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ABSTRACT. - We introduce the notion of parabolic convexity and show
its interplay with heat conduction. The mathematical method is based on
Brownian motion and the Ehrhard inequality [8].

RESUME. - Nous introduisons la notion de convexite parabolique et nous
demontrons son interaction avec la conduite de la chaleur. La methode

mathematique est basee sur le mouvement brownien et 1’ inegalite de
Ehrhard [8].

1. INTRODUCTION

A subset E of R+ x is said to be parabolically convex, if for any
(o = (to, xo) and ~1 = belonging to E,

or, stated equivalently,

and

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques - 0246-0203
Vol. 32/96/03/$ 4.00/@ Gauthier-Villars



388 C. BORELL

The purpose of this paper is to show some nice properties of parabolically
convex sets in connection with heat conduction. As far as we know, the
notion of parabolic convexity has not been stressed on earlier, at least not
explicitly.

In what follows, D stands for a domain in R x (~n and p : D x D --~

[0, [ is the Green function of the heat operator in D equipped with
the Dirichlet boundary condition zero (for details, see Watson [12]). Given
(o = ( to , xo ) E D and r > 0, the set

is called a heat ball in D with centre at (o (cf Bauer [1] and Watson [13]).
For the sake of comparison, recall that, if M is a Greenian domain in i~n
and if g : M x M --~ [0, +00] denotes the Green function of the Laplace
operator in M equipped with the Dirichlet boundary condition zero, then
given Xo E M and r > 0, the set {x E M; g (x, xo ) > r} is called a

harmonic ball in M with centre at ~o [I].
The starting point of his paper is a rather old theorem by Gabriel [6],

stating that harmonic balls in convex regions are convex (for a probabilistic
proof, see Borell [3]). But remarkably enough, it still seems to be unknown
whether heat balls in convex domains must be convex or not. Note, however,
that if B is a heat ball in D, then each section B n {t = T~ is convex

as soon as every section D n {t = T~ is convex (Borell [2]). The main

purpose of this paper is to show the following

THEOREM 1.1. - If the set D n ~t > 0~ is parabolically convex, then any
heat ball in D with its centre in D n ~t = 0~ is parabolically convex.

The proof of Theorem 1.1 is based on Brownian motion and Brunn-

Minkowski inequalities of Gaussian measures as in the papers [2] and [3].
A similar line of reasoning may be found in two early papers by Brascamp
and Lieb ([5], [6]). For additional information, see Hormander’s book [10].

2. SIMPLE PROPERTIES OF PARABOLICALLY CONVEX SETS

A family (As)s>o of subsets of is said to be concave if

for all s0, s1 > 0 and all 0  03B8  1.
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From now on, let Hn = R+ x R". If E C Hn, we set E(t) = {x E
(t, x) E E~, t > 0. Moreover, we define a bijection (s, ~) _ x)

of Hn onto Hn by setting

THEOREM 2.1. - Let E C Hn. The following assertions are equivalent:

(i) E is parabolically convex.

(ii) The family (sE(s-2~~~~o is concave.
(iii) The set is convex.

Proof - (i) ~ (ii): Let so > sl > 0 and put so = (1 - 03B8)s0 + 03B8s1, where
0  B  1 is fixed. Moreover, we choose xo E and ~1 E 

arbitrarily and shall prove that

The special case so = si is trivial since E(t) is convex for every t > 0.
Therefore, assume so > si and consider the curve (t, x(t)), to  t  ti,
where to = S02 and t 1 = and

Note that E since E is parabolically convex. Moreover,

where

and, in a similar way,
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390 C. BORELL

Accordingly, from these equations,

(ii) =~ (i): The proof is, again, simple and it is omitted here.
(ii) 4=~ (iii): The equivalence follows at once from the equality

This completes our proof of Theorem 2.1.

COROLLARY 2.1. - Let M be a domain in Then the set I~+ x M is
parabolically convex if and only if M is convex.

The reader should note that, if a set E C Hn is parabolically convex, the
sets (a, 0) + E, a > 0, need not be parabolically convex. Indeed, if so, the
set E must necessarily be convex since the curvature of the curve

tends to zero uniformly as a tends to plus infinity.

3. THE MAIN RESULT

From now on, the function

denotes the distribution function of a N (0; 1 )-distributed random variable
and we let ~-1 : ~0,1~ -~ be its inverse function.

THEOREM 3.1. - Let D be a domain in 0~ x ~n such that the set

D+ = D n ~t > 0~ is parabolically convex. Moreover, assume A C l~n is
a non-empty convex domain such that ~ 0 ~ x A C D n ~ t = 0 ~ and define

Then the function ~ -1 o u o ~ -1 is concave in (D+), and, especially,
the level sets ~u > r~, r > 0, are parabolically convex. Moreover, if
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T = 03C6}, then lim03B6~03B60 u(03B6) = 0 for any 03B60 = d D
with 0  to  T.

Proof. - Let /3 = denote the normalized Brownian motion in

R" and suppose E~ = ~~~ is Wiener measure on C(R~; I~~), the space of all
continuous mappings of R+ into equipped with the topology of uniform
convergence on compacts. To prove Theorem 3.1, we will make use of the
Ehrhard inequality [8] of the Brunn-Minkowski type, stating that

for every 0  1  1 and every convex Borel sets Bo and B1 in C(IR+; 
To this end, we represent u in terms of Brownian motion (see Doob [4])
and have

or, expressed slightly differently,

Moreover, since the processes and have the
same probability laws, we conclude that

Thus, if (s, y) = x), that is, t = s-2 and x = y/s, then

Now applying the Ehrhard inequality and Theorem 2.1, we conclude that
the function 03A6-1  u  03C8-1 is concave, if the set D+ is parabolically convex.
To prove the last part in Theorem 3.1, set (so, ~/o) = xo). Since the

set ~(D) is convex it is possible to find a non-zero vector ( a, b) e R x ~n
and a c E R such that

Vol. 32, n° 3-1996.
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Clearly, 0, 0  t  T, since A ~ 0. Therefore, noting that
to  0. Moreover,

and, consequently,

Now remembering that

by the law of the iterated logarithm for Brownian motion and noting that
c t~ - a - bxo = 0, we have that u(() = 0. This completes our
proof of Theorem 3.1.

Example 3.1.- Suppose D = R x R" and A = {x~ > 0}. Then

and

Thus the function ~-1 0 U is linear in this particular case. D

Example 3 .2. - Suppose D = ~ x B, where B is a bounded convex
domain in and set

and

By Theorem 3.1, the level sets ~ u > r}, r > 0, are parabolically
convex. Furthermore, it is well known that the level sets {7; > r}, r > 0,
are convex (Kawohl [11], Borell [4]). However, the level sets {u >
r~, r > 0, need not be convex. To see this, let k E N+ and choose
B = B~ _ {x E Ixl  k, xn > 0~. Now setting u = uk,

we have that = l. Clearly, the set

~(t, ~) E xn > r, 1 > r~ is not convex for any r > 0,
which proves the claim above. D

Finally, note that Theorem 1.1 is an immediate consequence of

Theorem 3.1.
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