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ABSTRACT. - We prove the hydrodynamic behaviour of mean zero,

asymmetric zero range processes evolving on the infinite lattice The

proof relies on a bound, uniform in the volume, for the entropy production
of processes in large finite volume. Such an entropy production bound,
uniform in the volume, was first proved by Fritz in [6] to extend to infinite
volume the proof of Guo Papanicolaou and Varadhan of hydrodynamic
behaviour of interacting particle systems. Our approach follows a method
introduced by Yau in [12].

Key words: Particle systems, hydrodynamic limit.

RESUME. - Nous prouvons le comportement hydrodynamique des

processus de zero range asymetriques de moyenne nulle en volume infini.
La demonstration repose sur une borne, uniforme par rapport au volume,
de la production d’entropie du processus en volume fini. Une telle borne
sur l’entropie a deja ete demontre par Fritz dans [6] pour etendre au
volume infini la demonstration de Guo, Papanicolaou et Varadhan sur le
comportement hydrodynamique des systemes de particules en interaction.
Notre approche suit une methode introduite par Yau dans [12].

Mots clés : Systemes de particules, limite hydrodynamique.
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INTRODUCTION

The major problem in the theory of hydrodynamic limit of interacting
particle systems consists in describing the macroscopic time evolution of
a gas from the microscopic interaction between molecules. Consider, for
instance, a gas evolving on a d-dimensional volume V and assume that
all equilibrium states of the system are characterized by a macroscopic
variable p (the density, the temperature, etc.).

If the system is not in equilibrium, due to the interaction between

molecules, we expect the process to be near equilibrium in small

neighborhoods of each macroscopic point u of the volume V. This local
equilibrium will be characterized by a parameter p(u), possibly different
at each point u.
We expect this local equilibrium state to change smoothly in time, that is,

we expect the system, at any time t and around any point u, to be close to a
new equilibrium state characterized by a parameter p(t; u). This parameter

u) should evolve smoothly in time according to a differential equation,
the so-called hydrodynamic equation.

Although physically well understood, this passage from microscopic
dynamics to macroscopic behaviour still presents in the general case

important mathematical problems. The interacting particle systems
introduced by Spitzer constitute a class of stochastic models, complex
enough, on the one hand, to present interesting macroscopic behaviour and
relatively simple, on the other hand, to allow rigorous mathematical proofs.

Until the break through of Guo, Papanicolaou and Varadhan [7], where
the intensive use of large deviation techniques led to a robust proof of the
hydrodynamic behaviour of a large class of finite volume gradient systems
with one conserved quantity, most methods to derive the hydrodynamic
limit relied on specific properties of each model (cf. [8], [3], [4], [5], [9],
[11] ] or [10] for a complete list of references).

Investigating the time evolution of the entropy of the state of the process
with respect to some reference equilibrium measure, Guo, Papanicolaou and
Varadhan proved a weak version of the conservation of local equilibrium
described above: they showed that the density of particles in small

macroscopic neighborhoods of a space point u at time t converges in

probability to the solution of the hydrodynamic equation.
Later, Fritz [6] extended this method to infinite volume Ginzburg-Landau

models proving a bound, uniform in the volume, for the entropy production
of processes in large finite volume. Yau in [12] gave a new proof of this
uniform entropy production bound for Ginzburg-Landau type models.
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In this paper, following Yau’s approach, we prove the hydrodynamic
behaviour of a class of discrete spin systems in infinite volume, the so-called
mean zero asymmetric zero range processes. In section 1 we introduce the

notation and describe the hydrodynamic behaviour of this class of processes
in infinite volume. In section 2 we prove the main result of this article.

We consider mean zero asymmetric zero range processes in large but finite
volume. Here large should be understood as large with respect to N, where
N-1 denotes the distance between particles. We prove that the entropy
production, that is the time derivative of the entropy, is bounded by the

entropy minus the N2 times the Dirichlet form. This inequality provides
a bound, uniform in the volume, of the entropy and of the time integral
of the Dirichlet form. By lower semicontinuity, these estimates extend to
the infinite volume dynamics. This proves the hydrodynamic behaviour of
mean zero asymmetric zero range processes in infinite volume. Details are

given in section 3.

1. NOTATION AND RESULTS

In this section we introduce the notation and state the main theorem

of this article.

The mean zero asymmetric zero range processes can be informally
described as follows. Consider indistinguishable particles moving on the
d-dimensional integers Let g : N 2014~ be a non negative function with

g(0) = 0 and P(x, y) transition probabilities on Suppose that there are
n particles on a site x of These particles, independently from particles
on other sites, wait a mean 1/g(n) - exponential time at the end of which
one of them jumps to y with probability P(x, y).
The state space of the process N1d is denoted by X and the configurations

by greek letters 77 and ç. In this way, for x e lLd, E N represents the
number of particles at site x for the configuration 7/.

The zero-range process informally described above, is the

Markov process on X whose generator acts on functions that depend
only on a finite number of coordinates as

Vol. 33, n° 1-1997.



68 C. LANDIM AND M. MOURRAGUI

Here for configurations q such that r~(x) > 1, is the configuration
obtained from ~ letting a particle jump from x to y:

P(x, y) is a family of transition probabilities on 7~d that we shall assume to
be translation invariant, of finite range and to have mean drift equal to 0:

and

there exists Ao such that p(x) = 0 if Ix > Ao.
The rate jump g : N - R+ vanishes at 0 and is strictly positive on N*:
g(0) = 0, g(k) > 0 for k ~ 1.

For each pair of sites (x, y) we denote by Lx,y the piece of the generator
corresponding to jumps from x to y and by the symmetric part of

Ly,x : 

In this formula, for two sites x and y, Tx,y stands for the operator defined
by (~’x,y.~) (~l ) = 9(~I (x)) ~.~(~Ix’y ) - f (~7)~ ~ Notice that and

that = Ly,~ . We now introduce the invariant measures of the process.
Denote by Z: R~ 2014~ R+ the partition function defined by

It is clear that Z(.) is an increasing function. Denote by cp* the radius of
convergence of Z. We shall assume that the partition function diverges as
cp approaches the boundary of its domain of definition:

For 0  p  cp*, let vip be the product measure on X with marginals
given by:

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Let p(p) be the expected number of particles under the measure ~:

Since we assumed the partition function to diverge at the boundary of
its domain of definition, it is easy to check that the density p is a smooth
increasing bijection from [0, cp*) to R~. Moreover, since has a physical
meaning as the density of particles, instead of parameterizing the above
family of measures by cp, we use the density p as the parameter and we
write :

With this convention, it is easy to check that

We shall assume throughout this article that the jump rate g(.) satisfies
the following two assumptions.
(HI) supk + 1) - g(k) ]  oo.

(H2) For each cp > 0, there exists e(p) > 0 such that

where W (u) = u(log u)2.
Assumption (HI) guarantees the existence of the Markov process on 

with generator L (cf. [ 1 ]). On the other hand, assumption (H2) excludes the
case of independent random walks. It is satisfied by zero range processes
with jump rate g(.) such that Cok/ log k  g(k)  for some

finite positive constant Co  Ci.
We now define the two main ingredients needed in the proof of

hydrodynamic limit of interacting particles systems: the entropy and the
Dirichlet form of a measure on X with respect to some reference measure vP .

Fix once for all an invariant measure For each subset A of denote

by the product measure on with marginals equal to the marginals of
When A is equal to ~-n, ..., n~d for some positive integer n, we shall

denote and simply by Xn and Moreover, for each measure

J-L on X, we denote by J-Ln the marginal of J-L on Xn:

In this article I . I stands for the max norm of For each positive integer
n and each measure A on Xn, we denote by the relative entropy
of A with respect to vp,n :

Vol. 33, n° 1-1997.
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In this formula stands for the space of bounded continuous functions

on Notice that all measures on xn are absolutely continuous with respect
to v p,n since the latter gives a positive probability to each configuration.
Moreover, it is well known that the entropy is equal to:

Denote also by D~(A) the Dirichlet form of A with respect to 

In this formula,  .; >p.~ stands for expectation with respect to the
measure Lx,y for the piece of generator associated to jumps from
site x to site y defined in (1.3) and for the cube of length 2n + 1
centered at the origin:

We are now ready to define the entropy and the Dirichlet form of a
measure  on ~ with respect to Fix once for all 03B8 > 0. For a measure

/-l on ~ define the entropy of /-l with respect to v p by

Similarly, define the Dirichlet form of  with respect to vP by

For a measure  on X, denote by P  = PN  the probability measure
on the path space X) corresponding to the Markov process 7]t with
generator accelerated by N2 and starting from and by expectation
with respect to P~, .
THEOREM 1.1.- Consider a sequence of measures on X associated to

a continuous profile po : R+ in the following sense:

Annales de l’Iristitut Henri Poincaré - Probabilités et Statistiques
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for all continuous function G : with compact support and all 8 > 0.
Assume that has entropy bounded by C0Nd for some finite constant Co :

Then, for all t > 0,

for all continuous function G : f~ with compact support and all 8 > 0.
Here p(t, u) is the unique weak solution of the parabolic equation

We present below two classes of initial measures satisfying assumptions
of Theorem 1.1.

(a) Deterministic initial profiles. - Consider a sequence of configurations
in associated to some profile po : R+ in the sense that

for every continuous function G with compact support. Assume furthermore
that r~~ (x) does not increase, as ~~ I i oo faster than exponentially:

for some finite positive constants Ci, C2 and all x in Z~.

(b) Product initial measures. - Consider a continuous profile Po : 
R+ such that for some finite positive constants
Ci, C2 and all u in IRd. For each N 2: 1, let /-LN be a product measure
on with marginals given by

for all x in 7~d and k in N.
The previous two examples satisfy assumptions of Theorem 1.1 for 03B8

sufficiently large.
We shall prove Theorem 1.1 in two steps. In the next section, we shall

consider zero range processes on large finite volumes. Large means here
volumes of length M for some Af = N. For these finite volume

Vol. 33, n° 1-1997.
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processes, following the approach presented by Yau in [ 12], we shall prove
a bound for the entropy and for the time integral of the Dirichlet form
uniform in the volume. This is the main result of the article. The lower

semicontinuity of the entropy and of the Dirichlet form permits to extend
these bounds to the infinite volume process. This concludes the proof of
Theorem 1.1, for these estimates and an uniqueness result of weak solutions
of (1.7) (proved in [2]) are the unique ingreedients needed to prove the
hydrodynamical behaviour of interacting particle systems.

2. UNIFORM UPPER BOUND ON THE ENTROPY

PRODUCTION FOR PROCESSES IN FINITE VOLUME

We consider in this section zero range processes in large finite volume
and prove a bound on the entropy production, uniform in the volume. We fix
a positive integer M, large with respect to N, and consider the restriction of
the processes on = The generator of this process is given by

where Lx,y is the piece of generator corresponding to jumps from site x
to site y and is defined in (1.3). By extension we define the generator Ln
for 1  n  M. We shall denote by the semigroup of the Markov
process on with generator accelerated by N2.

Fix a density p and recall from section 1 the definition of the product
measure vp,n on xn. Consider a measure M on and denote by M(t) the
state at time t of the process that started from ~: M( t) = For each

1 :S n  M and measure M on denote by ~cn the marginal of M on Xn
and by and the entropy and the Dirichlet form of with

respect to These functionals were defined in full detail in section 1.

Moreover, we shall denote by /-In (t) the marginal of /-l( t) on Xn.
Let continuous positive function with support

contained in [0, (M - N) /N] . For a measure , on define, respectively,
the entropy T~(~) ~ and the Dirichlet form D(~c) = by

Annales de l’Institut Henri Poincare - Probabilités et Statistiques
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We are now ready to state the main result of this article.

THEOREM 2.1. - There exists positive and finite constants Kl, K2 and K3
that depend only on + 1 ) /N) - and p such that

for all probability  on XM,

Proof - To keep notation simple and to detach the main arguments,
we shall prove this theorem for nearest neighbour symmetric zero range
processes in dimension 1. We indicate at the end of this section the

modifications required to extend the proof to mean zero asymmetric zero
range processes in higher dimensions.

Fix a measure  on and an integer 1  n  M - N. Denote by f n (t)
the density of J-tn(t) with respect to A simple computation shows that
in the nearest neighbour case,

Here Ln denotes the adjoint operator of Ln in In the symmetric
case Ln is self-adjoint and L*n = Ln. Moreover, for subsets 03A9 C A of

and a function g in (g)n indicates that we are integrating
g over the coordinates {~(~ x E with respect to When

S2 = An, we shall denote this expectation simply by 
Notice that fn(t) == because vp is a product measure.
From the explicit formula for the relative entropy given in (1.6), from

identity (2.1 ) and since is an invariant state we have that

v

We shall decompose the generator as the sum of two terms, the

first one corresponding to jumps in the "interior" of An+i and the second
to jumps at the boundary: Ln+i = Ln + + To keep
notation simple we shall denote the second part by (aL).,~+~ . With this
notation, we may write the time derivative of the entropy Hn(t) as

Since time t is fixed, we shall omit from now on the time dependence of
the density fn(t). The first term, after, by now, standard manipulations, is
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shown to be bounded above by while the second, after a

change of variables, can be rewritten as the sum of two similar terms. The
first one, which correspond to jumps over the bond + 1}, is equal to

The second term, which corresponds to jumps at the left boundary
{2014~ 2014 1, - n ~ , is handled in the same way as the one above. Here, for an
integer x, 8x is the configuration with no particles but one at site x and
addition of two configurations is taken coordinate by coordinate.

Recall that f n = and, more generally, that fn =

~.~m ~ ~n+1,...,m.~ for all n + 1  m  M. We may thus rewrite the last

line as 

~’

Since for positive reals a, band c we have that (c - b) (log b - log a) is
negative unless c~  b  c~, we may introduce in the last
integral the indicator function of the set E~t defined by

By the elementary inequality 203B103B2 ~ A-103B12 + and since (c - b) _
(~/c 2014 + we have that for every positive A,

In particular the last integral is bounded above by

Annales de l’hastitut Henri Poincaré - Probabilités et Statistiques
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The first line of this expression is bounded above by a piece of the
Dirichlet form. Indeed, it is equal to

which, by Schwarz inequality, is bounded above by

We estimate now to the second term of formula (2.3). We consider first
the case where + In this case, on the set En,
we have +  ~ fn+1(r~ + In particular, in
this region the second term in equation (2.3) is bounded above by

For sufficiently large b, the function Vb defined by 
b log u is convex. With this notation we can rewrite the last integral as

The elementary inequality

for positives a and b permits to bound the second term of last formula by

Vol. 33, n° 1-1997.
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We consider now the case + bn+1 )~n+1  f n (~7) and call
Fn set of configurations satisfying this inequality. On the set En n Fn, we
have   fn (~). From inequality (2.4),
on the set En n Fn we obtain that the second term in formula (2.3) is

bounded by

Adding the previous estimates and taking b larger than 4, we obtain that
the second term in formula (2.3) is bounded above by

where Wb (u) is the function defined by Wb (u) = + b(u - 1). From
now on we shall consider b as a fixed constant larger than 4 and so that
vb ( - ) is a convex function. Performing the change of variables ~ = q + bn~ 1,
we obtain that (~+1(~+~+1)}~ is equal to + 

where g03C6 is the function defined by = Since Wb is a

convex function and is a probability density with respect to
by Jensen’s inequality, last expression is bounded above by

Applying Lemma 2.2 below, we estimate this expression by

By Assumption (H2), the first term is finite for "I smaller than some

"10 = ~y(~). Therefore, recollecting all previous estimates, we proved that
the time derivative of the entropy on the box An is bounded above by a
function of the entropy and of the Dirichlet form:

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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To conclude the proof of the Theorem we just have to multiply both
sides of this inequality by R(n/N), sum over 1  n  M - N and choose

A large enough. Notice that by summation by parts the factor N at the
second line disappears. D

LEMMA 2.2. - Fix n > 1 and some function h: (~ -~ ~. There exists an
universal constant C such that for every ~y > 0,

Proof. - This result is a trivial consequence of the entropy inequality.
We may rewrite the integral in the left hand side of the statement as

Notice that considered as a function of the variables ~r~(x), x E
An+l - is a density with respect to In particular, by the
entropy inequality,

for every positive ~y because vp,n is a product measure. In this formula
stands for the entropy, with respect to the measure 

of the density /~+i(?7)//~(?7) considered as a function of the variables
~r~(x), x E only:

To conclude the proof of the lemma it remains to recall the definition of
f n and to observe that

Vol. 33, n° 1-1997.
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We conclude this section indicating the elements needed to extend the
proof of Theorem (2.1 ) to mean zero asymmetric zero range processes in
Zd. We start with symmetric processes evolving on 7~~.

Extension to Z~

The proof in dimension d is essentially the same, with only notational
differences. To fix ideas, we consider again the symmetric nearest neighbour
case. In this context, when computing the time derivative of the entropy,
instead of (2.2), we get the following formula for the boundary term:

The same arguments presented in the one dimensional case lead to the
following upper bound for the expression that corresponds to the first term
in formula (2.3):

provided Dn stands for the restriction of the Dirichlet form to the cube An :

With the very same arguments presented in the proof of Theorem 2.1, the
expression that corresponds to the second term in formula (2.3) is shown
to be bounded above by

In this formula, summation is carried over all sites y in 11n that are at

distance 1 from An. By the entropy inequality applied to the function

Ly Wb (r~(g~ ) ~ and Lemma 2.2, this expression is bounded above by

This estimate together with the arguments presented at the end of the proof
of Theorem 2.1 concludes the argument for symmetric processes in any
dimension. D
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Extension to the mean zero asymmetric case

We consider now the extension of the proof of Theorem 2.1 to mean

zero asymmetric processes. To fix ideas, we shall consider the simplest
one dimensional example of mean zero asymmetric zero range evolution:
the process with generator L defined by ( 1.1 ) with transition probability
P (x, y) given by

For each site x, denote by L~ the piece of the generator associated to
jumps around x:

In this formula, for two sites x and y, is the operator defined by
= For a positive integer n, denote by

Ln the generator L restricted to the cube A~ and by (9L)~~i the boundary
generator:

The main step in the proof of Theorem 2.1 consists in estimating the
expression 

In our context, after a change of variables, this integral writes as the sum
of two terms. The first one, corresponding to jumps over the right boundary
of An is equal to a constant (cp(p)N2) that multiplies

The second term, corresponding to jumps over the left boundary is similar
and is estimated in the same way. Notice that the sum of all logarithms in
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last formula vanishes. We may therefore rewrite this expression as

The second term is exactly equal to the expression (2.2) obtained in the
proof of Theorem 2.1 in the case of reversible dynamics. On the other
hand, the first term is negative unless

We have therefore to consider two cases. We start estimating formula (2.7)
on the set + bn )  + 8n-l) :S f n ( ~l ) . Denote the set of

configurations satisfying these inequalities by En . Assume first that

+ + 8n) and denote this set by In this case
we may bound the first expression in (2.7) by

This expression can be estimated exactely in the same way we estimated
expression (2.2).

Suppose now that + bn )  + and denote by Fn
the set of configurations satisfying this inequality. On En n the second
term in formula (2.7) is negative and bounded above by

Adding one half of this expression to the first integral in formula (2.7)
restricted to the set En n Fn we obtain

Again, we may estimate this expression exactely in the same way we
bounded (2.2).
The same type of argument goes through in the case where 

+ 8n-l) :S + 8n). This concludes the proof of Theorem 2.1
in this simple example of mean zero asymmetric process. We leave the
general case to the reader. D

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



81HYDRODYNAMIC LIMIT OF MEAN ZERO ASYMMETRIC

3. PROOF OF THEOREM 1.1

In view of [7], in order to prove the hydrodynamical behaviour of the
infinite system, it is sufficient to obtain a bound on the entropy and on
the time integral of the Dirichlet form. More precisely, fix a sequence 
satisfying assumptions of Theorem 1.1. Denote by St = ,S’t the semigroup
of the Markov process with generator L defined by ( 1.1 ) accelerated by N2 .
We claim that for each t > 0, there exists a constant C = C(Co, t) such that

It is by now well known that this estimate and an uniqueness result of
weak solutions of equation (1.7) imply the hydrodynamical behaviour of
the interacting particle system stated in Theorem 1.1.
To prove inequality (3 .1 ), fix a positive integer M > N2 and define the

following finite volume approximation of the transition probability:

Notice that for this new dynamic, particles outside AM do not move and
particles inside AM jump as in the original infinite volume process with
the restriction that jumps off AM are suppressed. Denote by the

semigroup associated to the generator L defined in (1.1) accelerated by N2
and with transition probabilities P1’vl instead of P.

Define the positive continuous function R = R+ in
the following way. For each positive integer n ~ M - N - 1, let

R(n/N) = e~~"16’~. Set R(n/N) = 0 if n > M - N and interpolate
linearly. Notice that R satisfy the assumptions of Theorem 2.1 and that there
exists a constant Ci = C1 (B) such that NIR( (n + 1)/N) - R(n /N)  Ci
because M > By Theorem 2.1 and Gronwal inequality for each t > 0,

for some constant C = C(Co, t). 
’ ’

For M - N  M, by convexity of the entropy and of the Dirichlet
form, and are respectively bounded above
by and 

~ ~On the other hand, since for the process with semigroup S~ ’ , particles
on sites outside AM do not move, for n ~ M, decreases in
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time. Moreover, the usual computation of the entropy production shows that

This previous remark together with (3.2) and (3.3) proves that for each
t > 0, there exists a constant C = C(Co, t) such that

It remains to let M r oo to obtain (3.1 ) by the lower semicontinuity of the
entropy and of the Dirichlet form.
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