ ∫ ∫ ∫
‖w−x‖6r
‖w−y‖6%

p(v, t − s)p(w− v, s)

×p(v− x, s)p(y, t) dv dw dx dy (11)

− 16

1∫
0

dt

1∫
0

ds

∫ ∫ ∫ ∫
‖v−x‖6r
‖w−y‖6%

p(v, t)p(x, t)

×p(w, s)p(y, s) dv dw dx dy. (12)

Proof. –Denoteφ(x,µ) = µ(B(x, r))µ(B(x,%)). We use the Poisson representa-
tion (6) and the formula for the variance of the Poisson process to get

E
{
X1
(
B(x, r)

)
X1
(
B(x,%)

)}
=
∫ ∫

φ
(
x,X1[W ])X1[W ](dx)N0(dW)

=
∫
P (w)

{
φ

(
w(1),

∫∫
X1−t [W ]M2(dt, dW)

)}
P0(dw)

=
∫
P (w)

{∫∫
X1−t

(
B
(
w(1), r

))
M2(dt, dW)

×
∫∫

X1−t
(
B
(
w(1), %

))
M2(dt, dW)

}
P0(dw)

=
∫
P0(dw)

{
4

1∫
0

∫
X1−t

(
B
(
w(1), r

))
X1−t

(
B
(
w(1), %

))
Nw(t)(dW)dt

+16

( 1∫
0

∫
X1−t

(
B
(
w(1), r

))
Nw(t)(dW)dt

)

×
( 1∫

0

∫
X1−t

(
B
(
w(1), %

))
Nw(t)(dW)dt

)}
.

We have already seen in (8) that

1∫
0

∫
X1−t [W ](B(w(1), r))Nw(t)(dW)dt = 1∫

0

∫
‖w(1)−x‖6r

p
(
w(t)− x,1− t)dx dt.

From (5) and the moment formula (7) we infer that∫
X1−t [W ](B(w(1), r))X1−t [W ](B(w(1), %))Nw(t)(dW)
= Qw(t)(Z1−t

(
B
(
w(1), r

))
Z1−t

(
B
(
w(1), %

)))
−Qw(t)(Z1−t

(
B
(
w(1), r

)))
Qw(t)

(
Z1−t

(
B
(
w(1), %

)))
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= 4

1−t∫
0

ds

∫
dz

{
p
(
w(t)− z,1− t − s)

×
∫ ∫
‖w(1)−x‖6r
‖w(1)−y‖6%

p(z− x, s)p(z− y, s) dx dy
}
.

We can plug these expressions in our formula, simplify, and get

E
{
X1
(
B(x, r)

)
X1
(
B(x,%)

)}
= 16

∫
P0(dw)

{ 1∫
0

dt

1−t∫
0

ds

∫
dz

{
p
(
w(t)− z,1− t − s)

×
∫ ∫
‖w(1)−x‖6r
‖w(1)−y‖6%

p(z− x, s)p(z− y, s) dx dy
}}

+16
∫
P0(dw)

{{ 1∫
0

∫
‖w(1)−x‖6r

p
(
w(t)− x,1− t)dx dt}

×
{ 1∫

0

∫
‖w(1)−y‖6%

p
(
w(s)− y,1− s)dy ds}}

= 16

1∫
0

dt

1−t∫
0

ds

∫∫
dv dwp(v, t)p(w− v,1− t)

×
{∫∫ ∫

‖w−x‖6r
‖w−y‖6%

dx dy dzp(v− z,1− t − s)p(z− x, s)p(z− y, s)
}

+16

1∫
0

dt

1∫
t

ds

∫∫∫
dudv dwp(u, t)p(v − u, s − t)p(w− v,1− s)

×
∫ ∫
‖w−x‖6r
‖w−y‖6%

dx dy p(u− x,1− t)p(v− y,1− s)

+16

1∫
0

dt

t∫
0

ds

∫∫∫
dudv dwp(u, s)p(v − u, t − s)p(w− v,1− t)

×
∫ ∫
‖w−x‖6r
‖w−y‖6%

dx dy p(v − x,1− t)p(u− y,1− s)
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= 16

1∫
0

dt

t∫
0

ds

∫ ∫ ∫ ∫
‖w−x‖6r
‖w−y‖6%

p(w, t)p(z, t − s)

×p(z− x, s)p(z− y, s) dw dx dy dz

+16

1∫
0

dt

t∫
0

ds

∫ ∫ ∫ ∫
‖w−x‖6r
‖w−y‖6%

p(v, t − s)p(w− v, s)

×p(x, t)p(v − y, s) dv dw dx dy

+16

1∫
0

dt

t∫
0

ds

∫ ∫ ∫ ∫
‖w−x‖6r
‖w−y‖6%

p(v, t − s)p(w− v, s)

×p(v− x, s)p(y, t) dv dw dx dy,

where, in the penultimate step, we have split the second summand in two parts according
ass 6 t or s > t . We then get the final form of our formula by subtracting the expression
for EX(r)EX(%), which was established in Lemma 3.1.2

The expression in Lemma 3.3 could be simplified a little more, but instead of doing
this, we express all integrals as integrals over the same integrand, by means of a change
of variable.

LEMMA 3.4. –For 0< r 6 % denoteq = r/%. For w,x, y, z ∈Rd we denote

Φ%[w,x, y, z] = %4d

1∫
0

t1−2dp

(
w%√
t
,1
)
p

(
x%√
t
,1
)
p

(
y%√
t
,1
)
p

(
z%√
t
,1
)
dt.

Then we can write

Cov
{
X(r)

r2
,
X(%)

%2

}
= 1

q2

1∫
0

ds

{
16
∫ ∫ ∫ ∫

‖w−√sx−√1−sz‖6q
‖w−√sy−√1−sz‖61

+16
∫ ∫ ∫ ∫

‖w−√sx−√1−sz‖6q
‖√sx−√sy‖61

+ 16
∫ ∫ ∫ ∫

‖w−√sx−√1−sz‖61
‖√sx−√sy‖6q

−16
∫ ∫ ∫ ∫

‖w−z‖6q
‖√sx−√sy‖61

− 16
∫ ∫ ∫ ∫

‖w−z‖61
‖√sx−√sy‖6q

}
Φ%[w,x, y, z]

%4
dw dx dy dz. (13)

Furthermore,we have, for allw,x, y, z ∈Rd ,

lim
%↓0

Φ%[w,x, y, z]
%4

= Γ (2d − 2)

4π2d

[‖w‖2+‖x‖2+ ‖y‖2+ ‖z‖2]2−2d
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and this limit is monotonically increasing. Ifd = 2 we have, for allw,x, y, z ∈R2,

Φ%[w,x, y, z]
%4

= 1

4π4

{
%2

2

exp[−%2(‖w‖2+ ‖x‖2+‖y‖2+ ‖z‖2)/2]
‖w‖2+ ‖x‖2+‖y‖2+ ‖z‖2

+ exp[−%2(‖w‖2+‖x‖2+ ‖y‖2+‖z‖2)/2]
[‖w‖2+ ‖x‖2+ ‖y‖2+‖z‖2]2

}
.

Proof. –We carry out the change of variables for (9). Substitutew for w/%, z for z/%,
x for (x − z)/% andy for (y − z)/% and obtain

16%4d

1∫
0

dt

t∫
0

ds

∫ ∫ ∫ ∫
‖w−x−z‖6q
‖w−y−z‖61

p(w%, t)p(z%, t − s)p(x%, s)p(y%, s) dw dx dy dz.

Recall thatp(x, s)= s−d/2p(x/√s,1) and change the order of integration to obtain

16
∫ ∫ ∫ ∫

‖w−x−z‖6q
‖w−y−z‖61

dw dx dy dz

{
%4d

1∫
0

dt

t∫
0

ds

(
1

t (t − s)s2

)d/2

×p
(
w%√
t
,1
)
p

(
z%√
t − s ,1

)
p

(
x%√
s
,1
)
p

(
y%√
s
,1
)}
.

Now substitutes for s/t , x for x/
√
s, y for y/

√
s andz for z/

√
1− s. This finally yields

16

1∫
0

ds

∫∫∫ ∫
‖w−√sx−√1−sz‖6q
‖w−√sy−√1−sz‖61

dwdx dy dz

×
{
%4d

1∫
0

t1−2dp

(
w%√
t
,1
)
p

(
z%√
t
,1
)
p

(
x%√
t
,1
)
p

(
y%√
t
,1
)
dt

}
.

This corresponds to the form given in the lemma and analogous substitutions may be
performed for the other terms. Additionally, we have split the last term in two parts
according ass < t or s > t . This proves (13). To obtain the asymptotics ofΦ%[w,x, y, z]
we abbreviatea = ‖w‖2+ ‖x‖2+ ‖y‖2+‖z‖2 and get

lim
%↓0

Φ%[w,x, y, z]
%4

= lim
%↓0

%4d−4

(2π)2d

1∫
0

t1−2d exp
[−a%2/2t

]
dt

= lim
%↓0

1

(2π)2d
(a/2)2−2d

∞∫
a%2/2

t2d−3e−t dt = Γ (2d − 2)

4π2da2d−2
.

In the cased = 2 the limit above is also valid, but we have to evaluate the integral
explicitly,

Φ%[w,x, y, z]
%4

= 1

4π4a2

∞∫
a%2/2

te−t dt = 1

4π4

(
%2

2a
e−a%

2/2+ 1

a2
e−a%

2/2
)
. 2
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It is now necessary to distinguish the casesd = 2 andd > 3. We start the estimates
necessary for theproof of the main lemma in the cased = 2. In our estimatesC denotes
the value of a constant that may change from line to line,% is assumed to be sufficiently
small.

We proceed in two steps. We first prove that

1

q2

1∫
0

ds

∫ ∫ ∫ ∫
‖w−√sx−√1−sz‖6q
‖√sx−√sy‖62

Φ%[w,x, y, z]
%4

dw dx dy dz 6 C · (log(1/%)
)2
. (14)

Sinceq 6 1 this gives favourable estimates for the first two summands in (13). Observe
first thatΦ%[w,x, y, z]6Φ%[0, x, y, z]. Hence we can integrate, first with respect tow
and then with respect tos and obtain

1

q2

1∫
0

ds

∫ ∫ ∫ ∫
‖w−√sx−√1−sz‖6q
‖√sx−√sy‖62

Φ%[w,x, y, z]
%4

dwdx dy dz

6 C ·
1∫

0

ds

{∫ ∫ ∫
‖√sx−√sy‖62

Φ%[0, x, y, z]
%4

dx dy dz

}

6 C ·
∫ ∫ ∫

min
(

1,
4

‖x − y‖2
)
Φ%[0, x, y, z]

%4
dx dy dz

6 C ·
∫ ∫ ∫
‖x−y‖>2

Φ%[0, x, y, z]
(‖x − y‖2)%4

dx dy dz

+C ·
∫ ∫ ∫
‖x−y‖62

Φ%[0, x, y, z]
%4

dx dy dz. (15)

We now use the expression forΦ% from Lemma 3.4. Using the symmetry inx andy we
can restrict integration to‖x‖> ‖y‖. The second summand can be bounded easily by∫ ∫ ∫

‖x−y‖62
‖x‖>‖y‖

Φ%[0, x, y, z]
%4

dx dy dz

6 C ·
{
%2
∫ ∫

exp[−%2(‖x‖2+ ‖z‖2)/2]
[‖x‖2+ ‖z‖2] dx dz

+
∫ ∫ ∫
‖x‖2+‖y‖2+‖z‖262

exp[−%2(‖x‖2+ ‖y‖2+‖z‖2)/2]
[‖x‖2+ ‖y‖2+‖z‖2]2 dx dy dz

+
∫ ∫ ∫
‖x‖2+‖z‖2>1

exp[−%2(‖x‖2+‖z‖2)/2]
[‖x‖2+‖z‖2]2 dx dz

}
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6 C ·
{
%2

∞∫
0

s exp
[−%2s2/2

]
ds +

√
2∫

0

s ds +
∞∫

1

exp[−%2s2/2]
s

ds

}
6 C · log(1/%).

For the first summand we can find an upper bound of∫ ∫ ∫
‖x−y‖>2
‖x‖>‖y‖

Φ%[0, x, y, z]
(‖x − y‖2)%4

dx dy dz

6 C ·
{
%2
∫ ∫ ∫

2‖x‖>‖x−y‖>2

exp[−%2(‖x‖2+ ‖y‖2+ ‖z‖2)/2]
(‖x − y‖2)[‖x‖2+ ‖y‖2+ ‖z‖2] dx dy dz

+
∫ ∫ ∫

2‖x‖>‖x−y‖>2

exp[−%2(‖x‖2+ ‖y‖2+‖z‖2)/2]
(‖x − y‖2)[‖x‖2+ ‖y‖2+‖z‖2]2 dx dy dz

}

6 C ·
{
%2
∫ ∫

exp[−%2(‖x‖2+ ‖z‖2)/2]
‖x‖2+ ‖z‖2

∫
2‖x‖>‖x−y‖>2

dy

‖x − y‖2 dx dz

+
∫ ∫ ∫
‖x‖2+‖y‖2+‖z‖262

dx dy dz

[‖x‖2+‖y‖2+ ‖z‖2]2

+
∫ ∫
‖x‖2+‖z‖2>1

exp[−%2(‖x‖2+ ‖z‖2)/2]
[‖x‖2+ ‖z‖2]2

∫
2‖x‖>‖x−y‖>2

dy

‖x − y‖2 dx dz
}

6 C ·
{
%2

∞∫
0

exp
(−%2s2/2

)
s log(s) ds

+
√

2∫
0

s ds +
∞∫

1

exp(−%2s2/2)

s
· log(s) ds

}

6 C · (log(1/%)
)2
.

This establishes an upper bound ofC(log(1/%))2 for (14) and we are done.
In the second step we show that

1

q2

1∫
0

ds

{∫ ∫ ∫ ∫
‖w−√sx−√1−sz‖61
‖√sx−√sy‖6q

−
∫ ∫ ∫ ∫

‖w−z‖61
‖√sx−√sy‖6q

}
Φ%[w,x, y, z]

%4
dwdx dy dz

6 C · log(1/%)3/2 log(1/r)1/2. (16)

This gives a favourable estimate of the last three summands of (13). In this term the
cancellation occurs. Fixa = a(r, %)6 1. We can bound (16) from above by



88 P. MÖRTERS / Ann. Inst. H. Poincaré, Probab. Statist. 37 (2001) 71–100

C

q2

1∫
0

ds

{∫ ∫ ∫ ∫
‖w−√sx−√1−sz‖61
‖√sx−√sy‖6q,‖√sx‖>a

+
∫ ∫ ∫ ∫

‖w−√sx−√1−sz‖61
‖√sx−√sy‖6q, (1−√1−s)‖z‖>a

+
∫ ∫ ∫ ∫

16‖w−z‖61+2a
‖√sx−√sy‖6q

}
Φ%[w,x, y, z]

%4
dwdx dy dz. (17)

Observe that in the last integral we have decoupled the variablesw,z from the variables
x, y. Hence this term is the product of two integrals as they were considered in
Lemma 3.1 and we have

C

q2

1∫
0

ds

∫ ∫ ∫ ∫
16‖w−z‖61+2a
‖√sx−√sy‖6q

Φ%[w,x, y, z]
%4

dwdx dy dz

6 C · EX1B(x, r)

r2

EX1(B(x,%(1+ 2a)) \B(x,%))
%2

6 C · log(1/r) log(1/%)
(
(1+ 2a)2− 1

)
.

The last inequality used the estimates for the expected values of small annuli obtained in
Lemma 3.1. Choosinga = log(1/%)/ log(1/r) gives an upper bound ofC(log(1/%))2. It
remains to estimate the first two integrals in (17) for this choice ofa. Let us begin with
the first integral. Integrating with respect toy andw and using Lemma 3.4 yields

1

q2

1∫
0

ds

∫ ∫ ∫ ∫
‖w−√sx−√1−sz‖61
‖√sx−√sy‖6q,‖√sx‖>a

Φ%[w,x, y, z]
%4

dw dx dy dz

6 C ·
1∫

0

ds

s

∫ ∫
‖√sx‖>a

Φ%[0, x,0, z]
%4

dx dz

6 C ·
{
%2

1∫
0

ds

s

∫
‖√sx‖>a

dx

∫
exp[−%2‖x‖2(1+ ‖z‖2)/2]

1+ ‖z‖2 dz (18)

+
1∫

0

ds

s

∫
‖√sx‖>a

dx

‖x‖2
∫

exp[−%2‖x‖2(1+ ‖z‖2)/2]
[1+‖z‖2]2 dz

}
. (19)

For (18) we obtain, writing log+ for the positive part of the logarithm,

%2

1∫
0

ds

s

∫
‖√sx‖>a

dx

{
e−%

2‖x‖2/2
∫

exp[−%2‖x‖2‖z‖2/2]
1+ ‖z‖2 dz

}

6 C · %2 ·
1∫

0

ds

s

∫
‖x‖>a/√s

dx
{
e−%

2‖x‖2/2( log+
(
1/‖x‖%)+ 1

)}
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6 C · %2 ·
∫
dx
{
e−%

2‖x‖2/2( log+
(
1/‖x‖%)+ 1

)
log+

(‖x‖/a)}
6 C ·

∞∫
0

{
e−p

2/2( log+(1/p)+ 1
)

log+(p/a%)
}
pdp

6 C · log(1/a%).

With our choice of a the last expression is easily seen to be bounded byC ·
log(1/%)3/2 log(1/r)1/2. This gives the necessary bound for (18). For (19) we can split
our domain in two parts depending whether‖x‖6 % or ‖x‖> % and obtain an estimate

1∫
0

ds

s

∫
‖√sx‖>a

dx

{
1

‖x‖2
∫

exp[−%2‖x‖2(1+‖z‖2)/2]
[1+ ‖z‖2]2 dz

}

6 C ·
1∫

0

ds

s

∫
‖√sx‖>a

dx

‖x‖2 e−%
2‖x‖2/2

∫
1

[1+‖z‖2]2 dz

6 C ·
{ 1∫
a2/%2

ds

s

∫
%>‖x‖>a/√s

dx

‖x‖2 e−%
2‖x‖2/2+

∫
‖x‖>%

dx

‖x‖2 e−%
2‖x‖2/2

1∫
a2/‖x‖2

ds

s

}

6 C ·
{ 1∫
a2/%2

ds

s
log(
√
s/a)+

∞∫
%

1

p
e−%

2p2/2 log(p/a) dp

}

6 C · {log(1/a) log(1/%)+ log(1/%)2
}
.

Both expressions are bounded by a constant multiple of log(1/%)3/2 log(1/r)1/2 and
hence we have established the necessary bound for the first integral in (17). Upon
observing that 1−√1− s 6√s for all 0< s < 1, the second integral may be bounded
in the same manner. Thus we have established the necessary bounds for all expressions
in (17) and (16) is proved. Altogether, (14) and (16) yield the main lemma in the case
d = 2.

Let us now work out theproof of the main lemma in the cased > 3. Given 0< α <
(d−2)/(2d−3)we chooseα < η < (d−2)/(2d−3) such thatδ = (1−2η)(d−2) > α.

To make our proof as compact as possible we start with a general estimate. Let
06 a, b, c, θ 6 1, then there is a constantC > 0 independent of them, such that

1∫
0

ds

∫ ∫ ∫ ∫
‖w−√sx−√1−sz‖6a
‖x−y‖6b/√s,‖y‖>c/sθ

dw dx dy dz

[‖w‖2+ ‖x‖2+‖y‖2+ ‖z‖2]2d−2

6 C · ad
1∫

0

ds

∫ ∫ ∫
‖x−y‖6b/√s
‖y‖>c/sθ

dx dy dz

[‖x‖2+‖y‖2+ ‖z‖2]2d−2
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6 C · ad
1∫

0

ds

∫
‖y‖>c/sθ

dy

{
‖y‖4−2d

∫ ∫
‖x‖6b/(√s‖y‖)

dx dz

[1+‖x‖2+ ‖z‖2]2d−2

}

6 C · ad
1∫

0

ds

{( b/
√
s∫

c/sθ

p3−d dp
)+
+ s−d/2bd

[
max

(
b√
s
,
c

sθ

)]4−2d
}
. (20)

Having provided this general estimate, we now start with the estimates leading to the
statement of the main lemma. Again we proceed in two steps. In the first step we show
that

1

q2

1∫
0

ds

∫ ∫ ∫ ∫
‖w−√sx−√1−sz‖6q
‖√sx−√sy‖62

dw dx dy dz

[‖w‖2+ ‖x‖2+ ‖y‖2+‖z‖2]2d−2
6 C · q,

(21)

thus providing a favourable estimate for the first two summands in (13).
If d = 3 we can use (20) straight away witha = q, b = 2 andc = 0 and obtain an

upper bound for (21) of

C · q
1∫

0

ds

{ 2/
√
s∫

0

dp+ s−3/2
(

2√
s

)−2
}
6C · q

1∫
0

ds√
s
6Cq.

In dimensionsd > 4 we first look at a restriction of our domain of integration by
assuming‖y‖ > q. From (20) witha = c = q, b = 2 andθ = 0 we obtain an upper
bound of

Cqd−2

1∫
0

ds

{ 2/
√
s∫

q

p3−d dp+ s−d/2
(

2√
s

)4−2d
}

6 Cqd−2 max
(
q4−d , log(1/q)

)
6Cq.

It remains to integrate over the part of the domain satisfying‖y‖6 q.

1

q2

1∫
0

ds

∫ ∫ ∫ ∫
‖w−√sx−√1−sz‖6q
‖√sx−√sy‖62,‖y‖6q

dw dx dy dz

[‖w‖2+ ‖x‖2+ ‖y‖2+‖z‖2]2d−2

6 C

q2

1∫
0

ds

q∫
0

dp

{
p3
∫∫ ∫
‖x‖62/(

√
sp)

‖w‖61/p

dw dx dz

(1+‖w‖2+ ‖x‖2+ ‖z‖2)2d−2

}
.

Recall that
∞∫

0

ad−1 da

(b+ a2)2d−2
6 C

b3d/2−2
for b> 1.

This allows us to estimate
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1

q2

1∫
0

ds

q∫
0

dp

{
p3
∫∫ ∫
‖x‖62/(

√
sp)

‖w‖61/p

dw dx dz

(1+‖w‖2+‖x‖2+ ‖z‖2)2d−2

}

6 C

q2

1∫
0

ds

q∫
0

dp

{
p3
∫ ∫
‖x‖62/(

√
sp)

‖w‖61/p

dw dx

×
∞∫

0

ad−1 da

(1+ ‖w‖2+ ‖x‖2+ a2)2d−2

}

6 C

q2

1∫
0

ds

q∫
0

dp

{
p3
∫ ∫
‖x‖62/(

√
sp)

‖w‖61/p

dw dx

(1+ ‖w‖2+ ‖x‖2)3d/2−2

}

6 C

q2

1∫
0

ds

q∫
0

dp

{
p3
(

1+ log
(

1√
sp

))}
6 C · q.

This finishes the proof of (21) in all dimensionsd > 3.
In the second step we have to establish that,

1

q2

1∫
0

ds

{∫ ∫ ∫ ∫
‖w−√sx−√1−sz‖61
‖√sx−√sy‖6q

−
∫ ∫ ∫ ∫

‖w−z‖61
‖√sx−√sy‖6q

}

× Φ%[w,x, y, z]
%4

dw dx dy dz 6 C · qα. (22)

We proceed as in the case ofd = 2. One can bound the left hand side from above by

C

q2

1∫
0

ds

{∫ ∫ ∫ ∫
‖w−√sx−√1−sz‖61

‖√sx−√sy‖6q,‖√sx‖>qη

+
∫ ∫ ∫ ∫

‖w−√sx−√1−sz‖61
‖√sx−√sy‖6q, (1−√1−s)‖z‖>qη

+
∫ ∫ ∫ ∫

16‖w−z‖61+2qη

‖√sx−√sy‖6q

}
Φ%[w,x, y, z]

%4
dwdx dy dz. (23)

As before we have decoupled the variablesw,z from the variablesx, y in the last term.
Hence this term is the product of two integrals as in Lemma 3.1 and we may estimate

C

q2

1∫
0

ds

∫ ∫ ∫ ∫
16‖w−z‖61+2qη

‖√sx−√sy‖6q

Φ%[w,x, y, z]
%4

dwdx dy dz

6 C · EX1B(x, r)

r2

EX1(B(x,%(1+ 2qη)) \B(x,%))
%2

6 C · ((1+ 2qη
)2− 1

)
6C · qη,
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where we have used the estimate of Lemma 3.1 for the small annuli. Asη > α this is
sufficient. The first error term may be estimated by means of (20), witha = 1, b = q,
c= qη andθ = 1/2,

1

q2

1∫
0

ds

∫ ∫ ∫ ∫
‖w−√sx−√1−sz‖61

‖√sx−√sy‖6q,‖√sx‖>qη

Φ%[w,x, y, z]
%4

dwdx dy dz

6 1

q2

1∫
0

ds

∫ ∫ ∫ ∫
‖w−√sx−√1−sz‖61

‖√sx−√sy‖6q,‖√sx‖>qη

dw dx dy dz

[‖w‖2+ ‖x‖2+ ‖y‖2+‖z‖2]2d−2

6 C

q2

1∫
0

ds

{
s−d/2qd

(
qη√
s

)4−2d}
6 C · qδ,

and this estimate is good, asδ > α. The second term may be estimated completely
analogously. Hence (22) is established and this finishes the proof of our main lemma.2

4. Proof of the main theorems

By a result of Evans and Perkins [4], for all nonzero measuresν,µ ∈MF (Rd) and
0< s < t the laws ofZs underQ1

ν andZt underQ1
µ are mutually equivalent, so that it

suffices to consider the caseµ= δ0 andt = 1.
By the Poisson representation (4) we can writeZ1[W ] as a sum of clustersX1[Wi],

whereWi are those excursions ofW from the constant path 0 of lifetime 0, which are
completed at timeτ [W ] and whose lifetimeζ i reaches level 1,

Z1[W ] =
M∑
i=1

X1
[
Wi
]
.

HereM is a Poisson random variable with mean 1/2 (by our choice of the normalization
of N0) and, givenM =m, theX1[Wi] are independent with lawN0(X1 ∈ · |X1 6= 0). As
the supportSi ofX1[Wi] is almost surely a Lebesgue nullset, we haveEX1[Wj ](Si)= 0
for i 6= j . Hence,X1[Wi ] andX1[Wj ] are mutually singular measures and, e.g., by [15,
2.13], almost surely, atX1[Wi]-almost everyx the densitydX1[Wj ]/dX1[Wi], i 6= j ,
vanishes. It therefore suffices to prove our theorems for the random measureX1 whose
law isN0(X1 ∈ · |X1 6= 0). We look again at the Campbell measureP associated with
the canonical measure ofZ1. From our main lemma we infer the following.

LEMMA 4.1. –For the process{X(r)} on the probability space(Ω,A,P ) we have,
for some constantC > 0 and all sufficiently smallε > 0, in the cased > 3,

Var

{
1

log(1/ε)

1∫
ε

X(r)

r2

dr

r

}
6 C

log(1/ε)
,
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and, in the cased = 2,

Var

{
1

log log(1/ε)

1/e∫
ε

X(r)

r2 log(1/r)

dr

r log(1/r)

}
6 C

log log(1/ε)
.

Proof. –Recall thatC denotes a constant whose value may be different in each
occurence. In the cased > 3 we can bound the variance by

2C

(log(1/ε))2

1∫
ε

%∫
ε

(
r

%

)α
dr

r

d%

%
= C

(log(1/ε))2

1∫
ε

1

%α

%α

α

d%

%
6 C

log(1/ε)
.

In the cased = 2 we substitutes = (log(1/r))−1, t = (log(1/%))−1 and let δ =
(log(1/ε))−1. Then we can bound the variance by

C

(log log(1/ε))2

1/e∫
ε

%∫
ε

√
log(1/%)

log(1/r)

dr

r log(1/r)

d%

% log(1/%)

= C

(log(1/δ))2

1∫
δ

t∫
δ

√
s

t

ds

s

dt

t
,

which again is bounded byC/ log(1/δ), as in the first part. 2
By a straightforward Borel–Cantelli argument we infer from the previous lemma that,

if d > 3 and choosingεn = exp(−n2),

lim
n→∞

1

log(1/εn)

1∫
εn

X1(B(x, r))

r2

dr

r
= lim

r→0
E
{
X(r)

r2

}
=D(d,4) P -almost surely.

Using the monotonicity of the integrals and the fact that log(1/εn)/ log(1/εn+1)→ 1 we
infer that the sequence{εn} is sufficiently rich to ensure the convergence along every
sequence. In the cased = 2 we defineεn = exp(−exp(n2)) to obtain

lim
n→∞

1

log log(1/εn)

1/e∫
εn

X1(B(x, r))

r2 log(1/r)

dr

r log(1/r)

= lim
r→0

E
{

X(r)

r2 log(1/r)

}
= 2 P -almost surely,

and again the sequenceεn is rich enough to ensure full convergence. This proves
Theorems 1.1 and 1.2 in the caseγ = 4 and the general case follows by recalling (3).

Let us briefly sketch an argument leading to nonexistence of the average densities of
order two of{Zt} in dimension 2. Suppose they exist on a set of positive measure with
positive probability. Then, arguing with a zero-one law as Le Gall and Perkins in [11,
Section 7], they existZt -almost everywhere, almost surely. By the consistency of the
averaging procedure, the average densities of order two must be equal to the average



94 P. MÖRTERS / Ann. Inst. H. Poincaré, Probab. Statist. 37 (2001) 71–100

densities of order three, and in particular they must be constant. One can check that the
family {(

1

log(1/ε)

1∫
ε

X(r)

r2 log(1/r)

dr

r
− 2

)2}

is uniformly integrable and hence the expectation of this family has to tend to zero. It
may be shown, using calculations analogous to those in Section 3 above, that this is not
the case, and one arrives at a contradiction.

5. Average densities and long time behaviour

In this section we restrict attention to the cased > 3. We recall some well-known facts
about the long-term behaviour of super-Brownian motion (see Dawson and Perkins [3])
and point out the connection to the average densities. In our current setting, if the super-
Brownian motion is started with a finite mass, almost surely, the process{Zt} suffers
extinction in finite time, i.e. there is a finite random timeT such that, almost surely,
Zt = 0 for all t > T . It is however possible to obtain a nontrivial longtime behaviour if
we extend our process to a process on the space

Mp

(
Rd
)= {µ ∈M(

Rd
)
:
∫
ϕp dµ<∞

}
,

for ϕp(x) = (1 + ‖x‖2)−p, equipped with thep-vague topology, generated by the
functionalsµ 7→ ∫

ϕ dµ for all ϕ :Rd→[0,∞) satisfying sup|ϕ(x)/ϕp(x)|<∞. Such
an extension is possible and allows the definition of the process{Zt} started inZ0= `d ,
the Lebesgue measure, ifp ∈ (d/2, d/2+ 1). Then it is easy to see that

lim
t→∞Zt = Z∞ weakly inMp

(
Rd
)
,

for some random variableZ∞ on the spaceMp(Rd), see [3, 6.1].Z∞ is called
the equilibrium random measureof the super-Brownian motion. By the superprocess
property we haveEZ∞ = `d .

It is not hard to see (using the branching property) thatZ∞ is an infinitely divisible
random measure and hence we can associate a canonical measureR∞ with Z∞. R∞
is a σ -finite and translation invariant measure onM(Rd). The Palm distributionsRx∞
associated withR∞ are given by the formula

∫
exp
[
−
∫
ϕ dµ

]
Rx∞(dµ)= Px

{
e−γ

∫ ∞
0
U
γ
s ϕ(ws) ds

}
, (24)

wherePx is the distribution of Brownian motionW started inx, see [3, 6.1] for a proof.
Note that, due to the translation invariance ofR∞ the Palm distributionsRx∞ at x are
given as translates of the Palm distributionR0∞ at 0.
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THEOREM 5.1. –Suppose thatX0 is distributed according to the Palm distribution
R0∞ at 0, which is associated with the canonical measure of the equilibrium random
measureZ∞.

(i) The finite dimensional distributions of the process{X(rs)/(rs)2}s>0 converge, as
r ↓ 0, to the finite-dimensional distributions of the process{X0(B(0, s))/s2}s>0.

(ii) The Palm distributionR0∞ is invariant under the scaling flow{Sλ}λ∈R, which
is defined bySλµ(A) = µ(e−λA)/e−2λ. This implies that there exists a random
variableD0 such that

lim
ε↓0

1

log(1/ε)

1∫
ε

X0(B(0, r))

r2

dr

r
=D0, R0∞-almost surely.

(iii) The random variableD0 is almost surely constant and we can describe the
average density of Theorem1.1asD(d, γ )=D0= E{X0(B(0,1))}.

Proof. –PluggingγUγ
t (φ)= U1

t (γ φ) into (24) yields that all the involved quantities
have the same scaling behaviour with respect toγ and hence we do not lose general-
ity by assumingγ = 4. The distribution of{X(r)/r2} on the space(Ω,A,P ) equipped
with the Campbell measureP associated with the canonical cluster is equal, for every
y ∈ Rd , to the distribution of{X1[W ](B(x, r))/r2} underX1[W ](dx)Ny(dW). We pick
positive numbersλ1, . . . , λk andr1, . . . , rk and argue with the Laplace transform of the
k-dimensional marginals. We obtain, using (6) and the moment formula for Poisson
processes,∫

exp

[
−

k∑
i=1

λi
µ(B(x, ri))

r2
i

]
P(dµdx)

=
∫

exp

[
−

k∑
i=1

λi
X1(B(x, ri))

r2
i

]
X1[W ](dx)Ny(dW)

=
∫
P (w)

{
exp

[
−

k∑
i=1

λi

r2
i

∫∫
X1−t [W ](B(w(1), ri))M2(dt, dW)

]}
Py(dw)

=
∫

exp

[
4

1∫
0

dt

∫
Nw(t)(dW)

(
exp

[
−

k∑
i=1

λi

r2
i

×X1−t [W ](B(w(1), ri))
]
− 1

)]
Py(dw).

Using (5) and (1) we can infer that∫
Nw(t)(dW)

(
exp

[
−

k∑
i=1

λi

r2
i

X1−t [W ](B(w(1), ri))
]
− 1

)

= log Qw(t)

{
exp

[
−

k∑
i=1

λi

r2
i

Z1−t
(
B
(
w(1), ri

))]}

= −U1−t

(
k∑
i=1

λi

r2
i

1B(w(1),ri)

)(
w(t)

)
.
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Altogether, we obtain∫
exp

[
−

k∑
i=1

λi
µ(B(x, ri))

r2
i

]
P(dx, dµ)

=
∫

exp

[
−4

1∫
0

dt U1−t

(
k∑
i=1

λi

r2
i

1B(w(1),ri)

)(
w(t)

)]
Py(dw).

Chooseg :Rd → [0,∞) such that
∫
g(x) dx = 1. As the above expression is indepen-

dent ofy, we may take an average overy and then use the reversibility of Brownian
motion. This yields∫

exp

[
−

k∑
i=1

λi
µ(B(x, ri))

r2
i

]
P(dx, dµ)

=
∫∫

g(y)exp

[
−4

1∫
0

U1−t

(
k∑
i=1

λi

r2
i

1B(w(1),ri)

)(
w(t)

)
dt

]
Py(dw)dy

=
∫∫

g
(
w(1)

)
exp

[
−4

1∫
0

U1−t

(
k∑
i=1

λi

r2
i

1B(z,ri)

)(
w(1− t))dt]Pz(dw)dz

=
∫

exp

[
−4

1∫
0

U1−t

(
k∑
i=1

λi

r2
i

1B(0,ri)

)(
w(1− t))dt]P0(dw).

We now writeri = rsi and use the scaling property of Eq. (2) in the form (see [2, Lemma
4.5.1])

Ut

(
k∑
i=1

λi

(rsi)2
1B(0,rsi)

)
(y)= 1

r2
Ut/r2

(
k∑
i=1

λi1B(0,si)

)
(y/r), (25)

and afterwards Brownian scaling to obtain

∫
exp

[
−4

1∫
0

Ut

(
k∑
i=1

λi

r2
i

1B(0,ri)

)(
w(t)

)
dt

]
P0(dw)

=
∫

exp

[
−4

1∫
0

1

r2
Ut/r2

(
k∑
i=1

λi

s2
i

1B(0,si)

)(
w(t)/r

)
dt

]
P0(dw)

=
∫

exp

[
−4

1/r2∫
0

Us

(
k∑
i=1

λi

s2
i

1B(0,si)

)(
w(s)

)
ds
]
P0(dw)

r↓0−→
∫

exp

[
−4

∞∫
0

Us

(
k∑
i=1

λi

s2
i

1B(0,si )

)(
w(s)

)
ds

]
P0(dw)

= E
{

exp

[
−

k∑
i=1

λi
X0(B(0, si))

s2
i

]}
,
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where we have used (24) in the last step. This proves the first statement of Theorem 5.1.
From (24), the scaling property of Brownian motion and the scaling property (25) we
get, for everyϕ :Rd→[0,∞) andr > 0,∫

exp
[
−
∫
ϕ dµ

]
R0
∞(dµ)=P0

{
exp

[
−4

∞∫
0

Us(ϕ)(ws) ds

]}

=P0

{
exp

[
−4

∞∫
0

Us(ϕ)(wr2s/r) ds

]}

=P0

{
exp

[
−4

∞∫
0

1

r2
Ut/r2(ϕ)(wt/r) dt

]}

=P0

{
exp

[
−4

∞∫
0

Ut

(
ϕ(·/r)
r2

)
(wt) dt

]}

=
∫

exp
[− ∫ ϕ(x/r)µ(dx)

r2

]
R0
∞(dµ).

In other words, the Palm distributionR0∞ on the spaceM(Rd) is invariant under the scal-
ing flow. This allows the use of Birkhoff’s Ergodic Theorem, which yields the existence
of a random variableD0 with ED0= E{X0(B(0,1))} such that

lim
T→∞

1

T

T∫
0

X0(B(0,e−t ))
e−2t

dt =D0, R0∞-almost surely and inL1,

and (ii) follows by a change of variable. Finally, to establish (iii), we first show that the
family {X(r)/r2: 0< r < 1} of random variables is exponentially bounded. Recall from
Lemma 3.1 that, for allt > 0,

G(r, t) :=
t∫

0

∫
‖x‖6r

p(x, s) dx ds 6 r2

d − 2
.

Le Gall and Perkins [11, Lemma 3.1] given an easy argument that, for all 0< θ < r2

2G(r,t) ,∫
Nx(dW)

(
exp
(
θXt [W ](B(y, r))

r2

)
− 1

)
6
θ
∫
‖z−y‖6r p(z− x, t) dz
r2− 2θG(r, t)

.

Hence we infer, for all 0< θ < (d − 2)/2,

E
{

exp
(
θ
X(r)

r2

)}
=
∫

exp

(
4

1∫
0

dt

∫
Nw(t)(dW)

×
(

exp
(
θ
X1−t [W ](B(w(1), r)

r2

)
− 1

))
Py(dw)

6 exp
(

4θ

d − 2− 2θ

)
.
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This implies that{X(r)/r2: 0< r < 1} and, by the first part, also{X0(B(0, r))/r2: 0<
r < 1} areLq -bounded for all 16 q <∞. The argument of (ii) with a discrete time
version of Birkhoff’s ergodic theorem yields that there exists a random variableD 0 with

lim
n→∞

1

n

n∑
k=1

X0(B(0,e−k))
e−2k

=D 0, R0∞-almost surely and inL1.

Part (i), uniform intergability and, in the penultimate step, the main lemma now give, for
a suitable constantC > 0,

Var
{
D 0}= lim

n→∞Var

{
1

n

n∑
k=1

X0(B(0,e−k))
e−2k

}

= lim
n→∞ lim

r↓0 Var

{
1

n

n∑
k=1

X(re−k)
r2e−2k

}

6C lim sup
n→∞

1

n2

n∑
k=1

n∑
l=k

ek−l = 0.

Hence,D 0 is constantR0∞-almost surely, and equals

D 0=D0= E{X0(B(0,1))}= lim
r↓0
E{X(r)}
r2

=D(d,4),

as required to finish the proof.2
Remarks. – Note that the proof of the first two parts of Theorem 5.1 do not make use

the calculation of the variances in the main section. It looks as if Theorem 1.1 can be
obtained from these or similar arguments, but I have not been able to achieve this.

6. Further comments and open questions

• An interesting line of generalization one might want to follow is the replacement
of the Brownian motion as underlying particle movement by a general diffusion. In
the case of a scalar diffusion coefficientσ :Rd→ (0,∞) it would be interesting to
see whether the values of the average densities of the critically branching measure-
valued diffusion{Zt} with underlying particle motiondXt = σ (Xt) dBt at a fixed
time t allow a reconstruction of the scalar fieldσ at Xt -almost every point. In a
similar vein one could make the branching rate space-dependent and ask whether it
can be recovered by means of the average densities.
• It would also be interesting to give finer descriptions of the fluctuations of the

function r 7→ Z1(B(x, r)), for example the lacunarity distributions studied for the
case of planar Brownian motions in [17].
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