
ANNALES DE L’I. H. P., SECTION B

FREDDY DELBAEN

WALTER SCHACHERMAYER
The Banach space of workable contingent
claims in arbitrage theory
Annales de l’I. H. P., section B, tome 33, no 1 (1997), p. 113-144
<http://www.numdam.org/item?id=AIHPB_1997__33_1_113_0>

© Gauthier-Villars, 1997, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section B »
(http://www.elsevier.com/locate/anihpb) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPB_1997__33_1_113_0
http://www.elsevier.com/locate/anihpb
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


113

The Banach space of workable

contingent claims in arbitrage theory

Freddy DELBAEN

Walter SCHACHERMAYER

Departement fur Mathematik, Eidgenossische Technische Hochschule Zurich

Institut fur Statistik, Universitat Wien

Ann. Inst. Henri Poincaré,

Vol. 33, n° 1, 1997, p. .144 Probabilités et Statistiques

ABSTRACT. - For a locally bounded local martingale S, we investigate
the vector space generated by the convex cone of maximal admissible
contingent claims. By a maximal contingent claim we mean a random
variable (H . obtained as a final result of applying the admissible
trading strategy H to a price process S and which is optimal in the sense
that it cannot be dominated by another admissible trading strategy. We
show that there is a natural, measure-independent, norm on this space and
we give applications in Mathematical Finance.

RESUME. - Si S est une martingale locale, localement bornee, on etudie
l’espace vectoriel engendre par Ie cone des actifs contingents maximaux.
Une variable aleatoire est un actif contingent maximal si elle peut s’ écrire
sous la forme (H . où la stratégie H est admissible et optimale dans
le sens qu’ elle n’ est pas dominee par une autre stratégie admissible. Sur
cet espace, on introduit une norme naturelle, invariante par changement de
mesure, et on donne des applications en finance mathematique.
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114 F. DELBAEN AND W. SCHACHERMAYER

1. INTRODUCTION

A basic problem in Mathematical Finance is to see under what conditions
the price of an asset, e.g. an option, is given by the expectation with respect
to a so-called risk neutral measure. The existence of such a measure follows

from no-arbitrage properties on the price process S of given assets, see [9],
[10], [12] for the first papers on the topic and see [2] for a general form
of this theory and for references to earlier papers.

Investment strategies H are described by S-integrable predictable
processes and the outcome of the strategy is described by the value at

infinity (H . 3) oc’ In order to avoid doubling strategies one has to introduce
lower bounds on the losses incurred by the economic agent. Mathematically
this is translated by the property that H . S is bounded below by some
constant. In this case we say that H is admissible, see [10]. It turns out

that for some admissible strategies H the contingent claim (H . is

not optimal in the sense that it is dominated by the outcome of another
admissible strategy K. In this case there is no reason for the economic agent
to follow the strategy H since at the end she can do better by following
K. Let us say that H is maximal if the contingent claim (H . S)~ cannot
be dominated by another outcome of an admissible strategy K in the sense
that (H. 3)00 :S (K. 3)00 a.s. but 3)00  (K . 3)00] > 0.

In [2] and [4], we have used such maximal contingent claims in order
to show that under the condition of No Free Lunch with Vanishing Risk,
a locally bounded semi-martingale S admits an equivalent local martingale
measure. In [4] we encountered a close relation between the existence of
a martingale measure (not just a local martingale measure) for the process
H . S and the maximality of the contingent claim (H . 3)000 These results
generalised results previously obtained by Ansel-Stricker, [1] ] and Jacka,
[Jk]. We related this connection to a characterisation of good numeraires
and to the hedging problem.

In this paper we show that the set of maximal contingent claims forms
a convex cone in the space L° ( SZ, X, IP) of measurable functions and that
the vector space generated by this cone can be characterised as the set of
contingent claims of what we might call workable strategies. The vector

space of these contingent claims, will be denoted by 9. It carries a natural
norm for which it becomes a Banach space. These properties solve some
arbitrage problems when constructing multi-currency models. We refer to a
paper of the first named author with Shirakawa on this subject, [6].
The paper is organised as follows. The rest of this introduction is devoted

to the basic notations and assumptions. Section 2 deals with the concept

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



115THE BANACH SPACE OF WORKABLE CONTINGENT

of acceptable contingent claims and it is shown that the set of maximal

admissible contingent claims forms a convex cone. In section 3 we introduce
the vector space spanned by the maximal admissible contingent claims
and we show that there is a natural norm on it. The norm can also be

interpreted as the maximal price that one is willing to pay for the absolute
value of the contingent claim. Section 4 gives some results that are related
to the geometry of the Banach space ~. In the complete market case
it is an Ll-space, but we also give an example showing that it can be

isomorphic to an L°°-space. The precise interpretation of these properties
in mathematical finance remains a challenging task. In section 5 we show
that for a given maximal admissible contingent claim 1, the set of equivalent
local martingale measures Q such that EQ [1] = 0 forms a dense subset in
the set of all absolutely continuous local martingale measures. That not all
equivalent local martingale measures Q satisfy the equality EQ [1] ] = 0, is
illustrated by a counter-example. The main theorem in section 6 states that
in a certain way the space of workable contingent claims is invariant for
numeraire changes. In section 7 we use finitely additive measures in order
to describe the closure of the space of bounded workable contingent claims.

Part of the results were obtained when the first named author was visiting
the University of Tsukuba in January 94 and when the second author was
visiting the University of Tokyo in January 95. Discussions with Professor
Kusuoka and Professor Shirakawa are gratefully acknowledged.
The setup in this paper is the usual setup in mathematical finance. A

probability space (H, F, P) with a filtration is given. The time set is
supposed to be the other cases, e.g. finite time interval or discrete time

set, can easily be imbedded in our more general approach. The filtration
is assumed to satisfy the "usual conditions", i. e. it is right continuous and
Fo contains all null sets of F.

A price process S, describing the evolution of the discounted price
of d assets, is defined on R+  03A9 and takes values in IRd. We assume
that the process S is locally bounded, e.g. continuous. As shown under
a wide range of hypothesis, the assumption that S is a semi-martingale
follows from arbitrage considerations, see [2] and references given there.
We will therefore assume that the process S is a locally bounded semi-
martingale. In order to avoid cumbersome notation and definitions, we will
always suppose that measures are absolutely continuous with respect to P.
Stochastic integration is used to describe outcomes of investment strategies.
When dealing with more dimensional processes it is understood that vector
stochastic integration is used. We refer to Protter [13] ] and Jacod [11] ] for
details on these matters.

Vol. 33, n° 1-1997.



116 F. DELBAEN AND W. SCHACHERMAYER

DEFINITION 1.1. - An Rd-valued predictable process H is called a-

admissible if it is S - inte grable, if Ho = 0, if the stochastic integral satisfies
H . S > -a and if (H . S)~ = S)t exists a.s. A predictable
process H is called admissible if it is a-admissible for some a.

Remark. - We explicitly required that Ho = 0 in order to avoid the
contribution of the integral at zero.
The following notations will be used:

The basic theorem in Delbaen-Schachermayer [2] uses the concept of No
Free Lunch with Vanishing Risk, NFLVR for short. This is a rather

weak hypothesis of no-arbitrage type and it is stated in terms of L°°-

convergence. The NFLVR property is therefore independent of the choice
of the underlying probability measure, i. e. it does not change if we replace
P by an equivalent probability measure Q. Only the class of negligible
sets comes into play. We also recall the definition of the property of

No-Arbitrage, NA for short.

DEFINITION 1.2. - The locally bounded semi-martingale S satisfies the
No-Arbitrage or NA property if

DEFINITION 1.3. - We say that the locally bounded semi-martingale S
satisfies the No Free Lunch with Vanishing Risk or NFLVR property if

where the bar denotes the closure in the supnorm topology of L°°.
The fundamental theorem of asset pricing, as in [2], can now be

formulated as follows:

THEOREM 1.4. - The locally bounded semi-martingale S satisfies the

NFLVR property if and only if there is an equivalent probability measure
Q such that S is a Q-local martingale. In this case the set C is already
weak* (i.e. closed in L°°.

Remark. - If Q is an equivalent local martingale measure for S and if the
integrand or strategy H satisfies H . S > - a, i. e. H is a-admissible, then

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



117THE BANACH SPACE OF WORKABLE CONTINGENT

by a result of Emery, [8] and Ansel-Stricker [ 1 ], the process H . S is still
a local martingale and hence, being bounded below, is a super-martingale.
It follows that the limit (H . S)~ exists a.s. and that S)~]  0.

We also need the following equivalent reformulations of the property of
No Free Lunch with Vanishing Risk, see [2] for more details.

THEOREM 1.5. - The locally bounded semi-martingale S satisfies the No
Free Lunch with Vanishing Risk Property or NFLVR if for any sequence
of S-integrable strategies such that each Hn is a 03B4n-admissible
strategy and where bn tends to zero, we have that (H . S)~ tends to zero
in probability IP.

THEOREM 1.6. - The locally bounded semi-martingale S satisfies the
property NFLVR if and only if

( 1 ) it satisfies the property (NA)
(2) J’C1 is bounded in L°, for the topology of convergence in measure.

THEOREM 1.7. - The locally bounded semi-martingale S satisfies the
property NFLVR if and only if

( 1 ) it satisfies the property (NA)
(2) There is a strictly positive local martingale L, Lo = 1, such that at

infinity > 0, IP a. s. and such that LS is a local martingale.
We suppose from now on that the process S is a fixed d-dimensional

locally bounded semi-martingale and that it satisfies the property NFLVR.
The set of local martingale measures is therefore, according to the previous
theorems not empty. In section 7, we will also make use of finitely
additive measures. So we let ba(SZ, X, IP) be the Banach space of all

finitely additive measures that are absolutely continuous with respect to IP,
i. e. ba( SZ, X, IP) is the dual of L°° ( S2, X, We will use Roman letters

IP, Q, QO, ... for a-additive measures and Greek letters for elements of
ba which are not necessarily a-additive. We say that a finitely additive
measure p is absolutely continuous with respect to the probability measure
IP = 0 implies = 0 for any set A E X.

Let us put:

Vol. 33, n° 1-1997.



118 F. DELBAEN AND W. SCHACHERMAYER

We identify, as usual, absolutely continuous measures with their Radon-
Nikodym derivatives. It is clear that, under the hypothesis NFLVR, the
set is dense in M(P) for the norm of This density
together with Fatou’s lemma imply that for random variables g that are
bounded below we have the equality

We will use this equality freely.
As shown in [2], Remark 5.10, the set Me is weak* -dense, i.e. for the

topology a(ba, L°°), in the set Mba.
The first two sets are sets of a-additive measures, the third set is a set of

finitely additive measures. Clearly Me C M C Mba and since S is locally
bounded the set M is closed in Ll (Q, X, P). If needed we will add the
process S in parenthesis, e.g. Me (S), to make clear that we are dealing
with a set of local martingale measures for the process S.

2. MAXIMAL ADMISSIBLE CONTINGENT CLAIMS

We now give the definition of a maximal admissible contingent claim
and its relation to the existence of an equivalent martingale measure. As
mentioned above we always suppose that S is a d-dimensional locally
bounded semi-martingale that satisfies the NFLVR-property.

DEFINITION 2.1. - If U is a non-empty subset of L°, then we say that a
contingent claim f E Ll is maximal in U, if the properties g > f a.s. and
g E U imply that g = f a. s.

The NA property can be rephrased as the property that 0 is maximal
in /C. It is clear that if S satisfies the No-Arbitrage property, then the fact
that f is maximal in Ka already implies that f is maximal in K. Indeed
if g = (H . E K and g > f a.s., then g > -a. From lemma 3.5 [2]
it then follows that g is a-admissible and hence the maximality of f in
Ka implies that g = f a.s.

DEFINITION 2.2. - A maximal admissible contingent claim is a maximal
element of ~’C. The set of maximal admissible contingent claims is denoted
by Kmax. The set of maximal a-admissible contingent claims is denoted by
Ymaxa .
The proof of the theorem 1.4 uses the following intermediate results,

[2] section 4:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



119THE BANACH SPACE OF WORKABLE CONTINGENT

THEOREM 2.3. - If S is a locally bounded semi-martingale and if 
is a sequence in Kb then

( 1 ) there is a sequence of convex combinations gn E conv ( f n , ...)
such that gn tends in probability to a function g, taking finite values a.s.,

(2) there is a maximal contingent claim h in Kl such that h > g a.s.

COROLLARY 2.4. - Under the hypothesis of theorem 2.3, maximal

contingent claims of the closure L0-closure 03BA1 of 1C1, are already in J’C1. By
L0-closure we mean the closure with respect to convergence in measure.

Using a change of numéraire technique, the following result was proved
in [4]. We refer also to Ansel-Stricker, [1] ] and Jacka, [Jk] for an earlier

proof of the equivalence of (2) and (3).

THEOREM 2.5. - If S is a locally bounded semi-martingale that satisfies
the NFLVR property then for a contingent claim f E J’C the following
are equivalent

( 1 ) f is maximal admissible,
’ 

(2) there is an equivalent local martingale measure Q E Me such that
EQ [f] = 0,

(3) if f = (H . for some admissible strategy H, then H . S is a
uniformly integrable martingale for some Q E Me.

COROLLARY 2.6. - Suppose that the hypothesis of theorem 2.5 is valid. If
f is maximal admissible and f = (H . S)CX) for some admissible strategy
H, then for every stopping time T, the contingent claim (H . S)T is also
maximal.

Proof - If f is maximal and f = (H . where H is a-admissible,
then there is Q E Me such that EQ [ f = 0, i.e. EQ [(H . = 0. Because

H is admissible, the process H . S is, see [ 1 ], a ~-local martingale and
hence a Q-supermartingale. Because EQ[(H. == 0, we necessarily
have that H . S is a Q-uniformly integrable martingale. It follows that

EQ[(H. S)T] = 0 and consequently (H . S)T is maximal.
Q.E.D.

Remark. - The corollary also shows that if f = (H . is maximal

admissible, then the strategy that produces f is uniquely determined in
the sense that any other admissible strategy K that produces f necessarily
satisfies H . S = K . S. The following definition therefore make sense

DEFINITION 2.7. - If H is an admissible strategy such that f = (H . 
is a maximal admisible contingent claim, then we say that H is a maximal
admissible strategy.

Vol. 33, n° 1-1997.



120 F. DELBAEN AND W. SCHACHERMAYER

DEFINITION 2.8. - We say that a strategy K is acceptable if there is

a positive number a and a maximal admissible strategy L such that

(K . S) > - (a + (L . S».
Remark. - If we take a big enough, the process V = a + L . S stays

bounded away from zero and can be used as a new numeraire. Under this

new currecy unit, the process K . S, where K is acceptable, has to be
replaced by the process ~s . The latter process is a stochastic integral with
respect to the process ( ~ , -~), more precisely, see [4] for the details of this
calculation, i;s = ( K, ( K ~ S) - - A~_). (-f:-, -t) == K’ . ( ~ , -t) remains
bigger than a constant, i.e. the strategy ~ = (~(~’5’)- -~5’-) is

admissible. Another way of saying that K is acceptable, is to say that K’ is
admissible in a new numeraire. In [4] we proved that the only numeraires
that do not destroy the no arbitrage properties are the numeraires given by
maximal strategies. The definition of acceptable strategies is therefore very
natural. The outcomes of acceptable strategies are the numeraire invariant
version of the outcomes of admissible strategies.

LEMMA 2.9. - If S is a locally bounded semi-martingale that satisfies the
NFLVR property and if K is acceptable then limt~~ (K . S)t exists a.s.

Proof. - Suppose that K . S > - (a + L . S) where L is admissible and
maximal. Clearly we have that K + L is a-admissible and hence by the
results of [2] the exists a.s. Because the t

exists a.s., we necessarily have that S)t also exists a.s.
Q.E.D.

The set of outcomes of acceptable strategies, which is a convex cone

in L°, is denoted by

We now prove some elementary properties of acceptable contingent
claims. Most of these properties are generalisations of no arbitrage concepts
for admissible contingent claims.

PROPOSITION 2.10. - Suppose that S is a locally bounded semi-martingale
that satisfies the NFLVR property. If K is acceptable and if (K . S)oo  0,
then (K . S)oo == 0.

Proof - Suppose that K . S > - (a + L . S) where L is admissible and
maximal. Clearly we have that K + L is a-admissible. But at infinity we
have that ( ( K + L) . S ) ~ > (L - 5")oo and by maximality of L we obtain the
equality ((~+L)-~)oo = which is equivalent to 0 a.s.

Q.E.D.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



121THE BANACH SPACE OF WORKABLE CONTINGENT

In the same way we prove the subsequent result.

PROPOSITION 2.1 l. - Suppose that S is a locally bounded semi-martingale
that satisfies the NFLVR property. If K is acceptable and (I~ ~ ,5’)~ > -c
for some positive real constant c, then the strategy K is already c-admissible.

Proof - Take ~ > 0 and let

We then define

By assumption we have that on {T1  the strategy produces
an outcome (K . S)T2 - (K . S)T2 > E. This strategy is easily seen to be
acceptable. Indeed

for some real number a and some maximal strategy H. By the previous
lemma we necessarily have that the contingent claim is zero a.s. and hence
Tl = oo a.s.

Q.E.D.

We now turn again to the analysis of maximal admissible contingent
claims.

THEOREM 2.12. - If S is a locally bounded semi-martingale that satisfies
the NFLVR property, if f and g are maximal admissible contingent claims,
then f + g is also a maximal contingent claim. It follows that the set 03BAmax
of maximal contingent claims is a convex cone.

Proof - Let f = 8)00 and g = (J~~ . 6~)~. where Hl and H2
are maximal strategies and are respectively ai and a2 admissible. Suppose
that K is a k-admissible strategy such that (K . 8)00 2: f + g. From the
inequalities (K - ~f~) . ~ = I~ ~ S - H2 ~ S > -k - H2 . 5’, it follows
that K - H2 is acceptable. Since also ((K - ~f~) . S)~ > f > the

proposition 2.11 shows that K - H2 is ai-admissible. Because f was
maximal we have that ( ( K - H 2 ) ~ S) = f and hence we have that
(j~ ’ S) = f + g. This shows that f + g is maximal. Since the set Kmax
is clearly closed under multiplication with positive scalars, it follows that

it is a convex cone.

Q.E.D.

Vol. 33, n° 1-1997.



122 F. DELBAEN AND W. SCHACHERMAYER

COROLLARY 2.13. - If S is a locally bounded semi-martingale that satisfies
the NFLV R property and is a finite sequence of contingent
claims in lC such that for each n there is an equivalent risk neutral measure
Qn E Me with EQn[fn] = 0, then there is an equivalent risk neutral measure
Q E Me such that EQ[fn] = 0 for each n  N.

Proof. - This is a rephrasing of the theorem since by theorem 2.5,
the condition on the existence of an equivalent risk neutral measure is

equivalent with the maximality property.
Q.E.D.

The previous theorem will be generalised to sequences (see corollary 2.16
below). We first prove the following

PROPOSITION 2.14. - Suppose that S is a locally bounded semi-martingale
that satisfies the NFLVR property. If ( f n )n> 1 is a sequence in 

such that

( 1 ) The sequence f n -~ f in probability
(2) for all n we have f - f n > - b~, where bn is a sequence of strictly

positive numbers tending to zero,

then f is in too, i.e. it is maximal admissible.

Proof - If g is a maximal contingent claim such that g > f, then we
have g - f n > - bn . Since each f n is maximal we find that g - f n is

acceptable and hence 03B4n-admissible by proposition 2.11. Since 03B4n tends to
zero, we find that the NFLV R property implies that g - f .n, tends to zero
in probabilty. This means that g = f and hence f is maximal.

Q.E.D.

COROLLARY 2.15. - If S is a locally bounded semi-martingale that satisfies
the NFLV R property, if ( an ) n > 1 is a sequence of strictly positive real
numbers such that

if for each n, Hn is an an-admissible maximal strategy, then we have that
the series

converges in probability to a maximal contingent claim.
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Proof. -Let hn = (Hn S) ~, the partial sums f N = ~ 1 hn are outcomes
of ~~ an-admissible strategies. For an arbitrary element Q E M~ we have
that

It follows that the series of positive functions + an) converges in
LI(Q) and hence the series ~ ~ hn also converges in LI(Q). The series
f = ~~ ~ = lim f n therefore also converges to a contingent claim f
in P. From the proposition 2.14, we now deduce that f is maximal.

Q.E.D.

COROLLARY 2.16. - If ,S‘ is a locally bounded semi-martingale that satisfies
the NFLVR property, if ( f n )n> 1 is a sequence of contingent claims in lC
such that for each n there is an equivalent risk neutral measure ~n E Me
with [fn] = 0, then there is an equivalent risk neutral measure ~ ~ Me
such that EQ[fn] each n > 1.

Proof. - We may without loss of generality suppose that f n is the result of
an an-admissible and maximal strategy where the series ~~ an converges.
If not we replace f n by a suitable multiple with An strictly positive
and small enough. The corollary 2.15 then shows that the sum f = ~~ fn
is still maximal and hence there is an element Q E Me such that = 0.
As observed in the proof of the theorem, we have that the series ~~ fn
converges to f in LI (Q). For each n we already have that  0.
From this it follows that for each n we need to have EQ[fn] = 0.

Q.E.D.

COROLLARY 2.17. - If ,S’ is a locally bounded semi-martingale that satisfies
the NFLVR property, if ( f n ) n > 1 is a sequence of 1-admissible maximal
contingent claims, if f is a random variable such that for each element
Q E MP we have fn --~ f in LI(Q), then f is a 1-admissible maximal
contingent claim.

Proof - From theorem 2.3 we deduce the existence of a maximal

contingent claim g such that g ~ f. From the previous corollary we deduce
the existence of an element Q E Me such that for all n we have = 0.
It is straightforward to see that = 0 and that EQ[g]  0. This can

only be true if f = g, i. e. if f is 1-admissible and maximal.
Q.E.D.

We now extend the "No Free Lunch with Vanishing Risk"-property
which was phrased in terms of admissible strategies, to the framework of
acceptable strategies. As always it is assumed that S is locally bounded
and satisfies NFLVR.

Vol. 33, n° 1-1997.



124 F. DELBAEN AND W. SCHACHERMAYER

THEOREM 2.18. - Suppose that ,S’ is a locally bounded semi-martingale
that satisfies the NFLVR property. Let 8)00 be a sequence
of outcomes of acceptable strategies such that S > -an - S,
with Hn maximal and an-admissible. If limn~~ an = 0, then lim fn = 0
in probability ~°.

Proof. - The strategies Hn + Ln are an-admissible and by the NFLV R
property of S we therefore have that ( ( Hn ~ Ln ) ~ S ) ~ tends to zero
in probability P>. Because each Hn-admissible and an = 0 the
NFLVR property of S implies that (Hn ~ 8)00 tends to zero in probability
P. It follows that also 8) 00 tends to zero in probability P>.

Q.E.D.

3. THE BANACH SPACE GENERATED
BY MAXIMAL CONTINGENT CLAIMS

In this section we show that the subspace G of La, generated by the convex
cone of maximal admissible contingent claims can be endowed with
a natural norm. We start with a definition.

DEFINITION 3.1. - A predictable process H is called workable if both H
and - H are acceptable.

PROPOSITION 3.2. - Suppose that ,S’ is a locally bounded semi-martingale
that satisfies the NFLVR property. The vector space ~, or if there is danger
of confusion and the price process ,S’ is important G(S), generated by the
cone of maximal admissible contingent claims, satisfies

Proof - The first statement is a trivial exercise in linear algebra. If H is
workable then there are a real number a and maximal strategies L1 and L2
such that -a - LI . 8  H . S  a + L2 ~ S. Take now Q E Me such that
both Sand L2 ~ S are Q-uniformly integrable martingales. The strategy
H + L~ is a-admissible and satisfies (H + L~) . S  a + {Ll + L2) . S.
It follows that (H + Ll) ~ S is a Q-uniformly integrable martingale, i.e.

(H + is a maximal strategy. Since H = ( H + L 1 ) - L~ we obtain
that (H . S)oo E (Kmax - If conversely H = H2, where both
terms are maximal, then we have to show that H is workable. This is quite
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obvious, indeed if H1 is a-admissible we have that H . S > -a - H2 ~ S.
A similar reasoning applies to -H.

Q.E.D.

PROPOSITION 3.3. - Suppose that ,S’ is a locally bounded semi-martingale
that satisfies the NFLVR property. If H is workable then there is an

element Q E Me such that the process H . S is a Q-uniformly integrable
martingale. Hence for every stopping time T, the random variable (H . ,S’)T
is in ~. The process H . ,S’ is uniquely determined by (H . 8)00’

Proof. - If H is workable then there are maximal admissible strategies
K and K’ such that H = K - K’. From theorem 2.5 and corollary 2.12
it follows that there is an equivalent local martingale measure Q E Me
such that both K . S and K’ . S are Q-uniformly integrable martingales.
The rest is obvious.

Q.E.D.

PROPOSITION 3.4. - Suppose that ,S’ is a locally bounded semi-martingale
that satisfies the NFLVR property. If g ~ G satisfies ~g-~~  then

g E 

Proof. - Put L = (H1 - H2 ), where Hl and H2 are both maximal, and
so that g = (L ~ 8)00’ Since L is acceptable and (L ~ we

find by proposition 2.11 that L is admissible. For a well chosen element
Q E Me, the process L . S is a uniformly integrable martingale and hence
L is maximal.

Q.E.D.

COROLLARY 3.5. - Suppose that ,S’ is a locally bounded semi-martingale
that satisfies the NFLVR property. If V and Ware maximal admissible
strategies, if((V - W) . 8)00 is uniformly bounded from below, then V - W
is admissible and maximal.

COROLLARY 3.6. - Suppose that ,S’ is a locally bounded semi-martingale
that satisfies the NFLVR property. Bounded contingent claims in G are
characterised as

Remark. - The vector space ~°° should not be mixed up with the cone
~’C n L°° . As shown in [2] and [5], the contingent claim -1 can be in /C
but by the No Arbitrage property, the contingent claim +1 cannot be in
K. The vector space ~°° was used in the study of the convex set M(S),
see [2], [1] ] and [Jk].
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NOTATION. - We define the following norm on the space ~:

The norm on the space 0 is quite natural and is suggested by its definition.
It is easy to verify that ~ ~ ~ ~ ~ is indeed a norm. We will investigate the
relation of this norm to other norms, e.g. L°~ and Ll norms.

PROPOSITION 3.7. - Suppose that S is a locally bounded semi-martingale
that satisfies the NFLVR property. If g = (H. S)~ where H is workable
then for every stopping time T, gT = (H . S)T ~ G and ~gT~ ~ ~g~.

Proof. - Follows immediately from the definition and the proof of
corollary 2.6 above.

Q.E.D.

PROPOSITION 3.8. - Suppose that S is a locally bounded semi-lnartingale
that satisfies the NFLVR property. If g E ~°° then as shown above
9 E 03BA~g-~~ aud -g E 

The following lemma is an easy exercise in integration theory and

immediately gives the relation with the L 1 norm.

PROPOSITION 3.9. - If f E Ll .~’, Q) for some probability measure Q,
if [ f] = 0, if f = g - h, where both [g]  0 and [h]  0, then

Proof - The first line is obvious and shows that the obvious

decomposition f = (/+ - E ~ f +~ ) - ( f - - E[/-]) is best possible. So
let us concentrate on the last line. If f = g - h then we have the following
inequalities:

These inequalities together with  0 and Eq[~]  0, imply that
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It is now easy to see that

Q.E.D.

COROLLARY 3.10. - Suppose that S is a locally bounded semi-martingale
that satisfies the NFLVR property. If g E ~ then

Proof. - Take g = S)x - (772 - 8)00 E 9 where 77~ and H2
are both maximal and a-admissible. For every Q E M we have that

.8)00] ::; 0 and .8)00] ::; 0. The lemma shows that

By taking the infimum over all decompositions and by taking the supremum
over all elements in M we find the desired inequality.

Q.E.D.

The next theorem shows that in some sense there is an optimal
decomposition. The proof relies on theorem 2.3 above and on the technical
lemma A 1 in [2].

THEOREM 3.11. - Suppose that ,S’ is a locally bounded semi-martingale that
satisfies the NFLVR property. If g ~ G then there exist two I (9’ I |-admissible
maximal strategies R and U such that g = (.l~ ~ .8)00 - (U . 8)00’

Proof. - Take a sequence of real numbers such that an 1 For
each n we take H’~ and Kn maximal and an-admissible such that

g = (Hn . S)~ - (~f~ . From the theorem 2.3 cited above we
deduce that there are convex combinations E and

Wn E conv(Kn, ...) such that ~ hand 8)00 ~ k.
Clearly g = h - k, and However we cannot, at

this stage, assert that h and/or k are maximal. Theorem 2.3 above however
allows us to find a maximal strategy R such that (R - 5’)~ > ~ > -!~!.
The strategy R - Hl + KI is acceptable and satisfies

From the proposition 2.11 above it follows that U = R - Hl + Kl is

~g~-admissible and maximal. By definition of U and R we have that

9 = 1~.,~ x, - (U . 
Q.E.D.
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COROLLARY 3.12. - With the notation of the above theorem 3.11:

(R . S)oo g+ and ( U ~ g-. Hence we find

THEOREM 3.13. - Suppose that S is a locally bounded semi-martingale
that satisfies the NFLVR property. If g E ~ then

Proof. - Put /3 = sup Q where the random variable g
is decomposed as g = S)oo - (H2 . S)oo with H1 and H2 maximal.
From [4], corollary 10 to theorem 9, we recall that there is a maximal

strategy K 1 such that g+  {3 + (K1.S)~, implying that K 1 is {3-
admissible. The strategy K2 + H2 is also {3-admissible and
by proposition 2.11 therefore maximal. Since = Hl - H2 we
obtain that ~g~ (  /3. Since the opposite inequality is already shown in
corollary 3.12, we therefore proved the theorem.

Q.E.D.

Remark. - If Q is a martingale measure for the process (H1 - H2) . S,
then of course = But not all elements in the set Mare

martingale measures for this process and hence the equality of the suprema
does not immediately follow from martingale considerations.

THEOREM 3.14. - Suppose that S is a locally bounded semi-martingale
that satisfies the NFLVR property. The norm of the space ~ is also given
by the formula

Proof. - As in the previous result, for a contingent claim g =

’~)oo 2014 where H 1 and H 2 are maximal admissible, let us put:

From [4] it follows that there is a maximal strategy K, such that

 /3 + (K . This inequality shows that
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As in previous result we obtain that K - Hl + H2 and K - H2 + H1
are 03B2-admissible and maximal. Since 2(Hl - H2) _ (K - H2 + Hl)
- (K - H2 ), we obtain the inequality 112gl1  ,~.

Q.E.D.

COROLLARY 3.15. - Suppose that ,S’ is a locally bounded semi-martingale
that satisfies the NFLVR property. If g E g, then there is a sequence of
elements Qn E Me such that

Proof - It suffices to take a sequence that satisfies the third line.
Q.E.D.

Remark and Example. - For a contingent claim f E we do not

necessarily have that

Indeed take a process S such that there is only one risk neutral measure Q. In
this case the norm on the space 9 is (half) the L 1 (Q) norm. As is well known
the market is complete (see e.g. [2]) and ~ _ ~ f ~ f E L1 (~), = 0~.
It follows that 1C~, _ ~ f ~ E~ ~ f ] = 0 , f > -c~~. This cone
may contain contingent claims with 111-1100 = a and with arbitrary small
L 1 (Q)-norm.

This example also shows that the space 0, which in this example is a
hyperplane in Ll, can be isomorphic to an L1 space. It also shows that
the cone Kmax is not necessarily closed. Indeed the cone Kmax contains all
contingent claims f E L° with the property EQ [f] = 0. This set is dense in
0 = ( f ) f e LI(Q), Eq,[/] ~ 0}. However we have the following result.

PROPOSITION 3.16. - Suppose that ,S‘ is a locally bounded semi-martingale
that satisfies the NFLVR property. The cones are closed in the

space ~.

Proof - Take a sequence f n in and tending to f for the norm
of Q. Since clearly f > -a, the contingent claim f is the outcome of an
admissible and by corollary 2.17, also of a maximal strategy.

Q.E.D.
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4. SOME RESULTS ON THE TOPOLOGY OF ~

We now show that the space 9 is complete. This is of course very
important if one wants to apply the powerful tools of functional analysis.
The proof uses theorem 3.11 and corollary 2.15 above and in fact especially
corollary 2.15 suggests that the space is complete. After the proof of the
theorem we will give some examples in order to show what kind of

space 9 can be.

THEOREM 4.1. - Suppose that S is a locally bounded semi-lnartingale
that satisfies the NFLVR property. The space ~ ; ~ ~ ~ ~ i is complete, i.e. it

is a Banach space.

Proof - We have to show that each Cauchy sequence converges. This
is equivalent to the statement that every series of contingent claims whose
norms form a convergent series, actually converges. So we start with a
sequence in G such that  oc. For each n we take

according to theorem 3.11 above, two ~gn~-admissible maximal strategies
Hn and Ln~ such that S)x _ ,~)~. Since ~,Z>1 
converges, proposition 2.14 above shows that h = S)x and
l == ~~>i(~" ’ converge and define the maximal contingent claims
h, and L Put now g = h - l, clearly an element of the space g. We still
have to show that the series actually converge to g for the norm defined
on g. But this is obvious since

and each term on the right hand side defines, according to corollary 2.15,
a maximal contingent claim that is generated by a ~gn~-admissible
strategy. This remainder series tends to zero which completes the proof
of the theorem.

Q.E.D.

THEOREM 4.2. - Suppose that ,S’ is a locally bounded semi-martingale that
satisfies the NFLVR property. If is a sequence that converges
in G to an contingent claim f and if for each n, fn = (Hn . 8)00 with
H7t workable, then there is an element Q E Me such that all 8 are

uniformly integrable Q-martingales as well as a workable strategy H such
that the martingales 8 converge in L1 (Q) to the martingale H . S.

Proof. - Take Q E Me such that all (Hn ~ 8)n?I are Q-uniformly
integrable martingales. Such a probability exists by corollary 2.1 f . The rest
is obvious and follows from the inequality ~g~ ~ ~g~L1(Q).

Q.E.D.
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THEOREM 4.3. - Suppose that S is a locally bounded semi-martingale
that satisfies the NFLVR property. If ( f n ).r,,> 1 is a sequence tending to

f in the space ~, then there are maximal admissible contingent claims
in such that fn = gn - hn and such that 9’ E 

hn ~ h E both convergences hold for the norm of ~.

Proof - We first show that the statement of the theorem holds for a well
chosen subsequence Afterwards we will fill in the remaining gaps.
The subsequence nk is chosen so that for all N > nk we have

 2 ~~ l. It follows that II  2-~, for all k.

We take, according to theorem 3, l l , contingent claims in denoted

by (~~, , such that

and such that and are 2-k admissible for k > 2. Let = ~~
and = By corollary 2.15 and the reasoning in the proof of
theorem 4.1, these sequences converge in the norm of G to respectively g
and h. Furthermore ink = ~ 2014 and hence f = g - h.
We now fill in the gaps For nk  n  we

choose maximal 2-k-admissible contingent claims pn and an such that

fn - = To complete the proof we just have to check the obvious
fact that gn == gnk + and hn = hn~, satisfy the requirements of
the theorem.

Q.E.D.

We will now discuss an example that serves as an illustration of what
can go wrong in an incomplete market.

EXAMPLE 4.4. - The example is a slight modification of the example of [3],
see also [14]. We start with a two dimensional standard Brownian motion

( B , W ) , with its natural filtration For the price process S we take
a stochastic volatility process defined as dst = (2 + arctan(Wt))dBt. It

is clear that the natural filtration of S is precisely Furthermore it

is easy to see that the set of stochastic integrals with respect to S is the
same as the set of stochastic integrals with respect to B. We will use this
fact without further notice. We define L = £(B) and Z = £(W), where £
denotes the stochastic exponential. The stopping times T and a are defined
as T = 1/2} and a = inf{ t I Zt > 2}. The process X is
defined as X = The measure Q is nothing else but dQ = 
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For the process X and the measure Q, the following hold:

(1) The process X is continuous, strictly positive, also X~ > 0 a.s. and
Xo = 1, it is a local martingale for P, i. e. P E Me ;

(2) Under P, the process X is a strict local martingale, i.e.  1 ;

(3) for each t  oo the stopped process X~ t is a P-uniformly integrable
martingale;

(4) there is an equivalent probability measure Q E Me for which X
becomes a Q-uniformly integrable martingale.
We refer to [3] for the proof of these statements.
Let us now verify some additional features.

PROPOSITION 4.5. - In the setting of the above example, the space
G~ is not dense in G. In fact even the closure of L°° for the norm

Q E does not contain ~ as a subset.

Proof. - For each t  oo we clearly have that ft = ~ 2014 1 E g. Suppose
now that the contingent claim f ~ is in the closure of the space L~ for

the norm E For e - > 0 we

can find g bounded such that for all Q E Me we have ~ 2014 c. For

the measure P we find g] ~  ~ and hence for each t  oo we

have, by taking conditional expectations,

In particular, since E ~ f t~ = 0 for each t  oo, we have Ep [g] = ~g ~ I
-E. This in turn implies that Ep[/oo] > 20142~ a contradiction to

the choice of E.

Q.E.D.

THEOREM 4.6. - In the setting of the above example, the Banach space
9 contains a subspace isometric to l°°. In other words there is an isometry
u : Z°° ---~ g. Moreover u ’can be chosen such that C 0°.

Proof. - We start with a partition of H into a sequence of pairwise
disjoint sets, defined by the process W. More precisely we put A1 =

{Wl e] - 1]} and for n > 2 we put An _ ~ W~ E ~ n - 1, n~ ~ . Let M
be the stochastic exponential M=?(~2014~~) and let the stopping time
T be defined as

The sequence that will we will use to construct the subspace isometric to
1° is defined as
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For each n and each ~ > 0 there is a real number a(n, E) depending only on
c and n such that the random variable ~) = a(n, + 

is strictly positive and defines a density for a measure 
which is necessarily in Me, since the random variable c) can be written
as a stochastic integral with respect to W. It is clear that 1- e.

This shows that for each n, ] Q e = 1.

Clearly each f n is a 2-admissible maximal contingent claim. Since for
each measure Q E Me we have Q[fn = 2 _ ~ ~ f n = - 2 ~ I =

we obtain that = 2Q(An), hence for the 0-norm we find
- 1.

We now show that for each x E 1° we can define a contingent claim

If x = is an element of [00 and if m is a natural number, we
denote by the element defined as ~~ and x~ = 0
otherwise. Let us already put u(x~ ) _ xk fk. Now if x is a positive
element in [00 then the sequence is a sequence converging
in L1(Q) to a contingent claim u(x) = and this for each

Q E Me. By corollary 2.17 and theorem 2.5, the random variable u( x) is

in g. For arbitrary x we split into the positive and the negative part. This
defines a linear mapping from [00 into g. For each Q E Me we have that

where the sum actually converges in Ll(Q). Let us
now calculate the norm of u(x). For an arbitrary measure Q E Me we find

and hence we have

Take now for e- > 0 given, an index k such that sup ~ ~ ] 
Take the measure as above.

We find that

Since clearly 1 - c we find that
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Because E > 0 was arbitrary we find that

The linear mapping is therefore an isometry. Furthermore it is easily seen
that for each x E 1° we have u(x) E 0°.

Q.E.D.

THEOREM 4.7. - In the setting of the above example, there is a contingent
claim f in G such that for each Q E Me we have [f] = 0, but such that
f is not in the closure of ~°°.

Proof - We will make use of the notation and proof of the preceding
theorem. So we take the same sequence as above. This time we

introduce stopping times

and functions

Exactly as in the previous proof one shows that the contingent claim
f = f n is in G and has norm 1. Suppose now that h is a bounded
variable in g. We will show that I > 1. For each n we take an

element Qn E Me such 1- ~-~ such an element surely exists.
Because Q[fn = n ~ we find for n that

From theorem 3.14 we can now deduce that the distance of / to ~x is

precisely equal to 1.

Q.E.D.

This completes the discussion of the example 4.4.

EXAMPLE 4.8. - This is an example showing that the space 9 can be
one-dimensional, whereas the set Me remains very big. For this we take a
finite time set ~0; 1], and we take f2 = ~0. 1] with the Lebesgue measure.
For t  1, we put equal to the a-algebra generated by the zero sets with
respect to Lebesgue-measure. For t, = 1 we put Ft equal to the a-algebra
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of all Lebesgue measurable sets. The price process is defined as St = 0 for
t  1 and == w - 1/2. Of course 9 = span(Si). The set Me is the

~/ > 0 , 1/2) f (t) dt = 0~. This set is big in the sense that
it is not relatively weakly compact in Ll ~0; l~.
EXAMPLE 4.9. - This example shows that the space 9 can actually be

isomorphic to an L°° space. The example is constructed is the same spirit
as the previous one. We take [0, 2] as the time set and SZ = [-1,1] x [-1, 1]
with the two dimensional Lebesgue measure. Let g1, respectively g2 be
the first and second coordinate projection defined on n. For t  1 the

a-algebra is the a-algebra generated by the zero sets, for 1  t  2

we have Ft = 03C3(F0,g1) and which is also the a-algebra
of Lebesgue measurable subsets of H. The process S is defined as St = 0
for t  1, St = gi for 1  t  2 and 82 = gi + g2. We remark that the
filtration is generated by the process S.

Clearly (7:f - S)2 E 9 if and only if it is of the form ( H . 8)2 = 03B1g1 + h g2,
where h is measurable and bounded. This implies that 9 can be identified
with I~ x IP). We will not calculate the norm of the space g, but
instead we will use the closed graph theorem to see that this the norm is
equivalent to the norm defined It follows that

9 is isomorphic to an L?-space.
EXAMPLE 4.10. - The following example is in the same style as the

process S has exactly one jump. But this time the behaviour of the process
S before the jump is such that the space 9 is not of L~-type.
We start with the one dimensional Brownian Motion W, starting at zero

and with its natural filtration At time t = 1 we add a jump
g uniformly distributed over the interval [-1, 1] and independent of the
Brownian Motion W. So the price process becomes St = Wt for t  1 and

S1 = W1 + g. The filtration becomes, up to null sets, = Ht for t  1

and = g). For simplicity we assume that this process is defined
on the probability space n x ~-1, + 1] where SO is the trajectory space of
Brownian Motion, equipped with the usual Wiener measure P and where
we take the uniform distribution m on ~-1. +1] as the second factor. The
measure is therefore P x m.

The set of equivalent local martingales measures can also be
characterised. Since Brownian Motion has only one local martingale
measure we see that for each Q E MP and for each t  1 we

have that Q = P on the a-algebra Ft = Ht. Therefore also Q = P
on From the existence theorem of conditional distributions, or the
desintegration theorem of measures, we then learn that Q is necessarily
of the form Q[d03C9 x where ji is a probability kernel
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x ,~~-1, +1] - [0, 1], measurable for Hi. In order for Q to be a
local martingale measure ~ should satisfy = 0 for almost

all cJ. In order to be equivalent to P x m, a. s . the measure should be

equivalent to m. This can easily be seen by using the density of Q with
respect to P x m.

If H is a predictable strategy then it is clear that it is predictable with
respect to the filtration of the Brownian Motion. A strategy H is therefore

S-integrable if and only if f10 H2t dt  oc a.s. It follows that a necessary
condition for a predictable process H to be 1-admissible is H . IV > 20141.
We can change the value of H at time 1 without perturbing the integral
H . W. In order to obtain a characterisation of 1-admissible integrands
for S, we only need a condition on Hi in order to have, in addition, that
(H . s) 1 > -1. The outcome at time 1 is (H.S)1 = (H.W)1+H1 g and this
is almost surely bigger than -1 if and only if |H1]  1 + (H . W) 1 almost
surely. If we are looking for 1-admissible maximal contingent claims the
condition on H becomes

(1) H. W is a uniformly integrable martingale for P and /=(77-~)i>2014l
(2) |H1|  
From this it follows that a random variable k is in G if and only if it

is of the form

where

If we want to find a better description we observe that if f is 7~C1
measurable, integrable and positive then we can take fi = f 2 = f - Ep [ f]
and hence the condition on h1 and h2 becomes ~2 ~ f. It follows

that the space 9 is the space of all functions k of the form

where

Ep[f] = 0 and where h, f are both H1-measurable and integrable.
The norm on the space 9 can be calculated using theorem 3.14 above and
using the characterisation of the measures in Me . We find
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For given cv the measure on [20141,+1] that maximises
and that 0 is

according to balayage arguments (repeated application of Jensen’s

inequality) the measure that gives mass 1 /2 to both -1 and +1. This
measure does not satisfy the requirements since it is not equivalent to
the measure m on ~- l,1~ . But an easy approximation arguement shows
nevertheless that

This can be rewritten as

This equality shows that 0 is isomorphic to an L1-space.

5. THE VALUE OF MAXIMAL ADMISSIBLE
CONTINGENT CLAIMS ON THE SET Me

As shown in example 4.4, maximal contingent claims f may have
different expected values for different measures in Me. In [3] we showed
that under rather general conditions such a phenomenon is generic for

incomplete markets. More precisely we have

THEOREM 5.1. - ([3], theorem 3.1) Suppose that S is a continuous

d-dimensional semi-martingale with the NFLVR property. If there is a
continuous local martingale W such that ~W, ,S’~ = 0 but d(W, W) is not
singular to d(S, S), then for each R in Me, there is a maximal contingent
claim f E 03BA1 such that ER[f]  0.

The preceding theorem brings up the question whether for given
f E the set of measures Q E Me such that [f] = 0 is big.
THEOREM 5.2. - Suppose that ,S’ is a locally bounded semi-martingale

that satisfies the NFLVR property. If f is a maximal contingent claim i.e.
f E then the mapping

is lower semi-continuous for the weak topology In

particular the set E M; = 0~ is a G8 set (with respect
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to the weak and therefore also for the ,st. rong topology) in Furthermore
this set is convex E [1] = 0 ~ is strongly dense in M.
In particular as M is a complete metric space with respect to the strong
topology of L 1 (!P’), the E M; f ~ = 0) is of second category.

Proof. - The lower semi-continuity is a consequence of Fatou’s lemma
and the fact that for convex sets weak and strong closedness are equivalent.
The convexity follows from EQ [1]  0 for every Q E M.
By the convexity of the E M~’ : = 0~, it only remains

to be shown that the E = 0} is norm dense in M~,
the latter being norm dense in M.

Take QO E Me such that f ~ = 0. Since f is maximal such a measure
exists. Since f is maximal there is a strategy H such that H . S is a 4~°
uniformly integrable martingale and such that f = (H ~ We may
suppose that the process V = 1 + H . S remains bounded away from zero.

Take now Q E Me and let Z be the cad~ag martingale defined by

For each n, a natural number, we define the stopping time

Clearly the process VZ is a Q0-local martingale and being positive it is a
supermartingale. Therefore we have that ZTn is in Ll (QO). It follows
that  and hence the process is a uniformly
integrable martingale. Therefore ] = 1 and the measure ~n
defined as = ZTn dQ0 satisfies = 1. Since [V~] =

] = 1 we clearly have Qn IIR E = 0). Since ~’z
tends to Q in the the proof of the theorem is completed.

Q.E.D.

COROLLARY 5.3. - Suppose that S is a locally bounded semi-martingale
that satisfies the NFLVR property. If V is a separable subspace of ~, then
the convex set

is dense in M with respect to the norm topology of L1 ([2, IP).
Proof. - We may and do suppose that there is sequence of maximal

contingent claims in V, such that the sequence {fn-fm|n ~ 1;
m > 1} is dense in V, occasionally we enlarge the space V. Obviously
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For each n the E = 0} is a norm dense and

(for the norm topology) a G8 set in M. Since M is a complete space
for the LI-norm, we may apply Baire’s category theorem. Therefore

the intesection over all ?~, {Q ~ I Q E M; for all n : : = 0}
is still a dense G 8 set of M. Because, by corollary 2.16, the set

{Q Q E Me; for all n EQ[fn] = 0} is non-empty, an easy argument using
conex combinations yields E = 0 for all f E V ~
is dense in M.

Q.E.D.

COROLLARY 5.4. - If S is a continuous d-dimensional semi-martingale
with the NFLVR property, if there is a continuous local martingale W such
that (W, S) = 0 but d(W, W) is not singular to d(S, S), then ~ is not a
separable space.

Proof. - This follows from the previous corollary and from theorem 5.1
above.

6. THE SPACE 9 UNDER A NUMERAIRE CHANGE

If we change the numeraire, e.g. we change from one reference currency
to another, what will happen with the space g? Referring to [4] and

especially the proofs of theorem 11 and 13 therein, we expect that there is
an obvious transformation which should be the mathematical translation of

the change of currency. More precisely we want the contingent claims of 0
to be multiplied with the exchange ratio between the two currencies. This
section will give some precise information on this problem.
We start with the investigation of how the set of equivalent martingale

measures is changed.
Suppose that V is a strictly positive process of the form V = H ~ S + 1

where 1 + (H . S)oo is strictly positive and where (H . is maximal
admissible. Suppose also that the process y. is locally bounded. This
hypothesis allows us to use, without restriction, the theory developed sofar.
With each element R of M(S) we asssociate the measure f~ defined by
df~ = Of course this measure is not a probability measure since we
do not necessarily have that = 1. But from theorem 5.2 above it
follows however that the set G = {Q E M(S) ~ E~[V~] = 1} is a dense

G6 set of M(9). Likewise the set G = ~ E ~) = 1 is
a dense G8 set of M(~, -~). The following theorem is obvious.
Vol. 33, n° 1-1997.
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THEOREM 6.1. - Suppose that ,S’ is a locally bounded semi-martingale
that satisfies the NFLVR property. With the above notations, the relation

defines a bijection between the sets G and G.
In the following theorem we make use of the notation introduced in

theorem 3.2. The space is the space of workable contingent claims
that is constructed with the d-dimensional process S, the space 0 ( f, ()
is the space of workable contingent claims constructed with the d + 1
dimensional process (f, i; ) .

THEOREM 6.2. - Suppose that S is a locally bounded semi-martingale
that satisfies the NFLVR property. Suppose that V is a strictly positive
process of the form ~ _ ~I ~ S + 1 where 1 + (H . is strictly positive
and where (H . 8)00 is maximal adm.issible. Suppose that the process ir is

locally bounded. The mapping

defines an isometry between ~ (,5’) _ ~ (,S’, 1 ) and 0( f, i ~ ).

Proof. - Suppose V = H ~ S ~--1 where 1 ~-- (H ~ S) ~ is strictly positive and
where (H . is maximal admissible. Take an admissible, with respect to
the process S, strategy K. The process is the outcome of the strategy
~ = ( K, (K . S)- - A"~), see also the remark following definition 2.8
above and [4]. From theorem 2.5 above it follows that there is an element

Q E Me such that = 0 and such that = 1. The

measure Q defined as dQ = V~ dQ is therefore an element of M ( f, -f )
such that Eq~-~-~] ] = 0. It follows that the contingent claim -~ 2014 1 is

maximal and admissible for the process (~? ~) and hence the contingent
claim is workable. It follows that the mapping cp maps and

hence also 0(S), into 0(/, §) .
If we apply the numeraire -f to the system (S V, f) we find the d + 1-

dimensional process (S, V). However because V is given by a stochastic
integral with respect to S, we have It follows that

the mapping that associates with each -~), the element
maps 0 ( / , f) into 0(S) . The mapping cp is clearly bijective.
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M(~, -~), it is clear that for every element g E ~ ( S),

This shows that ~ is also an isometry.
Q.E.D.

Remark. - The previous theorem shows that 9 is a numeraire invariant
space provided we only accept numeraire changes induced by maximal
admissible contingent claims.

7. THE CLOSURE OF G~ AND RELATED PROBLEMS

In this section we will study the contingent claims of Kmax that are
in the closure The characterisation is done using either uniform
convergence over the set Me or using the set Mba . Before we start the
programme, we first recall some notions from integration theory with respect
to finitely additive measures; we refer to Dunford-Schwartz [7] for details.

Let  be a finitely additive measure that is in ba(f2, P). A measurable
function f (we continue to identify functions that are equal P a.s.), defined
on f2 is called -measurable if for each ~ > 0 there is a bounded

measurable function g such that > ~ ~  ~ . The
reader can check that since .~’ is a sigma-algebra, this definition coincides
with the definition 10, p. 106 in [7]. We say that a -measurable function
f is -integrable if and only if there is sequence of bounded

measurable functions such that gn converges in -measure to f and such
that tends to zero if n, rn tend to 00. In this case one defines

= limn~~ EM as the -integral E [f] of f. In case f is bounded
from below the -integrability of f implies via the dominated convergence
theorem, valid also for finitely additive measures, that E ~ f - f A n] tends
to zero as n tends to oo. Contingent claims g of G~ are -integrable for
all It E Mba and moreover we trivially have = 0 since EQ[g] = 0
for all Q E Me .

PROPOSITION 7.1. - Suppose that S is a locally bounded semi-martingale
that satisfies the NFLVR property. If f E and ~c E then f
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is -integrable and f ]  0. Also n] ~ 4~f~ n, a uniform bound
over  E In particular for each  E and each f E we

find that f A n tends to f in -measure and f n n] tends to Eu [f] as
n tends to infinity.

Proof. - We only have to prove the statement for contingent claims f
that are 1-admissible and maximal. So suppose that f is such a contingent
claim. By the optional stopping theorem, or by the maximal inequality for
supermartingales, we find that for all Q E Me, we have n]  -k
The set Me is L°°) dense in (see [2] remark 5, 10), hence we
obtain that n~  1 for all n. Since > 0]  ,u, ~ f > n]  ~,
the measurability follows for functions f that are 1-admissible and maximal.
The general case follows by splitting f as f = g - h where each g and hare
~f~-admissible and by the fact that {|f| I > n} ~ {|g| > n 2} ~ {|h| > n 2}.
To see that for  E the integral exists and is negative, let us

first observe that for all n and all Q E MP we have that 0. This

implies that for all n, necessarily, A n~ ~ 0. The sequence E~, ~ f A n]
is increasing and bounded above, so it converges and since f A n tends
to f in -measure the lim E [ f A n] is necessarily the integral of f with
respect to ~c. It follows that also  0.

Q.E.D.

In the same style we can prove that f E is the limit of a sequence
obtained by stopping. If f is of the form f = for some S-integrable
admissible process H, let for n > 1:

PROPOSITION 7.2. - Suppose that S is a locally bounded semi-martingale
that satisfies the NFLVR property. If f is 1-admissible and maximal and

E Mba, then fTn tends to f in -measure.

Proof - Simply remark that for each Q E Me, we have Q[Tn  ~ 1 n.
Q.E.D.

THEOREM 7.3. - Suppose that S is a locally bounded semi-martingale
that satisfies the NFLVR property. If f is in the closure ~°° of ~, then

f ~ = 0 for each ~c E Mba.

Proof. - Take a sequence of bounded contingent claims in 0
that tends to f for the topology of ~. This means that I
Q E tends to zero. In particular the sequence is a Cauchy
sequence in G and hence for all M E Mba we have that 
tends to zero as n, m tend to infinity. Since, as easily seen, the sequence
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tends to f in JL-measure, we obtain that f is p-integrable and
E~ [ f n, = 0.

Q.E.D.

PROPOSITION 7.4. - Suppose that 8 is a locally bounded semi-martingale
that satisfies the NFLVR property. Suppose f E and f = (H . 8)00
for a maximal strategy H. If for each ~c E Mba the function f satisfies

0, then for each stopping time T and each ~c E the function
f T is -integrable and satisfies [fT] = 0.

Proof. - We already showed that fT is in G and hence is -integrable
for all  E Mba and that 0 for all  in Mba.

Let us prove the opposite inequality. The sequence A n] of
continuous functions on Mba tends increasingly to 0. As follows from
Dini’s theorem, we have that for each 8 > 0 there is a number n such that

A n] > -8 for all Q E Me. But for each Q E Me we have that
= f T and hence that EQ [f fT A n. This implies

that for all Q E Me and for all n large enough, we have EQ [fT A n] > -8.
We therefore obtain that 0. Since the converse inequality was
already shown we obtain = 0.

Q.E.D.

The converse of theorem 7.3 is less trivial and we need the extra

assumption that S is continuous.

THEOREM 7.5. - Suppose that 8 is continuous and satisfies the NFLVR
property. Suppose that f E 03BAmax and suppose also that for each  E Mba
we have = 0, then f E 0°

Proof - Let H be a maximal acceptable strategy such that (H . 8)00 = f.
For each n 2: 1 put Tn = inf {t S)t I > n~ the first time the process
~’5’ exits the interval [-n, -~n~. Clearly f n = defines a sequence
in ~°° and we will show that tends to f in the topology of g. Because
-E~ ~ f n n] tends decreasingly to 0 for n tending to infinity we infer from
Dini’s theorem and theorem 5.2 that n E tends to
zero. It follows that f /~ nJ ~ Q E tends to zero as n tends
to infinity. Because ( f - f")+ = ( f - n)+ = ( f - f A n) we see that also
sup{EQ[(f - fn)+] I Q E Me} tends to zero as n tends to infinity. By
theorem 3.13 this means that f n tends to f for the norm on ~.

Q.E.D.

Remark. - The continuity assumption was only needed to obtain bounded
contingent claims and could be replaced by the assumption that the jumps
of H . S were bounded.
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EXAMPLE 4.4, ADDENDUM. - In the following corollary we use the same
notation as in section 4, example 4.4 and theorem 4.7. Recall that the
contingent claim f = ~~ fn satisfies E~[/] ~ 0 for all Q E M.
COROLLARY 7.6. - The function f = ~~ but its integral

with E not always zero.

Proof - Indeed if it were, then f would be in ~~.
Q.E.D.
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