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Boltzmann-grad limit
for a particle system in continuum

Fraydoun REZAKHANLOU and James E. TARVER

Department of Mathematics,
University of California Berkeley, CA 94720.

Ann. Inst. Henri Poincaré,

Vol. 33, n° 6, 1997, p. 796 Probabilités et Statistiques

ABSTRACT. - We examine a system of one-dimensional particles in which
the particles travel deterministically in between stochastic collisions. The
collision rates are chosen so that finitely many collisions occur in a unit
interval of time. We prove the kinetic limit and subsequently derive the
discrete Boltzmann equation.

RESUME. - Nous etudions un systeme de particules unidimensionnel dans
lequel les particules se deplacent de maniere deterministe entre des collisions
aleatoires. Les taux de collisions sont choisis de façon que seul un nombre
fini de collisions se produit sur un intervalle de temps fini. Nous obtenons
la limite cinetique et en deduisons 1’equation de Boltzmann discrete.

1. INTRODUCTION

We center our attention upon a particle system model and prove that
its distribution of particles converges weakly, as the number of particles
converges to infinity, to the unique solution of the discrete Boltzmann
equation. We consider the discrete Boltzmann equation for several reasons.
First, the DBE is a simplification of the (full) Boltzmann equation that
maintains its essential characteristics-the free streaming of particles in

between collisions and the quadratic nature of the collision. Partial results
for the proof of the kinetic limit for the full equation are available
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754 F. REZAKHANLOU AND J. E. TARVER

(see [7], [ 11 ], [8]), but a general global result is at the moment not known;
by proving the Boltzmann-Grad limit for the DBE, we will hopefully gain
new insights into how to go about doing the same for the full equation.
This would completely validate its use as the model for the evolution of
the mass density of a dilute gas over time. Second, the DBE has further
applications in fluid dynamics [9] and is thus interesting in its own right.
Readers interested in learning more on the DBE (or discrete velocity model,
as it is also known) are directed to the surveys by Gatignol [5], Illner and
Platkowski [10], and Bellomo and Gustafsson [12].
The particle system is roughly described as follows. Initially, N particles

are scattered about the unit circle 1 according to a given law /~. Each
particle is represented by a vector qi = 0152i), where ~i denotes the
location of the particle on the unit circle and 0152i denotes the label of
the particle. (Each label 0152i corresponds to some velocity A particle
evolves deterministically according to its velocity until it encounters another
particle, which it either ignores (with probability 1 - c) or collides into
(with probability c). (~) 1 = O(N). The choice of this particular stochastic
collision plays the same role as does choosing the dilute-gas scaling for
hard-sphere models in higher dimensions - it guarantees the constancy
of the mean free path. If two particles with labels a and j3 collide, they
yield particles with new labels ~ and 8 with rate K(c~~3, ~8). Let t)
denote the macroscopic density of particles with label 0152; we will show that

p = (Pl, ... , solves the system

where p° = (pg , ... , p° ) denotes the initial density.
This article follows the recent paper by Rezakhanlou [12], in which he

established the kinetic limit for a one-dimensional lattice gas for which
the movement of each particle is a simple random walk between stochastic
collisions. Our result improves upon his in three important ways. First, the
particle motion is deterministic instead of random, which is more physically
realistic than the random walk assumption. Second, we drop the assumption
that momentum must be conserved. Finally, we prove the collision bound
without resorting to an argument of Bony’s [3]. Bony’s bound is a strict

1. We state and prove all of our results in terms of the unit circle; a standard argument extends
our results to the entire real line.
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755BOLTZMANN-GRAD LIMIT FOR A PARTICLE SYSTEM IN CONTINUUM

one- dimensional result, and Rezakhanlou’s use of it prevents him from
extending his result to higher dimensions; instead, we modeled our argument
largely upon Tartar’s existence proof for the discrete Boltzmann equation
[ 13], [ 14] . Since Tartar’s proof has been extended to higher dimensions [6],
then presumably we can extend ours as well.

Caprino and Pulvirenti [4] have also considered a one-dimensional

particle system model in which particles travel deterministically in between
stochastic collisions. Their approach is considerably different from ours
in that they make a detailed analysis of the BBGKY hierarchy for the
N-particle distribution functions.
We now more precisely describe our model and our results. Let

7 := {1,2,...,?~}; I denotes the set of labels of the n different types
of particles. The set Sl denotes the interval [0,1] with the end points
identified. Define the state space E := E E is the N-tuple
q =(?!,..., qN ), qi = (Xi, ~i ) . q identifies the configuration of N particles
whose i-th particle has position Xi and velocity - q(t) is a Feller
process with infinitesimal generator ,,4~L~, where L denotes the length scale
and

We choose L such that N L = M, where M := (03A303B103C1003B1(x))dx. We have,
for any smooth function g,

where V : R - [0, cxJ) is a smooth, even function and = 1;

S03B303B4ijq is the configuration obtained from if by replacing 0152i with 1 and 0152j
with 8. Ao is the free-motion generator, and Ac generates the collisions.
We make the following assumptions on K.

Vol. 33, n° 6-1997.



756 F. REZAKHANLOU AND J. E. TARVER

Since we are thinking of K as a collision rate function, K is necessarily
nonnegative; (ii) states that the collision rates depend upon the labels only
and are independent of the particle numbers; (iii) implies that only particles
with different velocities can collide; (iv) holds if the model satisfies a

microscopic conservation of momentum; (v) states that A is a Maxwellian
(i. e. A is an equilibrium solution of our discrete Boltzmann equation).
We use this last assumption on K to help determine an invariant measure

for our process Note that Ao leaves labels unchanged and Ac leaves
locations unchanged; the invariant measure vL will therefore be a product
measure vL = where VI E and v2 E It is clear

that for any smooth function g, we have that

therefore, we take vi = dNx (i.e. vi is N-dimensional Lebesgue measure).
Since there exists a Maxwellian A = (Ai,..., A~), we also have that

Without loss of generality, we may assume Ai + ... + Àn = 1, so we

define v2 to be the product of the weighted counting measures that gives
the weight Àa to the label a; i. e.

Let be a sequence of probability measures on E and let p° : 5~ 2014~ [0, oo )
be a sequence of bounded measurable functions.

NOTATION 1. - We will say that (~,..., p° ) if the following
conditions hold for every test function J:

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



757BOLTZMANN-GRAD LIMIT FOR A PARTICLE SYSTEM IN CONTINUUM

For example, suppose we define as follows: for any continuous
function f : E - R, we have

Condition (i) is the law of large numbers; condition (ii) is obvious;
condition (iii) follows since /~(~) is bounded Va E I. Condition (i)
states that the macroscopic density of a-particles at time t = 0 is

given by ~(~) = Pa (x, 0). We expect the same thing for later times
as well. Let p(x, t) be the solution to the system ( 1.1 ), where a solution
p : - IR (where R+ denotes the set of nonnegative numbers)
is understood as follows:

NOTATION 2. - Let q L ( t) = (xl (t), cxl (t), ... , xN (t), a~r (t) ) denote the
Feller process whose infinitesimal generator is ,,4.~L> . When the space scaling
is clear, we will drop the subscript and refer to the process as q( t) or even
as q t . Also, let PL denote the probability measure uniquely determined by
the process ~(’) when its initial distribution is and let EL denote
the expectation with respect to PL.
We are now ready to state the main result.

THEOREM 1.1. - Suppose p°, where p° is bounded, measurable,
and nonnegative. Then, for every continuous J and every a E I,

where p(x, t) is the unique solution to the system (1.1 ).

Vol. 33, n° 6-1997.



758 F. REZAKHANLOU AND J. E. TARVER

2. ENTROPY

We first establish a bound on the growth of the entropy. As we will see
later, this bound will prove to be the key to demonstrating that the number
of collisions remains finite as N - oo. Before proving the bound, however,
we need to introduce some notation and make some definitions.

We denote the solution of the forward equation by FL (t) D i.e.

where the adjoint is taken with respect to the invariant measure vL. Let
7T := ~, where p is given in ( 1.8(iii)). Finally, the letter C will stand
for various constants. -

THEOREM 2.1. - 3 constant C > 0 such that 

We break the proof up into three parts. We first prove a similar claim
for the process at equilibrium; we then show that .

where p and b are defined in (1.8 (iii)); finally, we tie everything together
to prove (2.6).

LEMMA 2.1.

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Proof. - We first note that at equilibrium, the particles are distributed
uniformly over the circle. Therefore

Since ~ = M, a straightforward application of Stirling’s formula finishes
the proof of the claim.

LEMMA 2.2. - 3p > 1 and b > 0 such that V t > 0 we have

Proof - Recall that we assumed that ILL rv p°, which implies that (2.11 )
holds for p > 1 and b > 0 at t = 0. Therefore, (2.11 ) immediately follows
if we can show that

To simplify notation, we will suppress L and t and define h := pFP-1, so
that when we differentiate FP, we Obtain

Vol. 33, n° 6-1997.
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A simple calculation verifies the equality

therefore, (2.12) will follow immediately after showing

Since everything else is nonnegative, the nonpositivity of (2.16) will follow
if we can show that for fixed i and j, i # j, that

Note that the sum in (2.17) depends solely upon the labels of the i-th and

j-th particles, and so we can effectively treat both h and F as functions
of a, and aj only. Therefore (2.17) is an immediate consequence of the
next lemma.

LEMMA 2.3. - Suppose f, g : such that g(~y~S) > {:}

f (~y~S) > f (a~3)dcx, ,13, ~y, ~ E I. Then

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Proof

The first equality follows from a direct application of ( 1.5 (v)); the second
equality results after a change of variables. The rest is obvious.

Proof of Theorem.

Step 1. By Holder’s inequality, (2.7) and (2.8) we have

Step 2. Define the exponential martingale Mx (t, s) (for arbitrary A > 0)
as

Note, however, that = 0, so we can rewrite (2.21) as

We state the next lemma without proof, but the proof is not too difficult;
it essentially boils down to applications of Doob’s inequality, Cauchy-
Schwarz, and the fact that the expectation of a martingale does not change
over time.

LEMMA 2.4. - Suppose f : E -~ f~ is a smooth function. Then, for any
S > 0 and A > 0, we have

Vol. 33, n° 6-1997.
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where

and

Before we continue, we need to address a small technical point. Ao is
a differential operator, but (and is not continuous.

We get around this by replacing ai,L with a smooth sequence. Let ( be a
smooth nonnegative function of compact support that is identically 1 on

the interval [0, 1] and (  1. Then, it is not hard to see

for some co, and

A straightforward calculation yields

for some constants Co and C.

Step 3. Partition [0, T] into L~ subintervals, so that 0 = to  t1  ... 

tLk == T, and each subinterval has length at most E. Then by (2.24),

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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By (2.26) and Lemma 2.4 we have

and

,-

This and (2.24) imply (2.6).

COROLLARY 2.1. - For each k ~ N 3 a constant Ck > 0 such that

3. COLLISION BOUND

The key to the proof of any kinetic limit is that as the’ number of
particles converges to infinity, the mean free path remains fixed and thus
the collisions remain bounded. This is the content of the next theorem.

THEOREM 3.1. - There exists a continuous function Cl (T) with C1 (0) = 0
such that whenever v * T L > 1,

where Vex ( t ) = 

Remarks 1. - The following notation will be used freely in the sequel:

Vol. 33, n ° 6-1997.



764 F. REZAKHANLOU AND J. E. TARVER

2. Eif denotes the expectation with respect to the process g~ ( . ) when its
initial distribution is concentrated upon the single configuration g.

3. Since AL (q t, a, ,~)  we see that (3.1 ) implies that

whenever ~ 7~ v~ .

4. We will sometimes write the coordinates of q
as q = (~i, c~ 1, ... , ~ N , and at other times as

~ =(~i~2?...? XN, 0~1,0~2, ..~ 0152N)’ Since we use only Roman letters to
refer to location and only Greek letters to refer to labels, this permutation
should cause little confusion. The advantage of the second notation is that
it allows us to write (Xl + val (t - s), c~l, ... , s), more

compactly as (x + va (t - s), ä).
We now continue with a lemma.

LEMMA 3.1. - Let h(8) = ~1 + and assume that I is any

subinterval of [0, 1]. Then for every 8 E (0, ~)

where hL(b) == h(bL) and 03B4L := 8 v t .
Proof - bL > 4 L ~ ~k such that k-1 L ~ 03B4 2  L , k E { 3, 4, ... , L)

therefore

Now, Vl > e we have

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Now, for any c E (0,1) and K > 0, we have

as can easily be seen by choosing l = ~K g ~f . Therefore, since ~L 1  8 L,
we have (3.6). The case 8L = L can be treated likewise. ,

Proof of Theorem. 3.1.

Step 1. Let f : ~0, T ~ x E -~ R be smooth, and suppose t > 0 is fixed.
Define g : [0,T]xE-~!Rby~(~,~) = f (s, ~ -f- va (t - s), ~) . We then have

Therefore

Vol. 33, n° 6-1997.
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Step 2. In particular, if c = 0 and f (t, 9)=~ + z, +

z - = c~, 0152j == /3), where J E (0)), we then have

where

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Remarks. - 1. By the Optional Sampling Theorem, we have that (3.13)
holds when T is replaced by a stopping time T. By averaging over all

configurations, we also have that (3.13) holds when ~q is replaced with
~L ~

2. In order to show (3.1 ), it suffices to consider the case when z = 0 and
J ~ 1. Note that in this case the fifth term V(O, 1) = 0. Later on, when we
prove the spatial regularity of the collision, we will need to consider more
general z and J, and we will then have to take greater care with V(z , J).

3. By first summing over all 0; and /3 such that v, and then by
recalling that the total number of labels is finite, we obtain the following

. 

inequality:

Vol. 33, n° 6-1997.
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Step 3. We begin with I. By making the change of variables z . -
(~(0) - we obtain

From this, we gather that if 2v* T  ~

The second inequality follows from Lemma 3.1, while the third is a

consequence of Corollary 2.1. _

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Step 4. We now consider II. First, interchange the s-integral with the

t-integral and then isolate the t-integral, so that we have

We concentrate upon the t-integral. Make the change of variables

z = .x~(.s) - (v~, (.s) - r~~ (s))(t - s). From this we see that the t-integral
is bounded by

Therefore, we have

Step 5. Observe that III = II. As for 7V, note that

Vol. 33, n° 6-1997.
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Since it is clear that the factor in brackets is of order - thus

Final Step. After putting the various pieces together, we see that we
have (for some constant Ci > 0)

Since (3.13) holds whenever T is replaced by a stopping time, a similar
argument shows that

where T is the stopping time

Now

therefore,

We take advantage of this by noting that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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We now need to show that the second term is negligible for sufficiently
small T. Suppose 4v*T  ~.

by Chebyshev’s inequality and Theorem 2.1. We choose To sufficiently
small so that 2 ( C -I- 2 )  For large L we may choose To so

that 4v*To > t. This implies that 
’

This finishes the proof for T  To. For T > To, we bootstrap; we run

the process up to time To, note that the distribution at time To satisfies

( 1.8(iii)), and observe that our collision bound argument now works for
T E [To, 2To] (and hence VT > 0). We define Ci(T) as follows:

where Co is an upper bound for 

COROLLARY 3.1

whenever v*TL > 1, where Ck(T) is a continuous function of T with
= 0.

Proof. We prove (3.39) inductively. Suppose (3.39) holds for all integers
p, 1 ~ P ~ k. Then the Markov property implies that

Vol. 33, n° 6-1997.
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Recalling that!} = M, we have that (3.40) is bounded by

where the last inequality is a consequence of the induction hypothesis
and Lemma 3.1. The remainder of the proof mimics the last step in the
collision bound.

Define T as in (3.33); we then have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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By (3.38), the second term is negligible. As for the first term, we have

and thus

We combine (3.42) and (3.44) to get our result.

COROLLARY 3.2. - Let a denote a stopping time taking values in the
interval [0, T]. Suppose v * T L > 1. We have that

where

Proof - The Strong Markov Property and a repetition of the proof of
Theorem 3.1 give us that

and thus

Vol. 33, n° 6-1997.
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4. SPATIAL REGULARITY OF COLLISION

In order to carry out the sort of averaging necessary to prove the kinetic
limit, we must be sure that shifting particles around somewhat does not
dramatically alter the value of the collision. The next theorem guarantees
that this does not happen.

THEOREM 4.1. - Suppose |z|  ~, J is smooth, and v03B2. Then for
every L

for some constant C(T, J). (See Lemma 3.1 for the definition of hL.)

Proof - We begin by first proving a lemma whose statement resembles
(4.1 ) except that the expectation is inside the absolute value. Moving the
expectation inside allows us to employ the identity (3.12) for an appropriate
function f :. [0, T] xE - R.

LEMMA 4.1. - Suppose the conditions above hold. Then there exists a
constant C’ (T, J) such that

Proof - Let

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Substituting into (3.12), we obtain

where AzI := (1(z, J) - 1(0, J)) and I (z, J),..., V(z, J) are defined by
(3.14),..., (3.18). 0394zII, ..., are defined similarly. Note that 0394zIII is
comparable to AzII and 0394zIY is comparable to 1 L0394zII, so it suffices

to bound 0394zII, and We also remark that we may assume

z v03B1-v03B2 > 0 without loss of generality.
We first consider We initially make the shift t - t + z v03B1-v03B2 to

observe that

Replace J(xi (o) + v03B1t - v03B2z v03B1-v03B2, 0) with + vat, 0). The error

generated by the replacement is bounded by

and so showing that the error is O(e) is equivalent to showing that

is bounded. First, let y = (va - v,)t. Then (4.7) is bounded by
a constant multiple of

Vol. 33, n° 6-1997.
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Therefore, we conclude that

and thus

We first consider (4.9). Make the change of variables w = xj - (va -
v03B2)(t - T) to observe that (4.9) is bounded by

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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where the last inequality follows from Lemma 3.1. We obtain the same
bound for (4.10) by making the change of variables iu = x j - (va - v(3)t.
We now bound AzV. Since the argument is essentially the same as the

one given for we will give only a brief sketch. Concentrate initially
upon V (z, J). Interchange the s-integral and the t-integral and isolate the
t-integral. Next, make the shift t - t + we then have

Replace + v~ (t -- s) - with + s), s);
this yields, as we argued before, an error that is 0(s). This implies that

We make the change of variables w = x~ - (va - v~ ) (t - T) in (4.13);
from this we observe that (4.13) is bounded from above by

Vol. 33, n° 6-1997.
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By making the change of variables w = xj - (va - V f3 )t, we see that (4.14)
has the same bound as (4.13); therefore, all that is left to consider is AzII.
The first two steps are precisely the same as in the previous two cases.

First make the shift t H t then replace + va( t - s) -
v03B2z v03B1-v03B2, s) with + v03B1(t - s),s). Now, however, we have to argue
more carefully, since the error bound depends upon the collision bound;
that is, the error is of the form EC (J) times

It is not hard to see that for each j the t-integral is of size O (L- ~ ) . This
in turn implies that the j -sum in (4.16) is bounded above by a constant
multiple of M. Therefore, the error has the form

this clearly conforms to the statement of the lemma. Therefore, is
bounded by sum of small term O(e) and

By making the change of variables w = ~~ - va~ ) (t - T), it is not
hard to see that (4.18) is bounded by 

. 

.

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Similarly, the change of variables w = x~ - (vai - s) yields the
same bound for (4.19). Finally, combining (4.11), (4.15), (4.17), and (4.20)
finishes the proof of the lemma. -

Proof of Theorem 4 .1 . - Denote the integrand of (4.1 ) by with

this notation, we can restate the claim as

We now note that, in addition to (3.1 ), we also have

the proof of (4.23) is identical to the proof of (3.1). Given (4.23), we then
clearly have that

for some constant C~(T). Therefore,

Vol. 33, n° 6-1997.
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where for the last inequality we used Holder’s inequality, (4.24) and (2.32).
(4.21) clearly follows.

5. UNIFORM INTEGRABILITY

We begin with some definitions.

- 7Tz{.c E ~} :== the Lebesgue measure of the set H. (5.1)

THEOREM 5.1. - There exists a constant such that for every
v = Vq ~ 

The next lemma holds the key to verifying (5.5).

LEMMA 5.1. - There exists a constant C2 (T ) such that for every
v = v~, ~ va, v,~,

We prove Lemma 5.1 below and omit the rest since the remainder of the

proof is essentially identical to the proof of Theorem 7.1 in [12]. To begin,
we need to justify a particular adaptation of Lemma 3.1.

LEMMA 5.2. - Suppose f E and 11111£1(51)  1. We then have

The similarity between (3.6) and (5.7) becomes clearer if we take

f(x) = E I ), ~ III  b. h appears in (5.7) instead of h because

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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h(x) was used for x E (0, ~) only, and we now need a bounded function
defined everywhere; therefore, we modify h as follows:

The function h is chosen so that the functions h4 and h2 are concave. Such

property will be used in the proof of Theorem 5.1.

Proof. - Let

provided  e ~. Finally note that the inequality (5.7) trivially holds
for a suitable C > e

Proof of Lemma 5 .1 . - Let := T /B T(x~; is a stopping time

implies that a(r) is one as well. Note that if we denote the integrand of

(5.3) by g(s; :~), then we can restate (5.6) in the following way:

This suggests that we again attempt to use (3.12). Let be

where v is different from both va and v~ . (Note that if zl = z2 = 0, then

9 (t , x) _ ’~) .)

Vol. 33, n° 6-1997.
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Claim.

If a(x) were constant, then the claim would follow immediately from
(3.12). We can readily show (5.12) holds for discrete stopping times by an
application of the Markov property, and (5.12) follows for arbitrary stopping
times by approximation with discrete stopping times. So, in particular, we
have

where

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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As before, it suffices to bound I and II, since III is comparable to II and
IV is comparable to t . II. We first bound II. Define S2 = = {x :

l~ _ {~  T}. Since x ~ SZ ~ = T, we have

Vol. 33, n° 6-1997.
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Make the substitution y = x + vt - va (t - s) - z1 and then change the
order of integration for s and t to obtain

We concentrate on the t-integral.
Let w = z2 + (va - v(3)(t - s). With this substitution, the

t-integral has the form

where

Since

we know that the integral in (5.19) is bounded above by a constant multiple
of

by an application of Lemma 5.2. Therefore

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



785BOLTZMANN-GRAD LIMIT FOR A PARTICLE SYSTEM IN CONTINUUM

After applying Holder’s inequality and the corollaries (2.6) and (3.6), we
see that

(The last inequality follows from the concavity of h4 and Jensen’s

inequality.) Now

A problem arises when we try to bound I in a similar manner. Recall
that in the course of bounding II we made the change of variable

y = ~ -p vt - z1 - va (t - s); the corresponding change-of-variable in the
case of I would be y = r + vt - zi - vat + which clearly cannot
work because We must therefore find another method of proof.

Note that VA E [0,T], we have

which we have already bounded. We therefore concentrate on 
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Note that the set {~(x,)  ~  T} C {x thus

Now we can make the change of variables y = Then

Let w = xi + Z2 + (Va - v,)(t - À). The integral in parentheses is

then of the form

and so by Lemma 5.2,

(5.28) holds uniformly in A; therefore

We can rewrite (5.29) as
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This inequality holds forall T ; in particular, it holds for T = T + 8. We

then have

where := T(:r,) n (T + 8). Equivalently,

Note that this implies that

Therefore we have

rr(:z; ) is a stopping time implies that a(x) + 8 is a stopping time; thus

Since  we necessarily have I(~S)  (1+6-1)CL(T+b);
I. e.
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This holds uniformly in zi and z2; therefore, let zi := (va - v)8; let

z2 := (2fc, 2014 ~ 2014 v)8; and let i := t - 8; (5.36) then implies that

The left-hand side is I. This finishes the proof of Lemma 5.1.

6. THE KINETIC LIMIT

First, we need to make a few definitions.

where T/ is a nonnegative smooth function of compact support with

.foa = 1.

Define the new process F(L) to be

The map induces a probability measure on D ( ~0, T ~ ; xl)),
which we refer to as PL. We can now restate Theorem 1.1 as follows:

THEOREM 6.1. - PL ~ P, where P is concentrated upon the single
function p that solves the system (1.1); i. e. VJ E and for
each a E I,

Proof of Theorem 6.1. - We first show that a claim similar to (6.3)
holds as L - cxJ, e - 0 when we replace P with PL and the quadratic
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term Qa(f, f ) with Qa(f * f * We then prove that the family of
measures ~PL ~ is tight and thus relatively compact by Prohorov’s theorem,
so that the claim holds for every limit point P of the sequence ~ PL ~ . We
next cite a result of Rezakhanlou that states that the family of products
( f a ~ ~)(//3 ~ Pe) is uniformly integrable in c if v,, and then we

finally complete the proof.

LEMMA 6.1. - Suppose J E and cx E I.

Proof. - Let

Since J is smooth, we clearly have G2 (t, q ) = Gi (t, q ) + O (L-1 ) . On the
other hand, standard Markov theory implies that for the function G1, the
processes M and N are martingales, where

It is then straightforward to show that,

and
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Note also that ELNt = 0 0. We then have

by Doob’s inequality and Theorem 3.1. Choose T large enough so that it
lies outside the support of J. (Note that this implies that G1 (T, = 0.)

Claim.

Note that extablishing the claim will finish the proof of the lemma.

Proof of claim. - Recall that we assumed initially that pO. Since

establishing the claim reduces to demonstrating that

It is not hard to see that AcG1 (t, equals to

We observe that
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so establishing the claim reduces to demonstrating that

According to Theorem 4.1, if IZ11, ~2! ~ E, then

We first replace the second integral in (6.16) with

where the support of ç is less than e = 1; the replacement
is valid since the bound in (6.16) is uniform in zi and z2. We next replace
J(Xi(t) - zi + z2,t,) with zl,t); according to Theorem 3.1, the
error is O(e). After a change of variables, (6.17) becomes
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Next, define ((w) (6.18) becomes

Finally, we replace *17"’) (z2, t) with *17"’) (zi , t). Since the
error generated is 0(-~), this finishes the proof of the claim.
LEMMA 6.2. - The sequence ~ PL ~ is tight.

Proof - Let x7) denote the space of nonnegative measure vectors
(va : 0152 E I) with ~ = M. We regard L1(Sl x7) as a subspace of

Note that the space is a complete separable metric

space. We define D = which is also a complete
separable metric space. We regard PL as a sequence of probability measures
on D. Since D is a complete separable metric space, we can appeal to
Prohorov’s theorem to assert that the sequence ~PL ~ is relatively compact
if it is tight.
Claim. Any limit point of ~ PL ~ is concentrated on the space

D([0,T],L~x7)). °

Proof of Claim - To see this first note that the function cp is covex

and grows faster that the linear function. As a result, the space of vector
functions (Fa : a E I ) with

is weakly closed in D, for any given k. Furthermore, by Corollary 2.1,
it is not hard to show
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This completes the proof of the claim. (6.11) and (6.13) guarantee that
the following is valid:

where YL(0) equals to

We also have

where a ranges over all stopping times taking values in the interval [0, T] .
(6.24) is obvious from the definition of F(L) and (6.25) is a consequence
of Corollary 3.2. Therefore, the processes

and

are tight. (See [ 1 ] for the tightness of the second process). (6.22), (6.24),
and (6.25) together imply that the sequence ~PL ~ is tight.
LEMMA 6.3. - Let P be any limit point of PL. Then for any

J E and any a E I,
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Proof.. - Let

The functional is both bounded and continuous with respect to the

weak topology,  C~ -1 ~ ~ ~ .~a, ~ ~ ~  ~ . Therefore,

Our result follows from (6.4) and (6.28).

LEMMA 6.4. - Let P be any limit point of ~ PL ~, and suppose To is

arbitrary but fixed. Then P is concentrated on the set of f for which

Proof - See [12], Section 8, Lemma 8.4.

(Note: it is only here that we use the assumption 1.5(iv)) on K and
Theorem 5 .1. )

Proof of the Kinetic Limit. - We can restate (6.26) as

this implies there exists a subsequence such that

We want to replace with f ; it suffices to show that for some

subsequence em and whenever ~ ~ v,,

Now, since both f a and f ~ are in LB we have that

since J(fa * is uniformly integrable by Lemma 6.4, we know
that (6.32) holds P- a.s. Thus P is concentrated on the set of functions
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f that satisfies (1.1) in distribution, so once we show that E L 1, we
will be finished. It suffices to show that

By Fatou’s Lemma

by Lemma 6.4. This completes the proof of the kinetic limit.
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