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ABSTRACT. - We show how estimates for the tail probabilities of sums of
independent identically distributed random variables can be used to estimate
the tail probabilities of sums of non-identically distributed independent
symmetric random variables which are majorized by a single distribution in
the sense of Gut’s (1992) weak mean domination. As an application,
we prove a weak one-sided extension of a law of large numbers of
Chen (1978) to a non-identically distributed case and show how some
of Gut’s (1992) extensions of Hsu-Robbins type laws of large numbers
follow from previously known identically distributed cases. We also extend

... some. theorems of Klesov (1993) to the case of weak mean domination.
One intermediate result of independent interest is that if Xi, ... , Xn

and Yi, ... , Yn are two collections of independent symmetric random
variables such that A)  for every A and k,
then + ... + Yn| ~ a j  + ... + Xn] > A) for all A.

RESUME. - Nous montrons comment utiliser les estimees des probabilites
des queues des sommes de variables aleatoires independantes et

identiquement distribuées pour estimer celles des sommes de variables
independantes, symetriques, mais non identiquement distribuées. Nous
imposons que ces variables soient faiblement dominees en moyenne, dans
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652 A. R. PRUSS

le sens de Gut (1992), par une unique distribution. En application, nous
adaptons a un cas non equidistribue, un cote de la loi des grands nombres
de Chen (1992), et nous montrons comment certaines extensions, dues a
Gut (1992), de la loi des grands nombres de type Hsu-Robbins, decoulent
de resultats precedents obtenus dans le cas equidistribue. Nous etendons
aussi certains resultats de Klesov (1993) au cas de la domination faible
en moyenne.
Nous obtenons un resultat intermediaire qui presente un interet en lui-

meme: si X 1, ... , Xn et Yi , ... , Yn sont deux suites des variables aleatoires
symetriques independantes, telles que P ( IX k I > A)  P ( I Yk I > A) pour
tout 1~, ~, alors + ... + Ynl > A)  + ... + Xnl > A)
pour tout A.

1. THE MAIN RESULTS

We begin the present section by stating our main comparison inequality
for the case of what Gut called "weak mean domination." We then discuss

the applications of this inequality to Hsu-Robbins type laws of large
numbers. We shall close the section by stating a result on the comparison
of tail probabilities of sums of independent symmetric random variables
under stochastic domination; this result is of some independent interest
and is crucial to the proof of our main inequality. Then, in Section 2 we
shall discuss the notion of regular covering, a notion that generalizes C. S.
Kahane’ s [11] ] randomly sampled Riemann sums and is an important special
case of the weak mean domination condition. In Sections 3 and 4 we shall

prove the results of Section 1. Finally, in Section 5 we shall give a weak
one-sided extension of a law of large numbers of Chen [3]. This will be

proved via our main comparison inequality.

1.1. Weak mean domination and the main comparison inequality

Our primary interest is in collections of random variables Xi whose
distributions are dominated in the following sense by the distribution of a

single random variable X.

DEFINITION (Gut [8]). - Fix K  oo. Then the random variables

Xi,..., Xn are K-weakly mean dominated by a random variable X if

Annales de l’lnstitut Henri Poincccre - Probabilités et Statistiques



653COMPARISONS BETWEEN TAIL PROBABILITIES OF SUMS

A special case is when for every k we have

This case was studied by Woyczynski [24], [25] and called uniform
boundedness of tail probabilities. Another special case of weak mean
domination is regular covering [18], which we shall discuss in Section 2.
Our main comparison inequality is as follows. Recall that a a random

variable X is said to be symmetric if X and -X have the same distribution.

THEOREM 1. - Let Yi , ... , Yn be independent symmetric random variables
which are K-weakly mean dominated by some random variable X. Then
there exist constants C = C(K)  oo and c~ = a(K) > 0 depending only
on K such that

for every positive À, where Xl, ..., X~ are independent copies of X.
The proof will be given in Section 4.

Remark 1. - If K > 1, our proof of Theorem 1 will show that we may
take C = CoK and c~ = where Co and cxo are absolute constants
independent of K. If K E 7 + then our proofs show that we may take
Co = 16 and cxo = 2 in the above expressions for C and ~. If K > 1 is
not an integer, then it follows from the above expressions for the integer
case that we may take Co = 32 and cxo = 4 (just replace K by the smallest
integer [K] greater than or equal to K and note that  2K if K > 1).

OPEN PROBLEM 1. - Is the choice of 0152 = in Remark 1 optimal with
respect to the order of dependence on K? If not, what then is an optimal
choice of o; with respect to the order of dependence on K?

OPEN PROBLEM 2. - Can we get any result similar to Theorem 1 for
Banach space valued random variables, perhaps with some additional terms
dependent on the geometry of the space and may be under some auxiliary
conditions on this geometry?

In connection with Problem 2, please note Remark 5, in Section 4, below.

1.2. Applications to Hsu-Robbins type laws of large numbers

We have the following useful corollary of Theorem 1.

COROLLARY 1. - Fix K  oo and any random variable X. Let

rowwise independent r.v.’s such that ..., 

Vol. 33, n° 5-1997.



654 A. R. PRUSS

are K-weakly mean dominated by ,X for every fixed n. Let Sn ==

xnl + ... + Xnkn and let Tn be the sum of kn independent copies of
X. Assume that a~ is a numerical sequence such that tends to zero
in probability as n - oo. Suppose that

Then,

Remark 2. - Assume an = n0152, a > 2 , I~n = n, and  oo. If

Q  1 then additionally assume that

Then tends to 0 in probability by standard weak law of large
numbers estimates (see, e.g., [6, pp. 105-106]).
Our proof of Corollary 1 will use the notion of symmetrization. Given

a random variable X, let X s = X - X where X is an independent copy
of X; note that X S is symmetric. Our symmetrizations will be implicitly
chosen in such a way that the symmetrization of a sum of independent
random variables will be the sum of the symmetrizations of the random
variables, whenever we need this equality.

Proof of Corollary 1. - Let ~~ be a median of Sn. Since Sn 0 in

probability, it follows that likewise 0. Standard symmetrization 
_.

inequalities (see, e.g., [15, §17.1.A]) imply that Xsn1,...,Xsnkn are 2K-

weakly mean dominated by 2X. Now, since

converges for every E > 0, it follows by Theorem 1 that

also converges for every 6 > 0, since Sn = + ... + Standard

symmetrization inequalities then imply that 

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



655COMPARISONS BETWEEN TAIL PROBABILITIES OF SUMS

converges for every E > 0. Now fix ~ > 0. For n sufficiently large we will
have  c/2. But for such n we have

From this and the convergence of (1 .2), we obtain (1.1), as desired. D

COROLLARY 2. - Suppose that there is a constant K  00 and a random

variable X such that for every fixed n the variables are

independent and K-weakly mean dominated by X. Fix a > ~. Assume that
the conditions of Remark 2 are satisfied and that

Moreover, assume that at least one of the following auxiliary conditions
also holds:

(a)  oa for 0, and  oo for some
r > 

1 03B1;

(b) there is a slowly varying function ~ such that

for some 8 > 0 and  oo for some v > 0;
(c) for some o > 0 and some choice of numbers Tn > ~~-1 kTk, we

have ~~ m = and

Then,

See [20] for a converse result in the i.i.d. case.

Proof of Corollary 2. - This was in effect shown by Klesov [12] in the

independent and identically distributed (i.i.d.) case. Klesov had the slightly
stronger assumption that

Vol. 33, n° 5-1997.



656 A. R. PRUSS

but his proofs can be easily modified to use the weaker ( 1.3) (see Theorem 2
in [20], together with the Remark after Theorem 1 of that paper). The
general case then follows from the i.i.d. case together with Remark 2 and
Corollary 1. D

OPEN PROBLEM 3. - Find the most general auxiliary condition on X and
the (generalizing the disjunction of (a), (b) and (c), above) under which
Corollary 2 holds.

Remark 3. - Klesov’s proofs [ 12] can also be modified to prove our
Corollary 2 directly.

Remark 4. - Theorems 2.1 and 5.1 of Gut [8] are special cases of our
Corollary 2. To see this, it only suffices to note that if Tn = nr for r > -1
then condition (c) of Corollary 2 will be satisfied, at least providing the
hypotheses of Gut’s theorems hold. Moreover, one might recall that Gut [8]
had noted that his Theorems 2.1 and 5.1 were generalizations to the weak
mean domination case of results already known in the i.i.d. case. In light
of Corollary 1 and Remark 2, the weak mean domination versions can thus
also be derived from the original i.i.d. results.

Corollary 2 is known as a Hsu-Robbins [ 10] type law of large numbers.
Partial bibliographies on such laws of large numbers may be found in [ 14]
and [17]; see also [7].

1.3. A comparison inequality for stochastic domination

We now give a result which will be essential to the proof of Theorem 1
and which is of some independent interest. As usual, we say that a random
variable E is stochastically dominated by a random variable T (possibly
defined on a different probability space) if

for all 03BB E 

THEOREM 2. - Let X 1, ..., Xn be independent symmetric random

variables, and suppose YI, ..., Yn are also independent symmetric random
variables. Assume that for every i we have |Yi| stochastically dominated
by Then

for every positive ~.

The proof will be given in Section 3.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Theorem 2 generalizes a lemma of Klesov [12, Lemma 2] which

gave the same result in the special case where the Xi are i.i.d. while

Yi = Xi . for all z . While is easy to see that the constant 2 in

(1.4) is optimal, it is not as clear whether it is still optimal in Klesov’s
special case.
Theorem 2 also bears some resemblance to comparison inequalities of

Burkholder [2] for differential subordination of martingales. However, it

does not appear that there is any easy logical implication, in either direction,
between our result and Burkholder’s inequalities.

2. REGULAR COVERING

DEFINITION (Pruss [ 18]). - The random variables X 1, ... , Xn regularly
cover (the distribution of) a random variable X if

for each bounded Borel measurable function g.
This condition is equivalent to asserting that the distribution function

of X is the average of the distribution functions of the Xk. It is also

equivalent to asserting that the characteristic function of X is the average
of the characteristic functions of the X k. It is clear that if J~i,... Xn
regularly cover X, then Xi,..., Xn are 1-weakly mean dominated by X.
Hence, Theorem 1 has some content for the case of regular covering. A
result similar to Theorem 1 for the case of regular covering but with better
control over the constants will be given as Proposition 1 in Section 4, below.
We have the following generic example.

Example 1. - Let Xl,... , Xn be independent random variables and let
A be a random variable independent of them and uniformly distributed on
the set {1,..., n ~ . Then, X l , ... , X n are a regular cover of X A . The easy
verification of this is left to the reader (cf. equation (4.9), below).
Example 1 shows that given a set of independent random variables, they

always regularly cover some random variable. Indeed, this fact is completely
clear since we may always choose a random variable whose distribution
function is the average of the distribution functions of the original random
variables. This construction of a regularly covered random variable will be

very important in our work.
Moreover, the above construction, together with Theorem 1 (or the

somewhat superior Proposition 1 ), shows that given any independent

Vol. 33, n° 5-1997.
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symmetric random variables Xi,...,X~ we may estimate the tail

probabilities of Xi + ... -~- Xn by the tail probabilities of Xi + ... + in,
where the latter sum is a sum of independent and identically distributed
random variables chosen so that the common distribution function of the
Xi equals the average of the distribution functions of the Xk .
We now present the following trivial example of regular covering.

Example 2. - Let Xi,...,X~ be identically distributed. Then they
regularly cover X1.

Finally, we present an example which may help to build some intuition
as to the meaning of regular covering; it is precisely the following example
which has provided the original motivation for the definition of regular
covering in [18].

Example 3. - Let f be measurable on [0, 1] . For each fixed n ~ Z+, let
xni , ... , xnn be independent random variables such that Xnk is uniformly
distributed over [~-, ~] for 1 ~ ~  n. Then, for any bounded Borel
function g we have

Thus form a regular cover of f, where f is considered
a random variable on the probability space [0,1] equipped with Lebesgue
measure. Note that the averaged partial sum

is a randomly sampled Riemann sum. These Riemann sums were introduced
by C. S. Kahane [ 11 ] . Questions concerning their convergence to the

Lebesgue integral of f are addressed in [1 1] and, more fully, in [18].

3. THE PROOF OF THEOREM 2

The following simple and well-known coupling lemma (see, e.g., [23,
p. 162]) will be needed.

LEMMA 1. ~ and l’ be two positive random variables, possibly
defined on different probability spaces, such that ~ is stochastically
dominated by T. Then, there exists a probability space (0, P) and random
variables 3* and 03B3* on n such that 3* and 0396 have the same distribution,
~C* and ’Y’’ have the same distribution, and 3*  "Y’* with probability l.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Given this, we can prove Theorem 2.

Proof of Theorem 2. - By Lemma 1, since | is stochastically dominated
by we may assume that we are given two sets of independent positive
random variables ~1, ... , ~n xn such that almost

surely for every k and such that ] and ] have the same distribution
as yk and rk, respectively. (Note that ~~ will of course not be in general
independent of Let ... , ~n be i.i.d. Rademacher random variables

with = 1 ) = P(ck = -1 ) - ~, and independent
of ?/i,..., yn,x1,...,xn. Let Xk == ~kxk and Yk = Then the

distributions of Xk and Yk, respectively, are the same as those of Xk
and Yk, respectively. It thus suffices to show that

P(~i+...+~!>A)~2P(!Xi+...+~ ] >A), (3.1)
for all positive A. The simple proof of (3.1) given below was kindly
communicated to the author by Professor Stephen J. Montgomery-Smith.
The technique in this proof is well known (see for instance [13,
Proposition 1.2.1] or [16, Corollary 5]). The author’s original proof was
much more complicated. Conditioning on x 1, ... , ?/i,..., Yn we may
assume that in fact the X k and Yk are constants, with 0 

for all k. Let = for 1  1~ ~ n, where 0 / 0 = 1. Note that

0  1 for all k. Reordering our random variables, we may assume
that c~2 ~ ... > Let an = an, and put ak = ak - for

k  n. Then,

since  1. Inequality (3.1) then follows from this and from levy’s
inequality. D

4. PROOF OF THE MAIN THEOREM

, 

4.1. Some auxiliary results

For the proof of Theorem 1 we need some auxiliary results. First recall
Levy’s inequality. If the Xi are independent and symmetric, then

Vol. 33, n° 5-1997,
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for all A > 0.

We will also need to use the very simple result that

for every positive ~ and for any random variables X1, ... , with no

symmetry or independence assumptions being needed.
The following result is essentially due to Montgomery-Smith [ 16] and

will later allow us to assume that X is symmetric in Theorem 1, at the

expense of a change of constants.

LEMMA 2. - Let Xl, ..., Xn be i. i. d. random variables. Let ~1, ..., ~n be
i.i.d. Rademacher random variables with = 1 ) = = -1 ) = 1 2
and with the ~~ independent of all the Xi. Then, there is an absolute

constant c E (0, CX)) such that

Proof. - Let ei,..., en be any real numbers with I  1 for all k.

Then, by an inequality of Montgomery-Smith [16, Corollary 5], if the Xk
are independent and identically distributed, it follows that

for every À  0, where c E (0, oo) is an absolute constant. Hence,

where 8 is the a-field generated Taking the unconditional
expectation of both sides we obtain the desired inequality. D

4.2. The special case of regular covering

The only other thing we now need for the proof of Theorem 1 is the

following result which is of some independent interest.

PROPOSITION 1. - Suppose that Yl , ... , Yn are symmetric independent
random variables which form a regular cover of a random variable Y
(which itself will then automatically be symmetric). Then

for every positive À, where Y1, ..., Yn are independent copies of Y.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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OPEN PROBLEM 4. - Does Proposition 1 hold without any symmetry
assumptions, perhaps with different constants?

Remark 5. - Proposition 1 does work for Banach space valued random

variables, since the proof uses nothing deeper than Levy’s inequality which
does work in Banach spaces. However, some of our other results (notably,
Theorem 2) do not adapt as readily..

OPEN PROBLEM 5. - Determine optimal combinations of constants C and
cf such that

in the setting of Proposition 1. Could we for instance choose a C  oo

such that c~ = 1 works?

Remark 6. - In connection with this problem, the anonymous referee
has made the following important observation. be i.i.d.

Rademacher random variables 1) = -I) = ~). Let

and put Y2 = Y3 = ’" == Yn == 0. Then, are a

regular cover of a variable Yi such that P(Yi == 0) = 1 - (1/n) and
P (Y1 = 1) = -1) = 1 / ( 2 n ) . Let Y2 , ... , Yn be independent
copies of 91 . Put Tn = Yl + ... + Yn and Tn = YI + ... + 91 . Let

~1 + ... + Ck, and suppose that .Kn is a binomial random variable,
independent of the Ci, and with parameters (n,1/n). Then, Tn has the
same distribution as while Tn has the same distribution as As

n - oo, the variable Kn converges in distribution to a Poisson variable
with parameter n-1. It easily follows that 0) then converges to

But P(ITnl ] > 1) = 1 and for every 0 > 0 we have

and hence it follows that for every c~ > 0, the constant C in Problem 6
must satisfy C > ( 1 - p) -1 > 1.87. The author is most grateful to the
anonymous referee for this remark.

4.3. Reduction of Theorem 1 to the regular covering case

Assume Proposition 1 for now. We shall write for the smallest integer
greater than or equal to x, and we shall put [.cj == 2014 ~-x~ . The following

Vol. 33, n° 5-1997.
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proof will reduce the general case of Theorem 1 to the regular covering
case of Proposition 1.

Proof of Theorem 1. - Assume that the hypotheses of Theorem 1 are

verified. Replacing Xk by ckXk, where the Ck are as in Lemma 2, we may
assume that the Xk are symmetric, at the expense of a change in constants.
We may assume K is a positive integer, replacing K by [K] if necessary.

Let N = Kn. The variables Y1,..., Yn are given. Define the random
variables 0 for n  1~  N. Let X 1, ... , X N be independent
identically distributed random variables such that Yi,..., YN are a regular
cover of X 1, i. e. , such that the distribution function of X 1 is the average
of the distribution functions of Y1, ... , YN. By Proposition 1 we then have

But of course,

since Yk == 0 for k > n.
Now, Xi,..., X~ are independent symmetric identically distributed

random variables. Let Xn+2, ..., XN be independent copies of Xl
such that

are all independent. I claim that I is stochastically dominated by I
for every &#x26;e{l,...,~V}.By identical distribution, it suffices to check this
for k = 1. But using regular covering, the vanishing of Y, for z > n and
the assumption of K-weak mean domination, we have

for any A > 0, since N = Kn. Hence, indeed, is stochastically
dominated by for all k. Applying Theorem 2 we see that

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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for every A > 0. But Xi + ... + XN is actually the sum of K independent
copies of Xi + ... + Xn, since ~V = Thus, by (4.2) we have

for all A > 0. Combining (4.3)-(4.6) we see that

for all A > 0, as desired. D

4.4. Proof of the regular covering case

The proofs of Proposition 1 and of Lemma 3 given below are simpler than
the author’s original proofs and have yielded better numerical constants.
These improvements are due to the referee.
The proof of Proposition 1 depends heavily on the following very simple

combinatorial lemma whose proof we include for completeness. Write ~!7)
for the cardinality of a set U.

LEMMA 3. - are i.i.d. random variables with values in

{1,..., and each value taken on with equal probability, then

We shall write [m] = {1,..., for m e 1t.

Proof of Lemma 3. - Let ImgA be the random set ~ A1, ... Let S

be the collection of all the subsets of {1,... n~ which have cardinality
~/2J. Then,

since P(Ak E U) = for all k. Inequality (4.7) follows

immediately.
We will now give a proof of Proposition 1, thereby completing the proof

of Theorem 1.

Proof of Proposition 1. - Put xtl = Let Q( == ~n~n, so that an
element A of 2t is a sequence (A1, ... , An ) in [n]. For any A E let

Vol. 33, n° 5-1997.
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ImgA be the set {~4i,..., An ), and let v(A) be the cardinality of ImgA.
Define Sj to be the set of elements A in 2t with v(A) > 7a1.
We now define a certain involution ~ of Sj as follows. Fix A E Sj. Note

that n - v(A)  nl. Let k (A) > 0 be the smallest positive integer such that
= n - v(A). Then define pa to be the unique increasing

one-to-one map of the set {A1, ... , C lL+ onto the set 
For i E [n] , if A.z E f A1, ... , then let (%(A))i = pA(A.;); otherwise,
let = Ai. It is easy to see that = v(A), and hence ~ maps
2t into itself. In fact, § is an involution. To see this, it suffices to note

that if B = cjJ(A), then k;(B) _ k(A) and {131, ... , Bk~~~} _ 
so that pB = and it easily follows that = A. Note also that if

A E Sj, then (ImgA) U [n]. Extend ~/~ to an involution of 2t
by defining = A for A E 

Let A be a random element of 2l, where each element of 2t is taken to
have equal probability n-n. Lemma 3 then says that P(A E Sj) > ~. Let
A = Since we have (ImgA) U (ImgA) = [n] for A E Sj, it follows that

Note also that A is a random element of 3t with the same distribution

as A since § is an involution of 2t (although evidently A and A are not
independent).

Let be an array of independent random variables such
that Yi,j has the same distribution as Yj for every i and j. Assume that
the random element A E 2t is defined on the same probability space as
the array and that it is independent of this array. For i E [n], define
the random variables

and

Then, the Xi are independent random variables. Moreover, for any bounded
Borel function f we have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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since Yj and Yi,j have the same distribution and where we have also used
the choice of Y and the definition of regular covering. Hence the XZ are
independent copies of Y (cf. Example 1). Likewise, the Xi are independent
copies of Y, since A and A have the same distribution.

Put Sn = Xi + ... + Xn and Sn = Xi + ... + X n . Let F be the event
that (ImgA) U (ImgA) = [n]. I now claim that

for all À  0. To see this, we condition on A, suppose that we are in F and
define = Ai if z  n and a(z) = for n + 1  z  2n. Since we

are in F, it follows a(2n) ) = ~n~ . Remember that we are
conditioning on the value of A. Let U ç [2n] be any set with the property
that IUI i E ~7} = [n]. Note that

Observe that the two sums here are independent and symmetric,
conditionally on A, assuming we are in F. Thus, by Levy’s inequality (4.1),

on F. Moreover,

on F, because has the same distribution as the Yi,j are all
independent and are independent of A, i E ~7} = [n] and

n. Inequality (4.10) follows from (4.11 ) and (4.12).
From (4.10) and (4.2) we now conclude that

since P(F) > ~ by (4.8), and since 6~ and Sn both have the same
distribution. Since Sn is a sum of n independent copies of Y, we are
done. D

Vol. 33, n° 5-1997.
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5. A WEAK ONE-SIDED EXTENSION
OF A LAW OF LARGE NUMBERS OF CHEN

Let

and

Chen [3] then proved the following result.

THEOREM A (Chen [3]). - Fix r and t such that 2  2r  2t. Let

i.i.d. random variables such that == 0, = 1 and

 oo. Then,

where Sn = Xi + ... + Xn.
This extended an .earlier result of Heyde [9] who had proved the same

thing in the special case where r = t = 2. Heyde’s result, in turn, was a
significant sharpening of the following result of Hsu and Robbins [10].

THEOREM B (Hsu and Robbins [10]). - Let random

variables such that

Then

Erdos [4], [5] showed that in fact (5.2) is necessary for (5.3). A result
closely related to Heyde’s and providing a two sided estimate of the infinite
sum in (5.3) valid for all E > 0 in the i.i.d. case can be found in [19].
As noted before, partial bibliographies on Hsu-Robbins-Erdos laws of large
numbers may be found in [14] and [17] (see also [7]).

Remark 7. - Note that we cannot hope to get a full result like Chen’s
theorem, or even Heyde’s theorem, in the case of regular covering. To
see this, let f be the function on [0,1] which is identically 1 on [0, ~] ]
and identically -I on (~1]. Let the xnk be as in Example 3. Then,
/(~i)?..., f(xnn) are a regular cover of f, while E~ f ~~ --- 1 and E~ f ~ = O.
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However, if we put = + ... + = nRn f then we see that
for n even we have vanishing with probability 1, while for n odd we
have Sn = with probability 1 where k == (n + 1) /2. Then if we put
r = t = 2, the left hand side of (5.1) will in our case be

If n is even then > en) = O. If n is odd then > 

so that the left hand side of (5.1 ) is no bigger than

where denotes the largest integer not exceeding x, and thus Theorem A
cannot hold in this case.

In light of Remark 7, we have little reason to hope for anything more than
a one-sided inequality in the general case of regular covering. However, it
may be possible to get something more under the auxiliary assumption that
each of the random variables ..., Xnn which regularly cover X has
mean zero, and not just that X has mean zero as in our counter example.
The main result of the present section is as follows and constitutes a

partial answer to a question Professor Dominik Szynal asked the author.

THEOREM 3. - Fix r and t such that 2  t  2x~  2t. Fix K  oo. For

each n let Xn1,..., Xnn be indep.endent random variables which are K-
weakly mean dominated by X. Assume that = 0, E[X2] = 1
and  oo. Then,

where Sn = Xnl + ... + Xnn and C is a constant depending only on K,
rand t.

OPEN PROBLEM 6. - Suppose moreover that Xnl, ... , Xnn actually form
a regular cover of X for every n. Can we in that case put C = t)?
Can we at least do this if r = t = 2? Failing that, what is the best value
of C for the case of regular covering?
While on the subject of the results of Heyde and Chen, we note

that Szynal [22] has shown that the assumption of independence in the
Hsu-Robbins [10] theorem (see Theorem B, above) can be relaxed to
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quadruplewise independence, but not to pairwise independence. (However,
it is not known whether, under quadruplewise independence, condition (5.2)
is necessary for (5.3).) It is not hard to see with Szynal’s methods [22]
that under the assumption of quadruplewise independence we may obtain
analogues of Theorem B even in the case of K-weak mean domination.
We have not, however, been able to do this via the methods of the present
paper, and, moreover, we have the following question.

PROBLEM 7. - Can we replace the independence of in

Theorem 3 by quadruplewise independence?
The answer is not even known in the simplest case where r = t = 2

and all the random variables are identically distributed. In the identically
distributed cases the proofs of Heyde [9] and Chen [3] use the central
limit theorem, but unfortunately the central limit theorem need not hold for
quadruplewise independent random variables [21 ] .

Remark 8. - Note that it seems not unlikely that Theorem 3 could also
be proved via an estimate of Bikelis [1] ] as in [ 18] (see also [ 19]), but given
Chen’s [3] result and our Theorem 1, it appears to be easier to proceed
as we do in the present paper.

Before we give our proof of Theorem 3, we need a simple lemma. Given
a statement P, we let 11 pl equal 1 when P is true and we set equal
to 0 when P is false.

LEMMA 4. - Under the conditions of Theorem 1, we have

for every ~ > 0, where CI depends only on K, rand t, and where 
is any median of Sn.

Proof of Lemma 4. - We have
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The first equality follows from the fact that E[Sn] = 0; the second equality
comes from the independence of Xn1, ..., Xnn. The last inequality in (5.4)
followed from the definition of K-weak mean domination and the fact that
for any random variable Y we have

Now, if >  3 , then certainly 1/L(Sn)1  énr/t (any
fraction less than ~ will do in place of ~). Thus by (5.4) we see that
!~(~)! I  Enr/t providing

Thus,

where C(r)  oo depends only on r > 1. The desired result follows

immediately upon setting Ci = C(r) . (3K)~~’~~t>/2. D

Proof of Theorem 3. - Note that

by standard symmetrization inequalities (see, e.g., [15, ~17.1.A]). On the
other hand,

Hence in light of Lemma 4, we need only prove that

Let where ~ 1 is a Rademacher random variable independent
of X, with P(ci = 1 ) = = -1 ) = ~. Clearly I with
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probability 1, and it follows from standard symmetrization inequalities (see,
e.g., [15, §17.LA]) that ..., are 2K-weakly mean dominated by
2X’. Theorem 1 then implies that

where 5~ = X i + ... + X~, for X i , ... , X~ independent copies of
X’, and where C3 and ex depend only on K. Since E[X’] = 0 and
E ~ ( X’ ) 2 ~ = E[X~] = 1, by using a scaled version of Theorem A we
see that

In light of (5.6), we conclude that (5.5) holds with C2 = 03 . (g~-1 ),~~~,t~,
as desired. D
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