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One-dimensional random walks, decreasing
rearrangements and discrete Steiner symmetrization

Alexander R. PRUSS

Department of Philosophy, University of Pittsburgh, Pittsburgh, PA 15260 USA.

Ann. Inst. Henri Poincaré,

Vol. 33, n° 1, 1997, p. 112 Probabilités et Statistiques

ABSTRACT. - Take a simple random walk in the "blind alley"
{1,2,...,~V+1}, starting at 1, with the boundary condition that movement
to the left of 1 results in staying put at 1. Each time the random walk visits a

point n e {1,2,..., N~, it is subject to a danger and has a probability dn of
being consumed by it. We prove that the probability of safe arrival at N +1
is increased if the dn are replaced by their non-decreasing rearrangement d# .
Next, we consider the same random walk but now on all of Z~B again with
a danger dn at each point n E 7~+. Let Td be the time of first absorption
by one of the dangers dn. We prove that  

for all A E Z+. Finally, we obtain a theorem on Steiner rearrangement
and generalized discrete harmonic measure for discrete cases which are a

priori symmetric under a reflection in an appropriate axis. Our methods
are completely elementary.

RESUME. - On considere une marche aleatoire dans le "cul-de-sac"

{L2,...,jV+l} avec 1 comme point de depart et qui doit rester sur

place des qu’elle est tentee d’aller a gauche de 1. En chaque point n de
une probabilitee dn que la marche soit absorbee par un

danger des qu’elle arrive a ce point. Nous demontrons que la probabilité
d’ arriver sain et sauf au point N + 1 croit si on remplace les dn par leurs
rearrangements non-decroissants df. Ensuite, nous considerons la meme
marche mais cette fois sur tout l’ensemble Z+, avec encore un danger dn
sur chaque point n E 7 ~ . Si Td est le temps de premiere absorption par
l’un de dangers dn, nous demontrons que P(Td > ~)  A) pour
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84 A R. PRUSS

chaque A E Z+. Enfin, nous etablissons un theoreme sur la symetrization
de Steiner et la mesure harmonique generalisee dans les cas discrets qui
sont a priori symetriques par rapport a la réflexion dans l’axe approprie.
Les methodes sont elementaires.

Key words and phrases: Non-increasing rearrangement, Steiner symmetrization, random
walks with dangers, second order difference equations, ordinary differential equations,
Baernstein *-functions. The author would like to thank Albert Baernstein II, Arie Harel
and Ravi Vakil for interesting discussions on these topics. In particular, he would like to
thank Professor Baernstein for having suggested that the author also consider the case of

p ~ 2 . The author would also like to thank the referees for their suggestions and their careful
reading. The research was partially supported by Professor J. J. F. Fournier’s NSERC grant
#4822 and was done while the author was at the University of British Columbia. The present
paper largely coincides with Section IV.9 of the author’s doctoral dissertation.

1. STATEMENT OF RESULTS

We write Z+ = ~1, 2, ...~ and 7~0 = ~0~ U 1~~. Fix p E [0, 1]. Let
{rf : i E be a random walk 2, ... , N + 1}, with rp0 = 1,

and

Thus, we have a simple random walk on a "blind alley," with the boundary
condition that at the "wall" (i. e. , at 1 ) when we try to go to the left then
we stay put. The open end of the blind alley is at N + 1.

Let ~2?. - - ~0,1 ~ be given. Every time the random walk rp is

at a point n e {1,2,...,TV}, let there be a new danger (independent of
anything that had happened until that time, and in particular independent of
the outcomes of any previous visits to the point n) and let the probability of
surviving it be sn . Let PN ( s I , ... , 8 N) be the probability that the random
walk has survived all the time up to its arrival at the point N + 1. More

precisely, let ... be random variables which are independent and

identically uniformly distributed on [0, 1]. Let

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



85RANDOM WALKS, REARRANGEMENTS AND SYMMETRIZATION

Of course P(TN  (0) = 1 if p > 0. Then we have

Note that

and

for every p > 0.

Throughout, the terms "increasing" and "decreasing" shall be of the

weaker variety, i. e. , they shall mean "non-decreasing" and "non-increasing,"
respectively.

THEOREM 1. - Let sl, ... , sN E [0, 1], and let ... , s*N be s1, ... , 8 N
rewritten in decreasing order. Then for p E [0, 1] we have

with equality if and only if at least one of the following conditions holds:

This result is analogous to an inequality of Essen [4, Thm. 2] concerning
rearrangement in a certain second order difference equation. His difference
equation is very similar to that which must be solved to compute

... , sN), but there are still some essential differences. We will

say more regarding the work of Essen in the proof of Theorem 5, below,
where we shall state the actual difference equations whose solution gives

and in §4 of the paper where we shall discuss the connection with
Essen’ s analogous continuous case [5, Thm. 5.2].

It is quite possible that Essen’s methods [4] could be adapted to prove
Theorem 1, at least in the case p = 2 , even though his results do not appear
to apply directly. However, we prefer to use different tactics (keeping the
same overall strategy) which, in an elementary way, exploit the linearity
properties of a function appearing in the explicit formula for Our proof

Vol. 33, n° 1-1997.



86 A R. PRUSS

will be given in §2. Finally, it should be noted that it does not seem that

the methods of Baernstein [1] ] can be used to prove results like Theorem 1.
The heuristics behind Theorem 1 say that if we consider the random

walk only until such time as it hits the point N + 1, then it will spend
more time further away from this point than it does nearer to it, so we
will improve safety if we reorder the dangers so the more dangerous ones
are near N + 1 where the random walk spends less time. The author has
not found a way of making this intuition into a rigorous proof. One might
hope to find a probabilistic proof along these lines, but no such proof
appears to be available right now, and it does not appear at all easy to

produce such a proof.
If p = 2 then Theorem 1 may be thought of as a discrete one-

dimensional analogue of a conjecture concerning harmonic measure and
radial rearrangement of circularly symmetric domains in the plane;
see [9, Appendix B].

with the obvious conventions if j is 1 or N. Moreover, equality holds if and
only if at least one of the following conditions holds:

Intuitively Theorem 2 says that if we make a dangerous road shorter by
removing a segment then the road becomes safer for a random walk. We will
give a proof of Theorem 2 in §2 as a by-product of our proof of Theorem 1.
Now, let 81, 82, ... E [0, 1] be an infinite sequence. Define the random

walk rf on 7 + with the same transition probabilities as the previous walk
on{l,...,~V+l}. Let Ls be the first time that the random walk fails to
survive a step. More precisely, we define

THEOREM 3. - Let s 1; s2 , ... E [0, 1] and let 8~, 8;, ... be the decreasing
rearrangement of the 8i. Let p E [0, 2 ~. Then

for every n > 0.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



87RANDOM WALKS, REARRANGEMENTS AND SYMMETRIZATION

We shall give a proof of Theorem 3 in §5, where we shall also state some
closely related results, including one on discrete Steiner rearrangement. It
is not known whether the condition p E [0, ~] can be relaxed to p E [0,1],
although it is easy to see that Theorem 3 does hold for p = 1.

OPEN PROBLEM 1. - Prove or disprove that Theorem 3 also holds for

p E (~1).
We now make a tangential remark in response to a question posed by

a referee.

Remark. - Can we say anything about the question of when one has
E[Lg]  oo ? Suppose that p  2 and that there exists a k E Z+ such that
sk  1. Since p  2 , it is easy to see that almost surely the random walk
r i visits the point k infinitely often. Let Tn be the time of the nth visit of
the random walk to the point k. It is easy to see that E[Ti]  oo and that

Tn ~  oo for all n E Z+. Let A = E[Ti] and B = E [T2 - Ti].
Note that Tn] = B for all n by the Markov property. Then, using
the Markov property, we can see that:

since 0  1. Conversely, it is clear that = 1 for all k
then Ls = oo almost surely. Hence, we have seen that for p  2 we have
E[Ls]  oo if and only if there is a k with sk  1. For p > ~ we only
note the easy result that if sup~ s~  1 then  oo.

We now proceed to give a second open problem. Fix p E [0,1]. 
be a real valued function on Z+ satisfying the "convexity" (one might also
use the term "subharmonicity") condition

for n E Z+, where Condition (3) is equivalent to assuming
that is a submartingale. It is easy to inductively see (starting with
the fact that ~(0) so that ~(1) > ~(0)) that if p > 0 then (3)
implies that ~ is increasing.
OPEN PROBLEM 2. - Does it follow that

If p 1= ~ then this is a one-dimensional discrete analogue of a conjecture
of Pruss concerning least harmonic majorants and radial rearrangement of

Vol. 33, n° 1-1997.
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circularly symmetric domains; see [9]. Here, we just wish to note that some
sort of convexity condition like (3) on $ in addition to requiring ~ to be
increasing is necessary if p E (0,1 ) . For, if we do not have this condition,
then we may adapt a counterexample given in [9] to [9, Conjecture 3].
In fact, we can set si = ~, 82 == 0, s3 = 2 and s4 = s5 = ... = 0,
and be 0 for n  1 and 1 otherwise; a simple computation
shows that then the answer to Problem 2 would be negative. Note also
that if we let sN+1 = ~N+2 ~ - - - = 0 and set = max (n - N, 0)
then = PN(sl, ... , so that Theorem 1 is a special case
of Problem 2.

Finally, the following result should surprise no one, but we state it for

completeness. If we increase the probability of going towards our goal then
certainly the probability of arriving at it should increase.

with equality if and only if one of the following conditions holds:
(a) 0 for some k E ~ 1, ... , N ~
(b) S 1 = ... = s N = 1 and p > 0.

We now outline a proof of Theorem 4, leaving the details as an exercise
to the reader. Consider a more general case of a random walk defined as
above, but instead of having a constant probability p of going to the right
and 1 - p of going to the left, allow this probability to vary with position,
so that the probability of moving to the right from n E {I,..., N~ is

tn E [0,1] and the probability of moving to the left is 1 - tn. As before,
moving to the left from 1 results in standing still. Just as before, we can
define the probability of the random walk getting from 1 to N + 1 without
having fallen into any of the dangers. I claim that this probability will
increase if any one of the tn is increased; clearly this would be a more
general result than Theorem 4 (though of course we would have to ensure
that appropriate conditions of equality hold, the verification of which we
leave as an exercise for the reader).
To prove the claim, fix n. Assume n > 1; the case n = 1 is handled

similarly. We want to see the dependence on tn. So, let A be the probability
that a random walk (with movement probabilities defined by the tj ) starting
from n - 1 will eventually arrive at n without having fallen into any of
the dangers. Let B be the probability that such a random walk starting
from n + 1 eventually arrives at n without having fallen into any of the
dangers and without having first arrived at N + 1. Let C be the probability
that such a random walk when started from n + 1 eventually arrives at

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



89RANDOM WALKS, REARRANGEMENTS AND SYMMETRIZATION

N + 1 without having fallen into any of the dangers and without having
first arrived at n. Finally, let P be the probability that a random walk
starting at n eventually arrives at N + 1 without having fallen into any of
the dangers. The probability of a random walk from 1 arriving safely at
N + 1 is proportional to P, so we need only compute how P depends on
tn . Also, A, Band C are independent of tn and satisfy the equation

From this point on it is an elementary exercise to verify that P increases
with tn, and to determine the conditions under which the increase fails
to be strict.

2. VARIOUS USEFUL IDENTITIES,
FORMULAE AND SOME PROOFS

In this section we shall prove Theorems 1 and 2, assuming an explicit
formula (Theorem 5, below) for PN ( s 1, ... , 8 N ). The proof of this formula
will be given in §3.

First we note a simple probabilistic identity which will later prove to be
of use. Suppose p E (0,1 ), N > 2 and s 1 = 1. Then it does not matter

how long the random walk spends at the point 1, since it will survive

to eventually leave 1 and go to 2. Whenever it subsequently goes left

from 2, it will survive until its eventual return to 2. Hence, we may form a
certain correspondence between random walks on {1,2~...,~V} and those
on {2,..., N ~ in such a way as to prove that

It is trivial to also verify that this continues to hold if p E (0, 1 ).
Now, for positive n, let ..., aN) be the sum of all terms of

the form

with

Explicitly we have

Vol. 33, n° 1-1997.
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with the convention that empty sums are equal to zero. Clearly is a
function of N variables, is linear in each variable if the others are fixed,
and vanishes identically for 2n > N. Let

for N E where l x J denotes the greatest integer not exceeding x. Note
that WN z 1 for N e {0,1}.
Now, I claim that

for N > 1. This identity is central to our work. 
’ ’

The proof of the identity is not very difficult. For, take one of the terms
It will be either of the form

or else it will be identically 1. If ai occurs in this term then ii = 1 so that
a2 must also occur in it. It is easy to see by the definitions that it must then
also be a term of 2014ai~2~~v-i(~3?- ? a N+ 1 ) . On the other hand, if a 1 fails
to occur in the term, then this term must be a term of ~~(~2- - - - ? aN + 1).
Conversely, it is easy to verify that any term of the right hand side of (6)
is also a term of the left hand side, and the proof of the claim is complete.
As a corollary of (6), we can see that

for N > 1. For N = 0 this also holds trivially, and hence (7) is valid for
all N > 0. Also, by (6) and (7) we obtain

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Note that ~~,T(al, ... , aN ) = WN (aN , ... , al), so that

whenever N > 2, by (6).
Now, define

Note that p) = 1 - for every n and p. Because
the expressions that will be involved would be unmanageable otherwise, it
will be useful to have two more abbreviations. Let

and

At times the reader will be implicitly expected to be able to use the

definitions to mentally rewrite and 03A8pN in terms of the WN.
The following result then gives a formula for the probability of traversal;

a proof will be given in §3.

THEOREM 5. - For p G (0,1] and G [0,1] we have

Moreover, the denominator is always strictly positive under the above
conditions.

Assuming Theorem 5, I claim that

For, if p is fixed then both sides are linear in any one variable when the
others are fixed, so that it is enough to verify (11) for a2, ... , aN E (0, 1].
Moreover, both sides of (11) are continuous in p and hence it suffices to
consider p E (0,1]. But under such circumstances ( 11) follows from (4) and
Theorem 5. Note that then ( 11 ) takes the particularly simple form

Vol. 33, n° 1-1997.
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LEMMA 1. - Let N > 1 and fix al,...,aN E [o, 1]. Suppose p E (o, 1].
strictly positive for every x E

[0,1].

Proof. - Fix al,..., aN. Now,

is a linear function and hence it suffices to verify its strict positivity for
x E {0,1}. If x = 1, then the strict positivity immediately follows from the
"moreover" in Theorem 5. Now, for x = 0, by (8) we may write

The strict positivity of this again immediately follows from the "moreover"
of Theorem 5. D

We also note that

The easiest way to prove this is to note that every term of the right hand side
is a term of the left hand side and vice versa, much as in the proof of (6).

Finally, it is easy to use the fact that p(l - p) =
03C6n(1-p)03C6n+1(1-p) for every n together with the way that 03A8M is defined
to show that

We can write this concisely == ~M~’ Now, recalling that 1 - 
is either p or 1 - p for any n, and applying (12), followed by (13) if

necessary, we see that

where r = 1 - .

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



93RANDOM WALKS, REARRANGEMENTS AND SYMMETRIZATION

LEMMA 2. - Let al, ... , am and b1, ..., bn be in [0, 1]. Let p E (0,1).
Suppose that

Then

Moreover if equality holds then at least one of the aj vanishes. 
’ ’

Proof. - We proceed by induction on max (m, n). If max (m, n) = 1
then ( 16) becomes

This is clearly true, and strict inequality holds unless al = 0.
Now suppose Lemma 2 has been proved when max ( m, n ) = N - 1

and that we have max = N > 1. By (6) and (9), we see that (16)
is equivalent to the inequality

Note that we have implicitly used (13) after applying (6). Clearly our last
inequality is equivalent to

But this is true by the induction hypothesis since max ( m -1, n -1 ) = N -1
and since b1b2 because of (15). Moreover, if equality holds
then either am-iam vanishes or, again by the induction hypothesis, one
of aI, ... , am-l vanishes. D

The following lemma is an exact equivalent of Essen’s [4, Lemma 1],
and indeed our strategy for the proof of Theorem 1 is quite similar to that
of Essen. Of course we use the convention that the infimum of an empty
set is equal to +00.

Vol. 33, n° 1-1997.
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LEMMA 3. - Fix p E (0, 1 ). Suppose that a1, ... ; E [0, 1] and assume
that i E ~ 1, ... ; N - 1 ~ has the property that

(this condition on 2, is trivially satisfied if i = 1 ). Finally~ suppose that

and + 1,..., N ~ is such that a j = max (~,.... Then

For the rest of this section, in interpreting (19) and similar expressions
we use the convention that a sequence of the form is empty
and omitted if rL  k. We shall assume Lemma 3 for now and show

how it implies Theorems 1 and 2. A more elementary method of proof of
Theorem 2 was kindly communicated to the author by Mr. Ravi Vakil. His

approach in effect reduces the question to consideration of the movement of
the system between the points j - 1, j, j + 1, N and where indicates

that the random walk has been terminated by having fallen into one of the

dangers. This new system is sufficiently small that explicit computation can
be used to prove the desired result (cf the outline of proof of Theorem 4,
above). However, since we have Lemma 3 available (and we will definitely
need it for Theorem 1 ), we proceed as follows.

Proof of Theorem 2. - Assume that E (0, 1] .
(If one of these vanishes then the result is trivial.) The result is easy if

p E {O, I} so assume 0  p  1. It is clear on probabilistic grounds that
we may assume that sj = 1 since changing sj = 1 to sj  1 would

strictly decrease the left side of (2) and leave the right side unchanged. By
Theorem 5, we need only show that

and that equality holds if and only if s 1 = " - = s j = 1. We shall prove
this by induction on N. If N = 1 then the result follows immediately from
the definition of the ~ N . Suppose that N > 1 and the desired result has
been proved for N - 1. Assume first that then by ( 11 ) we
do have equality in (20) as desired. If j > 1, on the other hand, then we
may apply ( 11 ) to both sides of (20) and the desired result will then follow

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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by the induction hypothesis. Hence we may assume that si  1. Then, the

hypotheses of Lemma 3 are satisfied with i = 1 and j as above, so that

Now since sj = 1, an application of (11) to the right hand side of the
above inequality proves that strict inequality holds in (20) as desired. D

Proof of Theorem 1. - Again, we may assume that 0  p  1 and

that the sk are all strictly positive. Then, assuming Lemma 3 and given
si,..., sN E (0,1], I claim that

with equality if and only if s 1 > s 2 2:: ... 2:: For, if it is not true that

81 2:: ~2 ~ ’ ... > s ~T , then we may let i be the maximum of the numbers i 1 E

{I, ... , N ~ which have the properties that si , ... ; are in decreasing
order and that whenever 1  i1 then sk > max (8il"’.’ 8N) (note
that the conditions on ii are automatically satisfied for ii = 1). Because
si , ... , s N are not all in decreasing order, it follows that i  N and the

maximality of i implies that 8i  max (8i,’ ... ; 8 N ). We may then apply
Lemma 3, and let

Note that s 1, ... , sJ; are a permutation of si , ... , sn.. Hence, if ~~ ..., 
are in decreasing order then we are done by (19). Otherwise, proceed just
as before and define i’ in terms of the s’k just as i was defined in terms

of the Sk. Then it is easy to see that it > i. We may iterate this procedure
at most N - 1 times until we have sorted the sk into decreasing order,
and so the claim is proved. Theorem 1 then follows from Theorem 5 and

this claim. D

We now prove Lemma 3 by exploiting the linearity properties of the WN ,
using a reduction reminiscent of Hardy and Littlewood’s [7] reduction of
a certain rearrangement inequality to the case where all the variables were
in ~0, I} (see also Lemma 4, below).

Proof of Lemma 3. - Throughout p E (0,1 ) shall be fixed. Let j be as
in the statement of the Lemma and set A = aj . Note that by ( 18) we have
A > 0. Fix aj as well as ail ; ... , What we must prove is that

Vol. 33, n° 
° 1-1997.
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whenever ~+1,..., ..., aN E [0, ~~ and 0  À. We first
consider the case when j = i + 1. In that case, the two N-tuples serving as
arguments to the ~ in (22) will only differ by an exchange of their ith
and jth elements. Moreover, if all variables other than ai are fixed, then
the left hand side of (22) will be a linear function of a,. If we had ai = A
then the left side of (22) would vanish since aj = 03BB too. On the other hand
if we had ai = 0 then this left hand side would become

But applying (14) to both terms and then using Lemma 2, we see that
this is strictly positive. Note that Lemma 2 is applicable since by choice
of j and by (17), we have

and moreover A > 0 so that strict inequality must hold. Hence, the left
side of (22) is strictly positive if ai = 0, vanishes if ai = A and hence
by linearity is strictly positive if ai E [0, ~). This completes the proof if
j = i + 1.

Now suppose j > i + 1. By linearity considerations we need only
verify (22) when ai+1, ..., ... ; a~~ e (0, A ) and the conclusion
for them lying in [0, A] will immediately follow. Of course we always
have aj = A. Thus from now on we assume that ai+l, ... ; alv E {0, 03BB}.
Now, take the least integer j 1 E {i + 1, ... , j} with the property that
A = a~ 1 = = ... = aj. Then, the N-tuple

will not at all change if we replace j by j 1 throughout its definition, since
when we are moving one of the A’s from the string aj, then it

clearly does not matter which one we move (see Fig. 1 ). Thus, we may
replace j by j 1 and by minimality of j 1 assume that either j = i + 1 or
that (or both). We have already handled the case j = i + 1.

Figure 1. - An example of the original A’-tuple (a1,... for A’ = 20, =4 and j = 18.
The new A’-tuple ( 23 ) will be formed from this 1V-tuple by cutting out the j th element and
pasting it to the left of the ith. Clearly the result of this operation will be the same whether
it is the element in position j or the element in position j that we cut out. The result will
also be the same whether it is to the left of position or to the left of position i + 1 that
we paste this element.

Annales de l’lnstitut Henri Poincaré - Probabilites et Statistiques
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Hence, we have # A and j > i +1. Moreover G {0, A} so that
= 0. Now keep ai , ... , a~i,..., aN fixed. We shall show that

in our present case (22) holds whenever ai E [0, A]. By linearity it suffices
to consider ai e (0, A). We first note that we can reduce the case ai = A
to the case ai = 0 as follows. Suppose ai = A. Then, let ii be the greatest
integer i 1 E {i,... , N ~ with the property that ai = = ’ - = ai 1 = A.

Since aj-1 = 0, we have i 1  j - 1. Just as in our work with ]1 we
can see that the N-tuple (23) will not change if i is replaced by ii + 1
(this is so because ai, ... , ail is a string of A’s and it does not matter on
which side of this string we insert aj = A; see Figure 1, except that now j
should be in the same place as ji was). But the maximality of ii implies
that A, hence ail+1 = 0. Hence, indeed, replacing i by ii + 1 if

necessary, we may assume that ai = 0.

We now thus need only consider the case where ai = aj-1 = 0 and
A. The case j = i + 1 was already handled, so we may still assume

that j > i + 1. Then, we may rewrite the left hand side of (22) as

Applying (14) twice in each of the two terms, we see that this equals

But the middle factor in both terms is the same, and by Lemma 1 it is

strictly positive. Moreover,

and A > 0 so that the left hand side of (24) is strictly positive by
Lemma 2. D

3. PROOF OF THE FORMULA FOR THE

PROBABILITY OF SAFE TRAVERSAL

Instead of giving a probabilistic proof, we give one coming from a
solution of an associated system of simultaneous equations.

Proof of Theorem 5. - If p = 1 then 03A81N ~ 1 for all N > 1 by a repeated
application of (8), so that the content of the Theorem for p = 1 follows
from ( 1 ) . From now on we assume that p E (0,1 ) . Let q = 1 - p.

Vol. 33, n° 1-1997.
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Consider a random walk with the same transition probabilities as 
with the same boundary condition at 1, but not necessarily starting at the
point 1. Let p~ be the probability that when started at n, it arrives at N
without having fallen into any of the dangers along the route. Then,

The following equations are easy to verify:

This is a tridiagonal system of N equations in the N unknowns pi,... 
If p = q = 2 then all but the first and last equations can be rewritten as

where 2  j  N -1 D2p- = 2 (p~ _ I ~- p~+1 ) - p~ and 8- = 
This shows the similarity with the work of Essen [4] who considers
a similar question but with different boundary conditions and with D2
replaced by 02, where = 2D2pj-1 so that where

Ap, = 
In fact, for general p E (0,1), our system can be solved by a simple and

standard elimination scheme. First we transform it into the upper triangular
system of equations

where the Ai are inductively defined by

and by
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for n = 2,..., N. It is easy to inductively verify that we will have

An  - min (p, q)  0 for n = 1,..., N so that everything is well

defined.

Then, a further reduction (starting from the bottom and working our way
up) transforms the system into a diagonal system and shows that

Comparing this with (10), we see that we will be done as soon as we
show that

Since we have seen that An  0 for n = 1, ... , N, the positivity of the
denominator in (10) will also follow from (25).

Let

for n = 1,..., N and set

for n = 1, ... , N - 1. Define tN = qsi . Then from the inductive definition
of the An, we find that

while

for n = 1, ... , N - 1. Let

Then (26) also holds for n = N. We then have

for n = 1,..., N. Let Tn = ~1~2 ’ - Bn N + 1. Then since
== 1, and since we

see that (25) is equivalent to the assertion that
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where an = for n = l, ... , N and aN+l = 1. Recall
that

for every n and that = q so that tn = for n = 1,..., N. We
shall now work exclusively in terms of the an, tn, Bn and Tn.
To compute note that

Suppose that

Then

where we have used (27) to obtain the second-last equality. Thus, if we
define c~n and !3n inductively by

and

for n = 1,..., N, then it follows by induction that we will always have

Since = 1, it follows that

I claim that
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for n = 1,..., N + 1. If this were true then (28) would immediately follow
from (30). We prove (31a) and (31b) by induction. For n = 1 they are
true since WI and Wo are both identically 1. Suppose that they hold for n.
Then by applying (29a) to (31a) and (31b), we see that

as desired. Now applying (29b) to (31a) we find that

Thus, to obtain (31b) for n + 1 we must show that

But tn = anan+l so that (32) follows from (9). D

4. THE ONE-DIMENSIONAL CONTINUOUS CASE

We now show how our result is connected with a one-dimensional

continuous rearrangement inequality of Essen [5].
Suppose that p = 2 . For a sequence pj , let D2pj 

Then, it is not difficult to verify (cf the proof of Theorem 5, above) that
to find PN 2 ( s 1, ... , 8N ) one needs to solve

for j e {2014A~ + 1,..., N ~ , subject to the conditions

and

where 8j == 81-j 1= ~ ~ 2014 1 if j G {1,..., N } . Then one will have

The symmetry of the problem easily shows that the solution will have the
property that if j 6 {!,..., N ~ then ~~ = and this symmetry easily
shows why this system is equivalent to the one exhibited at the beginning
of the proof of Theorem 5. (Note that we are in effect now considering
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a random walk + 1,..., N ~ in place of our reflecting walk on
1 1 , ... , Nl .)
The reason for writing the system as above is that it suggests as a

continuous analogue the differential equation

on [-L, L], where 6 is even, and where p is subject to the conditions that

and

To solve this, by symmetry we need only solve (33) on [0, L] subject to
(34) and to the condition that

We now define the function 8# on ~0; L] to be the equimeasurable
increasing rearrangement of the restriction of 8 to [0,L] and put b~ (:~) =
~~(2014~r) for -L  ~ ~ 0. (Note that we are rearranging in the opposite
order from the way we rearranged the pj because 8 ( x) corresponds to

p7’ -1’)
The following result is then an exact continuous equivalent of the p == ~

case of Theorem 1.

THEOREM A (special case of Essen [5, Thm. 5.2]). - Let 6 be a nonnegative
lower semicontinuous piecewise constant function on [0, L], and let p be the
solution of (33), (34) and (35). Let p# be the solution of (33), (34) and
(35) after replacing 8 with 8#. Then p#(o) > p(0).

It is not unlikely that Theorem A can be given some probabilistic
interpretation in terms of Brownian motion, but such an interpretation is

not as interesting as the probabilistic interpretation of our discrete results.

5. SURVIVAL TIMES AND DISCRETE

STEINER REARRANGEMENT

To prove Theorem 3 and related results, we first consider a more general
situation. Let p~°~ , p~ 1~ , ... be a sequence in [0,1] For each fixed

z 
. 

let ~B6’~B... be a sequence of numbers in [0 , 1] . Now, as z 
.
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runs over 7~0 let A, be a random walk on Z+, which, if > -oo, has

probability pC i) of moving to the right at time z and probability 1 - pC i)
of moving to the left at that time, and if then it satisfies

Ri = Rz+i. Again, if the walk moves to the left of 1 then we constrain it
to remain at 1 for the time step. More generally than before, let

where as before the Xi are i.i.d. and uniformly distributed on [0,1]. Then,
L~ - 1 represents the survival time of the random walk. Moreover, is
the survival probability of the random walk at time i if this random walk

happens to be at point k; at this time.

For each fixed i E let (s* ) i2~ , (s~‘ )22~, ... be the decreasing
rearrangement of s 12~ , s~i~ , ....

Note that we have not defined where our random walk is to start. Because
of this, we shall write P~(’) for probabilities where the random walk is
conditioned to start at j.

THEOREM 6. - Suppose > E [0, 2 ~ for 2, E Let J be any
set of precisely m positive integers. Then

for every nonnegative n.
It is easy to verify that this need not hold if the condition 

dropped (counterexamples can be found even with n = 1 and p~°> = 1 );
nevertheless, we do conjecture that the condition p ~ 2 can be omitted in
Theorem 3. Note that Theorem 3 does hold for p = 1.

Clearly, Theorem 3 will follow from Theorem 6 if we let J = {1}, and
define p~ = p for each z and = sk for each z and k.

In order to set things up for the proof of Theorem 6, we now define
ai: Z+ x 7~+ -~ [0,1] as follows. If p~2> > -oo then let

If -oo then let = where 6jk is 1 when j = k and
0 otherwise. Then, the c~ are the transition matrices corresponding to the
random walk R~, 
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Let v - Fv be the indicator function of J. Then

Moreover, the sums only appear to be infinite since all but finitely many
summands vanish as J is finite.
We shall prove that if we have p~2~ S ~ for every z > 0 then a

simultaneous replacement of s with s* and F with F* in (36) cannot
decrease (36). Since replacing F with F* is equivalent to replacing .J

Card J}, this will immediately yield Theorem 6. It is to

be noted that the above replacement inequality is very similar to a result
of Haliste [6, Lemma 8.1] ] and the structure of our proof will be very
similar, too.

Throughout we shall use *’s to denote decreasing rearrangements.
LEMMA 4. - Let tl , ... , tn and any finite real numbers.

Suppose that whenever xl, ..., xn E ~0, l~ then we have

Then (37) holds for any choice of xl, ..., xn E ~0, oc).
This says that we may proceed from linear rearrangement results valid

on the comers of an n-cube to ones valid on a whole octant.

Proof of Lemma 4. - Fix any xl, ... , E ~0, oo). By the decomposition
result of Hardy, Littlewood and Polya [8, §10.3(2)] we may find sequences
~,... E {0,1} for z = 1,..., ~ and coefficients c~i,..., c~ E 
such that

and

both for every i E ~1, ... , n~. Since, for each fixed i, we have (37)
holding for ~1, ... , we may then use positive linear combinations (with
coefficients of (37) for these sequences to prove that (37) also holds
for D

Proof of Theorem 6. - As a first step in reducing the problem to a more
manageable one, clearly we may assume that, for each fixed i, we have
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vanishing if k is sufficiently large. Note that then for any fixed i, (36)
may be rewritten in the form

for some large N, where ... , do not depend on ... , ~~. Then
by n + 1 applications of Lemma 4 we see that we need only consider the
case where all of the s ~2~ lie in {0,1}. In that case, let

Set Avo = Note that Avo vanishes for all but at most min (~c°, m)
values of vo, where m = Card J, and that is 1 for

(~c°, m). Hence Avo  for each vo .
Thus, by (36), we will be done as soon as we can show that in general

if each ai has the form given above with p(i)  ~, if Av is a nonnegative
sequence, and if the 8 ii) are arbitrary (0, 1 ) sequences with the number of
nonzero entries for a fixed i equaling then

We proceed by induction. If n = 0 then (38) is trivial. Suppose now
that (38) holds for n - 1, and that we are to prove it for n. Exactly as
in [6, proof of Lemma 8.1], let

and

Since (38) holds for n - 1, we must have
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Again following [6], let cp be a permutation of Z+ such that B*~ = Bv
for each v, and define Cv = as well as dv = Then,

I now claim that (40) cannot exceed

This claim will follow from the general inequality that for our ao

whenever the Qv and (3v are nonnegative numbers which vanish for all but
finitely many v. then (41) follows from the Hardy-Littlewood
inequality

Hence assume that lies in [0, ~]. By applying Lemma 4 twice, we
may assume that av and !3v both take values only in ~0, l~. In that case,
let "I = Card {v : = 1} and 8 = Card {v : !3v = 1}. Assume that "I
and 8 are both at least 1 (for if one of them vanishes then (41) is trivial).
Then, (41) is equivalent to the assertion that

Suppose now that ai == {3l = 1. Then,

and

so that (42) holds. Now suppose that precisely one of cxl and (3l is 1.

Then, it is easy to see that at least one of (43a) and (43b) must hold;
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moreover, the other one will also hold provided we delete the "-1" in its
right hand side. Using the fact that ( 1 - = 0 and that p  1 - p

(since p  ~), it follows that (42) must hold. The remaining case is when
ai = 131 = 0. Considerations as above show that if (43a) or (43b) holds,
then (42) will follow. Hence, we may assume that neither (43a) nor (43b)
holds, and it follows that

Assume now that 03B3  b. It follows that whenever av = 1 then both 
and must be 1. If this is to be the case, then we must in fact have

~y + 1  8. In that case, the right hand side of (42) becomes

Clearly, the left hand side of (42) is also ~, and so in this case we are done.
Now, if ~y > 8, then the left side of (42) is 8, while the right hand side is

This completes the proof of (42) and hence also of (41).
Returning to (40), we now have

Note that vanishes for all but at most J-Ll values of vi, and hence
the range of summation of vi on the right hand side of the above can
be restricted to {1,... I claim that Cl  03 ~ ’’’. For now,
suppose that this claim is just. Then, since we always have 1, it
would necessarily follow that dv~  cvl. Thus, we would have

Then, (38) for n would follow by (39) and the definition of the cvl.
It remains to prove the right monotonicity property of the cvl. This will

follow as soon as we show that whenever the a,i are defined as above and

the Vi are nonnegative, then, for every m > 1, the expression
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is decreasing in vo. We proceed by induction on m, and we shall prove the
induction hypothesis and the induction step simultaneously. Suppose either
that m > 1 and the result holds for m - 1, or that m = 1. If m > 1, then let

The assumption that the result holds for m - 1 then shows that is

decreasing. If m = 1, then let "IvI - 1, which is trivially decreasing.
What we must now show is that

is decreasing in vo. If p~°~ _ -oo, then this is obvious. Otherwise, let

p = p~°> and fix v > 1. We must show that Suppose first that
v = 1. Then 6-1 = +~72 and 62 = so that Cl > C2
since ~2 ~ 73. Now, suppose v > 1. Then Cv = while

cv+i = so that again the desired inequality holds because
of the decreasing character of the This completes the simultaneous proof
of both the induction hypothesis and the induction step, and hence gives a
proof of the claim, so that we have finished proving the Theorem. D
As a corollary, we obtain a discrete Steiner rearrangement result in

the case of a certain reflection symmetry. We work on the half lattice
S) = Z x Z+ C C. Fix p E [0, ~]. Let ti be a random walk on S) with
transition probabilities

and

If p = ~, then our random walk has equal probability of moving in any
one of 4 directions at any time step, except that moving down from the
line {(~, 1) : x E Z} is interpreted as staying put. If p  ~ then we have
much the same situation, except that the walk is biased to move towards
the line {(~,1) : x E 7~~.
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Remark. - All the results below hold for some more general walks. In
fact, we may choose any o;i, cx3 and Q4 in [0,1] whose sum is 1

and which satisfy ai  and say that the probability of the random
walk moving up, down, left or right in a time step is ai, Q2, Q3 and

0~4, respectively, with the usual condition that moving down from the line
{(~, 1 ) : ~ results in staying put. In fact, we can even make a l, ~2.
a3 and cx4 depend on the time i and even on the first coordinate Re ti of

ti. It is a very simple matter to adapt the work below to this situation and
we shall say a few words about this after the proof of our main Steiner
rearrangement result, Theorem 7, below.

For each z E S), let s z represent a survival probability and be chosen
in [0,1]. Fix M E Z. Let

and set

We now write P~(’) for probabilities under the conditioning that the random
walk start at z, i. e. , that to = z.

We define the (discrete and one-sided) Steiner rearrangement 5* of s by
letting ~ i)?~ 2)?’’’ be the decreasing rearrangement of .~ (~, 2~ , ...
for each fixed x E Z.

THEOREM 7. - Let x  M be an integer, and let .~ be any m-element
subset of ~x~ x 7~+. For any n > 0 we then have

and

If J = {(0,1)}, then the first inequality says that we survive for a longer
amount of time if we apply Steiner rearrangement, and the second says
that the probability of surviving until arrival in {z E S) : Re z > M} is
increased, too.

The particularly interesting case is when 5 takes values only in {O, 1 }
and p = 2 . In that case, Pz (,~,~ > IM) may be interpreted as a

discrete harmonic measure at z in ~7 ~ {~; E S) : .5w = 1} of the
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line {(M + 1, y) : (M, y) E t/}. In that case, E S) : 5~ = 1~ is a
discrete one-sided Steiner rearrangement of the set U. Note that

If .5 is allowed to take values in all of [0, 1], then we have a certain

generalization of harmonic measure, where we have in effect allowed the
edges of the domain U to be fuzzy so that we need no longer have a sharp
boundary at which the probability of termination is exactly 1.

Then, in this case of  having values in ~0; 1 ~- and of p = ~ , Theorem 7
is a discrete equivalent of classical Steiner symmetrization theorems for
harmonic measures and for exit times in the special case where the domains
are a priori symmetric about the real axis. These symmetrization theorems
(in general and not just in the case of this a priori symmetry) can be
proved by the methods of Haliste [6, Thm. 8.1] ] (which is the approach
we use in our case, and which approach was used by Borell [3] to prove
the analogous results). The continuous analogue of the second inequality in
Theorem 7 for .5z E (0, 1 ) and p == ~ can also be proved by Baernstein’s
*-function method [2]. 
The reason why Theorem 7 is analogous to symmetrization results for

domains of C which are symmetric about the real axis is that if p = 2
then we could easily redefine our random walk to be on all of 7L2, and set
.~~~,1_~~ _ .~~~.,y~ and .5(:r,l-y) == .5(x,y) for (x, y) E 5). Under this definition,
.~ is symmetric about the 

OPEN PROBLEM 3. - Find discrete equivalents of Theorem 7 for Steiner
symmetrization on 7L2 in interesting cases where the symmetry described
in the above paragraph is missing.

Remark. - In the case p = 2 , a full analogue of the second inequality of
Theorem 7 for Steiner symmetrization on 7L2 without any a priori symmetry
assumptions on  was recently obtained [10]. The method of proof was
similar to that of Theorem 7, except that the random walk was modified
by in effect introducing a geometric delay between each time step. In the
special case were 5 takes on only the values 0 and 1, the methods of
Quine [11] based on a discrete version ofBaemstein’s *-function also yield
the same analogue of the second inequality of Theorem 7.

Outline of proof of Theorem 7. - Our proof basically uses the methods
of [6], again. Without loss of generality set x = 0. We shall throughout
assume that all our random walks are conditioned to start on {z E 5) :
Re z = 0}. For random walks t and t’, we say that t’ provided
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Re ti = Re t~ for every i E This defines an equivalence relation on
the set of random walks on 5), and we may then split up all probabilities
occurring in Theorem 7 into weighted sums over the equivalence classes of
random walks under ~. (To do all this rigorously, one might have to first
consider random walks of length  N and then take ~V 2014~ oo.)

Let 9J1 be any one of the equivalence classes under ~. We shall show that

and

The desired result will follow from this.

Now, let Xi = Re ti for some r E By choice of the Xi do

not depend on which t E 001 was used to define them. From now on we
shall always assume that r is in Let n’ = inf {i > 0 : Xi > M}.
Then, (45) reduces to (44) under the assumption that n = n’ - 1. To

prove (44) in general, we let Ri = Im r,. If xi+1 = ~;2 then let = p;

otherwise, let p(i) = 2014oo. It is easy to see that Ri then has the transition
probabilities which were given at the beginning of the present section. Let

= Clearly = Moreover, if Ls is defined as before,
then, conditioning on the statement that r E M, we must have Ls = ~
and Lsx = H~~. Then, (44) follows from Theorem 6. D

Remark. - If we were working with transition probabilities defined by 0152l,
a3 and a4 as in a remark above, then we would let == (~1 + rx2 )

where we had let = p in the above proof. There is no additional

difficulty with handling the possibility of the 0152k depending on i and/or

on Xi

Note added in proof - In connection with the Remark following
Problem 3, even more general symmetrization inequalities than those

in [10] can be found in an another preprint of the author [Symmetrization
inequalities for difference equations on graphs, 1996] and in Chapter II
of the author’s doctoral dissertation [Symmetrization, Green’s functions,
harmonic measures and difference equations, University of British

Columbia, Vancouver, B.C., Canada, 1996].
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