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ABSTRACT. - Let G be the semi-direct product of R*+ and Rd and  a
probability measure on G. Let M*n be the nth power of convolution of M.
Under quite general assumptions on one proves that there exists p E ]0,1]
such that the sequence of Radon measures converges weakly
to a non-degenerate measure; furthermore, if is the marginal of /~
on (~d, the sequence of Radon measures ( ‘~ P ~c2n ) n - > 1 converges weakly to
a non-degenerate measure.

Key words: Random walk, local limit theorem.

RESUME. - Soit G le groupe produit semi-direct de f~*+ et de f~d et M une
mesure de probabilite sur G. On note la convolee de M. Sous des

hypotheses assez generales sur M, on etablit 1’ existence d’un réel p G]0,1]
tel que la suite de mesures de Radon converge vaguement
vers une mesure non nulle; de plus, si est la marginale de sur R~,
la suite converge vaguement vers une mesure non nulle.

A.M. S. Classi, fication : 60 J 15, 60 F 05.
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I. INTRODUCTION

Fix a norm 11.11 on R~,d > 1, and consider the connected group G of
transformations

where (a, b) E ~*+ x ~d.
Let a (resp. b) be the projection from G on (~*+ (resp. on 

Consequently, any transformation g e G is denoted by (a(g), b(g)) (or
g = (a; b) when there is no ambiguity); for example, e = (1, 0) is the
unit element of G.

The group G is also the semi-direct product of f~*+ and !F~ with the
composition law

Recall that G is a non unimodular solvable group with exponential growth
and let mD be the right Haar measure on G : mD(da db) = daadb. Note
that if d = 1, the group G is the affine group of the real line.

Let  be a probability measure on G, /L*n its nth power of convolution,
 the image of p by the map g = (a, b) = (1 a, b a) and  the image of
p by the g-l. If A is a positive measure on (~d, /~ ~ A denotes the
positive measure on ~d defined A(p) = p(g.x) A(dx)
for any Borel function cp from ~d into I~+. Finally, 8x is the Dirac measure
at the point x.

In the present paper, we prove under suitable hypotheses that p satisfies
a local limit theorem: there exists a sequence of positive real
numbers, depending only on the group when  is centered, such that the
sequence converges weakly to a non-degenerate measure.
This problem has already been tackled by Ph. Bougerol in [5] where he
established local limit theorems on some solvable groups with exponential
growth, typically the groups NA which occur in the Iwasawa decomposition
of a semi-simple group. The affine group of the real line is the simplest
example of such a group. In this particular case, Ph. Bougerol proved
that, for a class R of centered probability measures p satisfying some
invariance properties, the sequence converges weakly to a
non-degenerate measure on G. His method is roughly the following one :
if  satisfies some invariance properties, it can be lifted on the associated

semi-simple group in a measure m  (not necessarily bounded) which is bi-
invariant under the action of a maximal and compact subgroup. In a second
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225A LOCAL LIMIT THEOREM

step, using the theory of Guelfand pairs, he showed that the measure m~~
satisfies an analogue of the local limit theorem established in [4]. The
aim of the present paper is to obtain such a local limit theorem when the

measure  does not belong to the class R.
This work is also related with the work by N.T. Varopoulos, L. Saloff-

Coste and T. Coulhon [19] where there are precise estimates for the heat
kernel on a Lie group which is not necessarily unimodular. More recently,
N. T. Varopoulos [17] has considered locally compact and nonunimodular _

groups and has obtained an upperbound for the asymptotic behaviour of the
convolution powers JL*n of a probability measure ~c which has a continuous
density ~~ with respect to the left Haar measure and satisfying some
condition at infinity; in [18], he gives a condition on the Lie algebra of
an amenable Lie group which characterizes the decay rate at infinity of
the heat kernel.

Now, let us introduce some hypotheses on 

HYPOTHESIS Al. - There exists 0152 > 0 such that

HYPOTHESIS A2. - ~G Log a(g) = O .

HYPOTHESIS A3. - The probability measure ~c has a density øM with respect
to the Haar measure mD on G and there exist ,Q and q in l, such

that ~’o ~ ~’~ b)db a~  

HYPOTHESIS A3 (bis). - The image Log pi of ~c by the application
g = (a, b) ~ Log a is aperiodic on I~, the support of i.c is included in
~*+ x (~+)d and there exists ~y > 0 such that ~G db)  

Fix a probability space (0, 0, IP) and let gn = (an, bn), n = 1, 2, ~ ~ ~
be G-valued independent and identically distributed random variables
with distribution p defined on (0, 0, Denote by the 03C3-algebra
generated by the variables gl, g2, ~ ~ ~ , For any n > 1, set G~ =
gl ~ ~ ~ gn == (Al , Bi ); a direct computation gives Ai = al a2 ~ ~ ~ an and

£i=1 ala2 ... 

THEOREM A. - Suppose that the probability measure ~c satisfies Hypotheses
AI, A2 and either A3 or A3 (bis).

Then, the sequence of finite measures converges weakly to
a non-degenerate Radon measure vo on G.

Vol. 33, n° 2-1997.



226 E. LE PAGE AND M. PEIGNE

In other words, for any continuous functions p and 03C8 with compact
support on I~*+ and (1~d respectively, the sequence

eonverges as n goes to furthermore, one can choose p and 03C8 such
that the limit of this sequence is not zero.
The following theorem deals with the behaviour as n goes to of

the variables B1.

THEOREM B. - Suppose that the probability measure ~c satisfies Hypotheses
Al, A2 and either A3 or A3 (bis). For any n > 1 denote by the image
of by the map g = (a; b) E---~ b E (~d.

Then, the sequence of finite measures converges weakly to
a non-degenerate Radon measure on 

In other words, for any continuous function ~ with compact support on
(~d, the sequence

converges as 7z goes to furthermore, one can choose ~ such that the
limit of this sequence is not zero.

Observe that the limit measure in Theorem A should satisfy p * v =
v * p = v. Using L. Elie’s results [7], we prove under additionnal

assumptions that this equation has an unique solution (up to a multiplicative
constant) in the space of Radon measure on G and we obtain an explicit
form of this solution. Using a ratio-limit theorem due to Y. Guivarc’ h [ 11 ],
the measure vo of theorem A may be identified, up to a multiplicative
constant. More precisely, we have the

THEOREM C. - Suppose that Hypotheses AI, A2 and A3 hold and assume
the additionnal conditions

C 1. the density of ~c is continuous with compact support
C2. > 0

Then, the measure vo of theorem A may be decomposed as follows

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



227A LOCAL LIMIT THEOREM

where ~ (respectively Àl) is, up to a multiplicative constant, the unique
Radon measure on I~d which satisfies the convolution equation ~ ~ ~ _ ~
(resp. Ai = ~l)-

Furthermore, for any positive and continuous function ~p, p fl 0, with

compact support in G, we have > 0 and

When tc is not centered (that is when ~’G Log a(g) 0) we bring
back the study to the centered case using the Laplace transform of Log MI.

THEOREM D. - Let tc be a probability measure on G satisfying Conditions
A‘ 1. there exists 0152 > 0 such that for any t E R: the integral

+ is finite.
A’2. GLog a(g) (dg) ~ 0, E G : a(g)  I} > 0 and

E G : a(g) > 1) > 0.

Then, there exists a unique to ~ R and p(tc) E ]0, 1 such that

Moreover, suppose that M satisfies either Hypothesis A3 or the

following assumption
A/3. M has the density with respect to the Haar measure rnD

on G and there exist q and 03B2 ~]1 - to, such that
1 (’JO q R03C6q (a, b)dbd03B1 03B103B2  +00.

3/2
Then, the sequence of finite measures (n 03C1( n weakly converges to

-

a non-degenerate Radon measure on G. Moreover, if is the image of
by the map g = (a, b) ~ b E then the sequence of finite measures

( weakly converges to a non-degenerate Radon measure on IRd.
-

Let us briefly explain what the Laplace transform of Log 1 means and
connections between Hypotheses Al, A2, A3 and A/I, A/2, A/3. Under
Condition A/I, the function L : t ~ fG is well defined on ~;
since it is strictly convex and L(t) _ (this last fact follows
by Hypothesis A’2) there exists a unique to E IR such that

Equalities L’(to) = 0, L(0) = 1 and L’(0) = fG 0

imply G]0,l[. Let us thus consider the probability measure

Vol. 33, n° 2-1997.



228 E. LE PAGE AND M. PEIGNE

= one checks that if p satisfies Hypotheses A’ l,
A’2 and either A’3 or A3 (bis) then /-Lto satisfies Hypotheses Al, A2 and
either A3 or A3 (bis) so that one may apply Theorem A.

There are some close connections between Theorems A and B and the

asymptotic behaviour of the probability of non-extinction for branching
processes in a random environment. For example, let be

a sequence of ~2-valued independent and identically distributed random
variables and set So = 0 and Sn = Xi + ... + 1. Following [1] ]
and [14], the probability of non-extinction for branching processes in a
random environment is closely related to the quantities E ,Z _ 1 _ s , ]
with 0  a  1. As a consequence of Theorems A and B, one obtains the

COROLLARY. - Suppose that

(i) >  +00 = 0

(ii) there exists C > 0 such that Vn > C] = 1.

Then, the sequence 1 1_ >I + i ] ) n z converges to a non zero

limit.

Moreover, for any 0  a  1, the sequence

converges to a non zero limit.

The first assertion of this corollary is due to Kozlov [14] and is an

easy consequence of Theorem B. The second assertion has been recently
proved by Y. Guivarc’h and Q. Liu [12]; it is also a direct consequence
of theorem A, the only thing to check being that one may replace
the continuous function with compact support cp by the function

defined on x [C, 
Let us now give briefly the ideas of the proofs of Theorems A and B. Set

A = {g E G : a(g) > 1} and consider the transition kernel PA associated
with the pair and defined by ~G for

any Borel set 03B2 ~ G and any g E G.

In the same way, set A’ = {g E G : a(g) > 1} and let be the

operator associated with the pair ,,4’). Following Grincevicius’s paper,
we are led to what we call the Grincevicius-Spitzer identity [10]:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



229A LOCAL LIMIT THEOREM

for any continuous functions p and 03C8 with compact support in R*+ and Rd

respectively. This formula allows to bring back the study of the asymptotic
behaviour of the sequence (~c*n)n>1 to the study of powers of operators
PA and It is the first main idea of this paper.

The second main idea relies on the Grenander’s conjecture, proved by
Grincevicius in [10] in a weaker form: if d = 1 and fG Log = 0,
the asymptotic distribution of ILog Bï I is the same as the asymptotic
distribution of Mn = max ( 0, Log A 1, Log A 1 ~ ~ ~ , Log A 1 ) . One may
thus expect that the asymptotic behaviour of is quite similar

to the behaviour of (Ai , exp(Mn) )nO; we will justify this in section III.

Section II is devoted to the study of the behaviour as n goes to of

the sequence (Log Ai , Mn)n>o and in section III we prove Theorems A,
B and C.

II. A PRELIMINARY RESULT

Throughout this section, Xl, ,~2 ’’’ are independent real valued random
variables with distribution p defined on a probability space (Q, 0, Let

(Sn)nO be the associated random walk on R starting from 0 (that is So = 0
and Sn = Xl + ... + Xn for n > 1); the distribution of Sn is the nth

power of convolution p*n of the measure p. Set Mn = max(0, 5~ - -’, Sn )
and denote by the a-algebra generated by Xl, X2,..., X n , n > 1. The
study of the asymptotic behaviour of the variable Mn is very interesting
since many problems in applied probability theory may be reformulated as
questions concerning this random variable. Following Spitzer’s approach
[16], we introduce the two following stopping times T+ and T’ with

respect to the filtration 

and

Let ~T+ (resp. pT» be the distribution of the random variable ST+
(resp. 

In the first part of the present section we give some estimates of the
asymptotic behaviour of the sequences > n]; and

> n~ ; where cp is a bounded Borel function on R, in
the second part we use these estimates to study the asymptotic behaviour
of (Mn, Mn - 

Vol. 33, n° 2-1997.
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II.a. A local limit theorem

for a killed random walk on a half line

We state here a result due to Iglehard [13] concerning the asymptotic
behaviour of the sequences (E[[T+ > n] ; cp ( S.n )] ) rz > 1 and > n~ ;
cp ( S’~ )] ).,-, ~ 1 where p is a continuous function with compact support on R.

Introducing the operator defined by

we obtain 1 > n] ; = This section is thus
devoted to the asymptotic behaviour as n goes to +00 of the nth power
of the operator 

Let us first recall the

DEFINITION II.I. - Let p be a probability measure on R and Gp the closed
group generated by the support of p. The measure p is aperiodic if there
is no closed and proper subgroup H of Gp and no number 0152 such that

p(~ ~ H) = 1.

For example, the measure p such that p( 1) = p ( 3 ) = 1 / 2 is not aperiodic
because Gp = Z but p(1 + 2Z) = 1. Before stating the main result of this
section, we recall the following classical.

THEOREM II.2 [6]. - Suppose that

(i) the common distribution p of the variables Xn, n > 1, is aperiodic;

Since the series ~~~ ~(P[5~  0] - ~) converges absolutely, it follows

that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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with 0152 = 03A3+~n=1 P[Sn~0]-1/2 n and lims~1~(s) = 0. Since the sequence

(P[7+ > n])n~1 decreases, Theorem II.2 follows from a Tauberian theorem
for powers series [8]. D

THEOREM 11.3. - Suppose that

(i) the distribution p of the variables 1, is aperiodic

Then, for any continuous function c,o with compact support on ~+, we have

where ~+ denotes the restriction of the Lebesgue measure on (~+ and UT~
the image by the map x ~ -x o,f’the a-finite measure U~~ _ ~+°° (pT~ )~‘n.

In the same way, for any continuous function p with compact support
on ~+, we have

where UT+ denotes the 03C3-finite measure 03A3+~n=0(pT+)*n.
Proof. - For the reader’s convenience, we sketch here Iglehard’s

proof [13]. We just explain how to obtain the asymptotic behaviour of
the sequence (n3/2 > n]; 
For a > 0, s E [0,1[ set > n]; By

relations P5(a) and P5 (c) in Spitzer’s book, ([ 16], page 181) (see also [8],
chap. XVIII), we have

and therefore

Note that -00  ]  0 so that the above series converges ([8], [16]).
Consequently

Vol. 33, n° 2-1997.
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Thus, to prove Theorem II.3, it suffices to show that

Note that ~[[T+ > n]; ease ~ is the nth Taylor coefficient of the function
cPa and recall the Spitzer’s identity ([16], P5(c), p. 181 )

Let us now state the two following key lemmas whose proofs are given
in [13].

LEMMA II.4. - Let dnsn = bnsn) for |s|  1. lf the
sequence is bounded, the same holds for 

LEMMA 11.5. - Let and be two sequences of positive real
numbers such that

(i) ncn = c > 0
(ii) ~n ~ d.n = d  +00

(iii) the sequence is bounded.

If = 03A3n-1k=0cn-kdk then nan = cd.
Differentiating Spitzer’s identity with respect to s leads to

where ~ s ~  1. Set an = ~ E[[T+ > n] ; 0] ; ] and
n o d~,~s~ _ ~~(s); we thus have an = ~~-o By the classical
local limit theorem on R, the sequence converges to ~~ 12~ ; by
Lemma II.4 it follows that is bounded. We may thus apply
Lemma 11.5 with c = and d = E[[T+ > n]; The proof
of Theorem II.3 is now complete. D

In [15], we give another proof of this theorem quite different from

Iglehard’s one and based on the following idea : under suitable hypotheses
on p the function z ~ may be analytically extended on
a certain neighbourhood of the unit complex disc except the pole 1. So

the approximation of this function around its singularity may be translated
into an approximation of its Taylor coefficients. Unfortunately, this "new"

Annales de l’Institut Henri Poincaré - Probabilites et Statistiques
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proof requires stronger hypotheses than Theorem II.3 and so it is not as

general as Iglehard’s one.

II.b. A local limit theorem

for the process (Mn, Mn - x R+

Let us first state the following well known theorem concerning the

behaviour as n goes to +00 of the sequence where cp is

a continuous function with compact support on Q~+; in [3] the reader will
find a more general statement than the following one.

THEOREM II.6 [3]. - Suppose that

(i) the distribution p of the variables n > 1, is aperiodic
(ii) a2 = E[~]  +00 = 0.

Then, for any continuous function ~p with compact support on I~+, we have

with 03B1 - "’" + 00 ]P[Sn~0]-1/2 n.
Proof. - For the reader’s convenience, we present here a simple proof

of this theorem. It suffices to show that

The starting point is the following identity due to Spitzer [16] :

By Theorem II.2, we have > n] = ~ and by Theo-
rem II.3 the sequence (n3/2E[[T’- > n]; is bounded; further-
more

Theorem II.4 thus follows from Lemma 11.5. D

We now turn to the behaviour of the sequence In

[17], N.T. Varopoulos gave an upperbound of the asymptotic behaviour of
the sequence  a; ,S’n > (~+; we obtain here

Vol. 33, n° 2-1997.
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the exact asymptotic behaviour of this sequence and as far as we know
this result is new.

THEOREM II.7. - Suppose that

(i) the distribution p of the variables n > 1, is aperiodic

Then, for any continuous function p with compact support on (~+ x I~+,
we have

where ~+ is the restriction of the Lebesgue measure on f~+,
U~’+ _ ~n o ~pT+ ~ *~ and is the image by the map m--~ -x of
the potential UT_ _ )*~~

Proof. - It suffices to show that for any a, b > 0 one has

In his book, F. Spitzer introduces the variable Tn denoting the first time at
which (Sn)n~0 reaches its maximum during the first n steps. Recall that
Tn is not a stopping time with respect to the filtration (~’n, ) n. > 1; nevertheless,
it plays a crucial role in order to obtain the following identity [16]

Set > n]; ] and ~n = E[[T+ > n]; By Theo-
rem 11.3 we have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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and

Furthermore

Theorem II.5 is thus a consequence of the following lemma

LEMMA 11.8. - Let ( a n ) n > o and (,C~n ) n > o be two sequences of positive real
numbers such that and > 0.

Then

(i) there exists a constant C > 0 such that, for any n E and

0  i  n - j  n, we have

(ii) one has n3~2 = 0152B + ,QA where

=~~ o~~ and 

Proof - (i) Without loss of generality, one can suppose i + 1  ~n/2~ 
n - j, where ~n/2~ is the integer part of n/2; we have

Inequality (i) follows immediately.

Vol. 33, n° 2-1997.
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with

and

Fix E > 0 arbitrary small and choose z and j large enough that

{3 0152k  E/3, a £I§ ,~~  E/3 and C( ~ + ~ )  f/3. Letting
n - +0oo, one obtains lim 7z,~~’~y" - ~B -  f. D

III. PROOFS OF THEOREMS A AND B

III.a. Spitzer-Grincevicius factorisation

Let us first recall some notations. Let gn = bn), n = 1 ~ 2 ~ ... be

independent and identically distributed random variables with distribution y,.
Denote by the a-algebra generated by the variables 7i..~’’’ - //~ - ~ > 1.
For any n > 1, set G~ = gi ... 9 n = (Ay ~ B~); we have --1 ~I = ii 1 ... 
and Bl = ~ n ~-1 al ... More generally, set ~--l ;;1 = 1 ,, ... and

= if 1  n :S m and .4;;’ = 1. I3;;’ = () otherwise.

We also introduce the variables 5n, and TII defined by Sn = B III and
S0 = 0, Mn = " -, Sn) and T" =  k ~ n/Sk = Mn}.

In the same way, let ~~ be the image of ~r hB the mapping

g ~ (1 a(g), b(g) a(g)); if gn = (an, bn), n = 1. 2. ... . are independent and

identically distributed random variables with distribution  on G, set

G7 = gn, 
... I§7 = ... am, 11 == 03A3 mk=n II 

t ... i j ‘ I, 01 I - ii 

m and = 1 and = () otherwise: set .s’, = 

So == 0 and = max(50’ ,S‘1, .... Sn). Denote lw the

generated by ~1,~2.-"~~ > 1.

Fix two positive functions cp and /B with compact support, defined

respectively on R*+ and !R~. For technical reasons. suppose that ’4/’ is

continuously differentiable on (~‘~. We are interested in the behaviour of the

Annales de l’Institut Hmmi Probabilités et Statistiques
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sequence as n goes to following [10], we have

The last expectation can be simplified as it is clear that the terms

Ai, ~, - - -, A~ are independent of the terms A~+l, A~~1 ~ ~ ~ , A~~1; from
the equality Bf = bj Ak. + 03A3nj=k+1Aj-1k+1bj) and by a duality
argument, one obtains

Set A = {g E G : a(g) > 1} and consider the transition kernel PA
associated with (p, A) and defined by PA(g, B) == for
any Borel set B c G and any g E G.

Let us give the probabilistic interpretation of PA. Let TA =
inf ~n > 1 : Gï E ,~4.~ be the first entrance time in A of the random walk
( G 1 ) n > o ; it is a stopping time with respect to and we have

In the same way, set A’ = {g E 1}, let P A’ be the operator
associated with (Q, A’) and denote by TA, the first entrance time in A’ of
the random walk (G1 ) n > 1; T~~ is a stopping time with respect to (.~’n ) n > 1
and we have 

-

From the previous expression of ~~cp(A1 )~(Bl )~, we obtain the Spitzer-
Grincevicius factorisation:

Vol. 33, n° 2-1997.



238 E. LE PAGE AND M. PEIGNE

where

III.b. Proof of Theorem A

The starting point of the proof is the Spitzer-Grincevicius factorisation.
First, thanks to the following lemma, we are going to control the sum

~~=~1 I,~ _ n ( cp, ~ ) for fixed large enough integers 2 and j.
LEMMA 111.1. - There exists 03BB0 > 0 such that for any 03BB E ]0, any

g E G and any 1 > 0, we have

where C is a positive constant which depends on ~, p and 

By Theorem II.3, the sequence (k3/2 ~G ~(~)~P~(e, dg)) is bounded

since 
, r

Hence, using Lemma 111.1, we obtain for any 0  k 

Using Lemma II.8 (i), one can thus choose two integers i and j such that
lim is as small as wanted.

Next, we look at the behaviour of the integral

as l goes to +oc.

LEMMA III.2. - For any 9 E G, the sequence

converges to a finite limit as l goes to ~oo.

In particular converges in R. On the other hand, for

any z > 1 and any compact set K C R*+ x R, the dominated convergence

Annales de l’Institut Henri Poincaré - Probabilites et Statistiques
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theorem ensures the existence of a finite limit as n goes to +0oo for

(n3~2 where

One just have to check that the indicator function 1K does not disturb too
much the behaviour of the above integrals. Fix 0  8  1; according to
Lemma III.1, we have

On the other hand, by the definition of PA,

Now, fix B > 0; according to Lemma 111.1

Vol. 33, n° 2-1997.
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where the last inequality is guaranteed by the following

LEMMA III.3. - There exists EO > 0 such that for any 0  E  EO

Note that the same upperbounds hold when the sum 03A3ik=1 is replaced
by 03A3n-1k=n-j+1.

Finally, using the Spitzer-Grincevicius factorisation, we have proved that,
for any E > 0, there exist E N and a compact set K C G such that
for any n > z + j one has

On the other hand,

converges. Hence the sequence of measures (7z,~~~’ ~~~‘’z ).,z > 1 weakly converges
to a Radon measure the fact that vo is not degenerated follows from the

LEMMA III.4. - There exist an integer n0 and a compact set Ko C G
such that

The proof of Theorem A is now complete; it just remains to establish
Lemmas 111.1, III.2, 111.3 and III.4.

Proof of Lemma 111.1. - First, suppose that Hypotheses Al, A2 and A3
hold.

Annales de l’Institut Henri Poincaré - Probabilites et Statistiques
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Fix p > 1 such that ~ + ~ = 1. For any g E G and l > 1, we have

Since the support of cp is compact in ]0, +oo[, there exists K = K(e, p) > 0
such that Va > 0 I  so

Assume p - E > 0 and 1 + E  /3; by Theorem II.7 one obtains

Vol. 33, n° 2-1997.
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Now, replace Hypothesis A3 by Hypothesis A3 (bis)
For any g E G and l > 1, we have

Since p and 03C8 have compact support, for any E > 0 there exists

K = > 0 such that

and

Thus

Hypothesis A3 (bis) implies + 03A3li=2 aAi-12bi + bll ~ ~b~ r - a.s

so that

The proof is now complete. D

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques



243A LOCAL LIMIT THEOREM

Proof of Lemma III.2. - Without loss of generality, one may suppose
g = e. For any n E N*, set

Fix i, j E N such that l~z?~2014 jy~~ and consider

To obtain the claim, it suffices to prove that

a) lim lim supn~+~|03BDn(03C6,03C8)-03BDn(03C6,03C8, i, j) I == 0

b) for any fixed E N, the sequence converges to

a finite limit.

Proof of convergence a. - We use the equality Bl = Bi + 
since the support of 03C8 is compact and 03C8 is continuously

differentiable, we have for some 0  E  1

Since the support of p is compact in ]0, +oo[, there exists ~=~(6,(~)>0
such that Va > 0 1’P(a)1 ]  KaE; thus, for any i + 1  n - j, we have

Consequently, by Theorem II.3, Theorem II.7 and Lemma II.8 (i), there
exists C2 > 0 such that
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Let i and j go to +00; we obtain convergence a).

Proof of convergence b. - Fix two integers i and j ; we have

with

. 

J
Using Theorem II-7, one may see that, for any E G, the
sequence converges to a finite limit.
To obtain the convergence b), we have to use Lebesgue dominated
convergence theorem and therefore, we have to obtain an appropriate
upperbound for g, hl, h2, ~ ~ ~ , hj). Note that

because a(g)  1 and

Since 1’P(a)1 ]  KaE for any a > 0, one thus obtains
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the last inequality being guaranteed by Theorem II.7. Then, by Hypothesis
A2, for E small enough, one may use Lebesgue dominated convergence
theorem and convergence b) follows. D

Proof of Lemma III.3. - By a duality argument, it suffices to prove that,
for some E > 0

Using the identity Bf = we obtain

By the definition of TA, we have

with
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Hence

One concludes using Hypothesis A2 and the fact that the sequence
( 3/2 1 k3/2(n-k)3/2)n~1 is bounded. D

Proof of’ Lemma III.4. - By Theorem II.3, there exist n0 E Co > 0
and (1] c R*+ such that

On the other hand

By Lemma III.3, we have supn>1n3/2E[[TA > n] n [a  u4’[ :S {3];
 +00; so, one can choose B > 0 such that

The lemma readily follows from the inequality
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III.c. Proof of Theorem B

We just indicate how to modify the proof in the previous section to obtain
Theorem B. For any continuous function ~ with compact support on ~d
we have by the Spitzer-Grincevicius factorisation

with = ~’G ~>( b~9~+b~~~ ) First, we control

the for fixed large enough integers z and j.

LEMMA III.S. - There exists 03BB > 0 such that for any 03BB E ]0, any

g E ~ and any l > 0, one has

By Theorem 11.3, the sequence is bounded
since 

,~

For any 0  k  n,, we thus have

Note that there exists C > 0 such that for any n, in N*,
1  i  71 - j  n, one has

therefore one may choose i and j such that lim supn~+~ JX 03A3n-jk=i Jk,n
is as small as wanted.

Next, we look at the behaviour of the integral ~G )P~(e, dh,)
as l goes to +oc. 

(9~

LEMMA III.6. - For any g E G, the sequence

converges to a finite limit as I goes to 
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In particular converges in R. Furthermore, for any
I, j E N and any compact set K c R*+ x R, the dominated convergence
theorem ensures the existence of a finite limit as n goes to +00 for the

sequence where

The only thing we have now to check is that the indicator function 1~ does
not disturb too much the behaviour of the above integrals. Fix 0 ~ b  1;
according to Lemma 111.5, we have

Note that by definition of one has

On the other hand, fix B > 0; according to Lemma 111.5, we have
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where the last inequality is guaranteed by Lemma III.3.
Note the same upperbounds hold when the sum is replaced by

Finally, using Spitzer-Grincevicius factorisation, we have proved that,
for any E > 0, there exist i, j e N and a compact set such that
for any n > i + j we have

Since K) + converges,
the sequence (~~~~(Bl )~)n>o has a finite limit which is not always zero.
It just remains to establish Lemmas 111.5 and III.6; they may be easily
obtained using Theorems II.2 and II.3 and by obvious modifications in the
proofs of Lemmas 111.1 and III.2 respectively. D

IILd. Proof of Theorem C :
identification of the limit measure vo

We are not always able to explicit the form of the limit measure vo;
nevertheless, if one assumes further hypotheses on it is possible to

identify vo, up to a multiplicative constant. In this section, we suppose that
~4 satisfies Hypotheses Al, A2, A3 and also the two following conditions

(C 1 ) the density of ~c is continuous with compact support.
(C2) > 0.

Remark. - Note that under these conditions, the semi-group generated
by the support is dense in G. Moreover, there exists ~y > 0 such
that ~c ~ ~c > 
To establish Theorem C we first prove that the random walk of distribution

~c on G satisfies a ratio-limit theorem and secondly we show that the
equation /~~==~~~=z/ has a unique solution 0 (up to a

multiplicative constant) in the class of Radon measures on G. Let CK+ ( G)
be the space of positive continuous functions with compact support on G;
we have

LEMMA III.7. - Under the hypotheses of Theorem C, we have

In particular = 1 for any g ~ G and any function

p e 0. Since there exists ~ > 0 such that ~ ~ we

may thus apply the following proposition due to Y. Guivarc’h [11]:
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PROPOSITION III.B. - Suppose that the semi-group generated by the

support of ~~ is dense in G and that, for any p E G’I~+(~), the sequence
( "’I’)11/jl’~ converges to a constant co which does not depend on p.
Then, if the equation v * ~c = v = co v has a unique solution 0, up
to a multiplicative constant, in the class of Radon measures on G, we have

for any 03C6 and 03C8 E C K+ (G) such that > 0.

We have here co = 1; to prove Theorem C, it suffices to establish the

following lemma :

LEMMA III.9. - Under hypotheses of Theorem C, the equation v * ~c =
~c * v = v has one and only one (up to a multiplieative constant) solution
03BD0 ~ 0 in the class of Radon measures on G. Moreover, this solution may
be decomposed as follows

where ~ (respectively ~ 1 ) is, up to a multipl icative constant, the unique
Radon measure on which satisfies the convolution equation ~c * À == À
(resp. = ~ 1 ).

By Theorem A one can choose 03C80 E CK+(G) such that

(n3~2~*n(~o))n>o converges to 1; for any p E CK+(G) we thus have

This achieves the proof of Theorem C; it remains to establish the
Lemmas III.7 and III.9.

Proof of Lemma III.7. - Fix a function p E CK+ (G) and for any n > 1
consider the set

The sets 1, are compact, C and

Then, there exists no such that the compact set

Ko introduced in Lemma III.4 is included in the interior of K no (p).
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Consequently, the continuous function g - fG (dh) is strictly
positive on Ko and there exists a constant C > 0 such that

Thus, for any n > 1, one has 8g * ,u*O~+n) (cp) > 
with Ci > 0 by Lemma III.4. For any g E G we thus have

1. On the other hand b9  

for any n > 1 which implies  1. D

Proof of Lemma III.9. - Let H  be the set of positive measures v on
G such that ~ ~ ~ = v. Recall that is a weakly closed cone with a
compact basis and that it is a lattice. By [7] (and more recently by [2]
without condition of density) there exists (up to a multiplicative constant)
a unique positive measure Ai on Rd such that = ÀI; furthermore, 03BB1
is a Radon measure on f~d and the extremal rays of are the positives
measures which are proportional, either to the right Haar measure mD, or
to the measures ~~l,z) * ( aa ~ Ai), z E ~d. By Choquet’s representation
theorem, there exist Cv E R+ and a positive measure mv on (~d such that

and Cv and mv are unique because is a lattice.

Fix v in a direct computation leads to

Then, if one suppose that M * v = v, the uniqueness of the Choquet’s
representation gives

Since fG c~l > 1, one obtains Cv = 0. On the other hand, by [7], the
equation  * m = m has a unique solution (up to a multiplicative constant)
A in the set of positive measures on IRd which leads to the equality mv = A.

Finally the solution vo of the equation v ~ ~c = ~c ~ v = v is unique (up
to a multiplicative constant) in the set of positive measure on it is a
Radon measure and it can be decompose as follows

Vol. 33, n° 2-1997.



252 E. LE PAGE AND M. PEIGNE

ACKNOWLEDGEMENTS

The authors would like to thank the referee for his useful comments
and corrections.

REFERENCES

[1] V. I. AFANAS’EV, On a maximum of a transient random walk in random environment,
Theory Prob. Appl., Vol. 35, n° 2, 1987, pp. 205-215.

[2] M. BABILLOT, Ph. BOUGEROL and L. ELIE, The random difference equation Xn =
AnXn-1 + Bn in the critical case, to appear in Annals of Probability.

[3] N. H. BINGHAM, Limit theorem in fluctuation theory, Adv. Appl. Prob., Vol. 5, 1973,
pp. 554-569.

[4] Ph. BOUGEROL, Théorème central limite local sur certains groupes de Lie, Ann. Scient.
Ec. Norm. Sup., 4e série, T. 14, 1981, pp. 403-432.

[5] Ph. BOUGEROL, Exemples de théorèmes locaux sur les groupes résolubles, Ann. I.H.P.,
Vol. XIX, n° 4, 1983, pp. 369-391.

[6] L. BREIMAN, Probability, Addison-Wesley Publishing Company, 1964.
[7] L. ELIE, Marches aléatoires: théorie du renouvellement, Thèse de Doctorat d’État,

Université Paris VII, 1981.

[8] W. FELLER, An introduction to probability theory and its applications, Vol. 2, 2nd edition,
1971, J. Wiley, New York.

[9] H. FURSTENBERG, Translation-invariant cones of functions on semi-simple Lie groups, Bull.
of the A.M.S, Vol. 71, n° 2, 1965, pp. 271-326.

[10] A. K. GRINCEVICIUS, A central limit theorem for the group of linear transformation of the
real axis, Soviet Math. Doklady, Vol. 15, n° 6, 1974, pp. 1512-1515.

[11] Y. GUIVARC’H, Théorèmes quotients pour les marches aléatoires, Astérisque, Vol. 74,
1980, S.M.F., pp. 15-28.

[12] Y. GUIVARC’H et Q. LIU, Sur la probabilité de survie d’un processus de branchement dans
un environnement aléatoire (in preparation).

[13] IGLEHART, Random walks with negative drift conditioned to stay positive, J. Appl Prob.,
Vol. 11, 1974, pp. 742-751.

[14] M. V. KOZLOV, On the asymptotic behavior of the probability of non-extinction for critical
branching processes in a random environment, Theory Prob. Appl., Vol. 21, n° 4, 1976,
pp. 791-804.

[15] E. LE PAGE and M. PEIGNÉ, Exemples de théorèmes locaux pour certains noyaux de
transition, Journées Fortet du 1er juin 1995, to appear in Editions Hermès.

[16] F. SPITZER, Principles of random walks, D. Van Nostrand Company, 1964.
[17] N. Th. VAROPOULOS, Wiener-Hopf theory and nonunimodular groups, J. of Funct. Anal.,

Vol. 120, 1994, pp. 467-483.
[18] N. Th. VAROPOULOS, Diffusion on Lie groups, Can. J. Math., Vol. 46, 1994, pp. 438-448.
[19] N. Th. VAROPOULOS, L. SALOFF-COSTE and T. COULHON, Analysis and geometry groups,

Cambridge Tracts in Math., n° 100, 1993.

(Manuscript received June 29, 1995;
revised May 10, 1996. )

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques


