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ABSTRACT. - The Return Time Theorem of Bourgain [BFKO] cannot be
extended to the infinite measure-preserving case. Specifically, there exist
a sigma-finite measure-preserving system (X, A, ~, T) and a set A c X
of positive finite measure so that for almost every x E X the following
undesirable behavior occurs. For every aperiodic measure-preserving system
(Y, B, v, S), with v (S) = 1, there is a square-integrable g on Y so
that the averages diverge a.e. (y), where
Tn =7-.~) = ~m-1 lA (Tn x).

RESUME. - Le theoreme du temps de retour de Bourgain ne peut
pas etre etendu au cas des transformations preservant une mesure

infinie. Precisement il existe un systeme preservant une mesure a-finite,
(X, A, p, T) et un ensemble A c X de mesure positive et finie, tels

que pour presque tout x E X, on a le comportement indesirable suivant.
Pour chaque systeme preservant la mesure aperiodique (Y, B, v, S), avec
v (S) = 1, il existe une fonction g de carre integrable sur Y telle que les
moyennes X~~=i lA (Tm x) g y) divergent pour presque tout (y) ,

Tn (x) _ ~m-1 lA (Tn x).

Consider an ergodic measure-preserving system (X, A, ~ T). Initially
assume  +00; for a set A c X of positive measure and x E X
fixed consider the return times = {7Z &#x3E; 0 : E ~4} of the orbit x,
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T x, T 2 x, ... to the set A. These sets of integers have a rich arithmetical
structure in both a mean and pointwise sense. We are interested in the
latter, and in particular in using the return times as sets of integers along
which to form new ergodic theorems. The ergodic theorem itself implies
that Nx has density (A) for a.e. x. the Wiener-Wintner Theorem [WW]
goes further, asserting that an L2 ergodic theorem holds along for a.e.

x, for all second systems (Y, B, v, S) and g E L2 (Y)

converges in L2 (Y). The much more recent Return Time Theorem of
Bourgain [BFKO] strengthens converge to pointwise in Y. This is a very
delicate result.

The form of these last two theorems is to consider sets of integers arising
from a "timing system" X and, pointwise in X, establish a result valid for
all "test systems" Y. We pose the question of replacing the timing system
X by a sigma-finite measure-preserving system, while still requiring the
test systems to be finite. The effect of this change on the Wiener-Wintner
and Return Time theorems is dramatic. It appears that an interesting form
of the first theorem could be true, but it can no longer be seen from a
simple weak-convergence principle, as is illustrated in [BL, section 2]. But
the Return Time Theorem in this new formulation is false. This note gives
a proof of the result stated in the abstract. It will follow from

PROPOSITION. - Let Xm be non-negative i.i.d. integer-valued random
variables such that P (Xl&#x3E; ~) ~ +0o. Here 0  a  1,
so that EX1 = +0oo. Then with probability 1, for every aperiodic finite
measure-preserving system (Y, B, v, S) there is a square-integrable function
g on Y for which

where the power of S above is Tn = ~m=1 Xm.
It is well known that Tm can be realized as the return times to the base

of a tower of total measure EX1 = +oo, and so the Proposition proves
the Theorem of the abstract. Also we derive as a corollary an interesting
example for the simple random walk. Note that the interarrival times of a
simple random walk to the origin satisfy the hypotheses of the Proposition
with a = 1 /2. Therefore the returns of the walk to the origin are almost
surely a bad sequence along which to try to form a pointwise ergodic
theorem.
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The key point of the proof, much as in Theorem 4 of [LPRW], is to

isolate an unfortunate, but almost sure, random fluctuation with the aid of
a functional law of the iterated logarithm (LIL). An important difference
is that in the current setting there is no lim sup LIL for Tn = ]L~=i Xm
because of the infinite mean. Instead there is a lim inf LIL, and in particular
there is the following Corollary to the main result of Wichura [W]. We
need some notation. Define random functions on [0, 1] by

Here, [ . ] is the greatest integer function, Ln = e V log n, LLn = log (Ln),
and Ka is a normalizing constant.
For large integers M, set

The important features of f are that for all k &#x3E; 0

and for 0  k  M the functions of 0 on the right side of ( 1 ) are

essentially orthogonal on 0 ~ ~  1.

LEMMA. - With probability 1, for every M there is a (random) sequence
of integers nk (w) = nk such that

The convergence is to be understood in the sense of convergence in

distribution, viewing Fn (., c~ ) and f ( . ) as random variables defined on
the probability space [0, 1].
The reader who refers to [W] will have to patiently unwind definitions to

find this Lemma. Aaronson and Denker [AD] have generalized Whichura’ s
results, and most readers will find their paper easier to refer to.

Proof of Proposition. - We will invoke Bourgain’s Entropy Criterion [B].
To this end, it is enough to verify that for almost all W the following holds:
For every integer M there are a subset of the integers of cardinality M
and g of l2 (Z) norm 1 so that for all n, n’ E .M
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By transference, the same assertion holds with Z and the shift replaced by
any aperiodic dynamical system. This will violate the L2-entropy criterion
and so prove the proposition.

Fix a large M. The good o/s are those which satisfy the conclusion of
the Lemma. To define A4, first select n for which the approximation in (2)
is very good. Specifically, choose n so that

for all bounded, Lipschitz § : R (see [D, p. 310]). Take

and define g by

where /3n = Ka is the normalizing constant in the
definition of Fn (t). This allows us to exploit the functional LIL.
We can now verify (3) as follows. For m ~ nM-k and nM-k’

in A4,

These last two sums can be expressed as integrals of Fn (t). In (4) we use
for ø (x) a differentiable extension e (x) of (the real or imaginary part
of) (t) which is bounded by 1 and has derivative
bounded by /3n B. Then, using (4), the preceding expression is estimated by
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Recalling ( 1 ), we see that this is essentially equal to 2, finishing the proof
of Proposition. D

I am grateful to Mate Wierdl, and Karl Petersen. They provided the
inspiration for this paper.
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