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ABSTRACT. – We establish Poincaré inequalities for the continuous time random walk on the
cube{−1,+1}d . A first method is based on the study of cylindrical functionals. A Poincaré
inequality is proved for these functionals and extended to arbitrary functionals. A second method
is based on martingale representation formulas. A whole family of Clark–Ocone formulas is
then available, which leads to the corresponding family of Poincaré inequalities. These various
inequalities are compared through examples. We also show that the cylindrical method extends
to some asymmetric continous time random walks on{−1,+1}d.  2001 Éditions scientifiques
et médicales Elsevier SAS

AMS classification: 60H07, 60J27

RÉSUMÉ. – Nous établissons des inégalités de Poincaré pour la marche aléatoire à temps
continu sur le cube{−1,+1}d . Une première méthode consiste à étudier en premier lieu les
fonctionnelles cylindriques. La seconde méthode exploite des formules de représentation par
martingales, dites formules de Clark–Ocone. De telles formules sont mises en évidence et
conduisent à toute une famille d’inégalités de Poincaré. Nous comparons ces inégalités par des
exemples. Nous montrons par ailleurs que la méthode cylindrique s’applique à certaines marches
aléatoires dissymétriques à temps continu sur le cube{−1,+1}d .  2001 Éditions scientifiques
et médicales Elsevier SAS

1. Introduction

The main purpose of this work is to establish Clark–Ocone formulas and Poincaré
inequalities for the continuous time random walk(Bt)t>0 on the discrete cube
{−1,+1}d . To explain in this introduction some of the motivations and aspects of this
work, let us considerd = 1 for simplicity and give a short description of the random
walk. The law of(Bt)t>0 is given by its infinitesimal generatorL

L (f )= (f ◦ τ − f ),
E-mail address:ane@cict.fr (C. Ané).
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whereτ(x) = −x. The process starts atB0, waits an exponential timeT1 of parameter
1, then jumps to its neighbour−B0= BT1, and so on, the waiting times(Tn − Tn−1)n>1

being mutually independent. For a fixed timet > 0, the law ofBt is just an asymmetric
Bernoulli measure with weights(1± e−2t )/2.

Our first motivation to find a Clark–Ocone formula was Poincaré inequalities on the
path space. Given a cylindrical functionalF = f (Bt), it is easy to see that

E
(
F 2)−E(F )26 1

4

(
1− e−4t)E((DF)2), (1)

where the discrete derivativeDF is the cylindrical functional(f ◦ τ − f )(Bt). As was
shown in [1], there are several manners to extend this Poincaré inequality to general
cylindrical functionals. One of them is the following. IfF(B) = f (Bt1, . . . ,Btn) with
0= t0< t1< · · ·< tn, then

E
(
F 2)−E(F )26 E cyl(F )

= 1

4

n∑
i=1

(
1− e−4(ti−ti−1)

)
E
((

n∑
k=i

e−2(tk−ti )D̃kF ◦ τi,k−1

)2)
, (2)

where the discrete derivatives ofF are defined by(
D̃kF ◦ τi,k−1

)
(B)= (D̃kf

)
(Bt1, . . . ,Bti−1, τBti , . . . , τBtk−1,Btk , . . . ,BtN ), (3)

and (
D̃kf

)
(x1, . . . , xN)= xk(f (x1, . . . , τxk, . . . , xN)− f (x1, . . . , xN)

)
= (f (x1, . . . , xk−1,−1, xk+1, . . . , xN)

−f (x1, . . . , xk−1,+1, xk+1 . . . , xN)
)
.

At this stage, it is tempting to draw a parallel with the Ornstein–Uhlenbeck process
(Xt)t>0 onR, because in that case, for a cylindrical functionalF = f (Xt1, . . . ,Xtn) with
a smoothf onRn, we have that

E
(
F 2)−E(F )26 n∑

i=1

(
1− e−2(ti−ti−1)

)
E
((

n∑
k=i

e−(tk−ti )∂kf (Xt1, . . . ,Xtn)
)2)

. (4)

Actually, this inequality is a particular case of the following theorem, which deals with
functionals of the whole path.

THEOREM 1.1. – Let (Ft )t>0 be the filtration associated to the Ornstein–Uhlenbeck
process(Xt)t>0. Let T > 0 andF(X) be anFT -measurable andL2 functional in the
domain of the Malliavin gradient operator, and letDF be its Malliavin derivative. Then

E
(
F
)2−E(F )26 E T∫

0

(( _̇

DF
)
t
−

T∫
t

e−(s−t )
( _̇

DF
)
s
ds

)2

2dt. (5)
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A simple way to prove this theorem [3] is to use the Clark–Ocone formula

F −E(F )=
T∫

0

Ht
√

2 dωt,

whereH is the predictable projection of(
_̇

DF)t −
∫ T
t e−(s−t )(

_̇

DF)s ds. The coefficient
e−(t−s) reflects here a constant strictly positive curvature, as do the coefficients e−(tk−ti )
in (4). This representation formula is well known in general for diffusion processes on
Riemannian manifolds, and may be obtained from the Bismut integration by part formula
(see [6] for example).

If we come back to the case of the cube, we may wonder whether there exists or not a
Poincaré inequality such as (5) on the cube, and for what class of functionals.

A first method is to start from inequality (2) with cylindrical functionals and to identify
the energyE cyl(F ) with an energy that may be defined for all functionals, under some
integrability conditions. It is shown in Section 3 that

E cyl(F )= E
T∫

0

(
DtF −

T∫
t

2e−2(s−t )(−1)N(]t,s[)
(
DsF ◦ ε+t

)
Ñ(ds)

)2

dt, (6)

whereDtF is the gradient in Poisson spaces,N the Poisson point process of jumps, and
Ñ the associated compound Poisson measure. Precise notations and definitions will be
given in Section 2. It then follows from the Poincaré inequality (2) and equality (6) that

E
(
F 2)−E(F )26 E cyl(F ) (7)

for all cylindrical functionalsF , thus allowing extensions to a wide class of functionals.
According to the comments following Theorem 1.1, another method to investigate

Poincaré inequalities on the cube is to look for a Clark–Ocone formula. The martingale
representation formula

F −E(F )=
T∫

0

HtÑ(dt), (8)

whereH is the predictable projection ofDF was proved by Picard in [9]. This identity
is a consequence of an isometry formula which plays the role of the integration by parts
formula for diffusions. However, the representation (8) seems to reflect a zero curvature,
and therefore does not compare to the Ornstein–Uhlenbeck process, whose curvature is
constant and equal to 1. In Section 4 we show that actually a whole family of formulas
such as (8) is available. Namely, we show that for everyα ∈R and everyFT -measurable
functionalF satisfying some integrability conditions,

F −E(F )=
T∫

0

Hα
t Ñ(dt), (9)
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were Hα is the predictable projection ofDtF + α ∫ Tt 2e−2(s−t )(−1)N(]t,s[) · (DsF ◦
ε+t )Ñ(ds).

It turns out that the processesHα are all equal. This behaviour differs from those
of diffusions, whereα stands for curvature. Our motivation for this work was actually
an attempt to understand Bismut formulas and curvature in the discrete setting. As
suggested by Remark 4.2 below, the Poincaré inequality (7) coming from the cylindrical
method would make us think of a constant curvature equal to 4, whereas the Clark–
Ocone formula of parameterα makes it confused.

Introducing the parameterα seems artificial, but its strength lies in the applications.
Indeed, we deduce from (9) that under some integrability conditions

E
(
F 2)−E(F )26 Eα(F ),

where the energy of parameterα is given by

Eα(F )=E
T∫

0

(
DtF + α

T∫
t

2e−2(s−t )(−1)N(]t,s[)
(
DsF ◦ ε+t

)
Ñ(ds)

)2

dt.

We recover here the Poincaré inequality (7) whenα =−1 sinceE−1(F )= E cyl(F ), and
whenα = 0 the Poincaré inequality of [1].

In Section 5 we give examples and compare the energiesEα(F ) with fixed F and
varyingα’s. It turns out that in some casesα = 0 gives the lowest energy, and in other
casesα =−1 does. We also show that for anyα0 ∈R (α0 6= −1/2 for technical reasons),
there exists a functionalF for wich Eα0(F ) is minimum.

In the last sections some of the preceding results are extended to asymmetric random
walks, that spend “more” time on one point than on the other. More precisely, in Section
6 we extend the Poincaré inequality (2) for cylindrical functionals. Unfortunately, the
energyE cyl(F ) itself is no more equal to the counterpart ofE−1(F ). However, when we
let the mesh of the partition(t1, . . . , tn) tend to 0, the energyE cyl

(n)(F ) converges towards
E−1(F ). We then deduce the Poincaré inequality (7) for a large class a functionals. Unlike
the symmetric case, we miss the isometry formula giving the martingale representation
(8), which is false in the asymmetric case. This lack of Clark–Ocone formula prevents
us to get easily the corresponding Poincaré inequality as it is done in Section 4. It
rehabilitates then the “cylindrical method” based on the study of cylindrical functionals.

Finally, in Section 7 we give examples and compare the variance and the energies for
some functionals. In particular, we examine the numberNT of jumps of the random walk
up to timeT . We show that its variance exceeds its energy of parameter 0

E0(F )= E
T∫

0

(DtF )
2dt

thoughNT is a very “reasonable” functional. We show by this way that the Poincaré
inequality of parameter 0 is no more true if the random walk is not symmetric.



C. ANÉ / Ann. Inst. H. Poincaré, Probab. Statist. 37 (2001) 101–137 105

2. Stochastic calculus on Poisson spaces

We recall in this section the tools that will be needed in the sequel. We start with the
description of the random walk.

2.1. Description of the random walk and of the associated point process

Our continous time random walk(Bt)t>0 on the discrete cube{−1,+1}d is given by
its infinitesimal generatorL

L (f )=
d∑
j=1

(
f ◦ τ (j) − f ),

whereτ (j) acts on thej th coordinate of the cube: Ifx ∈ {−1,+1}d , then

τ (j)(x)= (x(1), . . . ,−x(j), . . . , x(d)).
In other words, the process starts atB0, waits an exponential timeT1, then jumps to a
neighbourBT1 of B0, and so on.

The path of the walk is characterized by the timesTn and the directions of jumpsjn.
Therefore the walkB may be modelized by a Poisson point processN onU =R+×J =
R+ × {1, . . . , d}, each point(t, j) corresponding to a jump of the random walk at timet
and directionj .

More precisely, we callΩ the set of atomic measuresω on U , and endowU with
the measurêN(dt × {j}) = dt . Then, letN be the random measure onU defined by
N(ω,A)= ω(A) for ω ∈Ω , andP be the probability measure onΩ under whichN is
a random Poisson measure of intensity (or compensator)N̂ . We also letÑ =N − N̂ be
the compound Poisson measure.

If we order the atoms(Tn, jn)n>1 of the measureN , thenTn are the jumping times
andjn the jumping directions of the random walk, that is:BT1 = τ (j1)(B0), andBTn =
τ (jn)(BTn−1)= τ (jn) ◦ . . . ◦ τ (j1)(B0).

2.2. Filtered space and predictable processes

Let (Ft )t>0 be the filtrationσ (N(A);A ∈ B([0, t] × {1, . . . , d})), t > 0, and let
F =F∞− =∨t>0Ft . AnF-measurable functionalF isFt (resp.Ft−)-measurable if and
only if F(ω)= F(ω|[0,t ]×J ) (resp.F(ω)= F(ω|[0,t [×J ) ). Indeed, everyFt -measurable
functionalF meets the conditionF(ω)= F(ω|[0,t ]×J ) since it holds for allF = ω(A),
A ∈ B([0, t] × J ). To prove the converse, notice that for everyA ∈ B(U) the functional
ω|[0,t ]×J (A) isFt -measurable, so that the map

(Ω,Ft )−→ (Ω,F)
ω 7−→ω|[0,t ]×J

is measurable. ThereforeF isFt -measurable ifF = F(ω|[0,t ]×J ).
Notice that the filtration(Ft )t>0 is right-continuous. Indeed, ifF is Ft+ -measurable,

thenF(ω)= F(ω|[0,t+ε]×J ) for eachω andε > 0. Asω|[0,t+ε]×J = ω|[0,t ]×J for ε small
enough (depending onω), F = F(ω|[0,t ]×J ), andF isFt -measurable. ThusFt+ =Ft .



106 C. ANÉ / Ann. Inst. H. Poincaré, Probab. Statist. 37 (2001) 101–137

In what concerns predictable processes, we have a similar property. Recall first that
the predictableσ -algebraP is generated by the adapted left-continuous processes, or
equivalently by processes of the form 11]u,v]F(ω) whereF ranges over the boundedFu-
measurable functionals, andu < v 6∞. In our case, a processY is predictable if and
only if Yt(ω)= Yt(ω|[0,t [×J ). In order to prove it is a necessary condition, notice that it
is satisfied by all processes 11]u,v]F(ω) whereF is a boundedFu-measurable functional.
Then apply a monotone class argument. Conversely, for allA ∈ B(R× J ) the process
(ω|[0,t [×J )(A) is adapted and left-continuous, hence predictable. It follows that the map

(R×Ω,P)−→ (
R×Ω,B(R)⊗F)

(t,ω) 7−→ (t,ω|[0,t [×J )

is measurable. Therefore ifYt = Yt(ω|[0,t [×J ), the processY is predictable.
Now we introduce the predictable projection of a bounded or non-negative process

W . It is the unique predictable processpW which satisfies

pWτ
a.s.= E(WτFτ−) (10)

for any predictable timeτ . (See [5, Chap. VI.2] for proofs and more details.) IfW is
neither bounded nor negative, then its predictable projection is defined ifp|W | takes
finite values only, and in that case

pW = (p(W+)− p(W−)
)
.

The property (10) is still satisfied, and still characterizespW . Finally, it will be useful to
considerpW = (p(W+)− p(W−)) on the set{p|W |<∞} in the general case. We present
here several properties that will be useful in the next sections.

LEMMA 2.1. – Let W be a bounded or non-negative process. Then for allj ∈
{1, . . . , d}

E
∫
WtN̂(dt, j)= E

∫
pWtN̂(dt, j).

SinceN̂(dt, j)= dt andEWt = EpWt , Lemma 2.1 is a direct consequence of Fubini’s
theorem.

The following lemma gives a very useful expression ofpW .

LEMMA 2.2. – The predictable projectionpW of the processW is given by

pWt(ω)=
∫
Wt(ω|[0,t [×J + ω̄|[t,∞[×J ) dPt (ω̄)= (EtWt

)
(ω|[0,t [), (11)

wherePt denotes the law of a Poisson process on[t,∞[×J with intensityds on each
[t,∞[×{j}, and whereEt denotes the expectation with respect toPt .

Proof. –Assume first that (11) is satisfied for all processes of the formWt(ω) =
11[0,u[(t)F (ω) whereu> 0, F = f (T1, . . . , Tm) andf is a smooth bounded function on
Rm. Then, by a monotone class argument, (11) extends to all bounded processes (see [5,
p. 114] for the use of the monotone class theorem) and then to all non-negative processes
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(applying (11) toW ∧ n). Finally, we consider an arbitrary processW . Applying (11)
to |W | shows thatp|W |t (ω) is finite if and only ifWt(ω|[0,t [×J + ω̄|[t,∞[×J ) is integrable
with respect toPt (ω̄). Therefore, using once more equality (11) withW+ andW− yields
(11) forW on the set{p|W |<∞}.

Now let us consider the processWt(ω)= 11[0,u[(t)F (ω) whereF = f (T1, . . . , Tm) and
f is a smooth bounded function onRm. ThenpW is given gy

pWt(ω)= 11[0,u[(t)Mt−(ω)

whereMt is the càd-làg version of the martingaleE(F |Ft ). Therefore it is enough to
show thatMt− coincides with

Ht(ω)=
∫
F(ω|[0,t [×J + ω̄|[t,∞[×J ) dPt (ω̄),

which is equivalent to saying thatHt
a.s.= E(F |Ft−) and thatt 7→Ht(ω) is left-continuous.

We first show thatHt
a.s.= E(F |Ft−). To this end, letG be a bounded andFt−-

measurable functional. ThenG(ω)=G(ω|[0,t [×J ) and

E(GHt)=
∫
G(ω|[0,t [×J )F (ω|[0,t [×J + ω̄|[t,∞[×J ) dP(ω) dPt(ω̄)

=
∫
(GF)(ω|[0,t [×J + ω̄|[t,∞[×J ) dP(ω) dPt (ω̄).

Since (ω|[0,t [×J + ω̄|[t,∞[×J ) has exactly the lawP underP(ω) ⊗ Pt (ω̄), we get that
E(GHt)= E(GF), and thusHt = E(F |Ft−).

Then we show thatHt is left-continuous. Fixt > 0 and let(tn)n>0 be an increasing
sequence towardst . Let alsoδn = t − tn. Forn large enough (n> n0(ω)), ω([tn, t[)= 0,
and the number of jumps up to timet or tn is m1 = Nt(ω). Let us denoteT1 =
T1(ω), . . . , Tm1 = Tm1(ω), and let T̄k = Tk(ω̄|[t,∞[×J ) ∈ [t,∞[ be thekth jump of ω̄.
Then, underPtn , the sequence of jumps(T̄1, . . . , T̄k, . . .) has the law of(T̄1+δn, . . . , T̄k+
δn, . . .) underPt . Therefore,

Htn(ω) =
∫
F(ω|[0,tn[×J + ω̄|[tn,∞[×J ) dPtn(ω̄)

=
∫
f (T1, . . . , Tm1, T̄1, . . . , T̄m−m1) dP

tn(ω̄)

=
∫
f (T1, . . . , Tm1, T̄1+ δn, . . . , T̄m−m1 + δn) dPt (ω̄)

n→∞−→
∫
f (T1, . . . , Tm1, T̄1, . . . , T̄m−m1) dP

t (ω̄)

= Ht(ω).

Sincef is assumed to be smooth and bounded, we used the dominated convergence
theorem in the last-but-one line. ThusHt is left-continuous, and the proof of Lemma 2.2
is complete. 2
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LEMMA 2.3 (Jensen’s inequality). –LetW be a process that admits a predictable
projection. Then (

pW
)26 p

(
W 2).

More generally,ϕ(pW)6 pϕ(W) for any positive convex functionϕ onR. If p|W | is not
necesseraly finite, we still have that

(
pW

)2
11{p|W |<∞} 6 p

(
W 2). (12)

Proof. –Assume first thatW admits a predictable projection. For every predictable
time τ we have

ϕ
(
pWτ

)= ϕ(E(Wτ |Fτ−))6 E(ϕ(Wτ)|Fτ−)6 pϕ(W)τ .

It follows thatϕ(pW)6 pϕ(W). If p|W | is not necessarily finite, the expression ofpW is
given by the previous lemma. Ifp|W |t (ω)=∞ then obiously(pWt(ω))

211{p|W |t (ω)<∞} =
06 p(W 2), and on the setp|W |t (ω) <∞ we have(

pWt(ω)
)2= ((EtWt)(ω|[0,t [×J )

)2
6 (Et (Wt)

2)(ω|[0,t [×J )

= p
(
W 2)

t
(ω).

The proof of Lemma 2.3 is thus complete.2
2.3. Derivative operator

In this part we introduce (following [8] and [9]) the derivative of a functionalF

defined onΩ , wich will play the role of the Malliavin derivative. Several operators have
already been defined on Poisson spaces. In [2,4] or [10] an operator is defined by shifting
the atomsTn of the point process. In this work we need a different operator obtained
by adding atoms, but which is no more a derivation. Let us now be more precise. The
derivative of a functionalF defined onΩ is the processDuF = F ◦ε+u −F ◦ε−u , where, if
u= (t, j), the transformationε+u (resp.ε−u ) adds an atom at timet and directionj if there
was none, and removes all other atom at timet (resp. removes the probably existing atom
at timet), that is:ε+u (ω)= ωU\{t}×J + δu andε−u (ω)= ωU\{t}×J . Notice thatε+u (ω)= ω
for P × N -almost every(u,ω) and thatε−u (ω) = ω P × N̂ -almost everywhere. Let us
denote also byµ the measureP× (N + N̂) onΩ × (R+ × J ).

The following essential proposition is proved in [9, Théorème 1].

PROPOSITION 2.4 (Isometry formula). –LetP be a Poisson point process on a space
V with intensityP̂ . LetZv be a positive,P× P or P× P̂ -integrable process such that
DvZv = 0 for all v ∈ V . Then

E
(∫
V

Zv dP (v)

)
= E

(∫
V

Zv dP̂ (v)

)
. (13)
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We first use this isometry formula to show basic properties ofε+ andε−.

PROPOSITION 2.5. – Let G be a functional onΩ . Recall thatµ is the measure
P× (N + N̂) onΩ ×U .

(i) If G= 0 almost surely, thenG◦ε+u = 0 andG◦ε−u = 0 for µ-almost every(ω,u).
It follows that the processDF is well-defined in the sense that ifF =H almost-
surely, thenDF andDH coincideµ-almost everywhere.

(ii) If G = 0 almost surely, thenG ◦ ε±u ◦ ε±v = 0 for µ × (N + N̂)-almost every
(ω,u, v).

Proof of(i). – Sinceε+u (ω)= ω P×N -almost everywhere,G ◦ ε+u = 0 P×N -almost
everywhere. Applying Proposition 2.4 to the process|G ◦ ε+u | yields

E
∫ ∣∣G ◦ ε+u ∣∣dN̂ = E∫ ∣∣G ◦ ε+u ∣∣dN = E(|G|∫ dN)= 0.

ThereforeG ◦ ε+u also vanishesP× N̂ almost everywhere. Similarly, applying Propo-
sition 2.4 to|G ◦ ε−u | implies thatG ◦ ε−u = 0 µ-almost everywhere. The proof of (i) is
thus complete. 2

Although (i) shows thatDF is definedµ-a.e. for an almost surely defined functional
F , we must be very careful with the processDF , sinceF =H almost surely doesnot
imply thatDF andDH are indistinguishable processes. Take for instanceF = 11{T1=1}.
ThenF a.s.= 0, butP{∃u; DuF 6= 0} = P{∃u; F ◦ ε+u 6= 0} = P{T1> 1}> 0.

In order to prove (ii) we need the following corollary which extends the isometry
formula (13) to processes with several parameters. It is proved by iteration in [9].

COROLLARY 2.6. – LetZu, u= (u1, . . . , uk) ∈ Uk, be a non-negativek parameters
measurable process such thatZu = 0 as soon as two parametersul = (tl, jl) and
ul′ = (tl′, jl′) have equal timestl = tl′ . Assume that for all(α1, . . . , αk) with αj ∈ {+,−}
and all u= (u1, . . . , uk)

Zu ◦ εα1
u1
◦ · · · ◦ εαkuk =Zu.

Define alsoN+ =N andN− = N̂ . Then

E
(∫

Zu dN
α1(u1) · · ·dNαk (uk)

)
does not depend on the sequence(α1, . . . , αk).

Proof of (ii) . – Assume thatG a.s.= 0. If ui = (ti , ji), α1, α2 ∈ {+,−} and if t1 = t2,
we already know by (i) thatG ◦ εα1

u1
◦ εα2

u2
= G ◦ εα1

u1
= 0 for µ-almost all(ω,u1). In

order to show that 11{t1 6=t2}G ◦ ε±u1
◦ ε±u2
= 0 µ×N± almost everywhere, takek = 2 and

Z(u1,u2) = 11{t1 6=t2}G ◦ εα1
u1
◦ εα2

u2
. By Corollary 2.6 we get that

E
∫

t1 6=t2
|G ◦ εα1

u1
◦ εα2

u2
|dNβ1(u1) dN

β2(u2)
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= E
∫

t1 6=t2
|G ◦ εα1

u1
◦ εα2

u2
|dNα1(u1) dN

α2(u2)

= E
(
|G|

∫
t1 6=t2

dNα1(u1) dN
α2(u2)

)
= 0.

ThusG ◦ ε±u1
◦ ε±u2
= 0 for µ× (N + N̂)-almost every(ω,u1, u2), and the proof of part

(ii) of Proposition 2.5 is complete.2
Before turning to the next paragraph, we give the expression of the derivativeDF

whenF is a cylindrical functional. First takeF = f (Bt). If there is no jump at time
s with s 6 t , thenD(s,j)F is just f (τ (j)Bt) − f (Bt ) = D(j)f (Bt) whereD(j)f is the
functionf ◦ τ (j) − f on {−1,+1}d . If the walk jumps in directionj at times 6 t , then
D(s,j)F is f (Bt)− f (τ (j)Bt)=−D(j)f (Bt). Therefore

D(s,j)F = 11{s6t}(−1)N({(s,j)})D(j)f (Bt)

µ-almost everywhere. More generally, letF = f (Bt1, . . . ,Btn). As before, adding an
atom at times moves up to timetn, and

D(s,j)F = (−1)N({(s,j)})
(
f (Bt1, . . . ,Bti−1, τ

(j)Bti , . . . , τ
(j)Btn)− f (Bt1, . . . ,Btn)

)
on ti−1< s 6 ti andµ-almost everywhere.

2.4. Asymmetric random walks

One may skip this paragraph for the reading of the core of the paper (up to Section 5).
We shall meet the processes described here in Sections 6 and 7 only. In these sections,
we let the process spend more time in one direction than in the other. More precisely, we
wish to consider the generator

Lf (x)=
d∑
j=1

λj (x
(j))
(
f ◦ τ (j) − f )(x),

whereλj > 0 on{+1,−1}. If the random walk stands atx, then it will jump in direction
j with rateλj (x(j)). As it depends onx(j) only, the process(Bt)t>0 associated toL has

independent coordinates and each(B(j)t )t>0 is an asymmetric continous time random
walk on {+1,−1}, jumping from−1 to+1 with rateλj (−1) and from+1 to−1 with
rateλj (+1). Therefore, if we take for simplicityd = 1 and lay down the superscript
(j), the waiting timeT1 has an exponential law of parameterλ(B0), and more generally
Tn+1− Tn is exponential of parameterλ(BTn).

The invariant measure associated to our process is the product measureµλ =⊗d
j=1µλj with µλj (+1) = λj (−1)/Λj and µλj (−1) = λj (+1)/Λj , where Λj =

λj (−1)+ λj (+1).
In the previous paragraphs the caseλj ≡ 1 was considered. The random point process

associated to the jumpsN =∑n>1 δ(Tn,jn) was a random Poisson measure. This is no



C. ANÉ / Ann. Inst. H. Poincaré, Probab. Statist. 37 (2001) 101–137 111

more the case here, since the law of the waiting time(Tn+1 − Tn) depends on the past
of the process through its positionx at timeTn. Let Pλ be the law onΩ of this point
process. ThenPλ is determined by its compensator̂Nλ given by (see for example [7,
Theorem 1.33, p. 136])

N̂λ
(
dt, {j})= λj(B(j)t− )dt.

The filtration (Ft )t>0 considered is the same as for the symmetric random walk.
Therefore it still holds that a functionalF is Ft -measurable if and only ifF =
F(ω|[0,t ]×J ). Similarly, Y = (Yt(ω|[0,t [×J ))t>0 still characterizes the predictable pro-
cesses.

The predictable projection of a bounded or non-negative processW is defined as in
the symmetric case by

pWτ
a.s.= Eλ(Wτ |Fτ−) (14)

for any predictable timeτ . Then Lemma 2.1 still holds. Indeed,N̂λ(dt, j) is a predictable
measure (see [5, Chap. VI.2]), so that for allj 6 d and all bounded or non-negative
processesW ,

Eλ
∫
WtN̂λ(dt, j)= Eλ

∫
pWtN̂λ(dt, j).

Lemma 2.2 giving the expression ofpW also holds forPλ, replacing the lawPt of
the translated point process by the lawPt,Bt−λ of a point process on[t,∞[×J starting at
xt− = Bt− and with compensatorλj (x

(j)

s− ) ds on each[t,∞[×{j}. It yields

pWt(ω)=
∫
Wt(ω|[0,t [×J + ω̄|[t,∞[×J ) dPt,Bt−λ (ω̄)

= (EtλWt

)
(ω|[0,t [). (15)

We turn now to the derivative operator, which was already defined in the previous
paragraph. The definition of the transformationsε±u does not involve any measure, so
that we may wonder if Proposition 2.5 is still true forPλ. The stake is to be able to define
the processDF if the functionalF is only almost surely defined. This is indeed the case.
To prove it, we need to compare the asymmetric random walk and the symmetric one. It
is shown in [7, Chap. IV.2 and IV.4] thatPλ is locally equivalent toP, which means that
for eacht > 0, the restrictions ofPλ and ofP to Ft meetPλ|Ft ∼ P|Ft . More precisely,
the density processZ such thatPλ|Ft (dω)= Zt(ω)P|Ft (dω) is given in [7, Chap. III.5]
by

Zt(ω)= exp

( t∫
0

(
1− λ(xs−))ds

) ∏
n;Tn6t

λ(xT −n ) > 0.

Therefore, the measuresµλ = Pλ × (N̂λ + N) and µ are locally equivalent, and
Proposition 2.5 is easily extended as follows.

PROPOSITION 2.7. – Let T > 0 be finite and letG be anFT -measurable functional
onΩ .
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(i) If G= 0 Pλ-almost surely, thenG ◦ ε+u = 0 andG ◦ ε−u = 0 for µλ-almost every
(ω,u). It follows that the processDF is well-defined in the sense that ifF andH
coincidePλ-almost-surely and areFT -measurable, thenDF andDH coincide
µλ-almost everywhere.

(ii) If G= 0 Pλ-almost surely, then andG ◦ ε±u ◦ ε±v = 0 for µλ × (N + N̂λ)-almost
every(ω,u, v).

3. Gradient arising from Poincaré inequalities

In this section we deduce a Poincaré inequality from the study of cylindrical
functionals. In the first part we prove a Poincaré inequality forF(B)= f (Bt1, . . . ,Btn)
in which the energy involves the timest1, . . . , tn. Then in the second part we express
this energy in terms of the gradientDtF . This expression is well defined, not only
for cylindrical functionals, but also for all bounded ones (for instance). The Poincaré
inequality may thus be extended to this class of functionals.

3.1. Poincaré inequalities for cylindrical functionals

In dimension 1 the law ofBt starting atB0= x is given by

Px{Bt = y} = p1
t (x, y)=

1+ xye−2t

2
.

More generally,

Px{Bt = y} = pdt (x, y)=
d∏
j=1

p1
t

(
x(j), y(j)

)
.

Therefore one may tensorize the Poincaré inequality (1) to obtain, for all cylindrical
functionalsF = f (Bt), and for all dimensionsd ∈N∗

E
(
F 2)−E(F )26 1

4

(
1− e−4t)E( d∑

j=1

(
D(j)F

)2)
, (16)

whereD(j) acts on thej th coordinate as(D(j)F )(B)= (f ◦ τ (j) − f )(Bt).
Now we extend (16) to all cylindrical functionals. In dimension 1 we recover

inequality (2) mentioned in the introduction. This Poincaré inequality was already
presented in [1].

PROPOSITION 3.1. – If F(B)= f (Bt1, . . . ,Btn) with 0= t0< t1< · · ·< tn, then

E
(
F 2)−E(F )26 E cyl(F )

= 1

4

d∑
j=1

n∑
i=1

(
1− e−4(ti−ti−1)

)
E
((

n∑
k=i

e−2(tk−ti )D̃(j)
k F ◦ τ (j)i,k−1

)2)
, (17)

where the discrete derivatives ofF are defined by
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D̃
(j)
k F ◦ τ (j)i,k−1

)
(B)= (D̃(j)

k f
)(
Bt1, . . . ,Bti−1, τ

(j)Bti , . . . , τ
(j)Btk−1,Btk , . . . ,Btn

)
,

and (
D̃
(j)
k f

)
(x1, . . . , xn)= x(j)k

(
f (x1, . . . , τ

(j)xk, . . . , xn)− f (x1, . . . , xn)
)
.

Proof. –Since thed coordinates of the process are independent, (17) follows from the
one-dimensional case. Thus we assumed = 1. The law of(Bt1, . . . ,Btn) is the measure
on {−1,+1}n given by

dP (x1, xn)= p1
t1(x0, x1) · · ·p1

tn−tn−1
(xn−1, xn) dx1 . . . dxn,

wheredx denotes the counting measure on{−1,+1}. By induction on (16) we get that

EF 2=
∫
f 2dP 6

(∫
f dP

)2

+
n∑
i=1

1− e−4(ti−ti−1)

4

∫
(Difi)

2dP,

wherefn = f andfi(x1, . . . , xi) = ∫ fi+1(x1, . . . , xi+1)p1
ti+1−ti (xi, xi+1) · dxi+1 for i 6

n− 1. Therefore it is enough to prove that

xiDifi =
∫ ( n∑

k=i
e−2(tk−ti )xkDkf ◦ τi,k−1

)
× p1

ti+1−ti (xi, xi+1) . . .p1
tn−tn−1

(xn−1, xn) dxi+1 . . . dxn (18)

since by Jensen’s inequality it will follow that

(Difi)
26

∫ ( n∑
k=i

e−2(tk−ti )xkDkf ◦ τi,k−1

)2

× p1
ti+1−ti (xi, xi+1) · · ·p1

tn−tn−1
(xn−1, xn) dxi+1 . . . dxn.

In casei = n, both sides of (18) are equal. Then (18) is easily proved by iteration, using
the casei = 1 andn= 2. Thus we only show (18) in that case, that is:

x1D1f1(x1)=
∫ (
x1D1f (x1, x2)+ e−2(t2−t1)x2D2f (−x1, x2)

)
p1

t2−t1(x1, x2) dx2.

Let u= t2− t1. Then

D1f1(x1)= f1(τx1)− f1(x1)

=Pτx1
u

(
f (τx1, ·))−Px1

u (f (x1, ·))
= (Pτx1

u −Px1
u

)(
f (τx1, ·))+Px1

u

(
(D1f (x1, ·)).

SincePug = g+ 1
2(1− e−2u)Dg for an arbitrary functiong,

(
Pτxu −Pxu

)
(g)= (g(τx)− g(x))+ 1− e−2u

2

((
g
(
τ(τx)

)− g(τx))
− (g(τx)− g(x)))= e−2uDg(x).
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Applying this tog(x) = f (τx1, x) and using the fact thatxDg(x) is constant, we get
that

x1
(
Pτx1

u −Px1
u

)
(f (τx1, ·))= e−2ux2D2f (τx1, x2)

=
∫ (

e−2ux2D2f (τx1, x2)
)
p1

u(x1, x2) dx2.

The proof of Proposition 3.1 is thus complete.2
3.2. Extending the cylindrical Poincaré inequalities

The aim of this part is to give an expression ofE cyl(F ) defined by (17) in terms of the
gradientDtF only, so that this expression is well defined for all bounded functionals
(for instance). The following proposition corresponds to (6) in the introduction when
dimensiond = 1.

PROPOSITION 3.2. – LetF be a cylindrical functionalF(B)= f (Bt1, . . . ,Btn), and
T = tn. Then the energyE cyl(F ) defined by(17) satisfies

E cyl(F )= E
∫

[0,T ]×J

(
D(t,j)F −W(t,j)

)2
dN̂(t, j), (19)

where

W(t,j) =
T∫
t

2e−2(s−t )(−1)N(]t,s[×{j})
(
D(s,j)F ◦ ε+(t,j)

)
Ñ(ds, j).

Remark3.3. – This equality shows that var(F ) 6 E cyl(F ) holds at least for bounded
FT -measurable functionals. In the next section we will recover this inequality from a
more general statement.

Proof of Proposition 3.2. –We may taked = 1 since the argument is the same for each
term of the sum overj . Recall that

E cyl(F )=
n∑
i=1

1− e−4(ti−ti−1)

4
E
((

n∑
k=i

e−2(tk−ti )D̃kF ◦ τi,k−1

)2)

with D̃kF ◦ τi,k−1= D̃kf ◦ τi,k−1(Bt1, . . . ,Btn) and

D̃kf ◦ τi,k−1(x1, . . . , xn)= xk(f (x1, . . . ,−xi, . . . ,−xk, . . . , xn)
− f (x1, . . . ,−xi, . . . ,−xk−1, xk, . . . , xn)

)
.

We prove (19) by induction on the numbern of times. Fixn andF = f (Bt1, . . . ,Btn).
Fix also the processω|[0,t1] up to timet1, and consider the point processω̄|]t1,∞[. ThenF
is now an(n− 1)-cylindrical functional ofω̄. Hence the induction assumption implies
that

E
( T∫
t1

(DtF −Wt)
2dt
∣∣Ft1

)
= E

(
n∑
i=2

1− e−4(ti−ti−1)

4

(
n∑
k=i

e−2(tk−ti )D̃kF ◦ τi,k−1

)2∣∣Ft1
)
.
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It remains to show that
t1∫

0

(
DtF −

∫
]t,T ]

2e−2(s−t )(−1)N(]t,s[)DsF ◦ ε+t Ñ(ds)
)2

dt

= 1− e−4t1

4

(
n∑
k=1

e−2(tk−t1)D̃kF ◦ τ1,k−1

)2

. (20)

To this end, fix a timet ∈]0, t1[ without jump, and notice that the quantity(−1)N({s}) ×
DsF ◦ ε+t is constant on each]ti−1, ti[, namely

(−1)N({s})DsF ◦ ε+t =∆i(Bt1, . . . ,Btn) if s ∈]ti−1, ti[,

whith∆i = f (−Bt1, . . . ,−Bti−1,Bti , . . . ,Btn)−f (−Bt1, . . . ,−Btn). We let also∆n+1=
0. Moreover, notice thatDtF =−∆1=−f (Bt1, . . . ,Btn)+ f (−Bt1, . . . ,−Btn). Hence
the left-hand side of (20) amounts to

t1∫
0

(
−∆1−∆1

∫
]t,t1]

2e−2(s−t )(−1)N(]t,s])Ñ (ds)

−
n∑
i=2

∆i

∫
]ti−1,ti ]

2e−2(s−t )(−1)N(]t,s])Ñ(ds)
)2

dt. (21)

Fortunately, we have the exact formula, for allt 6 T ,∫
]t,T ]

2e−2(s−t )(−1)N(]t,s])Ñ(ds)=−1+ (−1)N(]t,T ])e−2(T−t ). (22)

This identity is a particular case of the integration by parts formula, valid for any smooth
functiong onR:∫
]t,T ]

g(s)(−1)N(]t,s])2N(ds)+
∫
]t,T ]

g′(s)(−1)N(]t,s]) ds = (−1)N(]t,T ])g(T )− g(t).

Thanks to (22), we show that (21) is equal to

t1∫
0

(
−∆1e−2(t1−t )(−1)N(]t,t1])

+
n∑
i=2

∆ie
−2(ti−1−t )(−1)N(]t,ti−1])(1− e−2(ti−ti−1)(−1)N(]ti−1,ti ])))2

dt

=
t1∫

0

e−4(t1−t )dt
(
−∆1(−1)Nt1 +

n∑
i=2

∆i

(
e−2(ti−1−t1)(−1)Nti−1 − e−2(ti−t1)(−1)Nti

))2
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= 1− e−4t1

4

(
n∑
i=1

e−2(ti−t1)(−1)Nti (∆i+1−∆i)

)2

= 1− e−4t1

4

(
n∑
i=1

e−2(ti−t1)Bti (∆i+1−∆i)

)2

.

The last equality follows from the fact that(−1)Nt = B0Bt andB2
0 = 1. It just remains

now to identifyBti (∆i+1−∆i) with D̃iF ◦ τ1,i−1 for i 6 n. This is immediate from the
definition of the∆i ’s. The proof of Proposition 3.2 is thus complete.2

4. Clark–Ocone formula

In this part we prove the Clark–Ocone formula (9) in dimensiond > 1.

THEOREM 4.1 (Clark–Ocone formula). –Let α = (α1, . . . , αd) ∈ Rd . LetNT be the
number of jumpsN([0, T ] × J ) occuring before time T, and letF be anFT -measurable
functional such thatE(NT |F |) <∞, which implies thatF ∈ L1(Ω). Recall thatµ is the
measureP× (N + N̂) onΩ × (R+ × J ).

(i) Define Z(t,j)s = 11{t<s}2e−2(s−t )(−1)N(]t,s[×{j})(D(s,j)F ◦ ε+(t,j)). Define also the
processes

Wj
t =

∫
]t,T ]

Z(t,j)s (N − N̂)(ds, j).

Then the predictable projectionp|Wj |t (ω) is finiteµ-almost everywhere(a.e.),
andpWj

t (ω)= 0 µ-almost everywhere.
(ii) Consequently,

F −E(F )=
∫

[0,T ]×J
Hα
u Ñ(du), (23)

whereHα
(·,j) = (Et (D(t,j)F + αjWj

t ))(ω|[0,t [×J ) is definedµ-a.e. It is the pre-
dictable projection ofD(·,j)F +αjWj on the set{p|D(·,j)F |t <∞, p|Wj |t <∞}.

Remark4.2. – It would be possible to replace the constantsα1, . . . , αd by determinis-
tic functionsα1(t), . . . , αd(t) (bounded for example), or even by predictable processes. It
would also be possible to replace the factor 2e−2(s−t ) by αe−α(s−t ) for example, because
as far as it remains deterministic (and reasonable), it doesn’t modify the proof. This last
choice would lead to the Clark–Ocone formula (23) were, in dimension 1 for instance,
the processHα would be the predictable projection of

DF −
T∫

0

αe−α(s−t )(−1)N(]t,s[)(DsF ◦ ε+t )Ñ(dt).

It is this last formula that is very similar to the Clark–Ocone formula for a diffusion
with constant Ricci curvature equal to 2α. The Poincaré inequality coming from the
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cylindrical method would suggest that the “curvature” of the process is 4. However, the
latter formula indicates that this intuition might not be the right one.

As explained in the introduction, introducing the parameterα seems artificial and
Theorem 4.1 seems to be odd since we just add zero to the already known martingale
representation. Actually the applications prove the contrary. That is why we start by the
following corollary. The proof of Theorem 4.1 will follow.

COROLLARY 4.3 (Poincaré inequality). –Let F ∈ L1(Ω) be anFT -measurable
functional such thatE(NT |F |) <∞, and letα = (α1, . . . , αd) ∈ Rd . Define the energy
of parameterα by

Eα(F )=
d∑
j=1

E
( T∫

0

(
D(t,j)F + αj

T∫
t

2e−2(s−t )(−1)N(]t,s[×{j})

× (D(s,j)F ◦ ε+(t,j)
)
Ñ(ds, j)

)2

dt

)
. (24)

Then

E
(
F 2)−E(F )26 Eα(F ). (25)

Proof. –It follows by a by now standard method. As developed in [3,11] and [1],
representation formulas enable to deduce Poincaré inequalities, logarithmic Sobolev
inequalities, or modified logarithmic Sobolev inequalities.

If Eα(F )=∞ then (25) is trivial, and otherwise the martingaleMt = E(F |Ft ) meets

〈M〉t =
∫

[0,t ]×J

(
p(D(·,j)F + αjWj )t

)2
11{p |D(·,j)F |t<∞,p |Wj |t<∞} dN̂(t, j),

so that

E
(
M2
T −M2

0

)=E〈M〉T
=E

∫
[0,T ]×J

(
p
(
D(·,j)F + αjWj

)
t

)2
11{p |D(·,j)F |t<∞,p |Wj |t<∞} dN̂(t, j)

6E
∫

[0,T ]×J

p
((
D(t,j)F + αjWj

t

)2)
dN̂(t, j)

=E
∫

[0,T ]×J

(
D(t,j)F + αjWj

t

)2
dN̂(t, j).

In the third line we used the Jensen’s inequality (12), and in the last one Lemma 2.1. As
E(M2

T )= E(F 2) andE(M2
0)= (EF)2, we get (25). 2

Proof of Theorem 4.1. –The representation formula (23) is already known withα = 0
[1]. Furthermore, it was shown there thatp|D(·,j)F |t is finite µ-a.e. as soon asF is
integrable, so thatH 0 is well defined. Thus we only show (i).
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This proof is divided into two parts. We first prove an integrability property,
corresponding somehow to the finiteness ofp|Wj |, and then we deduce thatpWj = 0.

Let V be the non-negative process

V j
t =

∫
]t,T ]

∣∣Z(t,j)s

∣∣(N + N̂)(ds, j).
We start by proving thatpV j is finiteµ-almost everywhere. Notice that|Wj

t |6 V j
t , so

that it will give the finiteness ofp|Wj | µ-almost everywhere. Recall that the predictable
projection ofV j is given by

pV j
t (ω)=

∫
V j
t (ω|[0,t [×J + ω̄|[t,∞[×J ) dPt (ω̄)=

(
EtV j

t

)
(ω|[0,t [×J ),

wherePt is the the law of a Poisson point processω̄ on [t,∞[×J with intensity (or
compensator)dP̂ = ds on [t,∞[×{j ′}, and whereEt is the expectation with respect
to Pt . Now, for fixedu = (t, j) andω ∈ Ω , using the isometry formula (13) twice for
this translated Poisson point processP on [t,∞[×J and forZs(ω̄)= |Z(t,j)s |(ω|[0,t [×J +
ω̄|[t,∞[×J ) (for whichDsZs = 0) yields that

pV j
t (ω|[0,t [×J )= 2Et

T∫
t

∣∣Zus ∣∣ds
6 2Et

T∫
t

2e−2(s−t )(∣∣F ◦ ε+(t,j) ◦ ε+(s,j)∣∣+ ∣∣F ◦ ε+(t,j) ◦ ε−(s,j)∣∣)ds
= 2Et

T∫
t

2e−2(s−t )(∣∣F ◦ ε+(t,j) ◦ ε+(s,j)∣∣P(ds, j)+ ∣∣F ◦ ε+(t,j) ◦ ε−(s,j)∣∣ds)

= 2Et
T∫
t

2e−2(s−t )(∣∣F ◦ ε+(t,j)∣∣P(ds, j)+ ∣∣F ◦ ε+(t,j)∣∣ds)
6 2Et

((
2ω̄(]t, T ] × {j})+ 1

)∣∣F ◦ ε+(t,j)∣∣).
Since 11{ω([0,t [×J )6n}pV

j
t is exactlypV j

t for largen, it is enough to show that for all
n ∈N, this quantity is finiteµ-almost everywhere. To this end, we evaluate

E
( T∫

0

11{ω([0,t [×J )6n}pV j
t dt

)
6 2

T∫
0

E
(
11{ω([0,t [×J )6n}Et

((
2ω̄
(]t, T ] × {j})

+1
)∣∣F ◦ ε+(t,j)∣∣(ω|[0,t [×J + ω̄|]t,T ]×J )))dt

= 2

T∫
0

E
(
11{ω([0,t [×J )6n}

(
2ω
(]t, T ] × {j})+ 1

)∣∣F ◦ ε+(t,j)∣∣)dt.
Using now the isometry formula (13) for the original point process, we deduce that
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E
( T∫

0

11{ω([0,t [×J )6n}pV j
t dt

)

6 2E
T∫

0

11{ω([0,t [×J )6n}
(
2ω
(]t, T ] × {j})+ 1

)∣∣F ◦ ε+(t,j)|N(dt, j)
= 2E

T∫
0

11{t<Tn+1}
(
2ω
(]t, T ] × {j})+ 1

)|F |N(dt, j)
6 2E(2NT + 1)|F |

T∫
0

11{t<Tn+1}N(dt, j)

6 2nE
(
(2NT + 1)|F |)<∞.

It follows that pV j is finite P × dt-almost everywhere. Moreover, since 11{ω([0,t [×J )6n}
pV

j
t (ω|[0,t [×J ) does not depend onω({t} × J ), we may apply the isometry formula (13)

once again to get that

E
( T∫

0

11{ω([0,t [×J )6n}pV jt dt
)
= E

( T∫
0

11{ω([0,t [×J )6n}pV j
t N(dt, j)

)
,

which is thus finite. This completes the proof thatpV j is finiteµ-almost everywhere.
Now we fix (ω,u), u= (t, j), such thatpV jt (ω) <∞. ThenpWj

t (ω) is well defined
by

pWj
t (ω)=

∫
Wj
t (ω|[0,t [×J + ω̄|[t,∞[×J ) dPt (ω̄)=

(
EtWj

t

)
(ω|[0,t [×J ).

The processZs(ω̄) = Z(t,j)s (ω|[0,t [×J + ω̄|[t,∞[×J ) satisfiesDsZs = 0. Moreover it is
Pt× P̂ integrable since we exactly have 2Et

∫ T
t |Zs(ω̄)|ds = pV

j
t (ω|[0,t [×J ). Then it is an

easy matter to apply the isometry formula (13) to the translated Poisson point process on
[t,∞[×J and to getpWj

t (ω)= 0, which ends the proof of (i) and of Theorem 4.1.2
5. Examples

In this section we evaluate the energyEα(F ) for variousα’s and functionalsF .
As Eα(F ) is polynomial of degree 2 inα, it is minimal forα = αmin given by

αmin
j =−

(
E

T∫
0

(D(t,j)F )W
j
t dt

)(
E

T∫
0

(
Wj
t

)2
dt

)−1

,

whereWj
t is defined in Theorem 4.1.

We are interested inα = αmin, but also in the wayEα(F ) varies withF . We will thus
be looking, as far as possible, for explicit expressions and bounds ofEα(F ).
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In the first paragraph we consider the number of jumpsF =NT =N[0, T ] up to time
T . In that case the energyE0(NT ) gives the best estimate of the variance ofNT , since it
is equal to var(NT ). More generally, we recover this behaviour for any functional of the
first chaos.

In the second paragraph we give examples whereE−1(F ) is the lowest energy. The
first example is provided by cylindrical functionalsF = f (BT ), for which we exactly
haveE−1(F )= var(F ) while all other energiesEα(F ), α 6= −1, are much greater. Notice
that (−1)NT = B0BT is such a functional. The second example of this paragraph is the
productF = (−1)NT NT of two functionals studied before.

Finally, the last paragraph deals withF = aNT and shows that for that functional
αmin = −1/2+ 1/(2a) for all T . Therefore for everyα0 ∈ R (α0 6= −1/2), there is a
functionalF for whichα0 minimizesEα(F ).

5.1. Examples for whichα = 0 gives the lowest energy

Such examples are produced by functionals of the first chaos (in what concerns Fock
spaces, see for example [8]). These functionals are of the form

∫
U f (u) dÑ(u) for some

function f ∈ L2(U, dN̂). This quantity is just the Stieljes integral
∫
f (u) dN(u) −∫

f (u) dN̂(u) if f ∈ L1[0, T ] × J . We assume here thatf ∈ L1([0, T ] × J ) and we
let

F =
∫

[0,T ]×J
f (u) dN(u)= ∑

n;Tn6T
f (Tn, jn).

The choice off = 1 leads to the number of jumpsF =NT .
Let us examine first the variance ofF . We have that

EF = E
∫

[0,T ]×J
f (u) dN̂(u)=

d∑
j=1

T∫
0

f (t, j) dt

and that

var(F )=E(F −EF)2= E
〈∫

f (u) dÑ(u)

〉
= E

∫
[0,T ]×J

f 2(u) dN̂(u).

Hence

var(F )=
d∑
j=1

T∫
0

f 2(t, j) dt.

Now we turn to the energiesEα(F ). AsD(t,j)F = f (t, j) andD(s,j)F ◦ ε+(t,j) = f (s, j)
we get that

Eα(F )= E
d∑
j=1

T∫
0

(
f (t, j)+ αjM(t,j)

T

)2
dt,
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whereM(t,j)
u , u> t , is the martingale

M(t,j)
u =

∫
]t,u]

2e−2(s−t )f (s, j)(−1)N(]t,s[×{j})Ñ
(
ds × {j}).

ThusE(M(t,j)
T )= 0 andd〈M(t,j)〉s = 4e−4(s−t )f 2(s, j)N̂(ds × {j}), so that

E
(
M

(t,j)
T

2)=E〈M(t,j)
〉
T
=

T∫
t

4e−4(s−t )f 2(s, j) ds.

Finally whenα = 0 we exactly get

E0(F )=
d∑
j=1

T∫
0

f 2(t, j) dt = var(F )

while

Eα(F )= E0(F )+
d∑
j=1

α2
j

T∫
0

T∫
t

4e−4(s−t )f 2(s, j) ds dt

= E0(F )+
d∑
j=1

α2
j

T∫
0

(1− e−4s)f 2(s, j) ds.

Therefore, all the energiesEα(F ) are larger than or equal toE0(F ), but still of the same
order, in the sense that

var(F )= E0(F )6 Eα(F )6
(
1+max

j6d
α2
j

)
var(F ).

Remark5.1. – If we consider now a functional of thenth chaos

F =
∫

ui 6=uj
f (u1, . . . , un)Ñ(du1) . . . Ñ(dun)

for a symmetricf in L1(R+)n, it is not so easy to evaluate its energiesEα(F ) since its
derivative

DtF = n
∫

ui 6=uj ,ui 6=t
f (u1, . . . , un−1, t)Ñ(du1) . . . Ñ(dun−1)

is no more deterministic. However, it is known that

var(F )=EF 2= n!‖f ‖2L2(R+)n
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and we get immediately that

E0(F )=
T∫

0

E
(
(DtF )

2)dt = n2(n− 1)!‖f ‖2L2(R+)n = nvar(F ).

Unlessn= 1,E0(F ) is greater than the variance ofF and may not be the minimal energy.

5.2. Examples for whichα =−1 gives the lowest energy

5.2.1. One-cylindrical functionals
Let F = f (BT ) be a one-cylindrical functional. We consider the cased = 1 to start

with. In our setting,(−1)NT =B0BT (or=∏d
j=1B

(j)
0 B

(j)
T in general) is a particular case

of such a functional. We first evaluate the derivative ofF . If there is no jump at time
t 6 T , then

DtF = f (τBT )− f (BT )=Df (BT )
and fort 6 s 6 T we have thatDsF ◦ ε+t =−(−1)N({s})Df (BT ). Therefore the quantity
Wt is

Wt =−Df (BT )
∫
]t,T ]

2e−2(s−t )(−1)N(]t,s])Ñ(ds).

Recall the exact formula (22)∫
]t,T ]

2e−2(s−t )(−1)N(]t,s])Ñ(ds)=−1+ (−1)N(]t,T ])e−2(T−t ).

The energyEα(F ) is now easy to evaluate. Namely,

Eα(F )=E
T∫

0

(DtF + αWt)
2dt

=E
T∫

0

(
Df (BT )

)2(
1− α

∫
]t,T ]

2e−2(s−t )(−1)N(]t,s])Ñ(ds)
)2

dt

=
T∫

0

E
((
Df (BT )

)2(
1+ α− α(−1)N(]t,T ])e−2(T−t ))2)dt,

where we used (22). As(Df (BT ))2 is a constant andE((−1)N(]t,T ]))= e−2(T−t ) we get
that

Eα(F )= (Df )2
(
(1+ α)2T − α(2+ α)1− e−4T

4

)
.

Whenα =−1 it becomes obviously

E−1(F )= 1− e−4T

4

(
Df (BT )

)2= var(F ),
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but whenα 6= −1 thenEα(F ) > E−1(F ) andEα(F ) ∼ 4(1+ α)2E−1(F ) T explodes as
timeT tends to infinity.

Now, for arbitrary dimensiond > 1, Eα(F ) is still minimized atα = (−1, . . . ,−1),
and

Eα(F )=
d∑
j=1

T∫
0

E
((
D(j)f (BT )

)2(
1+ αj − αj(−1)N(]t,T ]×{j})e−2(T−t ))2)dt.

WhenT is large,

E(−1,...,−1)(f (BT ))= 1− e−4T

4

d∑
j=1

E
((
D(j)f (BT )

)2)
tends to a constant, But if one ofαj 6= −1

Eα
(
f (BT )

)∼ d∑
j=1

(1+ αj)2E((D(j)f (BT )
)2)
T .

5.2.2. Mixing two previous examples
Now, we turn to the functionalF = (−1)NT NT in dimensiond = 1 (without loss of

generality). We have seen that the energy of(−1)NT is lowest forα =−1, whereas it is
lowest forα = 0 in case ofNT . We shall see that the behaviour of(−1)NT is the most
important. More precisely, we show that asymptotically var(F )∼ T 2 andE−1(F )∼ T 2

whereasEα(F )∼ 4(1+ α)2 T 3 for α 6= −1.
Let us start with the variance ofF . AsNT is Poissonian with parameterT , the mean

of (−1)NT NT is−T e−2T , and its variance is

var(F )= T 2(1− e−4T )+ T T→∞∼ T 2.

Now we want to evaluate the energy of parameterα. If there is no jump at timet we
have thatDtF = (−2NT − 1)(−1)NT and

DsF ◦ ε+t =
(
2(NT + 1)(−1)N({s}) + 1

)
(−1)NT .

Then we have that

Wt =
T∫
t

2e−2(s−t )(−1)N(]t,s[)DsF ◦ ε+t Ñ(ds)

= 2(NT + 1)(−1)NT
T∫
t

2e−2(s−t )(−1)N(]t,s])Ñ(ds)

+ (−1)NT
T∫
t

2e−2(s−t )(−1)N(]t,s[)Ñ(ds)

= 2(NT + 1)(−1)NT
(−1+ (−1)N(]t,T ])e−2(T−t ))+ (−1)NT M(t)

T ,
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using (22) and the martingaleM(t)
u introduced above,

M(t)
u =

u∫
t

2e−2(s−t )(−1)N(]t,s[)Ñ(ds). (26)

It follows that

Eα(F )=E
T∫

0

(DtF + αWt)
2dt

=E
T∫

0

(−2NT − 1− 2α(NT + 1)+ 2α(NT + 1)(−1)N(]t,T ])e−2(T−t ) + αM(t)
T

)2
dt.

Takingα =−1, we get that

E−1(F )= E
T∫

0

(
1− 2(NT + 1)(−1)N(]t,T ])e−2(T−t ) −M(t)

T

)2
dt.

Developing the expression leads to the following estimates:E(N2
T )∼ T 2, E(M(t)

T

2
)6 1

as we have seen in Section 5.1,E(NT )∼ T , and finally

|ENTM(t)
T |6

√
E
(
N2
T

)√
E
(
M

(t)
T

2)=O(T ).

Thus

E−1(F )
T→∞∼ T 2.

Assume nowα 6= −1. New terms appearing in the expression ofEα(F ) are of order
O(T 2), exceptE

∫ T
0 4(1+ α)2N2

T dt , which is of order 4(1+ α)2T 3. Hence

Eα(F )
T→∞∼ 4(1+ α)2T 3.

This indicates thatEα(F ) is “much” greater thanE−1(F ) whenT is large.

5.3. Other examples

In this paragraph the caseF = aNT , a ∈ R, is treated. By convention, ifa = 0 we set
F = 11{NT=0}.

PROPOSITION 5.2. –For all T and allα,

Eα
(
aNT

)= (a − 1)2

2(a2+ 1)
e(a

2−1)T
[(
(2aα + a − 1)2+ (a + 1)2

)
T

− ((2aα + a − 1)2− (a − 1)2
)1− e−2(a2+1)T

2(a2+ 1)

]
. (27)
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It follows thatαmin is exactly(1− a)/(2a) for everyT , and that there is explosion in the
sense thatEα(aNT )/var(aNT ) tends to infinity whenT becomes large, whenevera 6= 1
and(a,α) 6= (−1,−1). Indeed,

var
(
aNT

)∼ e(a
2−1)T and Eα

(
aNT

)∼C(a,α)T e(a
2−1)T

for some constantC(a,α) depending only ona andα.

Remark5.3. – As a by-product, this example shows that for allα0 ∈ R, α0 6= −1/2,
there exists a functionalF such thatα0 minimizesEα(F ). More generally, this property
is still true in dimensiond for all α0 ∈ Rd such that eachα0

j 6= −1/2. The restriction
α0 6= −1/2 comes from the examples we have chosen, but there is no reason a priori for
which−1/2 6= αmin for anyF .

Proof. –We first evaluate the derivative ofF . If there is no jump at timet 6 T then
DtF = (a − 1)F . If moreovers > t , thenDsF ◦ ε+t = (a − 1)F if the process jumps at
time s, andDsF ◦ ε+t = (a − 1)aF if it doesn’t. It yields

Wt =
T∫
t

2e−2(s−t )(−1)N(]t,s[) DsF ◦ ε+t Ñ(ds)

= (a − 1)F

T∫
t

2e−2(s−t )(−1)N(]t,s[)
(
N(ds)− a ds)

= (a − 1)F


a − 1

2

T∫
t

2e−2(s−t )(−1)N(]t,s])Ñ (ds)

+a + 1

2

T∫
t

2e−2(s−t )(−1)N(]t,s[)Ñ(ds)


= (a − 1)F

(
a − 1

2

(−1+ (−1)N(]t,T ])e−2(T−t ))+ a + 1

2
M

(t)
T

)
,

whereM(t)
T is the martingale introduced in (26). Therefore the energy becomes

Eα(F )= (a − 1)2
T∫

0

E
{
F 2
(

1− αa − 1

2

+ αa − 1

2
(−1)N(]t,T ])e−2(T−t ) + αa + 1

2
M

(t)
T

)2}
dt. (28)

Now, we simply compute the various expectations involved in the expression (28),
that is to sayE(F 2), E(F 2(−1)N(]t,T ])), E(F 2M

(t)
T ), E(F 2(−1)N(]t,T ])M(t)

T ), and finally

E(F 2M
(t)
T

2
).

The first ones are easy:F 2= (a2)NT andF 2(−1)N(]t,T ]) = (a2)N([0,t ])(−a2)N(]t,T ]) so
that

E
(
F 2)= e(a

2−1)T
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and

E
(
F 2(−1)N(]t,T ])

)= e(a
2−1)te(−a

2−1)(T−t ) = e(a
2−1)Te−2a2(T−t ).

For the next expectations, we setFs = aNs , so thatF = FT . As d(F 2
s ) = (a2 −

1)F 2
s−N(ds) anddM(t)

s = 2e−2(s−t )(−1)N(]t,s[)Ñ(ds) we have that

d
(
F 2
s M

(t)
s

)=F 2
s−dM

(t)
s +M(t)

s− d
(
F 2
s

)+∆(F 2
s

)
∆
(
M(t)
s

)
= d(martingale)+ (a2− 1

)
F 2
s−M

(t)

s− ds

+ (a2− 1
)
F 2
s−2e−2(s−t )(−1)N(]t,s[) ds.

Taking expectation yields

d

ds
E
(
F 2
s M

(t)
s

)= (a2− 1
)
E
(
F 2
s M

(t)
s

)+ (a2− 1)2e−2(s−t )E
(
F 2
s−(−1)N(]t,s[)

)
= (a2− 1

)
E
(
F 2
s M

(t)
s

)+ 2
(
a2− 1

)
e(a

2−1)se−2(a2+1)(s−t ).

It follows that

E
(
F 2M

(t)
T

)= a2− 1

a2+ 1
e(a

2−1)T (1− e−2(a2+1)(T−t )).
Notice that the latter is also equal toE(a2Nt (a2)N(]t,T ])M(t)

T )= E(a2Nt )E((a2)N(]t,T ])M(t)
T )

by independence. ButF 2(−1)N(]t,T ])M(t)
T = a2Nt (−a2)N(]t,T ])M(t)

T so that we deduce
from the preceding that

E(F 2(−1)N(]t,T ])M(t)
T )= e(a

2−1)t−a2− 1

−a2+ 1
e(−a

2−1)(T−t )(1− e−2(−a2+1)(T−t ))
= a

2+ 1

a2− 1
e(a

2−1)T (e−2a2(T−t ) − e−2(T−t )).
It remains to evaluateE(F 2M

(t)
T

2
). Using the same method as before, we have that

d
(
F 2
s M

(t)
s

2)=F 2
s−d
(
M(t)
s

2)+M(t)

s−
2
d
(
F 2
s

)+∆(F 2
s

)
∆
(
M(t)
s

2)
= d(martingale)+F 2

s−d
〈
M(t)

〉
s
+ (a2− 1

)
F 2
s−M

(t)

s−
2
N(ds)

+ (a2− 1
)
F 2
s−
(
2M(t)

s−2e−2(s−t )(−1)N(]t,s[)+ 4e−4(s−t ))N(ds)
= d(martingale)+ (a2− 1

)
F 2
s−M

(t)

s−
2
ds + 4a2e−4(s−t )F 2

s− ds

+ 4
(
a2− 1

)
e−2(s−t )F 2

s−(−1)N(]t,s[)M(t)

s− ds.

Taking expectation shows that

d

ds
E
(
F 2
s M

(t)
s

2)= (a2− 1
)
E
(
F 2
s M

(t)
s

2)+ 4a2e−4(s−t )e(a
2−1)s

+ 4(a2− 1)e−2(s−t ) a
2+ 1

a2− 1
e(a

2−1)s(e−2a2(s−t )− e−2(s−t ))
= (a2− 1

)
E
(
F 2
s M

(t)
s

2)− 4e−4(s−t )e(a
2−1)s

+ 4
(
a2+ 1

)
e−2(a2+1)(s−t )e(a

2−1)s .



C. ANÉ / Ann. Inst. H. Poincaré, Probab. Statist. 37 (2001) 101–137 127

Therefore,

E
(
F 2M

(t)
T

2)= e(a
2−1)T (1+ e−4(T−t ) − 2e−2(a2+1)(T−t )).

Provided with these expressions, computing the energyEα(F ) is rather long, but
absolutely standard. It is left to the reader.2

6. Poincaré inequalities for asymmetric random walks

The aim of this section is to generalize the Poincaré inequality (17) for cylindrical
functionals and its generalization (7) to an asymmetric process on the cube. Recall from
Section 2.4 that we consider here the generator

Lf (x)=
d∑
j=1

λj
(
x(j)

)(
f ◦ τ (j) − f )(x),

where λj > 0 on {+1,−1}, and that the random walk has independent coordinates
(B

(j)
t )t>0, each one beeing an asymmetric continous time random walk on{+1,−1},

jumping from−1 to+1 with rateλj (−1) and from+1 to−1 with rateλj (+1). Recall
thatΛj = λj (+1)+ λj (−1), and see Section 2.4 for more details.

In Section 2.4 we calledPλ the law of the point process of jumpsω =∑ δ(Tn,jn). For
simplicity, we lay down the subscriptλ in this section, so thatP will denotePλ, N̂ will
denoteN̂λ, and so on.

6.1. Poincaré inequalities for cylindrical functionals

In this section we extend the Poincaré inequality (17) to cylindrical functionals. We
first consider the case of a one-cylindrical functionalF = f (Bt) and we bound its
variance. Then we consider the general case.

PROPOSITION 6.1. – If d = 1, let c(t, x0) the Poincaré constant of the law ofBt
starting atx0. Then

c(t, x)= λ(x)
(

1− e−Λt

Λ

)(
λ(−x)+ λ(x)e−Λt

Λ

)
6 λ(x)1− e−Λt

Λ
(29)

and for all functionalsF = f (Bt)
E
(
F 2)−E(F )2= c(t, x0)E

(
(DF)2

)
(30)

with DF = Df (Bt) = f (−Bt) − f (Bt). More generally, if c(j) denotesc(t, x)
associated toλj , then for all functionalF = f (Bt)

E
(
F 2)−E(F )26 d∑

j=1

c(j)
(
t, x

(j)
0

)
E
((
D(j)F

)2)
, (31)

withD(j)F =D(j)f (Bt).
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Proof. –Since the coordinatesB(j)t are mutually independent, the lawPxt of Bt starting

atx is the product measure
⊗d

j=1 P(x
(j),j)

t , and Poincaré inequality (31) follows from the
one-dimensional case (30). Now we have to show that for any functionf on {+1,−1}

Pxt f
2− (Pxt f )26 c(t, x)Pxt ((Df )2). (32)

To this end, notice thatL2=−ΛL , which implies that

Pt = I + 1− e−Λt

Λ
L

and

Ptf
2− (Ptf )

2=
(
f 2+ 1− e−Λt

Λ
L
(
f 2))− (f + 1− e−Λt

Λ
Lf
)2

= 1− e−Λt

Λ

(
L
(
f 2)− 2f Lf

)−(1− e−Λt

Λ

)2

(Lf )2.

As (Df )2 = (f (+1) − f (−1))2 is a constant, we have thatPt(Df )
2 = (Df )2, that

L (f 2)− 2f Lf = λ(Df )2 and that(Lf )2= λ2(Df )2. Finally,

Pxt f
2− (Pxt f )2= c(t, x)(Df )2= c(t, x)Pxt (Df )2,

which implies that the desired inequality (32) is actually an equality.2
The Poincaré inequality (31) is extended to arbitrary cylindrical functionals in

Proposition 6.2 below.

PROPOSITION 6.2. – LetF = f (Bt1, . . . ,Btn) with 0= t0< t1< · · ·< tn, then

E
(
F 2)−E(F )26 Ecyl(F )=

d∑
j=1

n∑
i=1

E
(
c(j)
(
ti − ti−1,B

(j)
ti−1

)

×
(

n∑
k=i

e−Λ(tk−ti )D̃(j)
k F ◦ τ (j)i,k−1

)2)
, (33)

where(D̃(j)
k F ◦ τ (j)i,k−1)(B) is defined by(3).

Proof. –Here again, it is sufficient to consider the one-dimensional case. (33) is
proved by iteration, as it is done in the symmetric case, Section 3.1. We shall prove
the key point only, that is: forn= 2 and

h(x1)= Px1
t2−t1

(
f (x1, ·))= ∫ f (x1, x2)pt2−t1(x1, dx2),

then

D̃h= Pt2−t1

(
D̃1f + e−Λ(t2−t1)D̃2f ◦ τ1,1

)
, (34)

that is to say
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x1Dh(x1)=
∫ (
x1D1f (x1, x2)+ e−Λ(t2−t1)x2D2f (−x1, x2)

)
pt2−t1(x1, dx2).

Let u= t2− t1. Then

Dh(x1)= h(−x1)− h(x1)

=P−x1
u

(
f (−x1, ·))−Px1

u

(
f (x1, ·))

= (P−x1
u −Px1

u

)(
f (−x1, ·))+Px1

u

(
D1f (x1, ·)).

Now, for an arbitrary functiong,

(
P−xu −Pxu

)
(g)= (g(−x)− g(x))+ 1− e−Λu

Λ

(
λ(−x)(g(−x)− g(x))

− λ(x)(g(−x)− g(x)))
=Dg(x)

(
1− (λ(x)+ λ(−x))1− e−Λu

Λ

)
= e−ΛuDg(x).

Applying this tog(x)= f (−x1, x) and using the fact thatxDg(x) is a constant, we get
that

x1
(
P−x1

u −Px1
u

)(
f (−x1, ·))= e−Λux2D2f (−x1, x2)

=
∫ (

e−Λux2D2f (−x1, x2)
)
pu(x1, dx2),

which gives (34). 2
6.2. Energy arising from Poincaré inequalities

In this section we wish to identify the cylindrical energyE cyl(F ) with an energy
expressed in terms of the derivativeDuF only, and to derive a Poincaré inequality valid
for a large class of functionals. Unfortunately, unlike the symmetric case, the energy
E cyl(F ) itself is not equal to the analogue ofE−1(F ). The reason is that for a fixed
functionalF , the cylindrical energies associated to distinct partitions(t11, . . . , t

1
n) and

(t21, . . . , t
2
m) are no more equal. However, the following theorem shows that these energies

converge when the mesh of the partition tends to zero.
Recall that the compensator̂N is given by

N̂
(
dt, {j})= λj(B(j)t− )dt.

THEOREM 6.3. – Let F be a cylindrical functionalF(B) = f (Bs1, . . . ,Bsp), and

T = sp. Consider a sequence(t(n)1 , . . . , t (n)n )
n>p of partitions containing(s1, . . . , sp) and

such thatt (n)1 < · · ·< t(n)n = T . Assume that the meshδn =maxi6n |t (n)i − t (n)i−1| tends to
0 asn tends to infinity, and denote byE cyl

(n)(F ) the cylindrical energy ofF associated to
the partition(t(n)1 , . . . , t (n)n ). Then

E cyl
(n)(F )

n→∞−→ E−1(F ), (35)
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where, ifd = 1,

E−1(F )= E
T∫

0

(
DtF −

T∫
t

e−Λ(s−t )(−1)N(]t,s[)
(
DsF ◦ ε+t

)(
2N(ds)−Λds))2

dN̂(t).

Whend > 1,

E−1(F )=E
∫

[0,T ]×J

(
D(t,j)F −W(t,j)

)2
dN̂(t, j)

with

W(t,j) =
T∫
t

e−Λj (s−t )(−1)N(]t,s[×{j})
(
D(s,j)F ◦ ε+(t,j)

)(
2N(ds, j)−Λjds

)
.

COROLLARY 6.4 (Poincaré inequality). –Let T > 0 be finite and letF ∈ L2(Ω) be
anFT -measurable functional such that the quantities

E
∫

[0,T ]×J
(DuF)

2du, E
T∫

0

( T∫
t

e−Λj (s−t )
∣∣D(s,j)F ◦ ε+(t,j)

∣∣N(ds, j))2

dt

and E
T∫

0

( T∫
t

e−Λj (s−t )
∣∣D(s,j)F ◦ ε+(t,j)

∣∣ds)2

dt (36)

are finite. Then

E
(
F 2)−E(F )26 E−1(F ). (37)

Proof of Theorem 6.3. –Once more, we may assume thatd = 1 since the argument
is the same for each term of the sum. The proof is divided in two steps. In the first one
we rewrite both energiesE cyl

(n)(F ) andE−1(F ) in Lemma 6.5, and in the second step we
show the convergence result.

LEMMA 6.5. – LetF = f (Bt1, . . . ,Btn). Then

E−1(F )= E
n∑
i=1

( ti∫
ti−1

e−2Λ(ti−t )λ(Bt) dt
)(

n∑
j=i

e−Λ(tj−ti )D̃jF ◦ τi,j−1

)2

(38)

and

E cyl(F )= E
n∑
i=1

E
( ti∫
ti−1

e−2Λ(ti−t )λ(Bt) dt
∣∣∣Fti−1

)(
n∑
j=i

e−Λ(tj−ti )D̃jF ◦ τi,j−1

)2

. (39)

Proof. –To prove (39) it is enough to show that for allT > 0

c(T ,B0)= E
T∫

0

e−2Λ(T−t )λ(Bt) dt.
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It just follows from the equality

E
(
λ(Bt)

)= (Ptλ)(B0)= λ(B0)+ 1− e−Λt

Λ
(Lλ)(B0)

= λ(B0)

Λ

(
2λ(−B0)− e−Λt

(
λ(−B0)− λ(B0)

))
= 2

λ(1)λ(−1)

Λ
− λ(B0)Dλ(B0)

Λ
e−Λt .

Actually, in the constantc(t, x) only matters its orderλj (x)t as t tends to 0. More
precisely, any constantc of this order would lead to Theorem 6.3 (with a different proof
of course).

The expression (38) ofE−1(F ) is obtained with exactly the same arguments as for the
symmetric process in Section 3.2. We just recall these arguments.
• For eacht ∈]ti−1, ti[ without jump ands > t the quantity(−1)N({s})DsF ◦ ε+t is

constant ons ∈]tj−1, tj [ and equal to∆i,j (Bt1, . . . ,Btn) on this interval, with

∆i,j (xi, . . . , xn)= f (x1, . . . , xi−1,−xi, . . . ,−xj−1, xj , . . . , xn)

− f (x1, . . . , xi−1,−xi, . . . ,−xn).
Moreover,DtF =−∆i,i =−f (Bt1, . . . ,Btn)+ f (Bt1, . . . ,Bti−1,−Bti , . . . ,−Btn).• The following exact formula is still available:∫

]t,T ]
e−Λ(s−t )(−1)N(]t,s])

(
2N(ds)−Λds)=−1+ (−1)N(]t,T ])e−Λ(T−t ).

• Finally, (−1)N(]t,T ]) = BtBT so that the terms̃DjF ◦ τi,j−1 = Btj (∆i,j+1 − ∆i,j )

appear as in the symmetric case.2
Recall now thatF is the functionalf (Bs1, . . . ,Bsp) and that(t(n)1 , . . . , t (n)n )

n>p is
a partition containing(s1, . . . , sp). Let us denote byni the index (depending onn)
satisfying tni = si . Let fn be the function on{−1,+1}n defined byfn(x1, . . . , xn) =
f (xn1, . . . , xnp ), so thatE cyl

(n)(F ) is the cylindrical energy ofF associated tofn. Thanks
to Lemma 6.5 we may write

E cyl
(n)(F )= E

n∑
k=1

E
( tk∫
tk−1

e−2Λ(tk−t )λ(Bt) dt
∣∣∣Ftk−1

)(
n∑
l=k

e−Λ(tl−tk)D̃lF ◦ τk,l−1

)2

.

It is clear that the gradient̃Dlfn = 0 if l is not annj . Fix i 6 p andk ∈]ni−1, ni]. Then
we get easily

n∑
l=k

e−Λ(tl−tk)D̃lfn ◦ τk,l−1(x1, . . . , xn)

=
p∑
j=i

e−Λ(sj−tk)D̃jf ◦ τi,j−1(xn1, . . . , xnp )

= e−Λ(si−tk)
p∑
j=i

e−Λ(sj−si )D̃jf ◦ τi,j−1(xn1, . . . , xnp ).
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Let Gi be the functional
∑p
j=i e−Λ(sj−si )D̃jf ◦ τi,j−1(Btn1

, . . . ,Btnp ). We may now
simplify the expression of the cylindrical energy

E cyl
(n)(F )=E

p∑
i=1

ni∑
k=ni−1+1

E
( tk∫
tk−1

e−2Λ(tk−t )λ(Bt) dt
∣∣∣Ftk−1

)
e−2Λ(si−tk)G2

i

=E
p∑
i=1

( si∫
si−1

e−2Λ(si−t )E
(
λ(Bt)

∣∣∣Ftk(t))dt
)
G2
i ,

wherek(t) is the index (depending onn) satisfyingt ∈ [tk(t), tk(t)+1[. Recall from Lemma
6.5 that the expression ofE−1(F ) is now very close

E−1(F )= E
p∑
i=1

( si∫
si−1

e−2Λ(si−t )λ(Bt) dt
)
G2
i .

When the mesh of the partition tends to 0, the timetk(t) tends tot andE(λ(Bt)|Ftk(t) )
tends almost everywhere toλ(Bt) as n goes to infinity. It then follows from the
dominated convergence theorem thatE cyl

(n)(F ) tends toE−1(F ), and the proof of Theorem
6.3 is complete. 2

Proof of Corollary 6.4. –In caseF is cylindrical, Corollary 6.4 is a direct consequence
of Theorem 6.3. We first extend (37) to a boundedFT -measurable functionalF . Let
M > 0 such that|F | 6M a.s. Then there exist cylindricalFT -measurable functionals
Fn bounded byM such that limFn = F almost surely. Inequality (37) is true for each
Fn, and the variance ofFn tends to the variance ofF by dominated convergence, so that
it remains to prove thatE−1(Fn) also tends toE−1(F ).

Applying Proposition 2.7 withG= 11{|F |6M} orG= 11{Fn→F } etc., we get that
• |DuF |6 2M , |DuFn|6 2M and limn→∞DuFn =DuF for µ-almost every(ω,u).
• |D(s,j)F ◦ ε+(t,j)| 6 2M , |D(s,j)Fn ◦ ε+(t,j)| 6 2M and limn→∞D(s,j)Fn ◦ ε+(t,j) =
D(s,j)F ◦ ε+(t,j) for µ× dt-almost every(ω, (s, j), t).

We are then able to deduce thatE−1(Fn) tends toE−1(F ) by dominated convergence, so
that (37) is true forF .

Now for a general functionalF satisfying conditions (36) of Corollary 6.4, we set
Fn = (F ∧ n)∨ (−n). AsFn is bounded, it satisfies (37). Moreover,
• |Fn|6 |F | andFn→ F almost surely,
• |DuFn|6 |DuF | andDuFn→DuF µ-almost everywhere,
• |D(s,j)Fn ◦ ε+(t,j)| 6 |D(s,j)F ◦ ε+(t,j)| and D(s,j)Fn ◦ ε+(t,j) → D(s,j)F ◦ ε+(t,j) for
µ× dt-almost every(ω, (s, j), t).

Conditions onF are equivalent to

E
n∑
j=1

T∫
0

(
|D(t,j)F | +

T∫
t

e−Λj (s−t )
∣∣D(s,j)F ◦ ε+(t,j)

∣∣(2N(ds, j)+Λj ds
))2

dt <∞,

so that as before,E−1(Fn) tends toE−1(F ) by dominated convergence, and it implies
(37) forF . 2
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Remark6.6. – The existence of a representation formula for martingales is well
known [7, Theorem 4.37, p. 177]. Every local martingale has the form

M =M0+
∫
WdN −

∫
WdN̂,

whereW is a predictable process such that
∫ |W |dN̂ is locally integrable. It would

be interesting to knowW whenM is the martingaleE(F |Ft ). It is shown in Section
2 that Lemmas 2.1 and 2.2 are still true for asymmetric random walks, and one may
wonder wetherW = pDF , or not. The answer isnot. Take F = NT . ThenDF =
11[0,T ](t)= pDF , but

∫ T
0 dÑ =NT −N̂([0, T ]) is no moreNT −ENT sinceN̂ is no more

deterministic. IsW equal to someHα (defined in Theorem 4.1)? Regarding Poincaré
inequality (37),H−1 seems to be a natural candidate.

7. Examples of functionals for asymmetric random walks

Only one Poincaré inequality has been shown for asymmetric random walks: the
Poincaré inequality of parameter−1. Therefore we shall only compareE−1(F ) with
the variance ofF for some functionalsF . However, as for the symmetric random walk
we may define

E0(F )= E
∫
(DuF)

2dN̂(u) ∈ [0,∞],
and we shall also compare this quantity withE−1(F ) and var(F ).

We assume in this section thatd = 1. In the first paragraph the example of cylindrical
functionalsF = f (Bt) is treated. It turns out thatE−1(F ) gives exactly var(F ), whereas
E0(F )/var(F ) tends to infinity whent is large and for fixedf . It is the same behaviour
than in the symmetric case.

Then we turn to the functionalF = NT in the second paragraph. On the opposite,
we have asymptotically thatE0(F ) < var(F ) < E−1(F ), each term being of orderKT
for some constantsK . It means that the Poincaré inequality of parameter 0 does not
hold forNT , yet it is a nice functional with finite moments and bounded derivative. This
example shows that the Poincaré inequality var(F )6 E0(F ) is false, even for reasonable
functionalsF .

7.1. Cylindrical functionals

Assume thatF = f (BT ) is 1-cylindrical, and thatd = 1. ThenDtF = Df (BT ) if
there is no jump at timet , andDsF ◦ ε+t =−(−1)N({s})Df (BT ). Notice that(Df )2 is a
constant. Then

E0(F )= (Df )2E
( T∫

0

λ(Bt) dt

)
= (Df )2

T∫
0

(Ptλ)(B0) dt

whereas, by Lemma 6.5 and its proof p. 130
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E−1(F )= (Df )2E
T∫

0

e−2Λ(T−t )λ(Bt) dt

= (Df )2
T∫

0

e−2Λ(T−t )(Ptλ)(B0) dt = c(T ,B0)(Df )
2.

Therefore it gives exactly

E−1(F ) = c(T ,B0)(Df )
2= var(F )6 E0(F )

and E0(F )
T→∞∼ 2

λ(1)λ(−1)

Λ
T (Df )2.

Recall thatc is the bounded constant arising in Proposition 6.1. We mentionned in
Section 6 that any constantc′(t, x) having the same behaviour asc when t is small
would lead to the same Poincaré inequality with energyE−1(F ). It is surprising here to
recover the best constantc(t, x) throughE−1(F ).

7.2. Number of jumps

RecallNT = N([0, T ]) is the number of jumps up to timeT . We first estimate the
energiesE0(NT ) andE−1(NT ), and then the variance ofNT . We start withE0(NT ).

As for the symmetric random walk in Section 5.2.1 we have thatDsF = 1 for s 6 T ,
so that

E0(F )= E
( T∫
t

λ(Bt) dt

)
=

T∫
0

(Ptλ)(B0) dt
T→∞∼ 2

λ(1)λ(−1)

Λ
T .

In order to estimateE−1(NT ), notice that

λ(x)= 1

2

(
λ(x)+ λ(−x))+ 1

2

(
λ(x)− λ(−x))

=Λ/2+ xDλ(−1)/2,

and thatBs− = Bt(BtBs−) = Bt(−1)N(]t,s[) for t < s. Therefore the martingaleM(t)
T

defined in the symmetric case by (26) and here by

M
(t)
T =

∫
]t,T ]

2e−Λ(s−t )(−1)N(]t,s[)
(
N(ds)− λ(Bs−) ds)

satisfies

M
(t)
T =

∫
]t,T ]

e−Λ(s−t )(−1)N(]t,s[)
(
2N(ds)−Λds)−BtDλ(−1)

T∫
t

e−Λ(s−t )ds

=
∫
]t,T ]

e−Λ(s−t )(−1)N(]t,s[)
(
2N(ds)−Λds)− 1− e−Λ(T−t )

Λ
BtDλ(−1).

We have then
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E−1(F )=E
T∫

0

(
1−

∫
]t,T ]

e−Λ(s−t )(−1)N(]t,s[)
(
2N(ds)−Λds))2

λ(Bt) dt

=E
T∫

0

(
1−M(t)

T −
1− e−Λ(T−t )

Λ
BtDλ(−1)

)2

λ(Bt) dt.

SinceE(M(t)
T |Ft )= 0 it yields

E−1(F )=
T∫

0

E
((

1+ (1− e−Λ(T−t ))2

Λ2
(Dλ)2+M(t)

T

2

− 2
1− e−Λ(T−t )

Λ
Dλ(−1)Bt

)
λ(Bt)

)
dt.

Now we have thatE(λ(Bt)) = PB0
t λ = 2λ(1)λ(−1)

Λ
+ Ke−Λt , and thatE(Btλ(Bt)) =

PB0
t (·λ(·))=Ke−Λt , whereK is a constant that may differ at each occurence. We have

also that

E
(
M

(t)
T

2
λ(Bt)

)=E(λ(Bt)E(M(t)
T

2∣∣Ft))
=E

(
λ(Bt)E

( T∫
t

4e−2Λ(s−t )λ(Bs) ds
∣∣∣Ft
))

=E
(
λ(Bt)

T∫
t

4e−2Λ(s−t )(PBts−tλ
)
ds

)

=
T∫
t

4e−2Λ(s−t )E
(
λ(Bt)

(
2
λ(1)λ(−1)

Λ
− λ(Bt)Dλ(Bt)

Λ
e−Λ(s−t )

))
ds.

Since

E
(
λ2(Bt)Dλ(Bt)

)= Pt
(
λ2Dλ

)=−λ(1)λ(−1)

Λ
(Dλ)2+Ke−Λt ,

it follows that

E
(
M

(t)
T

2
λ(Bt)

)= 2

Λ

(
2
λ(1)λ(−1)

Λ

)2

+ 4

3Λ2

λ(1)λ(−1)

Λ
(Dλ)2+Ke−Λt +Ke−Λ(T−t ).

Therefore,

E−1(F )=
(

2
λ(1)λ(−1)

Λ

(
1+ (Dλ)

2

Λ2

)
+ 2

Λ

(
2
λ(1)λ(−1)

Λ

)2

+ 4

3Λ2

λ(1)λ(−1)

Λ
(Dλ)2

)
T +O(1).

Simplifying, we get that

E−1(F )
T→∞∼ 2λ(1)λ(−1)

Λ

(
2+ 2(Dλ)2

3Λ2

)
T .
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Now, we want to estimate the variance ofNT . To start with, note thatNt has mean

ENt =EN̂t =
t∫

0

(
PB0

s λ) ds =
2λ(1)λ(−1)

Λ
t − λ(B0)Dλ(B0)

Λ2
+Ke−Λt .

Next we need to estimateE(−1)Nt andENt(−1)Nt in order to evaluateEN2
t . Since

(−1)Nt = B0Bt

E(−1)Nt = PB0
t (B0·)= 1− 2λ(B0)

1− e−Λt

Λ
= Dλ(B0)

Λ
+Ke−Λt .

Then we have that

dNt(−1)Nt =Nt−d(−1)Nt + (−1)Nt−dNt +∆(−1)Nt∆Nt

= (−2Nt−(−1)Nt− + (−1)Nt− − 2(−1)Nt−
)
dNt

= d(martingale)− (2Nt− + 1)(−1)Nt−λ(Bt−) dt

= d(martingale)− (2Nt− + 1)(−1)Nt−
(
Λ

2
− Dλ(B0)

2
(−1)Nt−

)
dt,

which yields

d

dt
E
(
Nt(−1)Nt

)
=−ΛE(Nt(−1)Nt

)− Λ
2
E(−1)Nt +Dλ(B0)ENt +Dλ(B0)/2

=−ΛE(Nt(−1)Nt
)+ 2λ(1)λ(−1)

Λ
Dλ(B0)t − λ(B0)

(Dλ)2

Λ2
+Ke−Λt .

As a consequence,

E
(
Nt(−1)Nt

)= 2λ(1)λ(−1)

Λ2
Dλ(B0)t −

(
λ(B0)(Dλ)

2

Λ3

+ 2λ(1)λ(−1)

Λ3
Dλ(B0)

)
+Kte−Λt +Ke−Λt .

Finally, we have that

d(Nt )
2= 2Nt−dNt + dNt = d(martingale)+ (2Nt− + 1)λ(Bt) dt,

so that
d

dt
EN2

t =E
(
(2Nt + 1)

(
Λ

2
− Dλ(B0)

2
(−1)Nt

))
dt

=ΛENt −Dλ(B0)E
(
Nt(−1)Nt

)+ Λ
2
− Dλ(B0)

2
E(−1)Nt

= 2t
(

2λ(1)λ(−1)

Λ

)2

+ 2λ(1)λ(−1)

Λ

(
1+ (Dλ)

2

Λ2
− 2λ(B0)Dλ(B0)

Λ2

)
+Kte−Λt +Ke−Λt .



C. ANÉ / Ann. Inst. H. Poincaré, Probab. Statist. 37 (2001) 101–137 137

Hence we conclude that

E
(
NT

2)−E(NT )2= 2λ(1)λ(−1)

Λ

(
1+ (Dλ)

2

Λ2

)
T +O(1).

Since 1+ (Dλ)2

3Λ2 6 1+ (Dλ)2

Λ2 6 2, the energyE−1(NT ) gives a good estimation of the
variance ofNT . Indeed,

1

2
E−1(NT )6 var(NT )6 E−1(NT )

asymptotically. On the opposite, as soon as(Dλ)2 6= 0, E0(NT ) < var(NT ). In other
words, the Poincaré inequality of parameter 0 is no more true for asymmetric random
walks.

Acknowledgement

I would like to thank Prof. Michel Ledoux for helpful discussions and encouraging
comments.

REFERENCES

[1] Ané C., Ledoux M., On logarithmic sobolev inequalities for continuous time random walks
on graphs, Probab. Theor. Relat. Fields 116 (4) (2000) 573–602.

[2] Bichteler K., Gravereaux J.-B., Jacod J., Malliavin Calculus for Processes with Jumps,
Gordon and Breach, New York, 1987.

[3] Capitaine M., Hsu E.P., Ledoux M., Martingale representation and a simple proof of
logarithmic Sobolev inequalities on path spaces, Electron. Comm. Probab. 2 (1997) 71–
81.

[4] Carlen E.A., Pardoux É., Differential calculus and integration by parts on Poisson space, in:
Stochastics, Algebra and Analysis in Classical and Quantum Dynamics (Marseille, 1988),
Kluwer, Dordrecht, 1990, pp. 63–73.

[5] Dellacherie C., Meyer P.-A., Probabilités et potentiel, Hermann, Paris, 1980, Chapitres V à
VIII. Théorie des martingales. [Martingale theory].

[6] Hsu E.P., Logarithmic Sobolev inequalities on path spaces over Riemannian manifolds,
Comm. Math. Phys. 189 (1) (1997) 9–16.

[7] Jacod J., Shiryaev A.N., Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin,
1987.

[8] Nualart D., Vives J., Anticipative calculus for the Poisson process based on the Fock space,
in: In Séminaire de Probabilités, XXIV, 1988/89, Springer, Berlin, 1990, pp. 154–165.

[9] Picard J., Formules de dualité sur l’espace de Poisson, Ann. Inst. H. Poincaré Probab.
Statist. 32 (4) (1996) 509–548.

[10] Privault N., Chaotic and variational calculus in discrete and continuous time for the Poisson
process, Stochastics Stochastics Rep. 51 (1–2) (1994) 83–109.

[11] Wu L., A new modified logarithmic Sobolev inequality for Poisson point processes and
several applications, Probab. Theor. Relat. Fields (2000) to appear.


