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ABSTRACT. – A model of interacting identical quantum particles performing one-dimensional
anharmonic oscillations around their unstable equilibrium positions, which form thed-dimen-
sional simple cubic latticeZd , is considered. For this model it is proved that for every fixed value
of the temperatureβ−1 there exists a positivem∗(β) such that for the values of the physical
mass of the particlem ∈ (0,m∗(β)), the set of tempered Gibbs measures consists of exactly one
element. 2001 Éditions scientifiques et médicales Elsevier SAS

AMS classification: 60B05, 82B10

RÉSUMÉ. – On considère sur le réseauZd un modèle de particules quantiques en interaction
soumises à oscillations unidimensionnelles anharmoniques autour de leur position d’équilibre
instable. Pour ce modèle on montre que pour chaque valeur fixée de la températureβ−1 il existe
un réelm∗(β) > 0 tel que pour les valeurs de la massem ∈ [0,m∗(β)], l’ensemble des état de
Gibbs tempérés à un seul élément. 2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Let us first explain the problem studied in this paper from a purely probabilistic point
of view. Subsequently, we shall describe the physics behind it.

We consider a lattice spin system overZd with single spin spaces equal to the space
of continuous loops onR indexed by[0, β]. The single spin space is equipped with
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the Brownian bridge measure multiplied by a density describing a polynomial self-
interaction. The interaction between the sites is attractive and of nearest neighbour
type. Using the Dobrushin–Lanford–Ruelle formalism we define corresponding Gibbs
measures through the associated local Gibbs specifications (see, e.g., [22]). In general,
there may be infinitely many such Gibbs measures. However, one could expect that if
the diffusion intensity is large enough, no phase transitions occur, i.e. there is a unique
Gibbs measure. In the paper we give a complete proof of this fact based on Dobrushin’s
uniqueness criterion. The corresponding contraction condition is shown to be satisfied
by using spectral properties of the diffusion generator and FKG (resp. GKS) inequalities.
More details on this and the precise relation to previous papers [7–9] will be explained
at the end of this section.

In the language of quantum statistical mechanics, the system we consider may be
described as follows. To each point of the latticeL = Zd there is attached a quantum
particle with the physical massm which has an unstable equilibrium position at this
point. Such particles perform one-dimensional oscillations around their equilibrium
positions and interact via an attractive potential. Similar systems have been studied for
many years as quite realistic models of a crystalline substance undergoing structural
phase transitions [17,35].

A full mathematical description of the equilibrium statistical mechanical properties
of a quantum lattice system may be given by constructing its temperature Gibbs states.
These are positive normalized functionals on von Neumann algebras whose elements
(observables) represent physical quantities characterizing the system (see [16,25]). In
the case of systems, for which the algebra of observables of every sub-system in a finite
Λ⊂ L may be realized as theC∗-algebra of bounded operators on a Hilbert space, the
theory of temperature Gibbs states is well elaborated [16]. But if one needs to include
into consideration also unbounded operators, as in the case considered in this paper, the
situation becomes much more complicated and the construction of temperature Gibbs
states even for the systems of non-interacting particles turns into a very hard task.

In 1975 a probabilistic approach to the construction of temperature Gibbs states has
been initiated in [1]. It uses the integration theory on path spaces (see also [2,11,12,14,
23,25,34]). In this approach the state, as a functional, of a sub-system in a finiteΛ at
a temperatureT = β−1, is constructed by means of a probability measureµβ,Λ defined
on the space of continuous paths (loops). This measure is calledlocal Euclidean Gibbs
measure, and the infinite volume limitsΛ↗ L of the sequences{µβ,Λ}, are exactly the
Gibbs measures mentioned at the beginning of this introduction. Due to this fact, various
probabilistic techniques became available for the description of equilibrium properties
of quantum infinite-particle systems.

An alternative approach to the construction of temperature Gibbs states lies in the use
of cluster expansions. We refer here to [6,29] where models with “light” particles were
studied by means of different versions of this technique. In particular, in [6] the existence
of temperature Gibbs states was shown by proving the convergence of cluster expansions
at a fixed temperature and for small masses. In [29], for small masses, the convergence
of the corresponding cluster expansions was proved for all values of the temperature.
However, for systems with unbounded oscillations, as in the case considered in this
work, the convergence of the cluster expansions, in itself, does not imply uniqueness.
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The most spectacular physical phenomenon in infinite-particle systems is a phase
transition. It occurs when for the same values of the parameters describing a system,
one has several temperature Gibbs states. In our case the phase transition is connected
with the appearance of macroscopic displacements of particles from their equilibrium
positions (a long-range order) if the dimensiond, the massm, the temperatureβ−1, and
the parameters of the potential energy satisfy certain conditions. A mathematical study of
these phenomena was performed in various papers, see, e.g., [13,20,26,30]. The essential
problem in this context is to understand the role of quantum effects in phase transitions
in such models. By physical arguments (see [32] and Ch. 2.5.4.3 of [17]), the quantum
effects may suppress the long-range ordering. For a model similar to the one considered
in this work, this was proved in [36]. Later on it was shown in [3,4,27] that not only
the long-range order but also any critical anomaly of the displacements of particles are
suppressed if the model is “strongly quantum”, which may occur in particular if the mass
of the particle is small. Therefore, one may expect that the “strong quantumness” of the
model implies the uniqueness of its temperature Gibbs states.

The same question may be considered in the above mentioned approach based on
probabilistic methods. Namely, is it possible to prove uniqueness for the Euclidean Gibbs
measures if the diffusion is intensive? So far, such uniqueness, for the model considered
in this work, was proved to occur under conditions which are irrelevant to the diffusion
intensity. We refer to [7–9] where this was done by means of logarithmic Sobolev
inequalities. In this paper we present a proof for uniqueness of the Euclidean Gibbs
measures for small values of the physical massm of the particle, which in probabilistic
interpretation corresponds to large diffusion. We describe the diffusion intensity (see
(3.34)) by a parameter, which is defined by the spectral properties of the diffusion
generatorH̃ (i.e. the one-particle Hamiltonian) asD = m∆̃2, where∆̃ is the minimal
distance between the eigenvalues ofH̃ . We show (Lemma 3.4) thatD tends to+∞
whenm ↘ 0. This enables us to obtain the contractivity which implies uniqueness.
The research is performed by means of a version of the lattice approximation technique
known in the Euclidean quantum field theory [33,34]. A similar approach has already
been used in [3,4,27]. It makes possible to involve the physical mass into consideration,
so that it appears explicitly in the uniqueness conditions.

The paper is organized as follows. In Section 2 we introduce temperature loop spaces
and define Euclidean Gibbs measures. Section 3 contains the uniqueness theorem and its
proof. It is based on Dobrushin’s criterion, formulated in that section, and on a number
of lemmas. Section 4 contains the proofs of these lemmas, which in turn are based on
two correlation inequalities formulated here as Theorems 4.1 and 4.2. The proof of these
theorems follows in Section 5.

2. Temperature loop formalism for Gibbs measures

We study Euclidean Gibbs measures on a temperature loop space describing
equilibrium states at a temperatureβ−1 of a system of identical quantum particles
performing anharmonic one-dimensional oscillations around their unstable equilibrium
positions, which form a latticeL= Zd , d ∈N, (see [1,23,25] for this approach). Consider
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the space of continuous periodic functions

C(Iβ)
def= {ω ∈C(Iβ→R)|ω(0)= ω(β)}, Iβ = [0, β],

and letHβ def=L2(Iβ) be the real Hilbert space of functions onIβ which are square
integrable with respect to the Lebesgue measure, equipped with inner product(·, ·)β
and norm‖ · ‖β . The temperature loop space is

Ωβ
def= C(Iβ)L = {ω= (ωl)l∈L|ωl ∈C(Iβ)}. (2.1)

ForΛ⊂ L, we set

Ωβ,Λ
def= {ωΛ = (ωl)l∈Λ| ωl ∈C(Iβ)}. (2.2)

The spacesΩβ,Λ, Ωβ are equipped with the product topology and with theσ -algebra
B(Ωβ,Λ) generated by the cylinder sets

B∆
def= {ω|ωl ∈ Bl ⊂ C(Iβ), l ∈∆,∆ ∈L},

whereL is the set of all finite subsets ofL andBl are Borel subsets. Define onHβ the
following strictly positive trace class operator

Sβ = (−m∆β + 1)−1, (2.3)

where∆β stands for the Laplace–Beltrami operator onIβ (considered as a circle of
lengthβ). Let γβ be the Gaussian measure onHβ , uniquely determined by its Fourier
transform ∫

Hβ

exp
(
i(ϕ,ω)β

)
γβ(dω)= exp

(
−1

2
(ϕ, Sβϕ)β

)
, ϕ ∈Hβ. (2.4)

For this measure, one may show that∫
Hβ

‖ω‖MC(Iβ)γβ(dω) <∞, ∀M ∈N, (2.5)

and γβ(C(Iβ)) = 1. This measure is canonically generated by the oscillator bridge
process of lengthβ [34]. For a finiteΛ⊂ L, we set

γβ,Λ(dωΛ)
def=⊗

l∈Λ
γβ(dωl). (2.6)

For everyζ ∈ Ωβ and each finiteΛ, we define the Gibbs measure inΛ, subject to a
chosenζ , as the following probability measure onΩβ,Λ

µβ,Λ(dωΛ|ζ ) def= Ψβ,Λ(ωΛ|ζ )γβ,Λ(dωΛ), (2.7)
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Ψβ,Λ(ωΛ|ζ ) def= 1

Zβ,Λ(ζ )
exp
{
−Φβ,Λ(ωΛ|ζ )−

∑
l∈Λ

∫
Iβ

V (ωl(τ ) dτ

}
. (2.8)

The polynomial

V (x)=
p∑
s=2

bsx
2s − 1

2
ax2 def= Pp(x)− 1

2
ax2, p> 2, (2.9)

wherea > 1, bp > 0, andbs > 0 for all s 6 p, describes the self-interaction of the
particles, whereas

Φβ,Λ(ωΛ|ζ )= J
4

∫
Iβ

{∑
l,l′∈Λ

εll′
(
ωl(τ)− ωl′(τ ))2 (2.10)

+ 2
∑

l∈Λ, l′∈Λc
εll′
(
ωl(τ)− ζl′(τ ))2}dτ,

is the interaction of the particles inΛ between themselves and with the particles outside
Λ fixed by the external boundary condition

ζΛc ∈ C(Iβ)Λc, Λc def= L \Λ.
Hereεll′ = 1 for the pairs of nearest neighbors, i.e. if|l − l′| = 1, and is zero otherwise.
Zβ,Λ(ζ ) is the normalizing factor known also as the local partition function.

ForB ∈ B(Ωβ) andω ∈Ωβ , let 11B(ω) take values 1, resp. 0, ifω belongs, resp. does
not belong, toB. For a subsetΛ and a pairω, ζ ∈Ωβ , letωΛ×ζΛc stand forξ ∈Ωβ such
that ξl = ωl if l ∈ Λ, andξl = ζl for l ∈ Λc. Now we introduce a family of probability
kernels{πβ,Λ|Λ ∈L} between(Ωβ,B(Ωβ)) and(Ωβ,B(Ωβ)) by

πβ,Λ(B|ζ ) def=
∫

Ωβ,Λ

11B(ωΛ× ζΛc)µβ,Λ(dωΛ|ζ ). (2.11)

These kernels satisfy the consistency condition [22]∫
Ωβ

πβ,Λ(dω|ζ )πβ,Λ′(B|ω)= πβ,Λ(B|ζ ), (2.12)

which holds for arbitrary pairsΛ′ ⊂Λ, eachB ∈ B(Ωβ), andζ ∈Ωβ .

DEFINITION 2.1. – The probability measureµβ on (Ωβ,B(Ωβ)) is said to be a
Euclidean Gibbs measure of the model considered at the temperatureβ−1 if it satisfies
the Dobrushin–Lanford–Ruelle(DLR) equilibrium equation∫

Ωβ

µβ(dω)πβ,Λ(B|ω)= µβ(B), (2.13)

for all Λ ∈L andB ∈ B(Ωβ).
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Among all measures solving the DLR equation we distinguish a class of the so called
tempered measures (see [7,24]). To this end we introduce

S ′(L) def= ind lim
p∈N

{
u ∈RL

∣∣∣∣∑
l∈L

(
1+ |l|)−pu2

l <∞
}
. (2.14)

DEFINITION 2.2. – The class of tempered Gibbs measuresGβ consists of the
Euclidean Gibbs measures the moment sequences of which obey the condition(〈‖ωl‖β〉µβ )l∈L ∈ S ′(L). (2.15)

Here and further on we write

〈f 〉µ =
∫
f dµ (2.16)

if the integral makes sense.
As it has been proved in [10] (see also [7] and the references therein), the classGβ

is actually nonempty. Moreover, the model has a critical point and long-range order
behaviour if its parameters satisfy certain conditions (see, e.g., [13,26,30]). This means
that for one and the same value of the parameters describing the model,Gβ contains
more than one element.

3. Uniqueness theorem

THEOREM 3.1. – LetGβ be given by Definition2.2. Then for everyβ, there exists a
positivem∗(β) such that for all values of the massm ∈ (0,m∗(β)), the classGβ consists
of exactly one element, that is|Gβ | = 1.

The rest of the paper is devoted to the proof of this theorem.
Let (X , ρ) be a complete separable metric space,M be the set of all probability

measures on(X ,B(X )), and

M1
def=
{
µ ∈M

∣∣∣∣ ∫
X

ρ(y, y0)µ(dy) <∞
}
, (3.1)

for somey0 ∈ X . Let also Lip(X ) stand for the set of Lipschitz functionsf :X → R,
for which we write

[f ]Lip
def= sup

{ |f (y)− f (z)|
ρ(y, z)

: y, z ∈X , y 6= z
}
, (3.2)

Lip1(X )
def= {f ∈ Lip(X ) | [f ]Lip 6 1

}
. (3.3)

Givenµ1, µ2 ∈M1, we set

R(µ1,µ2)
def= sup

{∣∣∣∣∫
X

f (y)µ1(dy)−
∫
X

f (y)µ2(dy)

∣∣∣∣: f ∈ Lip1(X )
}
. (3.4)
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A key role in the proof will be played by Dobrushin’s matrix. It is defined by the
measuresµβ,Λ (2.7)–(2.10) withΛ= {l}. To simplify notations we set

ξ{l}c = ξ cl , µβ,{l}(·|ξ)= µl(·|ξ). (3.5)

Then the elements of Dobrushin’s matrix are

Cll′ = sup
{
R(µl(·|ξ),µl(·|η))
‖ξl′ − ηl′‖β : ξ, η ∈Ωβ, ξ

c
l′ = ηcl′, l, l′ ∈ L

}
. (3.6)

They will be used to check Dobrushin’s criterion [18,19,22,28].

PROPOSITION 3.1 (Dobrushin’s uniqueness criterion). –Let

sup
{ ∑
l∈L\{l′}

Cll′: l ∈ L
}
< 1, (3.7)

then there exists exactly one tempered Gibbs measure.

Directly from the definitions (2.7)–(2.10), (3.5) one obtains

µl(dωl|ξ)= 1

Zl(ξ)
exp
{
−dJ‖ωl‖2β + J

∑
l′:|l−l′|=1

(ωl, ξl′)β

−
∫
Iβ

V (ωl(τ )) dτ

}
γβ(dωl). (3.8)

This implies thatµl(dωl|ξ)= µl(dωl|η) if ξ cl′ = ηcl′ and|l − l′| 6= 1. Hence

R
(
µl(·|ξ),µl(·|η))= 0, Cll′ = 0 for |l − l′| 6= 1.

If |l − l′| = 1, allCll′ are equal to each other, thus the condition (3.7) is satisfied if:

Cll′
def= C < 1

2d
, for |l − l′| = 1. (3.9)

By the translation invariance of the model, eachµl(·|ξ) is a copy of the following
measure

µy(dω)= 1

Zy
exp
{
−Jd‖ω‖2β + J (ω, y)β −

∫
Iβ

V (ω(τ)) dτ

}
γβ(dω), (3.10)

where

Hβ 3 y =
∑

l′:|l−l′|=1

ξl′, (3.11)

andZy is the normalizing constant. Thereafter, the Dobrushin coefficients (3.9) may be
written as

C = sup
{
R(µy,µz)

‖x − y‖β : y, z ∈Hβ, y 6= z
}
. (3.12)
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Having in mind (3.4) let us estimate the variance of the function

Hβ 3 y 7→ 〈f 〉µy =
∫
Hβ

f (ω)µy(dω) ∈R, (3.13)

with a fixedf ∈ Lip1(Hβ). This function is Fréchet differentiable [7] and its derivative
in the directionϕ ∈Hβ is(∇y〈f 〉µy , ϕ)β = J{〈f · (·, ϕ)β〉µy − 〈f 〉µy 〈(·, ϕ)β〉µy}

= JCovµy
(
f, (·, ϕ)β). (3.14)

By the Schwarz inequality one has

∣∣(∇y〈f 〉µy , ϕ)β ∣∣6 J√Varµyf ·
√

Varµy (·, ϕ)β, (3.15)

where

Varµyf = 1

2

∫
Hβ

∫
Hβ

(
f (ω)− f (ω′))2µy(dω)µy(dω′), (3.16)

Varµy (·, ϕ)β = 1

2

∫
Hβ

∫
Hβ

(ω− ω′, ϕ)2βµy(dω)µy(dω′). (3.17)

The idea of proving Theorem 3.1 may be outlined as follows. Suppose that we have
estimated, uniformly for ally ∈Hβ , the first variance by a continuous function ofβ, of
the parametersa, bs (2.9), and of the massm. Let also the second variance be bounded
by a function ofβ, a, bs , andm, multiplied by ‖ϕ‖2β . Then the mean-value theorem
together with (3.12) imply that the condition (3.9) is satisfied provided the product of
the mentioned bounds is sufficiently small. Below we shall implement this idea.

One observes that (3.17) defines a quadratic form onHβ

Varµy (·, ϕ)β def= (ϕ,Kyϕ)β, (3.18)

with the operatorKy given as follows

(Kyϕ)(τ)=
∫
Iβ

Ky(τ, τ
′)ϕ(τ ′)dτ ′, τ ∈ Iβ. (3.19)

The kernelKy(τ, τ ′) is

Ky(τ, τ
′)= 1

2

∫
Hβ

∫
Hβ

[
ω(τ)− ω′(τ )][ω(τ ′)−ω′(τ ′)]µy(dω)µy(dω′). (3.20)



S. ALBEVERIO ET AL. / Ann. Inst. H. Poincaré, Probab. Statist. 37 (2001) 43–69 51

One may show that it is a continuous function ofτ, τ ′ ∈ Iβ . Clearly, for everyy ∈Hβ ,
the operatorKy is symmetric and positive, and (cf. (2.5))

trace(Ky)= 1

2

∫
Hβ

∫
Hβ

‖ω−ω′‖2βµy(dω)µy(dω′) <∞. (3.21)

For a bounded linear operatorA :Hβ → Hβ , let Spp(A) denote the pure point
spectrum and let‖A‖ stand for its operator norm. For a positive compact operatorA,
one has

‖A‖ =maxSpp(A). (3.22)

On the other hand, ifA is symmetric and positive, then (see [31, p. 216])

‖A‖ = sup
{
(ϕ,Aϕ)β

‖ϕ‖2β
: ϕ ∈Hβ \ {0}

}
. (3.23)

Introduce

Ṽ (x)=
p∑
s=2

21−sbsx2s − 1

2
ax2= P̃p(x)− 1

2
ax2, (3.24)

wherep,a, bs are as in (2.9), and

H̃ =− 1

2m

d2

dx2
+ 1

2
(2Jd + 1)q2+ Ṽ (q). (3.25)

The latter operator is defined inL2(R, dx), the operatorq acts as follows

(qψ)(x)= xψ(x). (3.26)

Further, along with the measures defined by (2.7) and (3.10), we introduce

µ̃y(dω)= 1

Z̃y
exp
{
−Jd‖ω‖2β + J (ω, y)β −

∫
Iβ

Ṽ (ω(τ)) dτ

}
γβ(dω), (3.27)

whereZ̃y is the normalizing constant.
It appears (see, e.g., [1,23]) that for a functionF :Hβ→R,F(ω)= F1(ω(τ)), τ ∈ Iβ ,

which is integrable with respect to the measureµ̃y , one has∫
Hβ

F (ω)µ̃y(dω)= 1

Z̃y
trace

{
F1(q)exp[−βH̃ ]}. (3.28)

By means ofµ̃y we define by (3.19) the operator̃Ky with the kernel

K̃y(τ, τ
′)= 1

2

∫
Hβ

∫
Hβ

[
ω(τ)− ω′(τ )][ω(τ ′)−ω′(τ ′)]µ̃y(dω)µ̃y(dω′). (3.29)
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Its trace can be calculated as in (3.21) with the measureµ̃y instead ofµy .
The construction of the bounds mentioned above is based upon the following lemmas,

which are proved in Section 4.

LEMMA 3.1. – For everyy ∈Hβ and allϕ ∈Hβ , one has

(ϕ,Kyϕ)β 6
∥∥K̃0

∥∥‖ϕ‖2β . (3.30)

LEMMA 3.2. – For everyy ∈Hβ , one has

trace(Ky)6 trace
(
K̃0
)
. (3.31)

It is known (see [15, p. 57]) that (the closure of)̃H is a self-adjoint operator with a
discrete spectrum, all its eigenvaluesẼs , s ∈N, are simple. Set

∆̃
def= inf

{∣∣Ẽs − Ẽs ′ ∣∣: s, s′ ∈N, s 6= s′}. (3.32)

LEMMA 3.3. – The following estimate holds

maxSpp
(
K̃0
)
6 1

m∆̃2
. (3.33)

In what follows, as a parameter describing the diffusion intensity or, in quantum
interpretation, the “quantumness” of the particle, one may choose

D def= m∆̃2. (3.34)

LEMMA 3.4. – There exists an independent ofm quantity g0 > 0, such that for
sufficiently small values of the massm, the following estimate holds

1

m∆̃2
6 g0m

(p−1)/(p+1), (3.35)

wherep is the same as in(2.9).

To estimate the variance (3.16) one may use the logarithmic Sobolev inequality, as it
was done in [7].

LEMMA 3.5. – Let in (2.9)p = 2, then for ally ∈Hβ and everyf ∈ Lip1(Hβ), one
has

Varµyf 6
eβδ0

2Jd + 1+ a/4, δ0= 25

288

a2

b2
. (3.36)

Another estimate of the variance off is linear inβ. We will use it forp > 2.

LEMMA 3.6. – There exists an independent ofm andβ quantityh0> 0 such that for
all y ∈Hβ , arbitrary f ∈ Lip1(Hβ), the following estimate holds

Varµyf 6 βh0m
−1/(p+1). (3.37)



S. ALBEVERIO ET AL. / Ann. Inst. H. Poincaré, Probab. Statist. 37 (2001) 43–69 53

Proof of Theorem 3.1. –First we estimate Varµy (·, ϕ)β given by (3.17), (3.18). By
means of Lemma 3.1 and (3.22) one obtains

Varµy (·, ϕ)β = (ϕ,Kyϕ)β 6
∥∥K̃0

∥∥‖ϕ‖2β =maxSpp
(
K̃0
)‖ϕ‖2β,

and further by Lemmas 3.3, 3.4

Varµy (·, ϕ)β 6 g0m
(p−1)/(p+1)‖ϕ‖2β, (3.38)

that holds for sufficiently smallm. Forp > 2, one may use (3.37) and choosem so small
that both latter estimates hold. This yields for the distance (3.4)

R
(
µy,µz

)
6 ‖y − z‖βJ

√
βφ0χ0m

p−2
2(p+1) .

Thus in view of (3.12), the condition of Dobrushin’s criterion (3.9) is satisfied provided

βm(p−2)/(p+1) <
1

(2Jd)2g0h0
. (3.39)

Therefore, in the casep > 2 the upper bound form is

m∗(β)= β−(p+1)/(p−2)

[(2dJ )2g0h0](p+1)/(p−2)
. (3.40)

Forp = 2, we use (3.36) and obtain

R
(
µy,µz

)
6 ‖y − z‖βJeβδ0/2m1/6

√
g0

2Jd + 1+ a/4,

which implies in turn that Dobrushin’s criterion is satisfied provided

m<m∗(β)
def= e−3βδ0

(
2Jd + 1+ a/4
(2Jd)2g0

)3

. 2 (3.41)

4. Proof of Lemmas

The proof of Lemmas 3.1, 3.2 is based upon certain correlation inequalities, which we
state just below and prove in the next section.

THEOREM 4.1 (FKG inequality). –For every finiteΛ, arbitrary ζ ∈Ωβ , all l, l′ ∈Λ
andτ, τ ′ ∈ Iβ , one has〈

ωl(τ)ωl′(τ
′)
〉
µβ,Λ(·|ζ ) >

〈
ωl(τ)

〉
µβ,Λ(·|ζ )

〈
ωl′(τ

′)
〉
µβ,Λ(·|ζ ), (4.1)

where the measureµβ,Λ(·|ζ ) is given by(2.7). In particular,

Ky(τ, τ
′)> 0, (4.2)

for all y ∈Hβ andτ, τ ′ ∈ Iβ .
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For a finiteΛ, let us define the following probability measure onΩβ,Λ

%(dςΛ)= 1

Y
exp
{
−J

4

∑
l,l′∈Λ

εll′‖ςl − ςl′‖2β −
∫
Iβ

∑
l∈Λ

W
(
ςl(τ )

)
dτ

}
γβ,Λ(dςΛ), (4.3)

whereY is the normalizing constant, the measureγβ,Λ is defined by (2.6), and the
functionW :R→R has the following form

W(x)=w1x
2+w2x

4+ · · · +wpx2p, (4.4)

w1 ∈R, ws > 0, s = 2, . . . , p− 1, wp > 0.

THEOREM 4.2 (GKS Inequality). –For a measure given by(4.3), the following
inequality holds for alls ∈N, arbitrary λ, l, l′ ∈Λ, andt, τ, τ ′ ∈ Iβ ,〈[

ςλ(t)
]2s
ςl(τ )ςl′(τ

′)
〉
%
>
〈[
ςλ(t)

]2s〉
%

〈
ςl(τ )ςl′(τ

′)
〉
%
. (4.5)

Now we apply these inequalities to proving certain statements which then will be used
to prove Lemmas 3.1, 3.2.

LEMMA 4.1. – For everyy ∈Hβ and all τ, τ ′ ∈ Iβ , one has

Ky(τ, τ
′)6 K̃0(τ, τ

′). (4.6)

Proof. –The representation (3.20) may be rewritten as

Ky(τ, τ
′)=

∫ ∫
Hβ×Hβ

ω(τ)−ω′(τ )√
2

· ω(τ
′)−ω′(τ ′)√

2

(
µy ⊗µy)(dω, dω′). (4.7)

Here we apply the following orthogonal transformation of the spaceHβ ×Hβ :

ς(τ)= (ω(τ)−ω′(τ ))/√2, ω(τ)= (ς(τ)+ υ(τ))/√2, (4.8)

υ(τ)= (ω(τ)+ω′(τ ))/√2, ω′(τ )= (−ς(τ)+ υ(τ))/√2,

which yields (see (3.10), (2.9))

Ky(τ, τ
′)=Z−2

y

∫ ∫
Hβ×Hβ

ς(τ)ς(τ ′)exp
{
−1

2
(2Jd − a)(‖ς‖2β +‖υ‖2β) (4.9)

+√2(υ, y)β −
∫
Iβ

Π
(
ς(τ)|υ(τ))dτ − ∫

Iβ

P̃p
(
ς(τ)

)
dτ

−
∫
Iβ

P̃p
(
υ(τ)

)
dτ

}
(γβ ⊗ γβ)(dς, dυ),

where we have put

Π(x|u)=
p−1∑
s=1

x2s

2s!
(
d2sP̃p

dx2s

)
(u)

def=
p−1∑
s=1

πs(u)x
2s , x, u ∈ R. (4.10)
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For suchΠ and the polynomialsPp, P̃p given by (2.9), (3.24), one has

Pp

(
x + u√

2

)
+ Pp

(
x − u√

2

)
= P̃p(x)+ P̃p(u)+Π(x|u).

Since all bs in (2.9), (3.24) are nonnegative, all the coefficientsπs(u) are also
nonnegative for allu ∈R. Forϑ ∈ [0,1], we set

Ξϑ(τ, τ
′) def= 〈ς(τ)ς(τ ′)〉

%ϑ
, (4.11)

where expectation is taken with respect to the following probability measure onHβ

%ϑ(dς)= 1

Y (ϑ)
exp
{
−1

2
(2Jd − a)‖ς‖2β −

∫
Iβ

P̃p
(
ς(τ)

)
dτ

− ϑ
∫
Iβ

Π
(
ς(τ)|υ(τ)) dτ}γβ(dς), (4.12)

Y (ϑ)=
∫
Hβ

exp
{
−1

2
(2Jd − a)‖ς‖2β −

∫
Iβ

P̃p
(
ς(τ)

)
dτ

− ϑ
∫
Iβ

Π
(
ς(τ)|υ(τ))dτ}γβ(dς). (4.13)

One observes that bothΞϑ(τ, τ ′), Y (ϑ) are continuous functions ofϑ ∈ [0,1]. They are
differentiable on(0,1), and

∂

∂ϑ
Ξϑ(τ, τ

′)= 1

Y (ϑ)

p−1∑
s=1

∫
Iβ

πs(υ(t))
(〈[
ς(t)

]2s
ς(τ)ς(τ ′)

〉
%ϑ

− 〈[ς(t)]2s〉
%ϑ

〈
ς(τ)ς(τ ′)

〉
%ϑ
)
dt. (4.14)

For every fixedυ ∈Hβ , τ ∈ Iβ , andϑ ∈ [0,1], the coefficientsπs(υ(t)), s = 1, . . . , p−
1, are nonnegative, hence this measure has the form (4.3) with a one-point subsetΛ.
Therefore, its moments possess the properties described by Theorem 4.2. The estimate
(4.5) yields

∂

∂ϑ
Ξϑ(τ, τ

′)6 0, ∀τ, τ ′ ∈ Iβ,
which yields in turn

06Ξ1(τ, τ
′)6Ξ0(τ, τ

′), ∀τ, τ ′ ∈ Iβ,∀υ ∈Hβ. (4.15)

The lower bound forΞ1 follows from (4.1). Applying these results in (4.9) we obtain

Ky(τ, τ
′)=Z−2

y

∫
Hβ

Y (1)Ξ1(τ, τ
′)exp

{
−1

2
(2Jd − a)‖υ‖2β (4.16)
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+√2(υ, y)β −
∫
Iβ

P̃p(υ(t)) dt

}
γβ(dυ)

6Ξ0(τ, τ
′)Z−2

y

∫
Hβ

Y (1)exp
{
−1

2
(2Jd − a)‖υ‖2β +

√
2(υ, y)β

−
∫
Iβ

P̃p
(
υ(t)

)
dt

}
γβ(dυ)=Ξ0(τ, τ

′)= K̃0(τ, τ
′). 2

Proof of Lemma 3.1. –Applying the inequalities (4.2), (4.6), and the representation of
the norm ofK̃0 (3.23), one gets

(ϕ,Kyϕ)β =
∣∣(ϕ,Kyϕ)β ∣∣6 ∫

Iβ

∫
Iβ

Ky(τ, τ
′)
∣∣ϕ(τ)∣∣∣∣ϕ(τ ′)∣∣dτ dτ ′

6
∫
Iβ

∫
Iβ

K̃0(τ, τ
′)
∣∣ϕ(τ)∣∣∣∣ϕ(τ ′)∣∣dτ dτ ′

6
∥∥K̃0

∥∥‖|ϕ|‖2β = ∥∥K̃0
∥∥‖ϕ‖2β . 2

Proof of Lemma 3.2. –One has

trace(Ky)=
∫
Iβ

Ky(τ, τ ) dτ, trace(K̃0)=
∫
Iβ

K̃0(τ, τ ) dτ,

which gives (3.31) by means of (4.6).2
Statements similar to Lemmas 3.3, 3.4 were proved in [4]. Here we give the proof of

these lemmas to make the paper self-content.

Proof of Lemma 3.3. –Fory = 0, one has in (3.29)

K̃0(τ, τ
′)=

∫
Hβ

ω(τ)ω(τ ′)µ̃0(dω). (4.17)

The periodicity of the loopsω(τ) implies

K̃0(τ, τ
′)= K̃0(τ + θ, τ ′ + θ), ∀θ ∈ [0, β], (4.18)

where addition is moduloβ. The latter yields in turn (see (3.28))

maxSpp(K̃0)=
∫
Iβ

K̃0(0, τ ) dτ = 1

Z̃

∫
Iβ

trace
{
qe−τH̃ qe−(β−τ )H̃

}
dτ, (4.19)

where the operators̃H , q are defined by (3.25) and (3.26). Recall that the eigenvalues
of H̃ , Ẽs are simple. Letψs stand for the corresponding eigenfunction andqss ′ =
(ψs, qψs ′)β . For symmetry reasonsqss = 0, then
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maxSpp
(
K̃0
)= 1

Z̃

∑
s,s ′∈N,s 6=s ′

(qss ′)
2(Ẽs − Ẽs ′)(e−βẼs′ − e−βẼs )

(Ẽs − Ẽs ′)2
.

The case of zero denominator is excluded, thus it may be estimated by means of (3.32),
which yields

maxSpp(K̃0)6
1

Z̃

1

∆̃2

∑
s,s ′∈N

(qss ′)
2(Ẽs − Ẽs ′)(e−βẼs′ − e−βẼs

)
= 1

∆̃2
· 1

Z̃
trace

{[
q, [H̃ , q]]e−βH̃}= 1

m∆̃2
,

where[·, ·] stands for commutator.2
Proof of Lemma 3.4. –Forα > 0, consider the following unitary operator onHβ

(Uαψ)(x)= α1/2ψ(αx).

Thus

Uα

(
d

dx

)
U−1
α = α−1

(
d

dx

)
, UαqU

−1
α = αq. (4.20)

Let α =m−1/(2p+2). Then the operator

H̃ (m)=m−p/(p+1)T , T
def= T0+m1/(p+1)T1, (4.21)

is unitary equivalent tõH given by (3.25). Here

T0=−1

2

d2

dx2
+ 21−pbpq2p,

T1= 1

2
(2Jd + 1− a)m(p−2)/(p+1)q2+

p−1∑
l=2

21−lm(p−l−1)/(p+1)blq
2l .

Let ∆ and∆0 be defined by (3.32) but with the eigenvalues of the operatorsT andT0

respectively. Then

∆̃=m−p/(p+1)∆. (4.22)

It can be observed that the operatorT is a perturbation ofT0, which is analytic (with
respect to the variableλ = m1/(p+1)) at the pointλ = 0. Thus there exists a constant
c0> 0 such that

∆> c0∆0. (4.23)

These arguments yield (3.35) withg0= 1/(c0∆0)
2. 2

Proof of Lemma 3.5. –The estimate of the type of (3.36) has been proved in [7] by
means of the logarithmic Sobolev inequality. Its realization (3.36) was obtained for the
choice ofṼ (3.24) withp = 2. For more details we refer to Section 6 of [7].2
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Proof of Lemma 3.6. –For a Lipschitz functionf , by means of (3.2), (3.3), (3.21),
(3.28), (3.31), (4.17), (4.18) one obtains

Varµyf 6
1

2

∫
Hβ

∫
Hβ

‖ω−ω′‖2βµy(dω)µy(dω′)= trace(Ky)

6 trace
(
K̃0
)= ∫

Iβ

K̃0(τ, τ ) dτ = β
Z̃

trace
(
q2e−βH̃

) def= β〈q2〉. (4.24)

It turns out that maxSpp(K̃0) may be expressed in terms of the Duhamel two-point
function [21] and hence may be estimated from below as

β
〈
q2〉f( β

4m〈q2〉
)
6maxSpp

(
K̃0
)
, (4.25)

where the functionf was introduced and estimated in [21]. It has the following bound

1

x

(
1− e−x

)
6 f (x). (4.26)

Applying in (4.25) this estimate together with (3.33), (4.22), (4.23), one gets

2m
〈
q2〉(1− e−β/4m〈q

2〉)6 1/∆̃ 6mp/(p+1)/c0∆0.

Thus one may find a constanth0 such that〈
q2〉6 h0m

−1/(p+1).

Applying this in (4.24) one obtains (3.37).2
5. Lattice approximation

To prove Theorems 4.1 and 4.2 we will use a version of the lattice approximation
technique known in the Euclidean quantum field theory [33,34]. Since our version has
certain peculiarities, we give its detailed description.

For aζ ∈Ωβ , we define the measure

%(dωΛ|ζ )= Υ (ωΛ|ζ )γβ,Λ(dωΛ) (5.1)

def= 1

Y (ζ )
exp
{
−dJ∑

l∈Λ
‖ωl‖2β +

J

2

∑
l,l′∈Λ

εll′(ωl,ωl′)β

+ J ∑
l∈Λ, l′∈Λc

εll′(ωl, ζl′)β −
∫
Iβ

∑
l∈Λ
W
(
ωl(τ)

)
dτ

}
γβ,Λ(dωΛ),

whereγβ,Λ was given by (2.6),Y (ζ ) is the normalization constant, andW is given by
(4.4). The measures (2.7), (4.3) may be written in this form. Forτ1, . . . , τn ∈ Iβ and
l1, . . . , ln ∈Λ, ζ ∈Ωβ , let us consider
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Γl1,...,ln(τ1, . . . , τn)= 〈ωl1(τ1), . . . ,ωln(τn)
〉
%(·|ζ ) (5.2)

=
∫

Ωβ,Λ

ωl1(τ1) · · ·ωln(τn)Υ (ωΛ|ζ )γβ,Λ(dωΛ).

Having (2.5) and employing the tightness of the measureγβ,Λ, as well as the continuity
of the loopsωΛ, one may prove the following statement.

PROPOSITION 5.1. – For everyζ ∈Ωβ,Λ and all l1, . . . , ln ∈Λ, (5.2) is a continuous
function of(τ1, . . . , τn) on I nβ .

The measure (2.6) is defined by the operatorSβ (2.3). The set of its eigenfunctions

E = {ek(τ )|k ∈K}, K=
{
k = 2π

β
κ
∣∣∣κ ∈ Z}, (5.3)

ek(τ )=
√

2

β
coskτ(k > 0), ek(τ )=−

√
2

β
sinkτ(k < 0), e0(τ )= 1/

√
β,

may serve as a base ofHβ . Let {Pk|k ∈ K} be the family of orthogonal projectors onto
the corresponding elements ofE . Then

Sβ =
∑
k∈K

1

mk2+ 1
Pk. (5.4)

Now we chooseN = 2L, L ∈N and set

KN def=
{
k = 2π

β
κ
∣∣∣κ =−(L− 1), . . . ,L

}
, (5.5)

S
(N)
β

def= ∑
k∈KN

λ
(N)
k Pk, (5.6)

λ
(N)
k

def= 1

m(2N
β
)2[sin( β2N )k]2+ 1

. (5.7)

It is a technical exercise to prove the following statement.

PROPOSITION 5.2. – The sequence of the finite-rank operators{S(N)β } converges in
the trace norm, whenN→∞, to the operatorSβ .

Let γ (N)β be the symmetric Gaussian measure onHβ having S(N)β as covariance
operator. This measure may be written in a “coordinate form”. To do this we introduce
Gaussian measures onR, χ(N)k , k ∈K, such that

∫
R

exp(ixu)χ(N)k (du)= exp
{
−1

2
λ
(N)
k x2

}
, (5.8)
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whereλ(N)k are given by (5.7). Then

γ
(N)
β (dω)= ⊗

k∈KN
χ
(N)
k

(
dω̂(k)

) ⊗
k∈K\KN

δ
(
ω̂(k)

)
dω̂(k), (5.9)

where

ω(τ)=∑
k∈K

ω̂(k)ek(τ ), ω̂(k)=
∫
Iβ

ω(τ)ek(τ ) dτ, (5.10)

andδ is the Diracδ-function onR. Directly from the above statement one has

LEMMA 5.1. – The sequence{γ (N)β ,N ∈N} converges weakly, whenN→∞, to the
measureγβ .

By means of {γ (N)β ,N ∈ N} one may construct via (2.6), (2.7) corresponding
approximations of the measure%(·|ζ ) (5.1). The reason to use them is that by (5.9) the
integrals with respect to the approximating measures may be written as integrals over
finite-dimensional spaces. Then one could apply classical ferromagnetic interpretation,
which would lead to the correlation inequalities we are going to prove.

It appears that we can get the ferromagnetic approximations of the function (5.2)
only for the arguments belonging toQn

β ⊂ I nβ , whereQβ consists of suchτ thatτ/β is
rational. SinceQβ is dense inIβ , it is enough for our purposes in view of Proposition
5.1. In the sequel, we use the following types of functionsΩβ,Λ→R:

(i) ωΛ 7→ ωl(τ), l ∈Λ, τ ∈Qβ; (5.11)

(ii) ωΛ 7→ (ωl,ωl′)β, ωΛ 7→ (ωl, ζl)β, l, l
′ ∈Λ, ζ ∈Ωβ;

(iii ) ωΛ 7→
∫
Iβ

W
(
ωl(τ)

)
dτ.

Chooseτ1, . . . , τn ∈Qβ, n ∈N0=
def
N∪{0}, l1, . . . , ln ∈Λ, ζ ∈Ωβ , and keep them fixed.

Then forn > 1, there exist tending to infinity sequences{N(k), k ∈ N}, {ν(k)j , k ∈ N},
j = 1, . . . , n, such that for allk ∈ N,

τj = ν
(k)
j

N(k)
β, j = 1, . . . , n. (5.12)

Below we drop the symbol(k) assuming thatN andνj tend to infinity in such a way
that (5.12) holds. We also suppose that allN are even. The set ofN satisfying (5.12) is
denoted byN (τ1, . . . , τn). ForN ∈N (τ1, . . . , τn), we set

ω
(N)
Λ =

(
ω
(N)
l

)
l∈Λ, ω

(N)
l

def= ∑
k∈KN

Pkωl. (5.13)

For fixedτ1, . . . , τn ∈Qβ, l1, . . . , ln ∈Λ, we write

F(ωΛ)= ωl1(τ1) · · ·ωln(τn), F (N)(ωΛ)
def= F (ω(N)N

)
.
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Similarly

Υ (N)(ωΛ|ζ ) def= Υ (ω(N)Λ |ζ
)
.

For a finite subsetΛ andN ∈N, we set

γ
(N)
β,Λ(dωΛ)=

⊗
l∈Λ

γ
(N)
β (dωl). (5.14)

The basic element of our construction is the following convergence statement, the proof
of which will be given at the end of this section.

LEMMA 5.2. – For arbitrarily fixed τ1, . . . , τn ∈ Qβ , l1, . . . , ln ∈ Λ, ζ ∈ Ωβ , the
following convergence∫

Ωβ,Λ

F (ωΛ)Υ (ωΛ|ζ )γ (N)β,Λ(dωΛ) =
∫

Ωβ,Λ

F (N)(ωΛ)Υ
(N)(ωΛ|ζ )γ (N)β,Λ(dωΛ)

→
∫

Ωβ,Λ

F (ωΛ)Υ (ωΛ|ζ )γβ,Λ(dωΛ), (5.15)

whenN (τ1, . . . , τn) 3N→∞, holds.

Remark5.1. – The above convergence does not follow automatically from Lemma
5.1 since the function under the integral in the left-hand side of (5.15) is unbounded on
Ωβ,Λ.

Having the representation (5.9), one may change the variables in∫
Ωβ,Λ

F (N)(ωΛ)Υ
(N)(ωΛ|ζ )γ (N)β,Λ(dωΛ), (5.16)

in such a way that in the new variables this integral would be finite-dimensional. To this
end we pass to the variablesω̂ by means of the Fourier transformations (cf. (5.10))

ωl(τ)=
∑
k∈K

ω̂l(k)ek(τ ), ω̂l(k)=
∫
Iβ

ωl(τ )ek(τ ) dτ. (5.17)

Then forQβ 3 τ = (ν/N)β, one has

ω
(N)
l (τ )= ∑

k∈KN
ω̂l(k)ek

(
ν

N
β

)
=
√
N

β

∑
q∈QN

ω̂l

(
N

β
q

)
εq(ν), (5.18)

where

QN def=
{
q = 2π

N
κ
∣∣∣ κ =−(L− 1), . . . ,L

}
, (5.19)
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and forν = 0,1, . . . ,N − 1, (cf. (5.3))

εq(ν)=
√

2

N
cosqν (q > 0); εq(ν)=−

√
2

N
sinqν (q < 0); ε0(ν)= 1√

N
. (5.20)

For the functions of the type (ii) taken atω(N)Λ , one has

(
ω
(N)
l ,ω

(N)
l′
)
β
= ∑

k∈KN
ω̂l(k)ω̂l′(k)=

∑
q∈QN

ω̂l

(
N

β
q

)
ω̂l′
(
N

β
q

)
, (5.21)

and (
ω
(N)
l , ζl

)
β
= ∑

k∈KN
ω̂l(k)ζ̂l(k), ζ̂l(k)=

∫
Iβ

ζl(τ )ek(τ ) dτ. (5.22)

As for the functions of the type (iii), instead of (5.17) it is more convenient to use the
following transformation ofωl(τ)

ωl(τ )= 1√
β

∑
k∈K

ω̃l(k)exp(ikτ), ω̃l(k)= 1√
β

∫
Iβ

ωl(τ )e
−ikτ dτ. (5.23)

Then one has ∫
Iβ

W
(
ω
(N)
l (τ )

)
dτ =

p∑
s=1

ws

∫
Iβ

[
ω
(N)
l (τ )

]2s
dτ. (5.24)

Further ∫
Iβ

[
ω
(N)
l (τ )

]2s
dτ (5.25)

= β−s ∑
k1,...,k2s∈KN

ω̃l(k1) · · · ω̃l(k2s)

∫
Iβ

exp
[
i(k1+ · · · + k2s)τ

]
dτ

= β−s+1
∑

k1,...,k2s∈KN
ω̃l(k1) · · · ω̃l(k2s)δ(k1+ · · · + k2s).

Hereδ(0)= 1, δ(k)= 0 if k 6= 0. Having such representations, we introduce

Sl(ν)=
√
β

N
ωl

(
ν

N
β

)
, l ∈Λ, ν = 0,1, . . . ,N − 1; (5.26)

Ŝl(q)= ω̂l
(
N

β
q

)
, S̃l(q)= ω̃l

(
N

β
q

)
, q ∈QN ;

for which one has

Sl(ν)=
∑
q∈QN

Ŝl(q)εq(ν)= 1√
N

∑
q∈QN

S̃l(q)exp(iqν); (5.27)
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Ŝl(q)=
N−1∑
ν=0

Sl(ν)εq(ν), S̃l(q)= 1√
N

N−1∑
ν=0

Sl(ν)exp(−iqν).

Then (5.25) may be rewritten∫
Iβ

[
ω
(N)
l (τ )

]2s = β−s+1
∑

k1,...,k2s∈KN
S̃l

(
β

N
k1

)
· · · S̃l

(
β

N
k2s

)
δ(k1+ · · · + k2s)

= 1

Nsβs−1

N−1∑
ν1,...,ν2s=0

Sl(ν1) · · ·Sl(ν2s)
∑

k1,...,k2s∈KN
δ(k1+ · · · + k2s)

× exp
{
− iβ

N
(k1ν1+ · · · + k2sν2s)

}

= 1

Nsβs−1

N−1∑
ν1,...,ν2s=0

Sl(ν1) · · ·Sl(ν2s)

×
L∑

κ1,...,κ2s−1=−L+1

exp
{
−2π i

N
κ1(ν1− ν2s)

}
· · ·

× exp
{
−2π i

N
κ2s−1(ν2s−1− ν2s)

}

= N2s−1

Nsβs−1

N−1∑
ν=0

[
Sl(ν)

]2s = β

N

N−1∑
ν=0

[√
N

β
Sl(ν)

]2s

.

Returning to (5.24) one obtains∫
Iβ

W
(
ω
(N)
l (τ )

)
dτ = β

N

N−1∑
ν=0

W

(√
N

β
Sl(ν)

)
. (5.28)

Accordingly,

(
ω
(N)
l ,ω

(N)
l′
)
β
= ∑

q∈QN
Ŝl(q)Ŝl′(q)=

N−1∑
ν=0

Sl(ν)Sl′(ν), (5.29)

(
ω
(N)
l , ζl

)
β
= ∑

k∈KN
ω̂l(k)ζ̂l(k)=

N−1∑
ν=0

Sl(ν)Xl(ν), (5.30)

Xl(ν)
def= ∑

q∈QN
ζ̂l

(
N

β
q

)
εq(ν).

At last, (5.18) takes the form

ωlj (τj )= ωlj
(
νj

N
β

)
=
√
N

β
Slj (νj ), j = 1, . . . , n. (5.31)

The next step is to construct the measure on a finite-dimensional space which has the
mentioned ferromagnetic properties and such that (5.16) would be equal to the integral
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with respect to this measure. To this end by means of (5.9) we construct a finite-
dimensional analog ofγ (N)β . First we introduce the following Gaussian measure onRN

σ
(N)
β (dŜ)= ⊗

q∈QN
χ̃ (N)q

(
dŜ(q)

)
, (5.32)

hereχ̃ (N)q =def
χ
(N)
qN/β , whereχ(N)k is defined by (5.8). The measureσ (N)β may be written

in the coordinates{S(ν), ν = 0, . . . ,N − 1}, connected to{Ŝ(q), q ∈ QN } by the
transformation (5.27), as follows

σ
(N)
β (dS)= 1

Cβ,N
exp

{
−mN

2

2β2

N−1∑
ν=0

[
S(ν + 1)− S(ν)]2−1

2

N−1∑
ν=0

[
S(ν)

]2}N−1⊗
ν=0

dS(ν),

with the conventionS(N) = S(0) and the normalizing constantCβ,N . Thusσ (N)β may
be considered as the Gibbs measure of a ferromagnetic chain of unbounded (Gaussian)
spins (see, e.g., [33, p. 273] for more details). Now we set

σ
(N)
β,Λ(dSΛ)

def= 1

[Cβ,N ]|Λ| exp

{
−mN

2

2β2

∑
l∈Λ

N−1∑
ν=0

[
Sl(ν + 1)− Sl(ν)]2

− 1

2

∑
l∈Λ

N−1∑
ν=0

[
Sl(ν)

]2}⊗
l∈Λ

N−1⊗
ν=0

dSl(ν). (5.33)

HereSΛ stands for the followingN |Λ|-dimensional vector{
Sl(ν), l ∈Λ, ν = 0, . . . ,N − 1

}
.

In what follows, by construction∫
Ωβ,Λ

F (N)(ωΛ)Υ
(N)(ωΛ|ζ )γ (N)β,Λ(dωΛ) (5.34)

= CN(ζ )
Y (ζ )

(
N

β

)n/2 ∫
RN |Λ|

Sl1(ν1) · · ·Sln(νn)ρ(N)β,Λ(dSΛ|X)

= CN(ζ )
Y (ζ )

(
N

β

)n/2〈
Sl1(ν1) · · ·Sln(νn)

〉
ρ
(N)
β,Λ

(·|X),

where the probability measureρ(N)β,Λ(·|X) is

ρ
(N)
β,Λ(dSΛ|X) def= 1

CN(ζ )
exp

{
−dJ∑

l∈Λ

N−1∑
ν=0

[
Sl(ν)

]2+ J
2

∑
l,l′∈Λ

εll′
N−1∑
ν=0

Sl(ν)Sl′(ν)

+ J ∑
l∈Λ, l′∈Λc

εll′
N−1∑
ν=0

Sl(ν)Xl′(ν)

− β

N

∑
l∈Λ

N−1∑
ν=0

W

(√
N

β
Sl(ν)

)}
σ
(N)
β,Λ(dSΛ). (5.35)
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HereCN(ζ ) is the normalization constant. Thus, Lemma 5.2 yields

Γl1,...,ln(τ1, . . . , τn) (5.36)

= lim
N (τ1,...,τn)3N→∞

CN(ζ )

Y (ζ )

(
N

β

)n/2〈
Sl1(ν1) · · ·Sln(νn)

〉
ρ
(N)
β,Λ

(·|X),

νj = τj
β
N, j = 1, . . . , n.

Proof of Theorems 4.1, 4.2. –Taking in (5.36)n= 0 one gets that for allζ ∈Ωβ ,

CN(ζ )→ Y (ζ ), N→∞.

The measure (5.35) corresponds to a general ferromagnet (see [33, p. 273]), for which
the FKG inequality

N

β

〈
Sl(ν)Sl′(ν

′)
〉
ρ
(N)
β,Λ

(·|X) >
√
N

β

〈
Sl(ν)

〉
%
(N)
β,Λ

(·|X)

√
N

β

〈
Sl′(ν

′)
〉
%
(N)
β,Λ

(·|X)

holds (see Theorem VIII.16 of [33, p. 280]). Then it holds also for the limits, which
means 〈

ωl(τ)ωl′(τ
′)
〉
%(·|ζ ) >

〈
ωl(τ)

〉
%(·|ζ )

〈
ωl′(τ

′)
〉
%(·|ζ ).

Since the measureµβ,Λ(·|ζ ) given by (2.7)–(2.10) has the form (5.1), the above
inequality may be rewritten as (4.1).

Now we take in (5.1)ζ = 0 and obtain%(·|0)= %, where the latter measure is given
by (4.3). Thus to prove (4.5) we have to show that forl1= · · · = l2s = λ, τ1= · · ·τ2s = t ,
the following inequality holds

Γl1,...,l2s ,l,l′(τ1, . . . , τ2s, τ, τ
′)> Γl1,...,l2s (τ1, . . . , τ2s)Γl,l′(τ, τ

′).

Taking into account (5.36), to this end we ought to have

〈[
Sλ(ν)

]2s
Sl(ν1)Sl′(ν2)

〉
ρ
(N)
β,Λ

(·|0) >
〈[
Sλ(ν)

]2s〉
ρ
(N)
β,Λ

(·|0)
〈
Sl(ν1)Sl′(ν2)

〉
ρ
(N)
β,Λ

(·|0), (5.37)

for ν = (t/β)N , ν1 = (τ/β)N , ν2 = (τ ′/β)N . The measureρ(N)β,Λ(·|0) corresponds to
an even ferromagnet, for which the GKS inequalities, in particular (5.37), hold (see
Theorem VIII.14A in [33, p. 275]). 2

Proof of Lemma 5.2. –For arbitraryζ ∈Ωβ , the functionF (N)Υ (N)(·|ζ ) is bounded
onΩβ,Λ. Thus, by Lemma 5.1 one has that for every fixedN ∈N (τ1, . . . , τn),∫

Ωβ,Λ

F (N)(ωΛ)Υ
(N)(ωΛ|ζ )γ (M)β,Λ (dωΛ)→

∫
Ωβ,Λ

F (N)(ωΛ)Υ
(N)(ωΛ|ζ )γβ,Λ(dωΛ),

N (τ1, . . . , τn) 3M→∞.
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Then the proof will be done if we show that forN→∞,∫
Ωβ,Λ

F (N)(ωΛ)Υ
(N)(ωΛ|ζ )γβ,Λ(dωΛ)→

∫
Ωβ,Λ

F (ωΛ)Υ (ωΛ|ζ )γβ,Λ(dωΛ). (5.38)

One has ∫
Ωβ,Λ

∣∣F (N)(ωΛ)Υ (N)(ωΛ|ζ )−F(ωΛ)Υ (ωΛ|ζ )
∣∣γβ,Λ(dωΛ)

6
∫

Ωβ,Λ

∣∣F (N)(ωΛ)∣∣∣∣Υ (N)(ωΛ|ζ )−Υ (ωΛ|ζ )
∣∣γβ,Λ(dωΛ)

+
∫

Ωβ,Λ

∣∣F (N)(ωΛ)− F(ωΛ)∣∣Υ (ωΛ|ζ )γβ,Λ(dωΛ)
def= I1(N)+ I2(N). (5.39)

Let us show thatI1(N)→ 0 whenN→∞. In view of (2.5),

∣∣F (N)(ωΛ)∣∣γβ,Λ(dωΛ) def= φ(dωΛ),

is a finite positive measure onΩβ,Λ. Since it is tight, for everyε > 0 andC > 0,
one may find a compactΩε

β,Λ ⊂ Ωβ,Λ such thatφ(Ωβ,Λ \ Ωε
β,Λ) < (ε/2C). For all

N ∈N (τ1, . . . , τn) andζ ∈Ωβ , the function

∣∣Υ (N)(ωΛ|ζ )− Υ (ωΛ|ζ )
∣∣ def= UN(ωΛ),

is continuous and bounded onΩβ,Λ by an independent ofN constantC(ζ ). The
sequence{UN} converges point-wise to zero onΩβ,Λ. Thus, there exists a converging
to zero sequence of positive numbers{uN}, such thatUN(ωΛ)6 uN uniformly onΩε

β,Λ.
All these facts together imply

I1(N)6 uNφ
(
Ωε
β,Λ

)+C(ζ )φ(Ωβ,Λ \Ωε
β,Λ

)
< ε,

for sufficiently largeN . Further

I2(N)=
∫

Ωβ,Λ

∣∣ωl1(τ1) · · ·ωln(τn)− ω(N)l1
(τ1) · · ·ω(N)ln

(τn)
∣∣Υ (ωΛ|ζ )γβ,Λ(dωΛ)

6Υmax(ζ )

n∑
i=1

〈∣∣ωl1(τ1)
∣∣ · · · ∣∣ωli−1(τi−1)

∣∣∣∣ωli (τi)− ω(N)li
(τi)

∣∣
× ∣∣ω(N)li+1

(τi+1)
∣∣ · · · ∣∣ω(N)ln

(τn)
∣∣〉
γβ,Λ

6Υmax(ζ )

n∑
i=1

{〈∣∣ωli (τi)−ω(N)li
(τi)

∣∣2〉
γβ,Λ

}1/2{〈∣∣ωl1(τ1)
∣∣2 · · · ∣∣ωli−1(τi−1)

∣∣2
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× ∣∣ω(N)li+1
(τi+1)

∣∣2 · · · ∣∣ω(N)ln
(τn)

∣∣2〉
γβ,Λ

}1/2

6 nCnΥmax(ζ )sup
l∈Λ

sup
τ∈Iβ

{〈[
ωl(τ)− ω(N)l (τ )

]2〉
γβ,Λ

}1/2
. (5.40)

HereCn is an independent ofN upper bound of the moments ofωl andω(N)l , which
exists in view of (2.5), and

Υmax(ζ )
def= sup

ωΛ∈Ωβ,Λ
Υ (ωΛ|ζ ).

In view of (5.13), (5.23) one may write〈[
ωl(τ)−ω(N)l (τ )

]2〉
γβ,Λ

= 1

β

∑
k,k′∈Kc

N

〈
ω̃l(k)ω̃l(−k′)〉γβ,Λ exp

[
i(k− k′)τ ], KcN =K \KN .

Applying again (5.23) one obtains

〈[
ωl(τ)−ω(N)l (τ )

]2〉
γβ,Λ
= 2

β

∑
k∈Kc

N

∫
Iβ

Γ
(0)
l,l (0, t)cos(kt) dt, (5.41)

whereΓ (0) is defined by (5.2) but withγβ,Λ instead of%(·|ζ ). Define onL2(RΛ, dxΛ)
the following operator (cf. (3.25), (3.26))

H(0) def=∑
l∈Λ

(
− 1

2m

d2

dx2
l

+ 1

2
q2
l

)
.

Let also {E(0)s , s ∈ N}, {ψ(0)
s , s ∈ N} stand for its eigenvalues and eigenfunctions

respectively. Denote(ql)ss ′ = (ψ(0)
s , qlψ

(0)
s ′ )L2(RΛ,dxΛ). Fork 6= 0, similarly to (4.19) one

obtains∫
Iβ

Γ
(0)
l,l (0, t)cos(kt) dt = 1

Z(0)

∫
Iβ

trace
{
qle
−tH (0)

qle
−(β−t )H(0)}

cos(kt) dt

= 1

Z(0)

∑
s,s ′∈N

(ql)
2
ss ′
(E(0)s −E(0)s ′ )(e−βE

(0)
s′ − e−βE

(0)
s )

(E
(0)
s −E(0)s ′ )2+ k2

6 1

k2
· 1

Z(0)

∑
s,s ′∈N

(ql)
2
ss ′
(
E(0)s −E(0)s ′

)(
e−βE

(0)
s′ − e−βE

(0)
s
)

= 1

k2
· 1

Z(0)
trace

{[
ql,
[
H(0), ql

]]
e−βH

(0)}= 1

mk2
,

whereZ(0) = trace exp(−βH(0)) and[. , .] stands for commutator. This yields in (5.41)

〈[
ωl(τ)− ω(N)l (τ )

]2〉
γβ,Λ
6 2

mβ

∑
k∈Kc

N

1

k2
↘ 0, N→∞. 2
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