Annales de l'I. H. P., Section B

Émile Le Page
 Marc Peigné

A local limit theorem on the semi-direct product of \mathbb{R}^{*+} and \mathbb{R}^{d}

Annales de l'I. H. P., section B, tome 33, n 2 (1997), p. 223-252
http://www.numdam.org/item?id=AIHPB_1997__33_2_223_0
© Gauthier-Villars, 1997, tous droits réservés.
L'accès aux archives de la revue «Annales de l'I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A local limit theorem

 on the semi-direct product of \mathbb{R}^{*+} and \mathbb{R}^{d}by
Émile LE PAGE
Institut Mathématique de Rennes, Université de Bretagne Sud, 1, rue de la Loi, 56000 Vannes, France.
and
\section*{Marc PEIGNÉ}
Institut Mathématique de Rennes, Université de Rennes-I, Campus de Beaulieu, 35042 Rennes Cedex, France.
E-mail: peigne@univ-rennes1.fr

AbSTRACT. - Let G be the semi-direct product of \mathbb{R}^{*+} and \mathbb{R}^{d} and μ a probability measure on G. Let $\mu^{* n}$ be the nth power of convolution of μ. Under quite general assumptions on μ, one proves that there exists $\rho \in] 0,1]$ such that the sequence of Radon measures $\left(\frac{n^{3 / 2}}{\rho^{n}} \mu^{* n}\right)_{n \geq 1}$ converges weakly to a non-degenerate measure; furthermore, if $\mu_{2}^{* n}$ is the marginal of $\mu^{* n}$ on \mathbb{R}^{d}, the sequence of Radon measures $\left(\frac{\sqrt{n}}{\rho^{n}} \mu_{2}^{* n}\right)_{n \geq 1}$ converges weakly to a non-degenerate measure.

Key words: Random walk, local limit theorem.
Résumé. - Soit G le groupe produit semi-direct de \mathbb{R}^{*+} et de \mathbb{R}^{d} et μ une mesure de probabilité sur G. On note $\mu^{* n}$ la $n^{\text {ième }}$ convolée de μ. Sous des hypothèses assez générales sur μ, on établit l'existence d'un réel $\rho \in] 0,1]$ tel que la suite de mesures de Radon $\left(\frac{n^{3 / 2}}{\rho^{n}} \mu^{* n}\right)_{n \geq 1}$ converge vaguement vers une mesure non nulle; de plus, si $\mu_{2}^{* n}$ est la marginale de $\mu^{* n}$ sur \mathbb{R}^{d}, la suite $\left(\frac{\sqrt{n}}{\rho^{n}} \mu_{2}^{* n}\right)_{n \geq 1}$ converge vaguement vers une mesure non nulle.

[^0]
I. INTRODUCTION

Fix a norm $\|\cdot\|$ on $\mathbb{R}^{d}, d \geq 1$, and consider the connected group G of transformations

$$
\begin{aligned}
g: \quad \mathbb{R}^{d} & \rightarrow \mathbb{R}^{d} \\
x & \mapsto g \cdot x=a x+b
\end{aligned}
$$

where $(a, b) \in \mathbb{R}^{*+} \times \mathbb{R}^{d}$.
Let a (resp. b) be the projection from G on \mathbb{R}^{*+} (resp. on \mathbb{R}^{d}). Consequently, any transformation $g \in G$ is denoted by $(a(g), b(g))$ (or $g=(a, b)$ when there is no ambiguity); for example, $e=(1,0)$ is the unit element of G.

The group G is also the semi-direct product of \mathbb{R}^{*+} and \mathbb{R}^{d} with the composition law

$$
\forall g=(a, b), \quad \forall g^{\prime}=\left(a^{\prime}, b^{\prime}\right) \in G, \quad g g^{\prime}=\left(a a^{\prime}, a b^{\prime}+b\right)
$$

Recall that G is a non unimodular solvable group with exponential growth and let m_{D} be the right Haar measure on $G: m_{D}(d a d b)=\frac{d a d b}{a}$. Note that if $d=1$, the group G is the affine group of the real line.

Let μ be a probability measure on $G, \mu^{* n}$ its $n^{t h}$ power of convolution, $\tilde{\mu}$ the image of μ by the map $g=(a, b) \mapsto \tilde{g}=\left(\frac{1}{a}, \frac{b}{a}\right)$ and $\bar{\mu}$ the image of μ by the map $g \mapsto g^{-1}$. If λ is a positive measure on $\mathbb{R}^{d}, \mu * \lambda$ denotes the positive measure on \mathbb{R}^{d} defined by $\mu * \lambda(\varphi)=\int_{G \times \mathbb{R}^{d}} \varphi(g \cdot x) \mu(d g) \lambda(d x)$ for any Borel function φ from \mathbb{R}^{d} into \mathbb{R}^{+}. Finally, δ_{x} is the Dirac measure at the point x.

In the present paper, we prove under suitable hypotheses that μ satisfies a local limit theorem: there exists a sequence $\left(\alpha_{n}\right)_{n \geq 0}$ of positive real numbers, depending only on the group when μ is centered, such that the sequence $\left(\alpha_{n} \mu^{* n}\right)_{n \geq 0}$ converges weakly to a non-degenerate measure. This problem has already been tackled by Ph. Bougerol in [5] where he established local limit theorems on some solvable groups with exponential growth, typically the groups $N A$ which occur in the Iwasawa decomposition of a semi-simple group. The affine group of the real line is the simplest example of such a group. In this particular case, Ph. Bougerol proved that, for a class R of centered probability measures μ satisfying some invariance properties, the sequence $\left(n^{3 / 2} \mu^{* n}\right)_{n \geq 0}$ converges weakly to a non-degenerate measure on G. His method is roughly the following one : if μ satisfies some invariance properties, it can be lifted on the associated semi-simple group in a measure m_{μ} (not necessarily bounded) which is biinvariant under the action of a maximal and compact subgroup. In a second
step, using the theory of Guelfand pairs, he showed that the measure m_{μ} satisfies an analogue of the local limit theorem established in [4]. The aim of the present paper is to obtain such a local limit theorem when the measure μ does not belong to the class R.

This work is also related with the work by N.T. Varopoulos, L. SaloffCoste and T. Coulhon [19] where there are precise estimates for the heat kernel on a Lie group which is not necessarily unimodular. More recently, N. T. Varopoulos [17] has considered locally compact and nonunimodular groups and has obtained an upperbound for the asymptotic behaviour of the convolution powers $\mu^{* n}$ of a probability measure μ which has a continuous density ϕ_{μ} with respect to the left Haar measure and satisfying some condition at infinity; in [18], he gives a condition on the Lie algebra of an amenable Lie group which characterizes the decay rate at infinity of the heat kernel.

Now, let us introduce some hypotheses on μ
Hypothesis A1. - There exists $\alpha>0$ such that

$$
\int_{G}\left(\exp (\alpha|\log a(g)|)+\|b(g)\|^{\alpha}\right) \mu(d g)<+\infty
$$

Hypothesis A2. $-\int_{G} \log a(g) \mu(d g)=0$.
Hypothesis A3. - The probability measure μ has a density ϕ_{μ} with respect to the Haar measure m_{D} on G and there exist β and q in $] 1,+\infty[$ such that $\int_{0}^{1} \sqrt[q]{\int_{\mathbb{R}} \phi_{\mu}^{q}(a, b) d b} \frac{d a}{a^{\beta}}<+\infty$.

Hypothesis A3 (bis). - The image $\log \mu_{1}$ of μ by the application $g=(a, b) \mapsto \log a$ is aperiodic on \mathbb{R}, the support of μ is included in $\mathbb{R}^{*+} \times\left(\mathbb{R}^{+}\right)^{d}$ and there exists $\gamma>0$ such that $\int_{G}\|b\|^{-\gamma} \mu(d a d b)<+\infty$.

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $g_{n}=\left(a_{n}, b_{n}\right), n=1,2, \cdots$ be G-valued independent and identically distributed random variables with distribution μ defined on $(\Omega, \mathcal{F}, \mathbb{P})$. Denote by \mathcal{F}_{n} the σ-algebra generated by the variables $g_{1}, g_{2}, \cdots, g_{n}$. For any $n \geq 1$, set $G_{1}^{n}=$ $g_{1} \cdots g_{n}=\left(A_{1}^{n}, B_{1}^{n}\right) ;$ a direct computation gives $A_{1}^{n}=a_{1} a_{2} \cdots a_{n}$ and $B_{1}^{n}=\sum_{k=1}^{n} a_{1} a_{2} \cdots a_{k-1} b_{k}$.

Theorem A. - Suppose that the probability measure μ satisfies Hypotheses $\mathrm{A} 1, \mathrm{~A} 2$ and either A 3 or A 3 (bis).

Then, the sequence of finite measures $\left(n^{3 / 2} \mu^{* n}\right)_{n \geq 0}$ converges weakly to a non-degenerate Radon measure ν_{0} on G.

In other words, for any continuous functions φ and ψ with compact support on \mathbb{R}^{*+} and \mathbb{R}^{d} respectively, the sequence

$$
\left(n^{3 / 2} \mathbb{E}\left[\varphi\left(a_{1} \cdots a_{n}\right) \psi\left(\sum_{k=1}^{n} a_{1} \cdots a_{k-1} b_{k}\right)\right]\right)_{n \geq 1}
$$

converges as n goes to $+\infty$; furthermore, one can choose φ and ψ such that the limit of this sequence is not zero.

The following theorem deals with the behaviour as n goes to $+\infty$ of the variables B_{1}^{n}.

Theorem B. - Suppose that the probability measure μ satisfies Hypotheses $\mathrm{A} 1, \mathrm{~A} 2$ and either A 3 or A 3 (bis). For any $n \geq 1$ denote by $\mu_{2}^{* n}$ the image of $\mu^{* n}$ by the map $g=(a, b) \mapsto b \in \mathbb{R}^{d}$.

Then, the sequence of finite measures $\left(\sqrt{n} \mu_{2}^{* n}\right)_{n \geq 0}$ converges weakly to a non-degenerate Radon measure on \mathbb{R}^{d}.

In other words, for any continuous function ψ with compact support on \mathbb{R}^{d}, the sequence

$$
\left(\sqrt{n} \mathbb{E}\left[\psi\left(\sum_{k=1}^{n} a_{1} \cdots a_{k-1} b_{k}\right)\right]\right)_{n \geq 1}
$$

converges as n goes to $+\infty$; furthermore, one can choose ψ such that the limit of this sequence is not zero.

Observe that the limit measure in Theorem A should satisfy $\mu * \nu=$ $\nu * \mu=\nu$. Using L. Elie's results [7], we prove under additionnal assumptions that this equation has an unique solution (up to a multiplicative constant) in the space of Radon measure on G and we obtain an explicit form of this solution. Using a ratio-limit theorem due to Y. Guivarc'h [11], the measure ν_{0} of theorem A may be identified, up to a multiplicative constant. More precisely, we have the

Theorem C. - Suppose that Hypotheses A1, A2 and A3 hold and assume the additionnal conditions

C 1 . the density ϕ_{μ} of μ is continuous with compact support
C2. $\phi_{\mu}(e)>0$
Then, the measure ν_{0} of theorem A may be decomposed as follows

$$
\nu_{0}=\left(\delta_{1} \otimes \lambda\right) * \overline{\left(\frac{d a}{a} \otimes \lambda_{1}\right)}
$$

where λ (respectively λ_{1}) is, up to a multiplicative constant, the unique Radon measure on \mathbb{R}^{d} which satisfies the convolution equation $\mu * \lambda=\lambda$ (resp. $\bar{\mu} * \lambda_{1}=\lambda_{1}$).

Furthermore, for any positive and continuous function $\varphi, \varphi \not \equiv 0$, with compact support in G, we have $\nu_{0}(\varphi)>0$ and

$$
\mu^{* n}(\varphi) \sim \frac{\nu_{0}(\varphi)}{n^{3 / 2}} \quad \text { as } \quad n \rightarrow+\infty
$$

When μ is not centered (that is when $\int_{G} \log a(g) \mu(d g) \neq 0$) we bring back the study to the centered case using the Laplace transform of $\log \mu_{1}$.

Theorem D. - Let μ be a probability measure on G satisfying Conditions
$\mathrm{A}^{\prime} 1$. there exists $\alpha>0$ such that for any $t \in \mathbb{R}$: the integral $\int_{G}\left(\exp \left(t \mid \log (a(g) \mid)+\|b(g)\|^{\alpha}\right) \mu(d g)\right.$ is finite.
$\mathrm{A}^{\prime} 2$. $\int_{G} \log a(g) \mu(d g) \neq 0, \mu\{g \in G: a(g)<1\}>0$ and $\mu\{g \in G: a(g)>1\}>0$.

Then, there exists a unique $t_{0} \in \mathbb{R}$ and $\left.\rho(\mu) \in\right] 0,1[$ such that

$$
\int_{G} a(g)^{t_{0}} \mu(d g)=\inf _{t \in \mathbb{R}} \int_{G} a(g)^{t} \mu(d g)=\rho(\mu)
$$

Moreover, suppose that μ satisfies either Hypothesis A3 (bis) or the following assumption
$\mathrm{A}^{\prime} 3 . \mu$ has the density ϕ_{μ} with respect to the Haar measure m_{D} on G and there exist $q \in] 1,+\infty[$ and $\beta \in] 1-t_{0},+\infty[$ such that $\int_{0}^{1} \sqrt[q]{\int_{\mathbb{R}} \phi_{\mu}^{q}(a, b) d b} \frac{d a}{a^{\beta}}<+\infty$.

Then, the sequence of finite measures $\left(\frac{n^{3 / 2}}{\rho(\mu)^{n}} \mu^{* n}\right)_{n \geq 1}$ weakly converges to a non-degenerate Radon measure on G. Moreover, if $\mu_{2}^{* n}$ is the image of $\mu^{* n}$ by the map $g=(a, b) \mapsto b \in \mathbb{R}^{d}$, then the sequence of finite measures $\left(\frac{\sqrt{n}}{\rho(\mu)^{n}} \mu_{2}^{* n}\right)_{n \geq 1}$ weakly converges to a non-degenerate Radon measure on \mathbb{R}^{d}.

Let us briefly explain what the Laplace transform of $\log \mu_{1}$ means and connections between Hypotheses A1, A2, A3 and $\mathrm{A}^{\prime} 1, \mathrm{~A}^{\prime} 2, \mathrm{~A}^{\prime} 3$. Under Condition A^{\prime}, the function $L: t \rightarrow \int_{G} a(g)^{t} \mu(d g)$ is well defined on \mathbb{R}; since it is strictly convex and $\lim _{t \rightarrow \pm \infty} L(t)=+\infty$ (this last fact follows by Hypothesis $\mathrm{A}^{\prime} 2$) there exists a unique $t_{0} \in \mathbb{R}$ such that

$$
\int_{G} a(g)^{t_{0}} \mu(d g)=\inf _{t \in \mathbb{R}} \int_{G} a(g)^{t} \mu(d g)=\rho(\mu)
$$

Equalities $L^{\prime}\left(t_{0}\right)=0, L(0)=1$ and $L^{\prime}(0)=\int_{G} \log (a(g)) \mu(d g) \neq 0$ imply $\rho(\mu) \in] 0,1[$. Let us thus consider the probability measure
$\mu_{t_{0}}(d g)=\frac{1}{\rho(\mu)} a(g)^{t_{0}} \mu(d g)$; one checks that if μ satisfies Hypotheses $\mathrm{A}^{\prime} 1$, $\mathrm{A}^{\prime} 2$ and either $\mathrm{A}^{\prime} 3$ or A3 (bis) then $\mu_{t_{0}}$ satisfies Hypotheses A1, A2 and either A3 or A3 (bis) so that one may apply Theorem A.

There are some close connections between Theorems A and B and the asymptotic behaviour of the probability of non-extinction for branching processes in a random environment. For example, let $\left(X_{n}, Y_{n}\right)_{n \geq 1}$ be a sequence of \mathbb{R}^{2}-valued independent and identically distributed random variables and set $S_{0}=0$ and $S_{n}=X_{1}+\cdots+X_{n}, n \geq 1$. Following [1] and [14], the probability of non-extinction for branching processes in a random environment is closely related to the quantities $\mathbb{E}\left[\frac{e^{-a S_{n}}}{\sum_{k=0}^{n-1} e^{-S_{k} Y_{k+1}}}\right]$ with $0 \leq a<1$. As a consequence of Theorems A and B , one obtains the

Corollary. - Suppose that
(i) $\forall n \geq 1 \mathbb{E}\left[X_{n}^{2}\right]<+\infty$ and $\mathbb{E}\left[X_{n}\right]=0$
(ii) there exists $C>0$ such that $\forall n \geq 1, \mathbb{P}\left[Y_{n} \geq C\right]=1$.

Then, the sequence $\left(\sqrt{n} \mathbb{E}\left[\frac{1}{\sum_{k=0}^{n-1} e^{-S_{k} Y_{k+1}}}\right]\right)_{n \geq 1}$ converges to a non zero limit.

Moreover, for any $0<a<1$, the sequence

$$
\left(n^{3 / 2} \mathbb{E}\left[\frac{e^{-a S_{n}}}{\sum_{k=0}^{n-1} e^{-S_{k}} Y_{k+1}}\right]\right)_{n \geq 1}
$$

converges to a non zero limit.
The first assertion of this corollary is due to Kozlov [14] and is an easy consequence of Theorem B. The second assertion has been recently proved by Y. Guivarc'h and Q. Liu [12]; it is also a direct consequence of theorem A, the only thing to check being that one may replace the continuous function with compact support $\varphi \otimes \psi$ by the function $(x, y) \mapsto \frac{e^{-a x}}{y}$ defined on $\mathbb{R}^{*+} \times[C,+\infty[$.

Let us now give briefly the ideas of the proofs of Theorems A and B. Set $\mathcal{A}=\{g \in G: a(g)>1\}$ and consider the transition kernel $P_{\mathcal{A}}$ associated with the pair (μ, \mathcal{A}) and defined by $P_{\mathcal{A}}(g, \mathcal{B})=\int_{G} 1_{\mathcal{A}^{c} \cap \mathcal{B}}(g h) \mu(d h)$ for any Borel set $\mathcal{B} \subset G$ and any $g \in G$.

In the same way, set $\mathcal{A}^{\prime}=\{g \in G: a(g) \geq 1\}$ and let $\tilde{P}_{\mathcal{A}^{\prime}}$ be the operator associated with the pair $\left(\tilde{\mu}, \mathcal{A}^{\prime}\right)$. Following Grincevicius's paper, we are led to what we call the Grincevicius-Spitzer identity [10]:
$\mu^{* n}(\varphi \otimes \psi)=\sum_{k=0}^{n} \int_{G} \tilde{P}_{\mathcal{A}^{\prime}}^{k}(e, d g) \int_{G} P_{\mathcal{A}}^{n-k}(e, d h) \varphi\left(\frac{a(h)}{a(g)}\right) \psi\left(\frac{b(g)+b(h)}{a(g)}\right)$
for any continuous functions φ and ψ with compact support in \mathbb{R}^{*+} and \mathbb{R}^{d} respectively. This formula allows to bring back the study of the asymptotic behaviour of the sequence $\left(\mu^{* n}\right)_{n \geq 1}$ to the study of powers of operators $P_{\mathcal{A}}$ and $\tilde{P}_{\mathcal{A}^{\prime}}$. It is the first main idea of this paper.

The second main idea relies on the Grenander's conjecture, proved by Grincevicius in [10] in a weaker form: if $d=1$ and $\int_{G} \log a(g) \mu(d g)=0$, the asymptotic distribution of $\left|\log B_{1}^{n}\right|$ is the same as the asymptotic distribution of $\quad M_{n}=\max \left(0, \log A_{1}^{1}, \log A_{1}^{2} \cdots, \log A_{1}^{n}\right)$. One may thus expect that the asymptotic behaviour of $\left(G_{1}^{n}\right)_{n \geq 0}$ is quite similar to the behaviour of $\left(A_{1}^{n}, \exp \left(M_{n}\right)\right)_{n \geq 0}$; we will justify this in section III.

Section II is devoted to the study of the behaviour as n goes to $+\infty$ of the sequence $\left(\log A_{1}^{n}, M_{n}\right)_{n \geq 0}$ and in section III we prove Theorems A, B and C.

II. A PRELIMINARY RESULT

Throughout this section, $X_{1}, X_{2} \cdots$ are independent real valued random variables with distribution p defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\left(S_{n}\right)_{n \geq 0}$ be the associated random walk on \mathbb{R} starting from 0 (that is $S_{0}=0$ and $S_{n}=X_{1}+\cdots+X_{n}$ for $n \geq 1$); the distribution of S_{n} is the nth power of convolution $p^{* n}$ of the measure p. Set $M_{n}=\max \left(0, S_{1}, \cdots, S_{n}\right)$ and denote by \mathcal{F}_{n} the σ-algebra generated by $X_{1}, X_{2}, \cdots, X_{n}, n \geq 1$. The study of the asymptotic behaviour of the variable M_{n} is very interesting since many problems in applied probability theory may be reformulated as questions concerning this random variable. Following Spitzer's approach [16], we introduce the two following stopping times T_{+}and T_{-}^{\prime} with respect to the filtration $\left(\mathcal{F}_{n}\right)_{n \geq 1}$:

$$
T_{+}=\inf \left\{n \geq 1: S_{n}>0\right\} \quad \text { and } \quad T_{-}^{\prime}=\inf \left\{n \geq 1: S_{n} \leq 0\right\}
$$

Let $p_{T_{+}}$(resp. $p_{T_{-}^{\prime}}$) be the distribution of the random variable $S_{T_{+}}$ (resp. $S_{T_{-}^{\prime}}$).

In the first part of the present section we give some estimates of the asymptotic behaviour of the sequences $\left(\mathbb{E}\left[\left[T_{+}>n\right] ; \varphi\left(S_{n}\right)\right]\right)_{n \geq 1}$ and $\left(\mathbb{E}\left[\left[T_{-}^{\prime}>n\right] ; \varphi\left(S_{n}\right)\right]\right)_{n \geq 1}$ where φ is a bounded Borel function on \mathbb{R}, in the second part we use these estimates to study the asymptotic behaviour of $\left(M_{n}, M_{n}-S_{n}\right)_{n \geq 1}$.

Vol. 33, n ${ }^{\circ}$ 2-1997.

II.a. A local limit theorem for a killed random walk on a half line

We state here a result due to Iglehard [13] concerning the asymptotic behaviour of the sequences $\left(\mathbb{E}\left[\left[T_{+}>n\right] ; \varphi\left(S_{n}\right)\right]\right)_{n \geq 1}$ and $\left(\mathbb{E}\left[\left[T_{-}^{\prime}>n\right]\right.\right.$; $\left.\left.\varphi\left(S_{n}\right)\right]\right)_{n \geq 1}$ where φ is a continuous function with compact support on \mathbb{R}.

Introducing the operator $P_{] 0,+\infty[}$ defined by

$$
\forall x \in \mathbb{R} \quad P_{] 0,+\infty[} \varphi(x)=1_{]-\infty, 0]}(x) \int_{\mathbb{R}} 1_{]-\infty, 0]}(x+y) \varphi(x+y) p(d y)
$$

we obtain $\forall n \geq 1 \quad \mathbb{E}\left[\left[T_{+}>n\right] ; \varphi\left(S_{n}\right)\right]=P_{] 0,+\infty[}^{n} \varphi(0)$. This section is thus devoted to the asymptotic behaviour as n goes to $+\infty$ of the nth power of the operator $P_{] 0,+\infty}$.

Let us first recall the
Definition II.1. - Let p be a probability measure on \mathbb{R} and G_{p} the closed group generated by the support of p. The measure p is aperiodic if there is no closed and proper subgroup H of G_{p} and no number α such that $p(\alpha+H)=1$.

For example, the measure p such that $p(1)=p(3)=1 / 2$ is not aperiodic because $G_{p}=\mathbb{Z}$ but $p(1+2 \mathbb{Z})=1$. Before stating the main result of this section, we recall the following classical.

Theorem II. 2 [6]. - Suppose that
(i) the common distribution p of the variables $X_{n}, n \geq 1$, is aperiodic;
(ii) $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<+\infty$ and $\mathbb{E}\left[X_{1}\right]=0$.

Then $\lim _{n \rightarrow+\infty} \sqrt{n} \mathbb{P}\left[T_{+}>n\right]=\frac{e^{\alpha}}{\sqrt{\pi}}$ with $\alpha=\sum_{n=1}^{+\infty} \frac{\mathbb{P}\left[S_{n} \leq 0\right]-1 / 2}{n}$.
In the same way, $\lim _{n \rightarrow+\infty} \sqrt{n} \mathbb{P}\left[T_{-}^{\prime}>n\right]=\frac{1}{\sqrt{\pi}} \exp \left(\sum_{n=1}^{+\infty} \frac{\mathbb{P}\left[S_{n}>0\right]-1 / 2}{n}\right)$.
Proof. - For the reader's convenience, we sketch a proof, following [16]; we just explain how to obtain the behaviour of $\left(\mathbb{P}\left[T_{+}>n\right]\right)_{n \geq 1}$, the one of $\left(\mathbb{P}\left[T_{-}^{\prime}>n\right]\right)_{n \geq 1}$ being obtained with obvious modifications. For $s \in\left[0,1\left[\right.\right.$ set $\phi(s)=\sum_{n=0}^{+\infty} s^{n} \mathbb{P}\left[T_{+}>n\right]$. By P5(c) in Spitzer's book, page 181 ([16]), we have

$$
\forall s \in\left[0,1\left[\quad \phi(s)=\exp \left(\sum_{n=1}^{+\infty} \frac{s^{n}}{n} \mathbb{P}\left[S_{n} \leq 0\right]\right)\right.\right.
$$

Since the series $\sum_{n=1}^{+\infty} \frac{1}{n}\left(\mathbb{P}\left[S_{n} \leq 0\right]-\frac{1}{2}\right)$ converges absolutely, it follows that

$$
\phi(s)=\frac{e^{\alpha}}{\sqrt{1-s}}(1+\epsilon(s))
$$

with $\alpha=\sum_{n=1}^{+\infty} \frac{\mathbb{P}\left[S_{n} \leq 0\right]-1 / 2}{n}$ and $\lim _{s \rightarrow 1} \epsilon(s)=0$. Since the sequence $\left(\mathbb{P}\left[T_{+}>n\right]\right)_{n \geq 1}$ decreases, Theorem II. 2 follows from a Tauberian theorem for powers series [8].

Theorem II.3. - Suppose that
(i) the distribution p of the variables $X_{n}, n \geq 1$, is aperiodic
(ii) $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<+\infty$ and $\mathbb{E}\left[X_{1}\right]=0$.

Then, for any continuous function φ with compact support on \mathbb{R}^{+}, we have

$$
\lim _{n \rightarrow+\infty} n^{3 / 2} \mathbb{E}\left[\left[T_{+}>n\right] ; \varphi\left(-S_{n}\right)\right]=\frac{1}{\sigma \sqrt{2 \pi}} \int_{\mathbb{R}^{+}} \varphi(x) \bar{U}_{T_{-}^{\prime}} * \lambda_{+}(d x)
$$

where λ_{+}denotes the restriction of the Lebesgue measure on \mathbb{R}^{+}and $\bar{U}_{T_{-}^{\prime}}$ the image by the map $x \mapsto-x$ of the σ-finite measure $U_{T_{-}^{\prime}}=\sum_{n=0}^{+\infty}\left(p_{T_{-}^{\prime}}\right)^{* n}$.

In the same way, for any continuous function φ with compact support on \mathbb{R}^{+}, we have

$$
\lim _{n \rightarrow+\infty} n^{3 / 2} \mathbb{E}\left[\left[T_{-}^{\prime}>n\right] ; \varphi\left(S_{n}\right)\right]=\frac{1}{\sigma \sqrt{2 \pi}} \int_{\mathbb{R}^{+}} \varphi(x) U_{T_{+}} * \lambda_{+}(d x)
$$

where $U_{T_{+}}$denotes the σ-finite measure $\sum_{n=0}^{+\infty}\left(p_{T_{+}}\right)^{* n}$.
Proof. - For the reader's convenience, we sketch here Iglehard's proof [13]. We just explain how to obtain the asymptotic behaviour of the sequence $\left(n^{3 / 2} \mathbb{E}\left[\left[T_{+}>n\right] ; \varphi\left(-S_{n}\right)\right]\right)_{n \geq 1}$.

For $a>0, s \in\left[0,1\left[\right.\right.$ set $\phi_{a}(s)=\sum_{n=0}^{+\infty} s^{n} \mathbb{E}\left[\left[T_{+}>n\right] ; e^{a S_{n}}\right]$. By relations P5 (a) and P5(c) in Spitzer's book, ([16], page 181) (see also [8], chap. XVIII), we have

$$
\forall a>0, \quad \forall s \in\left[0,1\left[, \quad \phi_{a}(s)=\sum_{n=0}^{+\infty} \mathbb{E}\left[s^{T_{-}^{\prime}} \exp \left(a S_{T_{-}^{\prime}}\right)\right]^{n}\right.\right.
$$

and therefore

$$
\begin{aligned}
\sum_{n=0}^{+\infty} \mathbb{E}\left[\left[T_{+}>n\right] ; e^{a S_{n}}\right] & =\sum_{n=0}^{+\infty} \mathbb{E}\left[\exp \left(a S_{T_{-}^{\prime}}\right)\right]^{n} \\
& =\int_{-\infty}^{0} e^{a x} U_{T_{-}^{\prime}}(d x)=\int_{0}^{+\infty} e^{-a x} \bar{U}_{T_{-}^{\prime}}(d x)
\end{aligned}
$$

Note that $-\infty<\mathbb{E}\left[S_{T_{-}^{\prime}}\right]<0$ so that the above series converges ([8], [16]). Consequently

$$
\begin{aligned}
\forall a>0 \quad \int_{0}^{+\infty} e^{-a x} \bar{U}_{T_{-}^{\prime}} * \lambda_{+}(d x) & =\int_{0}^{+\infty} \frac{e^{a x}}{a} \bar{U}_{T_{-}^{\prime}}(d x) \\
& =\sum_{n=0}^{+\infty} \mathbb{E}\left[\left[T_{+}>n\right] ; \frac{e^{a S_{n}}}{a}\right]
\end{aligned}
$$

Thus, to prove Theorem II.3, it suffices to show that
$\forall a>0, \quad \lim _{n \rightarrow+\infty} n^{3 / 2} \mathbb{E}\left[\left[T_{+}>n\right] ; e^{a S_{n}}\right]=\frac{1}{\sigma \sqrt{2 \pi}} \sum_{n=0}^{+\infty} \mathbb{E}\left[\left[T_{+}>n\right] ; \frac{e^{a S_{n}}}{a}\right]$.
Note that $\mathbb{E}\left[\left[T_{+}>n\right] ; e^{a S_{n}}\right]$ is the nth Taylor coefficient of the function ϕ_{a} and recall the Spitzer's identity ([16], P5(c), p. 181)

$$
\forall s \in\left[0,1\left[, \quad \phi_{a}(s)=e^{A(s)} \quad \text { with } A(s)=\sum_{n=1}^{+\infty} \frac{s^{n}}{n} \mathbb{E}\left[\left[S_{n} \leq 0\right]: e^{a S_{n}}\right]\right.\right.
$$

Let us now state the two following key lemmas whose proofs are given in [13].

Lemma II.4. - Let $\sum_{n=0}^{+\infty} d_{n} s^{n}=\exp \left(\sum_{n=1}^{+\infty} b_{n} s^{n}\right)$ for $|s| \leq 1$. If the sequence $\left(n^{3 / 2} b_{n}\right)_{n \geq 1}$ is bounded, the same holds for $\left(n^{3 / 2} d_{n}\right)_{n \geq 1}$.

Lemma II.5. - Let $\left(c_{n}\right)_{n \geq 0}$ and $\left(d_{n}\right)_{n \geq 0}$ be two sequences of positive real numbers such that
(i) $\lim _{n \rightarrow+\infty} \sqrt{n} c_{n}=c>0$
(ii) $\sum_{n=0}^{+\infty} d_{n}=d<+\infty$
(iii) the sequence $\left(n d_{n}\right)_{n \geq 0}$ is bounded.

If $a_{n}=\sum_{k=0}^{n-1} c_{n-k} d_{k}$ then $\lim _{n \rightarrow+\infty} \sqrt{n} a_{n}=c d$.
Differentiating Spitzer's identity with respect to s leads to

$$
\sum_{n=1}^{+\infty} n s^{n-1} \mathbb{E}\left[\left[T_{+}>n\right] ; e^{a S_{n}}\right]=\sum_{n=1}^{+\infty} s^{n-1} \mathbb{E}\left[\left[S_{n} \leq 0\right] ; e^{a S_{n}}\right] \phi_{a}(s)
$$

where $|s|<1$. Set $a_{n}=n \mathbb{E}\left[\left[T_{+}>n\right] ; e^{a S_{n}}\right], c_{n}=\mathbb{E}\left[\left[S_{n} \leq 0\right] ; e^{a S_{n}}\right]$ and $\sum_{n=0}^{+\infty} d_{n} s^{n}=\phi_{a}(s)$; we thus have $a_{n}=\sum_{k=0}^{n-1} d_{k} c_{n-k}$. By the classical local limit theorem on \mathbb{R}, the sequence $\left(\sqrt{n} c_{n}\right)_{n \geq 0}$ converges to $\frac{1}{a \sigma \sqrt{2 \pi}}$; by Lemma II. 4 it follows that $\left(n^{3 / 2} d_{n}\right)_{n \geq 1}$ is bounded. We may thus apply Lemma II. 5 with $c=\frac{1}{a \sigma \sqrt{2 \pi}}$ and $d=\sum_{n=0}^{+\infty} \mathbb{E}\left[\left[T_{+}>n\right] ; e^{a S_{n}}\right]$. The proof of Theorem II. 3 is now complete.

In [15], we give another proof of this theorem quite different from Iglehard's one and based on the following idea: under suitable hypotheses on p the function $z \mapsto \sum_{n=0}^{+\infty} p^{* n}(\varphi) z^{n}$ may be analytically extended on a certain neighbourhood of the unit complex disc except the pole 1 . So the approximation of this function around its singularity may be translated into an approximation of its Taylor coefficients. Unfortunately, this "new"
proof requires stronger hypotheses than Theorem II. 3 and so it is not as general as Iglehard's one.

II.b. A local limit theorem

for the process $\left(M_{n}, M_{n}-S_{n}\right)_{n \geq 0}$ on $\mathbb{R}^{+} \times \mathbb{R}^{+}$
Let us first state the following well known theorem concerning the behaviour as n goes to $+\infty$ of the sequence $\left(\mathbb{E}\left[\varphi\left(M_{n}\right)\right]\right)_{n \geq 1}$ where φ is a continuous function with compact support on \mathbb{R}^{+}; in [3] the reader will find a more general statement than the following one.

Theorem II. 6 [3]. - Suppose that
(i) the distribution p of the variables $X_{n}, n \geq 1$, is aperiodic
(ii) $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<+\infty$ and $\mathbb{E}\left[X_{1}\right]=0$.

Then, for any continuous function φ with compact support on \mathbb{R}^{+}, we have

$$
\lim _{n \rightarrow+\infty} \sqrt{n} \mathbb{E}\left[\varphi\left(M_{n}\right)\right]=\frac{e^{\alpha}}{\sqrt{\pi}} \int_{0}^{+\infty} \varphi(x) U_{T_{+}}(d x)
$$

with $\alpha=\sum_{n=1}^{+\infty} \frac{\mathrm{P}\left[S_{n} \leq 0\right]-1 / 2}{n}$.
Proof. - For the reader's convenience, we present here a simple proof of this theorem. It suffices to show that

$$
\forall a>0 \quad \lim _{n \rightarrow+\infty} \mathbb{E}\left[e^{-a M_{n}}\right]=\frac{e^{\alpha}}{\sqrt{\pi}} \int_{0}^{+\infty} e^{-a x} U_{T_{+}}(d x)
$$

The starting point is the following identity due to Spitzer [16] :
$\forall a>0, \quad \forall n \geq 1 \quad \mathbb{E}\left[e^{-a M_{n}}\right]=\sum_{k=0}^{n} \mathbb{E}\left[\left[T_{-}^{\prime}>k\right] ; e^{-a S_{k}}\right] \mathbb{P}\left[T_{+}>n-k\right]$.
By Theorem II.2, we have $\lim _{n \rightarrow+\infty} \sqrt{n} \mathbb{P}\left[T_{+}>n\right]=\frac{e^{\alpha}}{\sqrt{\pi}}$ and by Theorem II. 3 the sequence $\left(n^{3 / 2} \mathbb{E}\left[\left[T_{-}^{\prime}>n\right] ; e^{-a S_{n}}\right]\right)_{n \geq 0}$ is bounded; furthermore

$$
\sum_{n=0}^{+\infty} \mathbb{E}\left[\left[T_{-}^{\prime}>n\right] ; e^{-a S_{n}}\right]=\int_{0}^{+\infty} e^{-a x} U_{T_{+}}(d x)
$$

Theorem II. 4 thus follows from Lemma II. 5 .
We now turn to the behaviour of the sequence $\left(\mathbb{E}\left[\varphi\left(M_{n}, S_{n}\right)\right]\right)_{n \geq 1}$. In [17], N.T. Varopoulos gave an upperbound of the asymptotic behaviour of the sequence $\left(n^{3 / 2} \mathbb{P}\left[M_{n} \leq a, S_{n} \geq-b\right]\right)_{n \geq 1}, a, b \in \mathbb{R}^{+}$; we obtain here
the exact asymptotic behaviour of this sequence and as far as we know this result is new.

Theorem II.7. - Suppose that
(i) the distribution p of the variables $X_{n}, n \geq 1$, is aperiodic
(ii) $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<+\infty$ and $\mathbb{E}\left[X_{1}\right]=0$.

Then, for any continuous function φ with compact support on $\mathbb{R}^{+} \times \mathbb{R}^{+}$, we have

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} & n^{3 / 2} \mathbb{E}\left[\varphi\left(M_{n}, M_{n}-S_{n}\right)\right] \\
= & \frac{1}{\sigma \sqrt{2 \pi}} \int_{0}^{+\infty} \int_{0}^{+\infty} \varphi(x, y) \lambda_{+} * U_{T_{+}}(d x) \bar{U}_{T_{-}^{\prime}}(d y) \\
& +\frac{1}{\sigma \sqrt{2 \pi}} \int_{0}^{+\infty} \int_{0}^{+\infty} \varphi(x, y) U_{T_{+}}(d x) \lambda_{+} * \bar{U}_{T_{-}^{\prime}}(d y)
\end{aligned}
$$

where λ_{+}is the restriction of the Lebesgue measure on \mathbb{R}^{+}, $U_{T_{+}}=\sum_{n=0}^{+\infty}\left(p_{T_{+}}\right)^{* n}$ and $\bar{U}_{T_{-}}$is the image by the map $x \mapsto-x$ of the potential $U_{T_{-}}=\sum_{n=0}^{+\infty}\left(p_{T_{-}}\right)^{* n}$.

Proof. - It suffices to show that for any $a, b>0$ one has

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} & n^{3 / 2} \mathbb{E}\left[e^{-a I_{n}} e^{-b\left(\Lambda I_{n}-S_{n}\right)}\right] \\
= & \int_{0}^{+\infty} \int_{0}^{+\infty} \frac{e^{-a x}}{a} e^{-b y} U_{T_{+}}(d x) \bar{U}_{T_{-}^{\prime}}(d y) \\
& +\int_{0}^{+\infty} \int_{0}^{+\infty} e^{-a x} \frac{e^{-b y}}{b} U_{T_{+}}(d x) \bar{U}_{T_{-}^{\prime}}(d y)
\end{aligned}
$$

In his book, F . Spitzer introduces the variable T_{n} denoting the first time at which $\left(S_{n}\right)_{n \geq 0}$ reaches its maximum M_{n} during the first n steps. Recall that T_{n} is not a stopping time with respect to the filtration $\left(\mathcal{F}_{n}\right)_{n \geq 1}$; nevertheless, it plays a crucial role in order to obtain the following identity [16]

$$
\left\{\begin{array}{c}
\forall n \geq 1, \\
\mathbb{E}\left[e^{-a M_{n}} e^{-b\left(M I_{n}-S_{n}\right)}\right]=\sum_{k=0}^{n} \mathbb{E}\left[\left[T_{-}^{\prime}>k\right] ; e^{-a S_{k}}\right] \mathbb{E}\left[\left[T_{+}>n-k\right] ; e^{b S_{n-k}}\right]
\end{array}\right.
$$

Set $\alpha_{n}=\mathbb{E}\left[\left[T_{-}^{\prime}>n\right] ; e^{-a S_{n}}\right]$ and $\beta_{n}=\mathbb{E}\left[\left[T_{+}>n\right] ; e^{b S_{n}}\right]$. By Theorem II. 3 we have

$$
\lim _{n \rightarrow+\infty} n^{3 / 2} \alpha_{n}=\frac{1}{\sigma \sqrt{2 \pi}} \int_{\mathbb{R}^{+}} \frac{e^{-a x}}{a} U_{T_{+}}(d x)
$$

and

$$
\lim _{n \rightarrow+\infty} n^{3 / 2} \beta_{n}=\frac{1}{\sigma \sqrt{2 \pi}} \int_{\mathbb{R}^{+}} \frac{e^{-b y}}{b} \bar{U}_{T_{-}^{\prime}}(d y)
$$

Furthermore

$$
\sum_{n=0}^{+\infty} \alpha_{n}=\int_{0}^{+\infty} e^{-a x} U_{T_{+}}(d x) \quad \text { and } \quad \sum_{n=0}^{+\infty} \beta_{n}=\int_{0}^{+\infty} e^{-b y} \bar{U}_{T_{-}^{\prime}}(d y)
$$

Theorem II. 5 is thus a consequence of the following lemma
LEMMA II.8. - Let $\left(\alpha_{n}\right)_{n \geq 0}$ and $\left(\beta_{n}\right)_{n \geq 0}$ be two sequences of positive real numbers such that $\lim _{n \rightarrow+\infty} n^{3 / 2} \alpha_{n}=\alpha$ and $\lim _{n \rightarrow+\infty} n^{3 / 2} \beta_{n}=\beta>0$. Then
(i) there exists a constant $C>0$ such that, for any $n \in \mathbb{N}^{*}$ and $0<i<n-j<n$, we have

$$
n^{3 / 2} \sum_{k=i+1}^{n-j} \frac{1}{k^{3 / 2}(n-k)^{3 / 2}} \leq C\left(\frac{1}{\sqrt{i}}+\frac{1}{\sqrt{j}}\right)
$$

(ii) one has $\lim _{n \rightarrow+\infty} n^{3 / 2} \sum_{k=0}^{n} \alpha_{k} \beta_{n-k}=\alpha B+\beta A \quad$ where $A=\sum_{k=0}^{+\infty} \alpha_{k}$ and $B=\sum_{k=0}^{+\infty} \beta_{k}$.

Proof. - (i) Without loss of generality, one can suppose $i+1<[n / 2]<$ $n-j$, where $[n / 2]$ is the integer part of $n / 2$; we have

$$
\begin{aligned}
& n^{3 / 2} \sum_{k=i+1}^{n-j} \frac{1}{k^{3 / 2}(n-k)^{3 / 2}} \\
& \quad=n^{3 / 2} \sum_{k=i+1}^{[n / 2]} \frac{1}{k^{3 / 2}(n-k)^{3 / 2}}+n^{3 / 2} \sum_{k=[n / 2]+1}^{n-j} \frac{1}{k^{3 / 2}(n-k)^{3 / 2}} \\
& \quad \leq 2^{3 / 2} \sum_{k=i+1}^{+\infty} \frac{1}{k^{3 / 2}}+2^{3 / 2} \sum_{k=j}^{+\infty} \frac{1}{k^{3 / 2}} .
\end{aligned}
$$

Inequality (i) follows immediately.
(ii) Set $\gamma_{n}=\sum_{k=0}^{n} \alpha_{k} \beta_{n-k}$ and fix $1 \leq i<n-j<n$; one has

$$
\begin{aligned}
&\left|n^{3 / 2} \gamma_{n}-\alpha B-\beta A\right| \leq\left|n^{3 / 2} \sum_{k=0}^{i} \alpha_{k} \beta_{n-k}-\beta \sum_{k=0}^{+\infty} \alpha_{k}\right|+n^{3 / 2} \sum_{k=i+1}^{n-j} \alpha_{k} \beta_{n-k} \\
&+\left|n^{3 / 2} \sum_{k=n-j+1}^{n} \alpha_{k} \beta_{n-k}-\alpha \sum_{k=0}^{+\infty} \beta_{k}\right|
\end{aligned}
$$

with

$$
\begin{aligned}
\left|n^{3 / 2} \sum_{k=0}^{i} \alpha_{k} \beta_{n-k}-\beta \sum_{k=0}^{+\infty} \alpha_{k}\right| & \leq \sum_{k=0}^{i}\left|n^{3 / 2} \beta_{n-k}-\beta\right| \alpha_{k}+\beta \sum_{k=i+1}^{+\infty} \alpha_{k} \\
\left|n^{3 / 2} \sum_{k=n-j+1}^{n} \alpha_{k} \beta_{n-k}-\alpha \sum_{k=0}^{+\infty} \beta_{k}\right| & \leq \sum_{k=0}^{j-1}\left|n^{3 / 2} \alpha_{n-k}-\alpha\right| \beta_{k}+\alpha \sum_{k=j}^{+\infty} \beta_{k}
\end{aligned}
$$

and

$$
n^{3 / 2} \sum_{k=i+1}^{n-j} \alpha_{k} \beta_{n-k} \leq C\left(\frac{1}{\sqrt{i}}+\frac{1}{\sqrt{j}}\right)
$$

Fix $\epsilon>0$ arbitrary small and choose i and j large enough that $\beta \sum_{k=i+1}^{+\infty} \alpha_{k}<\epsilon / 3, \alpha \sum_{k=j}^{+\infty} \beta_{k}<\epsilon / 3$ and $C\left(\frac{1}{\sqrt{i}}+\frac{1}{\sqrt{j}}\right)<\epsilon / 3$. Letting $n \rightarrow+\infty$, one obtains $\limsup _{n \rightarrow+\infty}\left|n^{3 / 2} \gamma_{n}-\alpha B-\beta A\right| \leq \epsilon$.

III. PROOFS OF THEOREMS A AND B

III.a. Spitzer-Grincevicius factorisation

Let us first recall some notations. Let $g_{n}=\left(a_{n}, b_{n}\right), n=1,2, \cdots$ be independent and identically distributed random variables with distribution μ. Denote by \mathcal{F}_{n} the σ-algebra generated by the variables $g_{1}, g_{2}, \cdots . g_{n} . n \geq 1$. For any $n \geq 1$, set $G_{1}^{n}=g_{1} \cdots g_{n}=\left(A_{1}^{n}, B_{1}^{n}\right)$, we have $A_{1}^{n}=a_{1} \cdots a_{n}$ and $B_{1}^{n}=\sum_{k=1}^{n} a_{1} \cdots a_{k-1} b_{k}$. More generally, set $A_{n}^{\prime \prime \prime}=a_{n} \cdots a_{n}$ and $B_{n}^{m}=\sum_{k=n}^{m} a_{n} \cdots a_{k-1} b_{k}$ if $1 \leq n \leq m$ and $A_{n}^{\prime \prime \prime}=1 . B_{n \prime}^{\prime \prime \prime}=0$ otherwise. We also introduce the variables S_{n}, M_{n} and T_{n} defined by $S_{n}=L_{n} n_{1}^{\prime \prime}$ and $S_{0}=0, M_{n}=\max \left(S_{0}, S_{1}, \cdots, S_{n}\right)$ and $T_{n}=\inf \left\{0 \leq h \leq \| / \varsigma_{k}=M_{n}\right\}$.

In the same way, let $\tilde{\mu}$ be the image of μ by the mapping $g \mapsto\left(\frac{1}{a(g)}, \frac{b(g)}{a(g)}\right)$; if $\tilde{g}_{n}=\left(\tilde{a}_{n}, \tilde{b}_{n}\right), n=1.2 . \cdots$ are independent and identically distributed random variables with distribution $/ 1$ on (i. set $\tilde{G}_{n}^{m}=\tilde{g}_{n} \cdots \tilde{g}_{m}, \tilde{A}_{n}^{m}=\tilde{a}_{n} \cdots \tilde{a}_{m}, \tilde{B}_{n}^{m}=\sum_{k=1,}^{m} \tilde{i}_{n} \cdots \|_{j}$, \boldsymbol{m}_{n} for $1 \leq 11 \leq$ m and $\tilde{G}_{n}^{m}=e, \tilde{A}_{n}^{m}=1$ and $\tilde{B}_{n}^{m}=0$ otherwise: いet alo. $\dot{H}_{"}^{\prime \prime}=1 . \tilde{S}_{n} \dot{I}_{1}^{\prime \prime}$. $\tilde{S}_{0}=0$ and $\tilde{M}_{n}=\max \left(\tilde{S}_{0}, \tilde{S}_{1}, \cdots, \dot{S}_{n}\right)$. Denote by . $F_{1,}$ the σ-algebra generated by $\tilde{g}_{1}, \tilde{g}_{2}, \cdots, \tilde{g}_{n}, n \geq 1$.

Fix two positive functions φ and ψ. with compact support. defined respectively on \mathbb{R}^{*+} and \mathbb{R}^{d}. For technical reasons. We suppose that ψ is continuously differentiable on \mathbb{R}^{d}. We are interested in the behaviour of the
sequence $\left(\mathbb{E}\left[\varphi\left(A_{n}\right) \psi\left(B_{n}\right)\right]\right)_{n \geq 1}$ as n goes to $+\infty$; following [10], we have

$$
\begin{aligned}
\mathbb{E}\left[\varphi\left(A_{1}^{n}\right) \psi\left(B_{1}^{n}\right)\right]= & \sum_{k=0}^{n} \mathbb{E}\left[\left[T_{n}=k\right] ; \varphi\left(A_{1}^{n}\right) \psi\left(B_{1}^{n}\right)\right] \\
= & \sum_{k=0}^{n} \mathbb{E}\left[\left[A_{1}^{k}>1\right] \cap\left[A_{2}^{k}>1\right] \cap \cdots \cap\left[A_{k}^{k}>1\right]\right. \\
& \cap\left[A_{k+1}^{k+1} \leq 1\right] \cap\left[A_{k+1}^{k+2} \leq 1\right] \\
& \left.\cdots \cap\left[A_{k+1}^{n} \leq 1\right] ; \varphi\left(A_{1}^{n}\right) \psi\left(B_{1}^{n}\right)\right]
\end{aligned}
$$

The last expectation can be simplified as it is clear that the terms $A_{1}^{k}, A_{2}^{k}, \cdots, A_{k}^{k}$ are independent of the terms $A_{k+1}^{k+1}, A_{k+1}^{k+2} \cdots, A_{k+1}^{n}$; from the equality $B_{1}^{n}=A_{1}^{k}\left(\sum_{j=1}^{k} \frac{b_{j}}{A_{j}^{k}}+\sum_{j=k+1}^{n} A_{k+1}^{j-1} b_{j}\right)$ and by a duality argument, one obtains

$$
\begin{aligned}
& \mathbb{E}\left[\varphi\left(A_{1}^{n}\right) \psi\left(B_{1}^{n}\right)\right] \\
& =\sum_{k=0}^{n} \mathbb{E}\left[\left[\tilde{A}_{1}^{1}<1\right] \cap\left[\tilde{A}_{1}^{2}<1\right] \cap \cdots \cap\left[\tilde{A}_{1}^{k}<1\right]\right. \\
& \cap\left[A_{k+1}^{k+1} \leq 1\right] \cap\left[A_{k+1}^{k+2} \leq 1\right] \cdots \cap\left[A_{k+1}^{n} \leq 1\right] ; \\
& \left.\varphi\left(\frac{A_{k+1}^{n}}{\tilde{A}_{1}^{k}}\right) \psi\left(\frac{1}{\tilde{A}_{1}^{k}}\left(\sum_{j=1}^{k} \tilde{A}_{1}^{j-1} \tilde{b}_{j}+\sum_{j=k+1}^{n} A_{k+1}^{j-1} b_{j}\right)\right)\right] .
\end{aligned}
$$

Set $\mathcal{A}=\{g \in G: a(g)>1\}$ and consider the transition kernel $P_{\mathcal{A}}$ associated with (μ, \mathcal{A}) and defined by $P_{\mathcal{A}}(g, \mathcal{B})=\int_{G} 1_{\mathcal{A}^{\wedge} \cap \mathcal{B}}(g h) \mu(d h)$ for any Borel set $\mathcal{B} \subset G$ and any $g \in G$.

Let us give the probabilistic interpretation of $P_{\mathcal{A}}$. Let $T_{\mathcal{A}}=$ $\inf \left\{n \geq 1: G_{1}^{n} \in \mathcal{A}\right\}$ be the first entrance time in \mathcal{A} of the random walk $\left(G_{1}^{n}\right)_{n \geq 0}$; it is a stopping time with respect to $\left(\mathcal{F}_{n}\right)_{n \geq 1}$ and we have

$$
\forall n \geq 1 \quad P_{\mathcal{A}}^{n}(e, B)=\mathbb{P}\left[\left[T_{\mathcal{A}}>n\right] \cap\left[G_{1}^{n} \in B\right]\right] .
$$

In the same way, set $\mathcal{A}^{\prime}=\{g \in G / a(g) \geq 1\}$, let $\tilde{P}_{\mathcal{A}^{\prime}}$ be the operator associated with $\left(\tilde{\mu}, \mathcal{A}^{\prime}\right)$ and denote by $\tilde{T}_{\mathcal{A}^{\prime}}$ the first entrance time in \mathcal{A}^{\prime} of the random walk $\left(\tilde{G}_{1}^{n}\right)_{n \geq 1} ; \tilde{T}_{\mathcal{A}^{\prime}}$ is a stopping time with respect to $\left(\tilde{\mathcal{F}}_{n}\right)_{n \geq 1}$ and we have

$$
\forall n \geq 1 \quad \tilde{P}_{\mathcal{A}^{\prime}}^{n}(e, B)=\mathbb{P}\left[\left[\tilde{T}_{\mathcal{A}^{\prime}}>n\right] \cap\left[\tilde{G}_{1}^{n} \in B\right]\right] .
$$

From the previous expression of $\mathbb{E}\left[\varphi\left(A_{1}^{n}\right) \psi\left(B_{1}^{n}\right)\right]$, we obtain the SpitzerGrincevicius factorisation:

$$
\mathbb{E}\left[\varphi\left(A_{1}^{n}\right) \psi\left(B_{1}^{n}\right)\right]=\sum_{k=0}^{n} I_{k, n}(\varphi, \psi)
$$

where

$$
I_{k, n}(\varphi, \psi)=\int_{G \times G} \varphi\left(\frac{a(h)}{a(g)}\right) \psi\left(\frac{b(g)+b(h)}{a(g)}\right) \tilde{P}_{\mathcal{A}^{\prime}}^{k}(e, d g) P_{\mathcal{A}}^{n-k}(e, d h)
$$

III.b. Proof of Theorem A

The starting point of the proof is the Spitzer-Grincevicius factorisation. First, thanks to the following lemma, we are going to control the sum $\sum_{k=i+1}^{n-j} I_{k, n}(\varphi, \psi)$ for fixed large enough integers i and j.

Lemma III.1. - There exists $\lambda_{0}>0$ such that for any $\left.\lambda \in\right] 0, \lambda_{0}$], any $g \in G$ and any $l>0$, we have

$$
\int_{G} \varphi\left(\frac{a(h)}{a(g)}\right) \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{l}(e, d h) \leq \frac{C}{l^{3 / 2}} a(g)^{\lambda}
$$

where C is a positive constant which depends on λ, φ and ψ.
By Theorem II.3, the sequence $\left(k^{3 / 2} \int_{G} a(g)^{\lambda} \tilde{P}_{\mathcal{A}^{\prime}}^{k}(e, d g)\right)_{k \geq 0}$ is bounded since

$$
\int_{G} a(g)^{\lambda} \tilde{P}_{\mathcal{A}^{\prime}}^{k}(e, d g)=\mathbb{E}\left[\left[\tilde{T}_{\mathcal{A}^{\prime}}>k\right] ; \exp \left(\lambda \tilde{S}_{k}\right)\right]
$$

Hence, using Lemma III.1, we obtain for any $0<k<n$

$$
\int_{G \times G} \varphi\left(\frac{a(h)}{a(g)}\right) \psi\left(\frac{b(g)+b(h)}{a(g)}\right) \tilde{P}_{\mathcal{A}^{\prime}}^{k}(e, d g) P_{\mathcal{A}}^{n-k}(e, d h) \leq \frac{C_{1}}{k^{3 / 2}(n-k)^{3 / 2}} .
$$

Using Lemma II. 8 (i), one can thus choose two integers i and j such that $\limsup { }_{n \rightarrow+\infty} n^{3 / 2} \sum_{k=i+1}^{n-j} I_{k, n}$ is as small as wanted.

Next, we look at the behaviour of the integral

$$
\int_{G} \varphi\left(\frac{a(h)}{a(g)}\right) \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{l}(e, d h)
$$

as l goes to $+\infty$.
Lemma III.2. - For any $g \in G$, the sequence

$$
\left(l^{3 / 2} \int_{G} \varphi\left(\frac{a(h)}{a(g)}\right) \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{l}(e, d h)\right)_{l \geq 0}
$$

converges to a finite limit as l goes to $+\infty$.
In particular $\left(n^{3 / 2} I_{0, n}(\varphi, \psi)\right)_{n \geq 1}$ converges in \mathbb{R}. On the other hand, for any $i \geq 1$ and any compact set $\bar{K} \subset \mathbb{R}^{*+} \times \mathbb{R}$, the dominated convergence
theorem ensures the existence of a finite limit as n goes to $+\infty$ for $\left(n^{3 / 2} \sum_{k=1}^{i} I_{k, n}(\varphi, \psi, K)\right)_{n \geq 0}$ where

$$
\begin{aligned}
I_{k, n}(\varphi, \psi, K)= & \int_{G} 1_{K^{-}}(g)\left(\int_{G} \varphi\left(\frac{a(h)}{a(g)}\right) \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{n-k}(e, d h)\right) \\
& \left.\times \tilde{P}_{\mathcal{A}^{\prime}}^{k}(e, d g)\right) .
\end{aligned}
$$

One just have to check that the indicator function 1_{K} does not disturb too much the behaviour of the above integrals. Fix $0<\delta<1$; according to Lemma III.1, we have

$$
\begin{aligned}
& \sum_{k=1}^{i} \int_{\{g \in G: a(g) \leq \delta\}}\left(\int_{G} \varphi\left(\frac{a(h)}{a(g)}\right) \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{n-k}(e, d h)\right) \\
& \quad \times \tilde{P}_{\mathcal{A}^{\prime}}^{k}(e, d g) \\
& \quad \leq C(\lambda, \varphi, \psi) \sum_{k=1}^{i} \frac{1}{(n-k)^{3 / 2}} \mathbb{E}\left[\left[\tilde{T}_{\mathcal{A}^{\prime}}>k\right] \cap\left[\tilde{S}_{k} \leq \log \delta\right] ; \exp \left(\lambda \tilde{S}_{k}\right)\right] \\
& \leq \\
& \leq C(\lambda, \varphi, \psi) \delta^{\lambda / 2} \sum_{k=1}^{i} \frac{1}{(n-k)^{3 / 2}} E\left[\left[\tilde{T}_{\mathcal{A}^{\prime}}>k\right] ; \exp \left(\frac{\lambda}{2} \tilde{S}_{k}\right)\right] \\
& \leq C_{1} \delta^{\lambda / 2} \sum_{k=1}^{i} \frac{1}{(n-k)^{3 / 2} k^{3 / 2}}
\end{aligned}
$$

On the other hand, by the definition of $\tilde{P}_{\mathcal{A}^{\prime}}$

$$
\begin{aligned}
& \sum_{k=1}^{i} \int_{\{g \in G: a(g) \geq 1 / \delta\}}\left(\int_{G} \varphi\left(\frac{a(h)}{a(g)}\right) \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{n-k}(e, d h)\right) \\
& \quad \times \tilde{P}_{\mathcal{A}^{\prime}}^{k}(e, d g)=0 .
\end{aligned}
$$

Now, fix $B>0$; according to Lemma III.1

$$
\begin{aligned}
& \sum_{k=1}^{i} \int_{\{g \in G:\|b(g)\| \geq B\}}\left(\int_{G} \varphi\left(\frac{a(h)}{a(g)}\right) \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{n-k}(e, d h)\right) \\
& \quad \times \tilde{P}_{\mathcal{A}^{\prime}}^{k}(e, d g) \\
& \leq C(\lambda, \varphi, \psi) \sum_{k=1}^{i} \frac{1}{(n-k)^{3 / 2}} \mathbb{E}\left[\left[\tilde{T}_{\mathcal{A}^{\prime}}>k\right] \cap\left[\left\|\tilde{B}_{k}\right\| \geq B\right] ; \exp \left(\lambda \tilde{S}_{k}\right)\right] \\
& \leq \frac{C(\lambda, \varphi, \psi)}{B^{\lambda / 2}} \sum_{k=1}^{i} \frac{1}{(n-k)^{3 / 2}} E\left[\left[\tilde{T}_{\mathcal{A}^{\prime}}>k\right] ; \exp \left(\lambda \tilde{S}_{k}\right)\left\|\tilde{B}_{k}\right\|^{\lambda / 2}\right] \\
& \leq \\
& \leq \frac{C_{1}}{B^{\lambda / 2}} \sum_{k=1}^{i} \frac{1}{(n-k)^{3 / 2} k^{3 / 2}}
\end{aligned}
$$

where the last inequality is guaranteed by the following
Lemma III.3. - There exists $\epsilon_{0}>0$ such that for any $0<\epsilon<\epsilon_{0}$

$$
\sup _{l \geq 1} \quad l^{3 / 2} \mathbb{E}\left[\left[\tilde{T}_{\mathcal{A}^{\prime}}>l\right] ; \exp \left(2 \epsilon \tilde{S}_{l}\right)\left\|\tilde{B}_{l}\right\|^{\epsilon}\right]<+\infty
$$

Note that the same upperbounds hold when the sum $\sum_{k=1}^{i}$ is replaced by $\sum_{k=n-j+1}^{n-1}$.

Finally, using the Spitzer-Grincevicius factorisation, we have proved that, for any $\epsilon>0$, there exist $i, j \in \mathbb{N}$ and a compact set $K \subset G$ such that for any $n>i+j$ one has

$$
\begin{aligned}
\mid n^{3 / 2} \mathbb{E}\left[\varphi\left(A_{1}^{n}\right) \psi\left(B_{1}^{n}\right)\right] & -n^{3 / 2} \sum_{k=0}^{i} I_{k, n}(\varphi, \psi, K) \\
& -n^{3 / 2} \sum_{k=n-j+1}^{n} I_{k, n}(\varphi, \psi, K) \mid \leq \epsilon .
\end{aligned}
$$

On the other hand,

$$
\left(n^{3 / 2} \sum_{k=0}^{i} I_{k, n}(\varphi, \psi, K)+n^{3 / 2} \sum_{k=n-j+1}^{n} I_{k, n}(\varphi, \psi, K)\right)_{n \geq 0}
$$

converges. Hence the sequence of measures $\left(n^{3 / 2} \mu^{* n}\right)_{n \geq 1}$ weakly converges to a Radon measure ν_{0}; the fact that ν_{0} is not degenerated follows from the

Lemma III.4. - There exist an integer n_{0} and a compact set $K_{0} \subset G$ such that

$$
\inf _{n \geq n_{0}} n^{3 / 2} \mathbb{P}\left[G_{1}^{n} \in K_{0}\right]>0
$$

The proof of Theorem A is now complete; it just remains to establish Lemmas III.1, III.2, III. 3 and III. 4.

Proof of Lemma III.1. - First, suppose that Hypotheses A1, A2 and A3 hold.

Fix $p>1$ such that $\frac{1}{p}+\frac{1}{q}=1$. For any $g \in G$ and $l \geq 1$, we have

$$
\begin{aligned}
& \int_{G} \varphi\left(\frac{a(h)}{a(g)}\right) \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{l}(e, d h) \\
&= \int_{10,1] \times \mathbb{R}^{d}} \mathbb{E}\left[\left[a A_{2}^{2} \leq 1\right] \cap \cdots \cap\left[a A_{2}^{l} \leq 1\right] ; \varphi\left(\frac{a A_{2}^{l}}{a(g)}\right)\right. \\
&\left.\times \psi\left(\frac{b(g)+\sum_{i=2}^{l} a A_{2}^{i-1} b_{i}+b}{a(g)}\right)\right] \phi_{\mu}(a, b) \frac{d a d b}{a} \\
& \leq a(g)^{\frac{1}{p}}\|\psi\|_{p} \int_{0}^{1} \sqrt[q]{\int_{\mathbb{R}^{d}} \phi_{\mu}^{q}(a, b) d b} \\
& \times \mathbb{E}\left[\left[a A_{2}^{2} \leq 1\right] \cap \cdots \cap\left[a A_{2}^{l} \leq 1\right] ; \varphi\left(\frac{a A_{2}^{l}}{a(g)}\right)\right] \frac{d a}{a} \\
& \leq a(g)^{\frac{1}{p}}\|\psi\|_{p} \int_{0}^{1} \sqrt[q]{\int_{\mathbb{R}^{d}} \phi_{\mu}^{q}(a, b) d b} \\
& \quad \times \mathbb{E}\left[\left[\exp \left(M_{l-1}\right) \leq \frac{1}{a}\right] ; \varphi\left(\frac{a A_{1}^{l-1}}{a(g)}\right)\right] \frac{d a}{a} \\
& \leq a(g)^{\frac{1}{p}}\|\psi\|_{p} \int_{0}^{1} \sqrt[q]{\int_{\mathbb{R}^{d}} \phi_{\mu}^{q}(a, b) d b \frac{1}{a^{2 \epsilon}}} \\
& \times \mathbb{E}\left[\exp \left(-2 \epsilon M_{l-1}\right) \varphi\left(\frac{a A_{1}^{l-1}}{a(g)}\right)\right] \frac{d a}{a} \text { for any } \epsilon>0 .
\end{aligned}
$$

Since the support of φ is compact in $] 0,+\infty[$, there exists $K=K(\epsilon, \varphi)>0$ such that $\forall a>0 \quad|\varphi(a)| \leq K a^{\epsilon}$; so

$$
\begin{aligned}
& \int_{G} \varphi\left(\frac{a(h)}{a(g)}\right) \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{l}(e, d h) \\
& \leq K a(g)^{\frac{1}{p}-\epsilon}\|\psi\|_{p} \int_{0}^{1} \sqrt[q]{\int_{\mathbb{R}^{d}} \phi_{\mu}^{q}(a, b) d b} \frac{d a}{a^{1+\epsilon}} \\
& \times \mathbb{E}\left[\left[\exp \left(-\epsilon\left(M_{l-1}-S_{l-1}\right)\right) \exp \left(-\epsilon M_{l-1}\right)\right]\right.
\end{aligned}
$$

Assume $\frac{1}{p}-\epsilon>0$ and $1+\epsilon<\beta$; by Theorem II. 7 one obtains

$$
\int_{G} \varphi\left(\frac{a(h)}{a(g)}\right) \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{l}(e, d h) \leq \frac{C}{l^{3 / 2}} a(g)^{\frac{1}{p}-\epsilon} .
$$

Now, replace Hypothesis A3 by Hypothesis A3 (bis)

For any $g \in G$ and $l \geq 1$, we have

$$
\begin{aligned}
& \varphi\left(\frac{a(h)}{a(g)}\right) \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{l}(e, d h) \\
& =\int_{j 0,1] \times \mathbb{R}^{d}} \mathbb{E}\left[\left[a A_{2}^{2} \leq 1\right] \cap \cdots \cap\left[a A_{2}^{l} \leq 1\right]\right. \\
& \left.\varphi\left(\frac{a A_{2}^{l}}{a(g)}\right) \psi\left(\frac{b(g)+\sum_{i=2}^{l} a A_{2}^{i-1} b_{i}+b}{a(g)}\right)\right] \mu(d a d b)
\end{aligned}
$$

Since φ and ψ have compact support, for any $\epsilon>0$ there exists $K=K(\epsilon, \varphi, \psi)>0$ such that

$$
\forall a>0|\varphi(a)| \leq K a^{\epsilon} \quad \text { and } \quad \forall b \in\left(\mathbb{R}^{*+}\right)^{d}|\psi(b)| \leq \frac{K}{\|b\|^{2 \epsilon}}
$$

Thus

$$
\begin{aligned}
& \int_{G} \varphi\left(\frac{a(h)}{a(g)}\right) \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{l}(e, d h) \\
& \leq K^{2} a(g)^{\epsilon} \int_{] 0,1] \times \mathbb{R}^{d}} \mathbb{E}\left[\left[a A_{2}^{2} \leq 1\right] \cap \cdots \cap\left[a A_{2}^{l} \leq 1\right]\right] \\
& \frac{\left(A_{2}^{l}\right)^{\epsilon}}{\left\|b(g)+\sum_{i=2}^{l} a A_{2}^{i-1} b_{i}+b\right\|^{2 \epsilon}} a^{\epsilon} \mu(d a d b)
\end{aligned}
$$

Hypothesis A3 (bis) implies $\left\|b(g)+\sum_{i=2}^{l} a A_{2}^{i-1} b_{i}+b\right\| \geq\|b\| \quad \mathbb{P}-a . s$ so that

$$
\begin{aligned}
& \int_{G} \varphi\left(\frac{a(h)}{a(g)}\right) \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{l}(e, d h) \\
& \leq K^{2} a(g)^{\epsilon} \int_{J_{0,1] \times \mathbb{R}^{d}}} \frac{a^{\epsilon}}{\|b\|^{2 \epsilon}} \mathbb{E}\left[\left[e^{M I_{l-1}} \leq \frac{1}{a}\right] ; e^{\epsilon S_{l-1}}\right] \mu(d a d b) \\
& \leq K^{2} a(g)^{\epsilon} \mathbb{E}\left[e^{-\epsilon\left(M A_{l-1}-S_{l-1}\right)} e^{-\epsilon M_{l-1}}\right] \\
& \times \int_{\mathbb{R}^{*+} \times\left(\mathbf{R}^{*+}\right)^{d}} \frac{1}{a^{\epsilon}\|b\|^{2 \epsilon}} \mu(d a d b)
\end{aligned}
$$

The proof is now complete.

Proof of Lemma III.2. - Without loss of generality, one may suppose $g=e$. For any $n \in \mathbb{N}^{*}$, set

$$
\nu_{n}(\varphi, \psi)=n^{3 / 2} \mathbb{E}\left[\left[T_{A}>n\right] ; \varphi\left(A_{1}^{n}\right) \psi\left(B_{1}^{n}\right)\right]
$$

Fix $i, j \in \mathbb{N}$ such that $1 \leq i<n-j \leq n$ and consider

$$
\nu_{n}(\varphi, \psi, i, j)=n^{3 / 2} \mathbb{E}\left[\left[T_{A}>n\right] ; \varphi\left(A_{1}^{n}\right) \psi\left(B_{1}^{i}+A_{1}^{n-j} B_{n-j+1}^{n}\right)\right] .
$$

To obtain the claim, it suffices to prove that
a) $\lim \sup _{i, j \rightarrow+\infty} \lim \sup _{n \rightarrow+\infty}\left|\nu_{n}(\varphi, \psi)-\nu_{n}(\varphi, \psi, i, j)\right|=0$
b) for any fixed $i, j \in \mathbb{N}$, the sequence $\left(\nu_{n}(\varphi, \psi, i, j)\right)_{n \geq 1}$ converges to a finite limit.

Proof of convergence a. - We use the equality $B_{1}^{n}=B_{1}^{i}+A_{1}^{i} B_{i+1}^{n-j}+$ $A_{1}^{n-j} B_{n-j+1}^{n}$; since the support of ψ is compact and ψ is continuously differentiable, we have for some $0<\epsilon<1$

$$
\begin{aligned}
& \left|\nu_{n}(\varphi, \psi)-\nu_{n}(\varphi, \psi, i, j)\right| \\
& \quad \leq C_{1} n^{3 / 2} \mathbb{E}\left[\left[T_{A}>n\right] ; \varphi\left(A_{1}^{n}\right)\left(A_{1}^{i}\right)^{\epsilon}\left\|B_{i+1}^{n-j}\right\|^{\epsilon}\right] \\
& \quad \leq C_{1} n^{3 / 2} \sum_{k=i+1}^{n-j} \mathbb{E}\left[\left[T_{A}>n\right] ; \varphi\left(A_{1}^{n}\right)\left(A_{1}^{k-1}\right)^{\epsilon}\left\|b_{k}\right\|^{\epsilon}\right]
\end{aligned}
$$

Since the support of φ is compact in $] 0,+\infty[$, there exists $K=K(\epsilon, \varphi)>0$ such that $\forall a>0|\varphi(a)| \leq K a^{\epsilon}$; thus, for any $i+1 \leq k \leq n-j$, we have

$$
\begin{aligned}
\mathbb{E}[& {\left.\left[T_{A}>n\right] ; \varphi\left(A_{1}^{n}\right)\left(A_{1}^{k-1}\right)^{\epsilon}\left\|b_{k}\right\|^{\epsilon}\right] } \\
\leq K \mathbb{E} & {[}
\end{aligned}\left[T_{A}>k-1\right] \cap\left[\max \left(A_{k+1}^{k+1}, \cdots, A_{k+1}^{n}\right) \leq \frac{1}{A_{1}^{k-1} a_{k}}\right] ;
$$

Consequently, by Theorem II.3, Theorem II. 7 and Lemma II. 8 (i), there exists $C_{2}>0$ such that

$$
\left|\nu_{n}(\varphi, \psi)-\nu_{n}(\varphi, \psi, i, j)\right| \leq C_{2}\left(\frac{1}{\sqrt{i}}+\frac{1}{\sqrt{j}}\right)
$$

Let i and j go to $+\infty$; we obtain convergence a).
Proof of convergence b. - Fix two integers i and j; we have

$$
\begin{aligned}
\nu_{n}(\varphi, \psi, i, j)= & \int_{G^{j+1}} E_{n}\left(\varphi, \psi, g, h_{1}, h_{2}, \cdots, h_{j}\right) \\
& \times P_{\mathcal{A}}^{i}(e, d g) \mu\left(d h_{1}\right) \mu\left(d h_{2}\right) \cdots \mu\left(d h_{j}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& E_{n}\left(\varphi, \psi, g, h_{1}, h_{2}, \cdots, h_{j}\right) \\
& =\mathbb{E}\left[\left[\max \left(A_{i+1}^{i+1}, \cdots, A_{i+1}^{n-j}\right) \leq \frac{1}{a(g)}\right]\right. \\
& \quad \cap\left[A_{i+1}^{n-j} \leq \min \left(\frac{1}{a(g)}, \frac{1}{a(g) a\left(h_{1}\right)}, \cdots, \frac{1}{a(g) a\left(h_{1}\right) \cdots a\left(h_{j}\right)}\right)\right] ; \\
& \quad \times \varphi\left(a(g) A_{i+1}^{n-j} a\left(h_{1}\right) \cdots a\left(h_{j}\right)\right) \psi\left(b(g)+a(g) A_{i+1}^{n-j} b\left(h_{1} \cdots h_{j}\right)\right]
\end{aligned}
$$

Using Theorem II-7, one may see that, for any $g, h_{1}, \cdots, h_{j} \in G$, the sequence $\left(n^{3 / 2} E_{n}\left(\varphi, \psi, g, h_{1}, h_{2}, \cdots, h_{j}\right)\right)_{n \geq 1}$ converges to a finite limit. To obtain the convergence b), we have to use Lebesgue dominated convergence theorem and therefore, we have to obtain an appropriate upperbound for $n^{3 / 2} E_{n}\left(\varphi, \psi, g, h_{1}, h_{2}, \cdots, h_{j}\right)$. Note that

$$
\left[\max \left(A_{i+1}^{i+1}, \cdots, A_{i+1}^{n-j}\right) \leq \frac{1}{a(g)}\right] \subset\left[\max \left(1, A_{i+1}^{i+1}, \cdots, A_{i+1}^{n-j}\right) \leq \frac{1}{a(g)}\right]
$$

because $a(g) \leq 1$ and

$$
\begin{aligned}
& {\left[A_{i+1}^{n-j} \leq \min \left(\frac{1}{a(g)}, \frac{1}{a(g) a\left(h_{1}\right)}, \cdots, \frac{1}{a(g) a\left(h_{1}\right) \cdots a\left(h_{j}\right)}\right)\right]} \\
& \quad \subset\left[A_{i+1}^{n-j} \leq \frac{1}{a(g)}\right] .
\end{aligned}
$$

Since $|\varphi(a)| \leq K a^{\epsilon}$ for any $a>0$, one thus obtains

$$
\begin{aligned}
& n^{3 / 2} E_{n}\left(\varphi, \psi, g, h_{1}, h_{2}, \cdots, h_{j}\right) \\
& \leq C\|\psi\|_{\infty} n^{3 / 2} \mathbb{E} {\left[a(g)^{\epsilon}\left(A_{i+1}^{n-j}\right)^{\epsilon} a\left(h_{1}\right)^{\epsilon} \cdots a\left(h_{j}\right)^{\epsilon}\right.} \\
& \times \frac{1}{a(g)^{2 \epsilon} \max \left(1, A_{i+1}^{i+1}, \cdots, A_{i+1}^{n-j}\right)^{2 \epsilon}} \\
&\left.\times \frac{1}{\left(A_{i+1}^{n-j}\right)^{\epsilon / 2} a(g)^{\epsilon / 2}}\right] \\
& \leq C\|\psi\|_{\infty} a(g)^{-3 \epsilon / 2} a\left(h_{1}\right)^{\epsilon} \cdots a\left(h_{j}\right)^{\epsilon} n^{3 / 2} \\
& \times \mathbb{E}\left[\left(A_{i+1}^{n-j}\right)^{\epsilon / 2} \max \left(1, A_{i+1}^{i+1}, \cdots, A_{i+1}^{n-j}\right)^{-2 \epsilon}\right] \\
& \leq C_{1} a(g)^{-3 \epsilon / 2} a\left(h_{1}\right)^{\epsilon} \cdots a\left(h_{j}\right)^{\epsilon}
\end{aligned}
$$

the last inequality being guaranteed by Theorem II.7. Then, by Hypothesis A2, for ϵ small enough, one may use Lebesgue dominated convergence theorem and convergence b) follows.

Proof of Lemma III.3. - By a duality argument, it suffices to prove that, for some $\epsilon>0$

$$
\sup _{n>1} n^{3 / 2} \mathbb{E}\left[\left[T_{\mathcal{A}}>n\right] ;\left(A_{1}^{n}\right)^{2 \epsilon}\left\|B_{1}^{n}\right\|^{\epsilon}\right]<+\infty .
$$

Using the identity $B_{1}^{n}=\sum_{k=1}^{n} A_{1}^{k-1} b_{k}$, we obtain

$$
\mathbb{E}\left[\left[T_{\mathcal{A}}>n\right] ;\left(A_{1}^{n}\right)^{2 \epsilon}\left\|B_{1}^{n}\right\|^{\epsilon}\right] \leq \sum_{k=1}^{n} \mathbb{E}\left[\left[T_{\mathcal{A}}>n\right] ;\left(A_{1}^{k-1}\right)^{3 \epsilon} a_{k}^{2 \epsilon}\left\|b_{k}\right\|^{\epsilon}\left(A_{k+1}^{n}\right)^{2 \epsilon}\right]
$$

By the definition of $T_{\mathcal{A}}$, we have

$$
\begin{aligned}
& \mathbb{E}[{\left.\left[T_{\mathcal{A}}>n\right] ;\left(A_{1}^{k-1}\right)^{3 \epsilon} a_{k}^{2 \epsilon}\left\|b_{k}\right\|^{\epsilon}\left(A_{k+1}^{n}\right)^{2 \epsilon}\right] } \\
& \leq \mathbb{E}\left[\left[A_{1}^{1} \leq 1\right] \cap \cdots\left[A_{1}^{k-1} \leq 1\right] \cap\left[a_{k} \leq \frac{1}{A_{1}^{k-1}}\right]\right. \\
& \cap\left[A_{k+1}^{k+1} \leq \frac{1}{A_{1}^{k-1} a_{k}}\right] \cap \cdots\left[A_{k+1}^{n} \leq \frac{1}{A_{1}^{k-1} a_{k}}\right] \\
&\left.\left(A_{1}^{k-1}\right)^{3 \epsilon} a_{k}^{2 \epsilon}\left\|b_{k}\right\|^{\epsilon}\left(A_{k+1}^{n}\right)^{2 \epsilon}\right] \\
& \leq \int_{G} a(g)^{3 \epsilon}\left[\int_{\{h \in G: a(g) a(h) \leq 1\}} a(h)^{2 \epsilon}\|b(h)\|^{\epsilon} K_{k, n}(g, h) \mu(d h)\right] \\
& \quad \times P_{\mathcal{A}}^{k-1}(e, d g)
\end{aligned}
$$

with

$$
\left.\left.\begin{array}{rl}
K_{k, n}(g, h)= & {[}
\end{array}\left[A_{k+1}^{k+1} \leq \frac{1}{a(g) a(h)}\right] \cap \cdots\right] ;\left(A_{k+1}^{n}\right)^{2 \epsilon}\right] .
$$

$$
\begin{aligned}
& \leq \mathbb{E}\left[\left[\max \left(1, A_{1}^{1}, \cdots, A_{1}^{n-k}\right) \leq \frac{1}{a(g) a(h)}\right] ;\left(A_{1}^{n-k}\right)^{2 \epsilon}\right] \\
& \text { since } a(g) a(h) \leq 1 \\
& \leq \frac{1}{a(g)^{5 \epsilon / 2} a(h)^{5 \epsilon / 2}} \\
& \quad \times \mathbb{E}\left[\exp \left(-\frac{\epsilon}{2} M_{n-k}\right) \exp \left(-2 \epsilon\left(M_{n-k}-S_{n-k}\right)\right)\right] \\
& \leq \frac{1}{a(g)^{5 \epsilon / 2} a(h)^{5 \epsilon / 2}} \frac{C_{1}}{(n-k)^{3 / 2}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \mathbb{E}\left[\left[T_{\mathcal{A}}>n\right] ;\left(A_{1}^{n}\right)^{2 \epsilon}\left\|B_{1}^{n}\right\|^{\epsilon}\right] \\
& \quad \leq \sum_{k=1}^{n} \frac{C_{1}}{(n-k)^{3 / 2}} \mathbb{E}\left[\frac{\left\|b_{1}\right\|^{\epsilon}}{a_{1}^{\epsilon / 2}}\right] \int_{G} a(g)^{\epsilon / 2} P_{\mathcal{A}}^{k-1}(e, d g)
\end{aligned}
$$

One concludes using Hypothesis A2 and the fact that the sequence $\left(n^{3 / 2} \sum_{k=1}^{n-1} \frac{1}{k^{3 / 2}(n-k)^{3 / 2}}\right)_{n \geq 1}$ is bounded.

Proof of Lemma III.4. - By Theorem II.3, there exist $n_{0} \in \mathbb{N}, C_{0}>0$ and $[\alpha, \beta] \subset \mathbb{R}^{*+}$ such that

$$
\forall n \geq n_{0} \quad n^{3 / 2} \mathbb{E}\left[\left[T_{\mathcal{A}}>n\right] \cap\left[\alpha \leq A_{1}^{n} \leq \beta\right]\right] \geq C_{0}
$$

On the other hand

$$
\begin{aligned}
& n^{3 / 2} \mathbb{E}\left[\left[T_{\mathcal{A}}>n\right] \cap\left[\alpha \leq A_{1}^{n} \leq \beta\right] \cap\left[\left\|B_{1}^{n}\right\| \geq B\right]\right] \\
& \quad \leq \frac{n^{3 / 2}}{B^{\epsilon}} \mathbb{E}\left[\left[T_{\mathcal{A}}>n\right] \cap\left[\alpha \leq A_{1}^{n} \leq \beta\right] ;\left\|B_{1}^{n}\right\|^{\epsilon}\right] .
\end{aligned}
$$

By Lemma III.3, we have $\sup _{n \geq 1} n^{3 / 2} \mathbb{E}\left[\left[T_{\mathcal{A}}>n\right] \cap\left[\alpha \leq A_{1}^{n} \leq \beta\right]\right.$; $\left.\left\|B_{1}^{n}\right\|^{\epsilon}\right]<+\infty$; so, one can choose $B>0$ such that

$$
\forall n \geq n_{0} \quad n^{3 / 2} \mathbb{E}\left[\left[T_{\mathcal{A}}>n\right] \cap\left[\alpha \leq A_{1}^{n} \leq \beta\right] \cap\left[\left\|B_{1}^{n}\right\| \leq B\right]\right] \geq \frac{C_{0}}{2}
$$

The lemma readily follows from the inequality

$$
\begin{aligned}
& n^{3 / 2} \mathbb{E}\left[\left[\alpha \leq A_{1}^{n} \leq \beta\right] \cap\left[\left\|B_{1}^{n}\right\| \leq B\right]\right] \\
& \quad \geq n^{3 / 2} \mathbb{E}\left[\left[T_{\mathcal{A}}>n\right] \cap\left[\alpha \leq A_{1}^{n} \leq \beta\right] \cap\left[\left\|B_{1}^{n}\right\| \leq B\right]\right]
\end{aligned}
$$

III.c. Proof of Theorem B

We just indicate how to modify the proof in the previous section to obtain Theorem B. For any continuous function ψ with compact support on \mathbb{R}^{d} we have by the Spitzer-Grincevicius factorisation

$$
\mathbb{E}\left[\psi\left(B_{1}^{n}\right)\right]=\sum_{k=0}^{n} J_{k, n}(\psi)
$$

with $J_{k, n}(\psi)=\int_{G} \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}^{\prime}}^{k}(e, d g) P_{\mathcal{A}}^{n-k}(e, d h)$. First, we control the sum $\sum_{k=i+1}^{n-j} J_{k, n}(\psi)$ for fixed large enough integers i and j.

Lemma III.5. - There exists $\lambda>0$ such that for any $\left.\lambda \in] 0, \lambda_{0}\right]$, any $g \in G$ and any $l>0$, one has

$$
\int_{G} \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{l}(e, d h) \leq \frac{C}{\sqrt{l}} a(g)^{\lambda}
$$

By Theorem II.3, the sequence $\left(k^{3 / 2} \int_{G} a(g)^{\lambda} \tilde{P}_{\mathcal{A}^{\prime}}^{k}(e, d g)\right)_{k \geq 0}$ is bounded since

$$
\int_{G} a(g)^{\lambda} \tilde{P}_{\mathcal{A}^{\prime}}^{k}(e, d g)=\mathbb{E}\left[\left[\tilde{T}_{\mathcal{A}^{\prime}}>k\right] ; \exp \left(\lambda \tilde{S}_{k}\right)\right]
$$

For any $0<k<n$, we thus have

$$
\int_{G \times G} \psi\left(\frac{b(g)+b(h)}{a(g)}\right) \tilde{P}_{\mathcal{A}^{\prime}}^{k}(e, d g) P_{\mathcal{A}}^{n-k}(e, d h) \leq \frac{C_{1}}{k^{3 / 2} \sqrt{n-k}} .
$$

Note that there exists $C>0$ such that for any n, i, j in \mathbb{N}^{*}, $1<i<n-j<n$, one has

$$
\sqrt{n} \sum_{k=i+1}^{n-j} \frac{1}{k^{3 / 2} \sqrt{n-k}} \leq C\left(\frac{1}{\sqrt{i}}+\frac{1}{\sqrt{j}}\right)
$$

therefore one may choose i and j such that $\limsup _{n \rightarrow+\infty} \sqrt{n} \sum_{k=i}^{n-j} J_{k, n}$ is as small as wanted.

Next, we look at the behaviour of the integral $\int_{G} \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{l}(e, d h)$ as l goes to $+\infty$.

Lemma III.6. - For any $g \in G$, the sequence

$$
\left(\sqrt{l} \int_{G} \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{l}(e, d h)\right)_{l \geq 0}
$$

converges to a finite limit as l goes to $+\infty$.

In particular $\left(\sqrt{n} J_{0, n}(\psi)\right)_{n \geq 1}$ converges in \mathbb{R}. Furthermore, for any $i, j \in \mathbb{N}$ and any compact set $\bar{K} \subset \mathbb{R}^{*+} \times \mathbb{R}$, the dominated convergence theorem ensures the existence of a finite limit as n goes to $+\infty$ for the sequence $\left(\sqrt{n} \sum_{k=1}^{i} J_{k, n}(\psi, K)\right)_{n \geq 0}$ where

$$
J_{k, n}(\psi, K)=\int_{G} 1_{K^{\prime}}(g)\left(\int_{G} \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{n-k}(e, d h)\right) \tilde{P}_{\mathcal{A}^{\prime}}^{k}(e, d g)
$$

The only thing we have now to check is that the indicator function $1_{K^{-}}$does not disturb too much the behaviour of the above integrals. Fix $0<\delta<1$; according to Lemma III.5, we have

$$
\begin{aligned}
& \sum_{k=1}^{i} \int_{\{g \in G: a(g) \leq \delta\}}\left(\int_{G} \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{n-k}(e, d h)\right) \tilde{P}_{\mathcal{A}^{\prime}}^{k}(e, d g) \\
& \quad \leq C(\lambda, \psi) \sum_{k=1}^{i} \frac{1}{\sqrt{n-k+1}} \mathbb{E}\left[\left[\tilde{T}_{\mathcal{A}^{\prime}}>k\right] \cap\left[\tilde{S}_{k} \leq \log \delta\right] ; \exp \left(\lambda \tilde{S}_{k}\right)\right] \\
& \quad \leq C(\lambda, \psi) \delta^{\lambda / 2} \sum_{k=1}^{i} \frac{1}{\sqrt{n-k+1}} E\left[\left[\tilde{T}_{\mathcal{A}^{\prime}}>k\right] ; \exp \left(\frac{\lambda}{2} \tilde{S}_{k}\right)\right] \\
& \quad \leq C_{1} \delta^{\lambda / 2} \sum_{k=1}^{i} \frac{1}{\sqrt{n-k+1} k^{3 / 2}} \\
& \quad \leq C_{1} \delta^{\lambda / 2} \frac{1}{\sqrt{n-i+1}} \sum_{k=1}^{+\infty} \frac{1}{k^{3 / 2}}
\end{aligned}
$$

Note that by definition of $\tilde{P}_{\mathcal{A}^{\prime}}$ one has

$$
\sum_{k=1}^{i} \int_{\{g \in G: a(g) \geq 1 / \delta\}}\left(\int_{G} \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{n-k}(e, d h)\right) \tilde{P}_{\mathcal{A}^{\prime}}^{k}(e, d g)=0
$$

On the other hand, fix $B>0$; according to Lemma III.5, we have

$$
\begin{aligned}
& \sum_{k=1}^{i} \int_{\{g \in G:\|b(g)\| \geq B\}}\left(\int_{G} \psi\left(\frac{b(g)+b(h)}{a(g)}\right) P_{\mathcal{A}}^{n-k}(e, d h)\right) \tilde{P}_{\mathcal{A}^{\prime}}^{k}(e, d g) \\
& \quad \leq C(\lambda, \psi) \sum_{k=1}^{i} \frac{1}{\sqrt{n-k+1}} \mathbb{E}\left[\left[\tilde{T}_{\mathcal{A}^{\prime}}>k\right] \cap\left[\left\|\tilde{B}_{k}\right\| \geq B\right] ; \exp \left(\lambda \tilde{S}_{k}\right)\right] \\
& \quad \leq \frac{C(\lambda, \psi)}{B^{\lambda / 2}} \sum_{k=1}^{i} \frac{1}{\sqrt{n-k+1}} E\left[\left[\tilde{T}_{\mathcal{A}^{\prime}}>k\right] ; \exp \left(\lambda \tilde{S}_{k}\right)\left\|\tilde{B}_{k}\right\|^{\lambda / 2}\right] \\
& \quad \leq \frac{C_{1}}{B^{\lambda / 2}} \frac{1}{\sqrt{n-i+1}} \sum_{k=1}^{+\infty} \frac{1}{k^{3 / 2}},
\end{aligned}
$$

where the last inequality is guaranteed by Lemma III.3.
Note the same upperbounds hold when the sum $\sum_{k=1}^{i}$ is replaced by $\sum_{k=n-j+1}^{n-1}$.

Finally, using Spitzer-Grincevicius factorisation, we have proved that, for any $\epsilon>0$, there exist $i, j \in \mathbb{N}$ and a compact set $K \subset G$ such that for any $n>i+j$ we have

$$
\left|\sqrt{n} \mathbb{E}\left[\psi\left(B_{1}^{n}\right)\right]-\sqrt{n} \sum_{k=0}^{i} J_{k, n}(\psi, K)-\sqrt{n} \sum_{k=n-j+1}^{n} J_{k, n}(\psi, K)\right| \mid \leq \epsilon
$$

Since $\left(\sqrt{n} \sum_{k=1}^{i} J_{k, n}(\psi, K)+\sqrt{n} \sum_{k=n-j+1}^{n} J_{k, n}(\psi, K)\right)_{n \geq 0}$ converges, the sequence $\left(\sqrt{n} \mathbb{E}\left[\psi\left(B_{1}^{n}\right)\right]\right)_{n \geq 0}$ has a finite limit which is not always zero. It just remains to establish Lemmas III. 5 and III.6; they may be easily obtained using Theorems II. 2 and II. 3 and by obvious modifications in the proofs of Lemmas III. 1 and III. 2 respectively.

III.d. Proof of Theorem C : identification of the limit measure ν_{0}

We are not always able to explicit the form of the limit measure ν_{0}; nevertheless, if one assumes further hypotheses on μ, it is possible to identify ν_{0}, up to a multiplicative constant. In this section, we suppose that μ satisfies Hypotheses A1, A2, A3 and also the two following conditions
(C1) the density ϕ_{μ} of μ is continuous with compact support.
(C2) $\phi_{\mu}(e)>0$.
Remark. - Note that under these conditions, the semi-group generated by the support S_{μ} of μ is dense in G. Moreover, there exists $\gamma>0$ such that $\mu * \mu \geq \gamma \mu$.

To establish Theorem C we first prove that the random walk of distribution μ on G satisfies a ratio-limit theorem and secondly we show that the equation $\mu * \nu=\nu * \mu=\nu$ has a unique solution $\nu_{0} \not \equiv 0$ (up to a multiplicative constant) in the class of Radon measures on G. Let $C K^{+}(G)$ be the space of positive continuous functions with compact support on G; we have

Lemma III.7. - Under the hypotheses of Theorem C, we have

$$
\forall \varphi \in C K^{+}(G), \forall g \in G \quad \lim _{n \rightarrow+\infty}\left(\delta_{g} * \mu^{* n}(\varphi)\right)^{1 / n}=1
$$

In particular $\lim _{n \rightarrow+\infty} \frac{\delta_{g} * \mu^{*(n+1)}(\varphi)}{\delta_{g} * \mu^{* n}(\varphi)}=1$ for any $g \in G$ and any function $\varphi \in C K^{+}(G), \varphi \not \equiv 0$. Since there exists $\gamma>0$ such that $\mu * \mu \geq \gamma \mu$ we may thus apply the following proposition due to Y. Guivarc'h [11]:

Proposition III.8. - Suppose that the semi-group generated by the support of μ is dense in G and that, for any $\varphi \in C K^{+}(G)$, the sequence $\left(\frac{\mu^{*(n+1)}(\varphi)}{\mu^{* n}(\varphi)}\right)_{n \geq 1}$ converges to a constant c_{0} which does not depend on φ. Then, if the equation $\nu * \mu=\mu * \nu=c_{0} \nu$ has a unique solution $\nu_{0} \not \equiv 0$, up to a multiplicative constant, in the class of Radon measures on G, we have

$$
\lim _{n \rightarrow+\infty} \frac{\mu^{* n}(\varphi)}{\mu^{* n}(\psi)}=\frac{\nu_{0}(\varphi)}{\nu_{0}(\psi)}
$$

for any φ and $\psi \in C K^{+}(G)$ such that $\nu_{0}(\psi)>0$.
We have here $c_{0}=1$; to prove Theorem C , it suffices to establish the following lemma :

Lemma III.9. - Under hypotheses of Theorem C, the equation $\nu * \mu=$ $\mu * \nu=\nu$ has one and only one (up to a multiplicative constant) solution $\nu_{0} \not \equiv 0$ in the class of Radon measures on G. Moreover, this solution may be decomposed as follows

$$
\nu_{0}=\left(\delta_{1} \otimes \lambda\right) * \overline{\left(\frac{d a}{a} \otimes \lambda_{1}\right)}
$$

where λ (respectively λ_{1}) is, up to a multiplicative constant, the unique Radon measure on \mathbb{R}^{d} which satisfies the convolution equation $\mu * \lambda=\lambda$ (resp. $\bar{\mu} * \lambda_{1}=\lambda_{1}$).

By Theorem A one can choose $\psi_{0} \in C K^{+}(G)$ such that $\left(n^{3 / 2} \mu^{* n}\left(\psi_{0}\right)\right)_{n \geq 0}$ converges to 1 ; for any $\varphi \in C K^{+}(G)$ we thus have

$$
\lim _{n \rightarrow+\infty} n^{3 / 2} \mu^{* n}(\varphi)=\frac{\nu_{0}(\varphi)}{\nu_{0}\left(\psi_{0}\right)}
$$

This achieves the proof of Theorem C ; it remains to establish the Lemmas III. 7 and III.9.

Proof of Lemma III.7. - Fix a function $\varphi \in C K^{+}(G)$ and for any $n \geq 1$ consider the set

$$
K_{n}(\varphi)=\left\{g h^{-1} / g \in \operatorname{Support}(\varphi) \text { and } h \in \operatorname{Support}\left(\mu^{* n}\right)\right\} .
$$

The sets $K_{n}(\varphi), n \geq 1$, are compact, $K_{n}(\varphi) \subset K_{n+1}(\varphi)$ and $\bigcup_{n=1}^{+\infty} K_{n}(\varphi)=G$. Then, there exists n_{0} such that the compact set K_{0} introduced in Lemma III. 4 is included in the interior of $K_{n_{0}}(\varphi)$.

Consequently, the continuous function $g \mapsto \int_{G} \varphi(g h) \mu^{* n_{0}}(d h)$ is strictly positive on K_{0} and there exists a constant $C>0$ such that

$$
\forall g \in G \quad \int_{G} \varphi(g h) \mu^{* n_{0}}(d h) \geq C 1_{K_{0}}(g) .
$$

Thus, for any $n \geq 1$, one has $\delta_{g} * \mu^{*\left(n_{0}+n\right)}(\varphi) \geq C \mu^{* n}\left(K_{0}\right) \geq \frac{C_{1}}{n^{3 / 2}}$ with $C_{1}>0$ by Lemma III.4. For any $g \in G$ we thus have $\liminf \operatorname{in}_{n \rightarrow+\infty}\left(\delta_{g} * \mu^{* n}(\varphi)\right)^{1 / n} \geq 1$. On the other hand $\delta_{g} * \mu^{* n}(\varphi) \leq\|\varphi\|_{\infty}$ for any $n \geq 1$ which implies $\lim \sup _{n \rightarrow+\infty}\left(\delta_{g} * \mu^{* n}(\varphi)\right)^{1 / n} \leq 1$.
Proof of Lemma III.9. - Let \mathcal{H}_{μ} be the set of positive measures ν on G such that $\nu * \mu=\nu$. Recall that \mathcal{H}_{μ} is a weakly closed cone with a compact basis and that it is a lattice. By [7] (and more recently by [2] without condition of density) there exists (up to a multiplicative constant) a unique positive measure λ_{1} on \mathbb{R}^{d} such that $\bar{\mu} * \lambda_{1}=\lambda_{1}$; furthermore, λ_{1} is a Radon measure on \mathbb{R}^{d} and the extremal rays of \mathcal{H}_{μ} are the positives measures which are proportional, either to the right Haar measure m_{D}, or to the measures $\delta_{(1, z)} * \overline{\left(\frac{d a}{a} \otimes \lambda_{1}\right)}, z \in \mathbb{R}^{d}$. By Choquet's representation theorem, there exist $C_{\nu} \in \mathbb{R}^{+}$and a positive measure m_{ν} on \mathbb{R}^{d} such that

$$
\nu=C_{\nu} m_{D}+\int_{\mathbb{R}^{d}} \delta_{(1, z)} * \overline{\left(\frac{d a}{a} \otimes \lambda_{1}\right)} m_{\nu}(d z)
$$

and C_{ν} and m_{ν} are unique because \mathcal{H}_{μ} is a lattice.
Fix ν in \mathcal{H}_{μ}; a direct computation leads to
$\mu * \nu=C_{\nu} \int_{G} \log a(g) \mu(d g) m_{D}+\int_{\mathbb{R}^{d}} \delta_{(1, z)} * \overline{\left(\frac{d a}{a} \otimes \lambda_{1}\right)} \mu * m_{\nu}(d z)$.
Then, if one suppose that $\mu * \nu=\nu$, the uniqueness of the Choquet's representation gives

$$
C_{\nu} \int_{G} \log a(g) \mu(d g)=C_{\nu} \quad \text { and } \quad \mu * m_{\nu}=m_{\nu} .
$$

Since $\int_{G} a_{1} \bar{\mu}\left(d g_{1}\right)>1$, one obtains $C_{\nu}=0$. On the other hand, by [7], the equation $\mu * m=m$ has a unique solution (up to a multiplicative constant) λ in the set of positive measures on \mathbb{R}^{d} which leads to the equality $m_{\nu}=\lambda$.

Finally the solution ν_{0} of the equation $\nu * \mu=\mu * \nu=\nu$ is unique (up to a multiplicative constant) in the set of positive measure on \mathbb{R}^{d}, it is a Radon measure and it can be decompose as follows

$$
\nu_{0}=\left(\delta_{1} \otimes \lambda\right) * \overline{\left(\frac{d a}{a} \otimes \lambda_{1}\right)}
$$

ACKNOWLEDGEMENTS

The authors would like to thank the referee for his useful comments and corrections.

REFERENCES

[1] V. I. Afanas'ev, On a maximum of a transient random walk in random environment, Theory Prob. Appl., Vol. 35, n° 2, 1987, pp. 205-215.
[2] M. Babillot, Ph. Bougerol and L. Elie, The random difference equation $X_{n}=$ $A_{n} X_{n-1}+B_{n}$ in the critical case, to appear in Annals of Probability.
[3] N. H. Bingham, Limit theorem in fluctuation theory, Adv. Appl. Prob., Vol. 5, 1973, pp. 554-569.
[4] Ph. Bougerol, Théorème central limite local sur certains groupes de Lie, Ann. Scient. Ec. Norm. Sup., 4^{e} série, T. 14, 1981, pp. 403-432.
[5] Ph. Bougerol, Exemples de théorèmes locaux sur les groupes résolubles, Ann. I.H.P., Vol. XIX, n° 4, 1983, pp. 369-391.
[6] L. Breiman, Probability, Addison-Wesley Publishing Company, 1964.
[7] L. Elie, Marches aléatoires: théorie du renouvellement, Thèse de Doctorat d'État, Université Paris VII, 1981.
[8] W. Feller, An introduction to probability theory and its applications, Vol. 2, 2nd edition, 1971, J. Wiley, New York.
[9] H. Furstenberg, Translation-invariant cones of functions on semi-simple Lie groups, Bull. of the A.M.S, Vol. 71, n ${ }^{\circ}$ 2, 1965, pp. 271-326.
[10] A. K. Grincevicius, A central limit theorem for the group of linear transformation of the real axis, Soviet Math. Doklady, Vol. 15, n ${ }^{\circ}$ 6, 1974, pp. 1512-1515.
[11] Y. Guivarc'h, Théorèmes quotients pour les marches aléatoires, Astérisque, Vol. 74, 1980, S.M.F., pp. 15-28.
[12] Y. Guivarc'h et Q. Liu, Sur la probabilité de survie d'un processus de branchement dans un environnement aléatoire (in preparation).
[13] Iglehart, Random walks with negative drift conditioned to stay positive, J. Appl Prob., Vol. 11, 1974, pp. 742-751.
[14] M. V. Kozlov, On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment, Theory Prob. Appl., Vol. 21, n° 4, 1976, pp. 791-804.
[15] E. Le Page and M. Peigné, Exemples de théorèmes locaux pour certains noyaux de transition, Journées Fortet du $1^{\text {er }}$ juin 1995, to appear in Editions Hermès.
[16] F. Spitzer, Principles of random walks, D. Van Nostrand Company, 1964.
[17] N. Th. Varopoulos, Wiener-Hopf theory and nonunimodular groups, J. of Funct. Anal., Vol. 120, 1994, pp. 467-483.
[18] N. Th. Varopoulos, Diffusion on Lie groups, Can. J. Math., Vol. 46, 1994, pp. 438-448.
[19] N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and geometry groups, Cambridge Tracts in Math., n° 100, 1993.
(Manuscript received June 29, 1995;
revised May 10, 1996.)

[^0]: A.M.S. Classification: 60 J 15, 60 F 05.

