@article{AIHPB_2000__36_6_749_0, author = {Dembo, Amir and Peres, Yuval and Rosen, Jay and Zeitouni, Ofer}, title = {Thin points for brownian motion}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {749--774}, publisher = {Gauthier-Villars}, volume = {36}, number = {6}, year = {2000}, mrnumber = {1797392}, zbl = {0977.60073}, language = {en}, url = {http://www.numdam.org/item/AIHPB_2000__36_6_749_0/} }
TY - JOUR AU - Dembo, Amir AU - Peres, Yuval AU - Rosen, Jay AU - Zeitouni, Ofer TI - Thin points for brownian motion JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2000 SP - 749 EP - 774 VL - 36 IS - 6 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPB_2000__36_6_749_0/ LA - en ID - AIHPB_2000__36_6_749_0 ER -
%0 Journal Article %A Dembo, Amir %A Peres, Yuval %A Rosen, Jay %A Zeitouni, Ofer %T Thin points for brownian motion %J Annales de l'I.H.P. Probabilités et statistiques %D 2000 %P 749-774 %V 36 %N 6 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPB_2000__36_6_749_0/ %G en %F AIHPB_2000__36_6_749_0
Dembo, Amir; Peres, Yuval; Rosen, Jay; Zeitouni, Ofer. Thin points for brownian motion. Annales de l'I.H.P. Probabilités et statistiques, Volume 36 (2000) no. 6, pp. 749-774. http://www.numdam.org/item/AIHPB_2000__36_6_749_0/
[1] First passage and sojourn times and the exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc. 103 (1962) 434-452. | MR | Zbl
, ,[2] Thick points for spatial Brownian motion: Multifractal analysis of occupation measure, Ann. Probab. 28 (2000) 1-35. | MR | Zbl
, , , ,[3] Thick points for planar Brownian motion and the Erdös-Taylor conjecture on random walk, Acta Math., to appear. | MR | Zbl
, , , ,[4] The Brownian escape process, Ann. Probab. 7 (1979) 864-867. | MR | Zbl
,[5] The occupation time of Brownian motion in a ball, J. Theoret. Probab. 9 (1996) 429-445. | MR | Zbl
, ,[6] On the existence of subsets of finite positive packing measure, Mathematika 42 (1995) 15-24. | MR | Zbl
, ,[7] Some Random Series of Functions, 2nd edition, Cambridge University Press, 1985. | MR | Zbl
,[8] Une propriété métrique du mouvement Brownien, C. R. Acad. Sci. Paris 268 (1969) 727-728. | MR | Zbl
,[9] The exact Hausdorff measure of irregularity points for a Brownian path, Z. W. 40 (1977) 257-282. | MR | Zbl
,[10] Limsup random fractals, Elect. J. Probab. 5 (2000), paper 4, 1-24. | MR | Zbl
, , ,[11] Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995. | MR | Zbl
,[12] Topology: A First Course, Prentice-Hall, Englewood Cliffs, NJ, 1975. | MR | Zbl
,[ 13] How often on a Brownian path does the law of the iterated logarithm fail?, Proc. Lond. Math. Soc. 28 (1974) 174-192. | MR | Zbl
, ,[14] Uniform measure results for the image of subsets under Brownian motion, Probab. Theory Related Fields 76 (1987) 257-289. | MR | Zbl
, ,