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ABSTRACT. - We study the existence and regularity of densities for
the solution of a class of parabolic SPDEs of Burgers type introduced by
Gyongy in a recent paper. In the case of regular, bounded coefficients, we
show the existence of a smooth density and, as a consequence, we obtain
the existence of the density for the classical stochastic Burgers equation.
@ Elsevier, Paris
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RESUME. - On etudie ici 1’ existence et la regularite des densites
pour les solutions d’une classe d’EDPS paraboliques de types Burgers
introduite par Gyongy dans un article recent. Dans le cas de coefficients

reguliers et bornes, on montre l’existence d’une densite reguliere et,
comme consequence, on obtient 1’ existence de la densite pour 1’ equation
de Burgers classique. @ Elsevier, Paris
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460 P.-L. MORIEN

1. INTRODUCTION

Consider the following parabolic stochastic partial differential equa-
tion :

for (t, x) e]0,r[x]0,l[, where W is a space-time white noise on
[0, T] x [0,1], with Dirichlet boundary conditions:

The solution of such an equation is the process X (t, x) whose evolution
equation formulation is the following (cf. Walsh [16] for the case when
g == 0 and Gyongy [8] for g with quadratic growth):

where G t denotes the Green kernel related to the heat equation on
[0, T ] x [0,1] with Dirichlet boundary conditions and where

for any continuous function ~ on [0,1]. We remark that if f = a = 0 and

g (r) _ ~ r2, then the above equation is called Burgers equation and has
been extensively studied in the literature (see Burgers [5], Hopf [9] and
the references therein). More recently, the Burgers equation perturbed
by space-time white noise (i.e., when f = 0, g(r) = 1 2r2 and 03C3 ~ 0)
has been studied by various authors (see, e.g., Da Prato, Debussche and
Temam [6], Da Prato and Gatarek [7] and the references therein). Finally,
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461BURGERS SPDE: EXISTENCE OF DENSITY

the case g = 0 has also been studied intensively, we refer to Walsh [ 16]
for the basics on the subject.

In [8] Gyongy has proved the existence and uniqueness of the solution
of (E), along with joint continuity of the paths, when f and g are locally
Lipschitz with linear growth, and or is globally Lipschitz and bounded.
The purpose of our work is to prove that, under more restrictive

assumptions on the coefficients (namely: f, g, a sufficiently regular, with
bounded derivatives, and o bounded and satisfying a strong ellipticity
condition), the solution X (t, x) of (E) admits a Holder-continuous
version and belongs to the space of infinitely differentiable random
variables in the sense of the Malliavin calculus associated with W.

Furthermore, using a method developed by Bally and Pardoux in [3], we
prove that in this case, for all 0  xi  x2  ...  Xd  1, the random
vector (X (t, jci),.... X (t, xd)) admits a C°° density with respect to the
Lebesgue measure on IRd .
As a consequence, using a localization argument, we prove that, when

g satisfies only a condition of quadratic growth (a case which includes
the stochastic Burgers equation), the solution of equation (E) belongs
to the space Moreover, using the general criterion for absolute
continuity proved by Bouleau and Hirsch (see [4]), we show that in this
case the law of the random vector (X (t, x1 ), ... , X (t, xd)) is absolutely
continuous with respect to the Lebesgue measure on Rd. A similar one-
dimensional result has recently been obtained by Lanjri and Nualart [ 10]
for the stochastic Burgers equation in the case of a nondegeneracy at the
origin, using the approach developed by Pardoux and Tusheng in [15].
However, in [ 10] as in our work, the smoothness of the density cannot be
obtained in the case considered via the localization and remains an open

problem.
The proofs of our results rely on new estimates for the Green kernel

G, regarding the behaviour of (x, y). These estimates are proved in
Section 3. Section 2 is devoted to the statement of the problem and of the
results, and Sections 4 and 5 to the proofs of the main results.

2. GENERAL FRAMEWORK AND STATEMENT OF THE

RESULTS

Let T be a fixed deterministic time, (~2, F, P) be a probability space
and W a space-time white noise on [0, T ] x [0, 1 ] with covariance d s dYe
Vol. 35, n° 4-1999.



462 P.-L. MORIEN

Let

where fii is the class of P-null sets in ,~’ and let P denote the a -algebra
of ilit-progressively measurable subsets of [2 x [0, T] x [0,1].

Let X = (X (t, x)) be the solution of equation (E). This means that X
satisfies the evolution equation ( 1.1 ) where

In all that follows, we assume that the initial condition Xo satisfies the
following:

for some a > 0 and for all p E [ 1, +oo[.

To study parabolic SPDEs, it is crucial to have estimates of the Green
kernel G. In the case g == 0, one uses those recalled in Lemma A.I of
Appendix A. However, due to the presence of (x, y) in ( 1.1 ), we
need estimates for this quantity as well. They are given in the following
lemma:
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463BURGERS SPDE: EXISTENCE OF DENSITY

A simple, yet interesting application of these estimates is the following
regularity result: _

THEOREM 2.1. - Under (Ho), if f, g and a are globally Lipschitz on

R, then the solution X (t, x) of (E) is ~8-Holder continuous with respect to
x and ~8/2-Holder continuous with respect to t, for every ~8  inf{a, 1/2}.

We remark that the joint continuity in (t, x) of X has been obtained

by Gyongy in [8] for more general coefficients, as mentioned in the
introduction. More precisely, the author proved the following result:

PROPOSITION 2.1 (Theorem 2.1, p. 274, [8]). - If the following
hypotheses are satisfied:

(a) f and g are locally Lipschitz with linearly growing Lipschitz
constants, a is globally Lipschitz, i. e., there exists a constant L

such that

(b) f satisfies the linear growth condition and a is bounded;
(c) X o is an F0-measurable, L p ( [o, 1 ] ) -valued random element, for

some p > 2,
then equation (E) has a unique solution X on the interval [0, oo).
Moreover, X is an L p ( [o, 1 ] ) -valued continuous stochastic process, and

if X o has a continuous modification, then X has a modification which is

continuous in (t; x) E [0, oo) x [0, 1].

Now, our main interest in this paper is the existence of the density
for the law of X (t, x) with respect to the Lebesgue measure on R, as

well as its possible regularity. A result in that direction has been proved
by Bally and Pardoux in [3] in the case g == 0 under some regularity
assumptions on f and a, provided a non-degeneracy hypothesis holds

Vol. 35, n° 4-1999.



464 P.-L. MORIEN

on a. We therefore define three sets of hypotheses on the coefficients.
We say that f, g, a satisfy (H) if the following assumptions hold:

(H.1 ) f, g and a are of class C1 on R, f and cr have a bounded first
derivative, o- is bounded.

(H.2) g satisfies a quadratic growth condition, i.e.,

(H.3) There exists c > 0 such that, for all x E R, o-2(x) > c.
We say that f, satisfy the restricted hypotheses (RH) if they satisfy
(H.1 ) and (H.3) and moreover g’ is bounded.

Finally, we say that f, g, a satisfy the restrictive smoothness

hypotheses (RSH) if they are of class C°°, with bounded derivatives of
order k > 1, and if cr is bounded and satisfies (H.3).
Our main result is the following (the spaces and are defined

below):

THEOREM 2.2. - Under conditions (Ho) and (RSH), for all t > 0
and (~i,..., xd) E ]0, 1[~, where the x~ ’s are distinct, the random vector
(X (t, xl ), ... , X (t, xd)) belongs to and its law admits a C°°

density with respect to the Lebesgue measure on 

An interesting by-product of Theorem 2.2 is the following:

COROLLARY 2.1. - Under (Ho) and (H), for all t > 0 and ... ,

xd) e ]0, where the xj’s are distinct, the random vector (X (t, xl ), ...,
X (t, xd)) belongs to and its law is absolutely continuous with re-
spect to the Lebesgue measure on 

We remark that Corollary 2.1 proves the existence of the density for
the solution of the stochastic Burgers equation, i.e., when f = 0 and

~)=~’. ’
Theorem 2.2 and Corollary 2.1 will be obtained by means of the

Malliavin calculus with respect to the white noise W. We recall here basic
results of this theory (see [14] for a more detailed account on the subject).

Set H = L2([o, T] x [0,1]); for h E H, let W(h) be the Gaussian
random variable defined by
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We denote by S the space of smooth functionals, i.e., of real-valued
functionals of the form

where f E C°° (Ilgm ) and has polynomial growth, as well as its derivatives,
and h2,..., hm is an orthonormal sequence in H. Finally, ( . , .) H will
denote the inner product on H.

For F E S, one defines the first-order Malliavin derivative of F as the
H-valued random variable

Similarly, the derivative of order k of F is defined recursively by

Then, for p ~ 1 and k e N, the space is the closure of S with respect
to the seminorm

and we set = Finally, a random vector (Fl, ..., Fd )
is said to be in if Fj E for any j E {I, ... , d~.
The operator D is local in the space ~ 1’ 1 which means that for any

F E ~ 1’ 1, D F.1 { F-o} = 0 almost surely. Denote by the set of random

variables F such that there exists a sequence Qn of events and a sequence
Fn of random variable in such that Qn t Q , and for each n, F = Fn
almost surely on Qn .
The Malliavin calculus gives convenient criteria for the existence and

regularity of densities. We will use the following ones in our proofs:
PROPOSITION 2.2 (Existence, [4], or [14] Theorem 2.1.2). - Let F =

(Fl, ..., Fm ) be a random vector satisfying the following conditions:
(i) F~ E for all p > 1 and for i = 1, ..., m ;

(ii) The Malliavin matrix 0393F := is almost

surely invertible.
Then the law of F is absolutely continuous with respect to the Lebesgue
measure on 

Vol. 35, n° 4-1999.
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PROPOSITION 2.3 (Regularity, [14], Corollary 2.1.2). - Let (Fl, ... ,
Fm) a random vector satisfying the following conditions:

(i) Fi E for all i = 1, ..., m.
(ii) The Malliavin matrix := ( ~D Fi , D Fj) satisfies:

Then F has an infinitely differentiable density with respect to the
Lebesgue measure on 

Finally, we shall use in the sequel the following version of the
Burkholder-Davis-Gundy inequality for Hilbert- space valued martin-
gales (see Metivier [ 11 ], E.2., p. 212):

If is an L2(t)-valued predictable process, then

The next sections are devoted to the proofs of Lemma 2.1, Theorems
2.1, 2.2 and Corollary 2.1.

3. PROOF OF LEMMA 2.1

We first remark that the following decomposition holds:

where (t, x, y) ~ Gt (x, y) belongs to C°°([0, T ] x R~), and:

Hence, the behaviour of the integrals in (a), (b), (c), (d) is determined
by that of the corresponding integrals with H/, i = 1, 2, 3, instead of G.
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Sinces the calculations are similar for the three functions, we shall only

prove the required estimates for NB which will be simply denoted by H
in the sequel.
One has:

To prove (a), we evaluate We have:

In the sequel, the following identity will be used repeatedly:

Then

and the last integral is convergent iff 03B2  3/2.
A similar method is used to obtain (b). We have:

Using the following change of variables: ~+~-~=~~-y2014 
of Jacobian h3/2, using (3.1) we obtain:

Vol. 35, n° 4-1999.
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and the last integral is convergent iff fJ  3/2.
We now turn to (c); we have

Setting t - s = hv and x - y = we obtain

Hence we have to prove the convergence of

The convergence near zero is obtained by majorizing the difference by the
sum and then using the method of (a): this yields the condition ,8  3/2.
To prove the convergence near infinity, we use the following trick: set

1 _ z2
Fz (t) = t ~2 e 4t , then:

We have

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Hence:

and both quantities above are equal to 1 / (v + 9) 2 . Since f3 > 1, the
exponent is greater than 1 and

which yields the convergence of the integral on the interval [ 1, 00 [.
For (d), a similar method is used, using the change of variables x - y =

hz , t - s = h2v, of Jacobian h3 and the following identity, similar to (3.2) :
2

if Ut (z) = then

4. HOLDER REGULARITY OF THE SOLUTION

This section is devoted to prove Theorem 2.1. The method used here

is an adaptation of Walsh’s original proof. We start with the following
result:

PROPOSITION 4.1. - Under (Ho), if J, g and a are globally Lipschitz
on R, we have for all p e ] 1, +oo[

Vol. 35, n° 4-1999.
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Proof of Proposition 4.1. - Using Lemma 2.1 (a) with ~B = I and
the evolution equation ( 1.1 ), Holder’s and Burkholder-Davis-Gundy’s
inequalities, along with the linear growth of f, g, a , we easily deduce
that:

where

Furthermore (3 .1 ) immediately yields

Hence, setting y (t ) : = we have

which by iteration gives

and Gronwall’s Lemma yields the result. D

The next step is to prove upper estimates 
and x + h ) - X (t, for h E [0,1] such that t + h E [0, T ] and
x + h E [0,1]. For instance, using again Holder’s and Burkholder-Davis-
Gundy’s inequalities, we obtain:
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Using Proposition 4.1 and the classical estimates for G recalled in

Lemma A.1 of the Appendix, along with Lemma 2.1 (d) with 1  f3 =

6/5  3/2 and ~60 := inf{a, 1/2}, we get

Then, using Kolmogorov’s criterion, we see that there exists a version of
X which is 03B2-Hölder-continuous with respect to x for all 03B2 such that

and the result is proved. The proof of the regularity with respect to t is
similar, and the calculations are omitted.

5. EXISTENCE AND REGULARITY OF THE DENSITY

We devote this section to the proofs of Theorem 2.2 and Corollary 2.1.

Vol. 35, n° 4-1999.
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5.1. Proof of Theorem 2.2

The method used here is inspired from that used in the case g m 0
and is based on Proposition 2.3. We then show that F = (X (t, xi ) , ...,
X (t, Xd)) satisfies conditions (i) and (ii) of Proposition 2.3. Part (i) is
given by the following proposition:
PROPOSITION 5.1. - Under (Ho) and (RH), for all (x, t) E [0,1] x

[0, T ], X (t, x) E for all p E ] 1,00[, and

Moreover, the first derivative of X satisfies the following evolution
equation:

(and Dr,zX (t , x) = 0 if r > t).
Furthermore, under (RSH), for all (x, t) E [0, 1] x [0, T], X (t, x) E

and for all p E ] 1, oo[ and M > 1

Proposition 5.1 is obtained by means of the following Picard approxi-
mation scheme: Xo (t, x) = Gt (x, Xo), and

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Since under (RH) f, g and a are Lipschitz, we have, using the estimates
of Lemma 2.1 and Lemma A. I

Iterating this inequality yields

and therefore:

To prove Proposition 5.1, we then use the following result, which can
be found for instance in [ 14] (Lemma 1.5.4, p.71 ):

LEMMA 5.1. - Let f Fn ; n > I} be a sequence of random variables in
with k > 1 and p > l. Assume that Fn converges to F in LP(,Q) and

supn~Fn~k,p  oo (where the is defined by (2.2)). Then F
belongs to 

Thus the proof reduces to establishing the following lemma:

LEMMA 5.2. - Under (RH), for p E ]3, 00[, there exists a constant

C p such that

and, under (RSH), for all M > 1, p E ]3, oo[, there exists a constant

Cp,M such that

Vol. 35, n° 4-1999.
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Indeed, if (5.4) (respectively (5.5)) holds, since for all p > 1 and all
g > 1 ,

using Lemma 5.1 we deduce that X (t, x) E (respectively in and

Eq. (5.1 ) is obtained simply by differentiating Eq. ( 1.1 )..
The proof of Lemma 5.2 is similar to that of Bally and Pardoux ([3],

Proposition 3.3) or that of Morien ([13], Proposition 3.1 ). First, one sees
easily by induction on n that Xn E and satisfies

(and Dr,zX (t, x) = 0 if r > t).
Since under (RH) f’, g’ and a’ are bounded, we have, using (2.3) and

Lemmas 2.1 and A. I

and (5.4) is straightforward. As for (5.5), it is proved by induction on
M, using the evolution equation for obtained by differentiating
(5.1 ) M times.
We now show part (ii). More precisely, we prove the following result,

which is slightly more general than needed for Theorem 2.2, but which
will be fully used in the next paragraph for Corollary 2.1:

PROPOSITION 5.2. - Let r(~i..... xd) be the Malliavin matrix of
F = ( X (x 1, t ) , ... , X (xd , t ) ) . Then, under (RH), for all p E ] 1, 00[, there

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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exists a constant Cp (t, x1, ..., Xd) such that

Proof of Proposition 5.2. - We follow the same lines as in Bally and
Pardoux [3] and Morien [13]. Let (. , . ) denote the usual inner product on

We shall use the following result.

LEMMA 5.3 ([14], Lemma 2.3.1, p. 116). -Let C(w) be a symmetric
nonnegative definite m x mrandom matrix. Assume that the entries C‘~
have moments of all orders and that for any p E [2, +oo[ there exists

such that for all s  so

Then E LP.forall p.
Then it is easy to see that we only have to prove that there exists

,B > 1 /2 such that for all q > 3, there exists £0 > 0 such that for all e ~ so

where 7~ stands for xi , ... , xd ) .
Let ç with ))§ )) = 1, and let 0  £  4 mini ~~ Then:

with

Vol. 35, n° 4-1999.
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We set

Then 12 ~~ ~ ~ 2 I4 ~~ ~ - l3 ~~ ~ ~ with

From (RH.2) and Lemma A.2, we deduce /4~) ~ CJ8. Hence:

which yields

Since we chose f3 > 1 /2, there exists So > 0 such that, for all ~  So, we
have Therefore, using Chebyshev’s inequality, we obtain

We then check that for k = 1 , 3 and q large
enough. Indeed (bounding ~~ by 1 ), we have:

. Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



477BURGERS SPDE: EXISTENCE OF DENSITY

and thanks to Lemma A.3, setting 1 = ~ we have 

Ce-12~2~ . On the other hand, we easily get:

where x is defined as in (4.1 ). We then use the following lemma:

LEMMA 5.4. - For all q > 1, there exists Cq such that for all t >
0, s ~ 0, y E [0, 1]:

Proof of Lemma 5.4. - It is similar to that of Lemma 4.2.2 in [12]. We
define:

using Proposition 5.2, we know that Kt(s) is uniformly bounded with
respect to ~, s and t E [0, T ] . On the other hand, since or is uniformly
bounded, we have:

Vol. 35, n° 4-1999.
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It is easy to see that On the other hand, using (2.3), Hölder’s
inequality and standard estimates on G, we get, for i = 2, 3

As for A4, using the same method and Lemma 2.1 (a), we deduce

Holder’s inequality with the suitable measure and Lemma 2.1 (b) with
f3 = 1 yield

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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~41

The upper estimate of A42 is proved along the same line; thus

Thus

Then,since

Gronwall’s lemma yields the result.
We now conclude the proof of Proposition 5.2: Lemma 5.4 implies

that which gives the suitable bound for h . For ~3, we
notice that /3 ~ C b jj, which finally gives

Hence, choosing f3 e]l/2,1[ and q > 3, we obtain (5.7), and Proposi-
tion 5.2 is proved. D

5.2. Proof of Corollary 2.1

The proof is based on Proposition 2.2, due to Bouleau and Hirsch.
Assume that (Ho) and (H) hold. Since Xo clearly has a continuous

modification, we see, using Proposition 2.1, that the solution X (t, x) of
(E) admits a continuous modification in (t, x) E [0, T] x [0, 1]. We then

Vol. 35, n° 4-1999.
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use the following localization. Set

then, by continuity of X (t, x), we have Qn t Q. We then define

sequences of functions fn, gn in C) (R) such that fn (r) = f (r), gn (r) =
g(r) on {!r! ~ n}, and fn (r) = gn (r) = 0 on {!r! + 1 } . Then, if
Xn (t, x) is the solution of (E) with fn, gn in place of f, g, we see
by a uniqueness argument that X (t, x) = Xn (t, x) on the set Qn. Now,
Proposition 5.1 implies that, since the coefficients satisfy (RH), the
random variable X n (t, x ) belongs to D 1’ p for all p > 1. Hence we can
define DX (t, x) without ambiguity by DX (t, x) = DXn(t, x) on Qn
and thus X (t, for all p e ]1, +oo[, so (X (t, jci),.... X (t, xd))
satisfies part (i) of Proposition 2.2. Besides, using Proposition 5.2,
it is easy to see that the covariance matrix of the random vector

(X (t, jci),.... X (t, xd)) is almost surely invertible (again by localization
with Xn ). This concludes the proof of Corollary 2.1. D
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APPENDIX A

The following classical estimates on G can be found in Bally, Millet
and Sanz [2] (Lemma B.I):

LEMMA A.I.- (a) Let h be a 203B2-Lipschitz function, with 03B2 > 0.
Then, for all x, x’, t, t’ :
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where

(b) For ~8 E ] ~; 3 [, there exists C > 0 such that for all x, y, t we have:

(c) For all ,B E ] 1; 3[ there exists C > 0 such that for all (s, t) with s x t
and for all x :

The next result is proved in Bally, Gy6ngy, Pardoux [ 1 ] (Lemma 3.3) :

LEMMA A.2. - For every a E ]0, 1 [, there exists a constant Ca such

Finally, the following estimate is proved in Bally, Pardoux [3] (inequal-
ity (A.2)):
LEMMA A.3. - There exists a constant C such that for all > 0

such that t - 8 > 0, we have
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