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ABSTRACT. - Let X and Y be independent, standard Brownian motions.
For all t > 0, we define the iterated Brownian motion, Z, by setting
Zt = In this paper we give Chung’s form of the law of the
iterated logarithm for Z.
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Soient X et Y des mouvements browniens indépendants.
Pour tout entier t > 0, on définit le mouvement brownien itéré, Z, par
Z(t) = Dans cet article, nous donnons la loi du logarithme
itere de Chung pour Z.
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1. INTRODUCTION

Let X and Y be independent, standard Brownian motions. We define an
iterated Brownian motion Z = {Zt, t > 0} by setting Z(t) = 
for all t > 0. This process and its sundry modifications have been the
objects of study in several problems in analysis and mathematical statistics.
Indeed, Funaki [F] used a modification of Z to give a probabilistic solution
to the partial differential equation:

while Deheuvels and Mason [DH] introduced iterated Brownian motions in
their study of the Bahadur-Kiefer process. In [B1] and [B2], Burdzy has
studied various properties of the paths of iterated Brownian motion. His
work implies the local law of the iterated logarithm:

which yields the modulus of continuity of Z at the origin. Recently, the
authors [KL] determined the corresponding uniform modulus of continuity
for iterated Brownian motion. The precise statement is that for all fixed
T > 0,

In 1948, Kai Lai Chung ([C]) proved his celebrated law of the iterated
logarithm for the absolute maximum of sums of independent and identically
distributed random variables. For Brownian motion, his result takes the

following form:

The above has come to be known as Chung’s LIL or the other LIL. In
this paper we are concerned with the analogue of Chung’s LIL for iterated
Brownian motion. Our main result is the following:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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THEOREM 1.1. - With probability one,

As we shall see, our proof of Theorem 1.1 involves solving two variational
problems. The first variational problem arises from the asymptotic
estimation of I ~ ~) as ~ ~ 0, from which the lower
bound in Theorem 1.1 easily follows. The argument for the upper bound is
complicated by the lack of independence amongst the increments of Z. As
in [KL], our solution involves an analysis of the lim inf along a random
subsequence (the hitting times by IYI of an increasing sequence of positive
real numbers). In essence, this approach reduces the problem to showing
that there is an optimal way to balance the tendencies of two independent
stochastic processes, which is the second variational problem.

Since the first draft of this paper was submitted, much work has been
done on the paths of the samples of iterated Brownian motion. The reader
is encouraged to see [CsCsFR] and [HPS] and [S] for details and other
applications of iterated Brownian motion, in particular to mathematical
statistics. Among other results, Zhan Shi [S] has extended Theorem 1.1.

(by way of an integral test) through "hard" methods. In light of this
development, our proof is interesting in that it involves only elementary
facts about Brownian motion.

2. PRELIMINARY REMARKS AND LOWER BOUND

For convenience, let

and, for t > 0, set

Associated with Y we have the following process:

By way of M we will define

Vol. 32, nO 3-1996.
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It is an important observation that

Therefore it suffices to prove Theorem 1.1 for Z*.
For all e > 0 and all t > 0, let

By the law of total probability, the independence of X and Y and Brownian
scaling we obtain:

The essential ingredient in the proof of the lower bound is the following
small-ball estimate for 

LEMMA 2.1. - -03BE4/3.
Proof - We will need the classical result (see [C]):

From this it follows that

For x > 0, let f (x) _ ~ + x-2 and let 21/3, which is where f
achieves its minimum value on 0  x  oo.

To obtain the upper bound, let 8 > 0, and take points 0  c~  xo 
,C~  oo so that

Let

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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be a partition of the interval such that a2 - ~-i~ (  b for all

1  i S; nand xo = ; for some 1  i  n. Let si = for all

0  z S; n and observe that

Moreover,

Thus

From (2.2) it follows that

Likewise,

It follows that

Vol. 32, nO 3-1996.
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where we have used (2.3) and the fact that f is minimized at Finally,
let 8 go to zero and observe that ~z f (~;~)/8 = ~‘~~3.
To obtain the lower bound, observe that

By (2.2) we obtain

The proof of the lower bound in Theorem 1.1 is an immediate

consequence of Lemma 2.1 and a standard blocking argument.

Proof of the lower bound. - Let B > 1 and, for all n > l, let Bn .

Let ~ > 1 be given and define the following events: for all n > 1, let

By scaling, we have

Fix 1  p  r~. By Lemma 2.1, there exists a constant, C = C(p) such
that for all n, IP ( An )  Cn-P. Consequently, is summable and,

by the Borel-Cantelli lemma, i.o.) = 0. Thus

If tn  tn+1, then

Thus

Now let and B 11 to obtain the desired lower bound. D

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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3. THE UPPER BOUND

Given a > 0, let T(a) = inf{t > 0 : = a}. By an eigenfunction
expansion (e.g., see p. 52 of Port and Stone [PS]), for x E (0, e),

The next lemma is an easy corollary of this expansion.

LEMMA 3.1. - There exists an eo > 0 and constants cl and c2 (depending
only on EO) such that for all ~ E (0, ~0) and all x E (0, ~/2),

Proof. - Let ~o > 0 and suppose that 0  e  EO. We have

with obvious notation. Choose eo small enough so that c(eo)  
Since 0 S; x  e/2, it follows that

The conclusion follows with c(~o ) ) /4 and c2 = +

c(~o))/4. a

Fix 1  p  oo and, for n > 1, let exp ( np ) . Define ?o == 0
and, for n > 1, let Tn  (in) and Tn - Tn-1. In the sequel, let
p(t) = ln t)3~4. This function is the correct normalization for the
law of the iterated logarithm for iterated Brownian motion. (See [B 1] for a
related result.) We will need the following technical lemma.

LEMMA 3.2. - With probability one, = as 1~ --~ oo .

Vol. 32, n° 3-1996.



356 D. KHOSHNEVISAN AND T. M. LEWIS

Proof - Observe that

Therefore it suffices to show that the right hand side tends to zero with
probability one. To this end, let E > 0 be given, and let ak = 1~)6.
Then, for k sufficiently large,

with obvious notation. By Lemma 3.1 and scaling, and for all k sufficiently
large,

Thus °it is clear that ~ ~ Pk  oo .

Observe that as l~ --~ oo,

Let 0  b  ~p-s . Then for all k sufficiently large,

Consequently by Lemma 3.1 and scaling, and for all k sufficiently large,

Since

certainly  oo . The proof is completed by an application of the
Borel-Cantelli lemma. D

Having developed the requisite lemmas, we proceed to the proof of the

upper bound in Theorem 1.1.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Proof of the upper bound. - For all t > 0 let

We note that (?(’) is invertible, and we will denote its inverse by G ~(-).
Also observe that G-1(t) ~ F(t) as t ~ oo and that F(F(t)) N as

t -j oo; consequently,

Given 0  p  oo, choose a > and ’Y = 8~(P~2) - a 2. As
a consequence,

which will be an important observation in the sequel.
For k > 1, let

First we will show P (Ck i.o.) = 1. Since the events {Ck, k > 1}
are independent, it suffices to show 03A3k 1C’ (Ck) = ~. Since X and Y
are independent processes, Ak and Bk are independent and 

P (Ak)IE’ (Bk). However,

where ,~~ = a (In In tk)-1/2. By Lemma 3.1, we see that for all k sufficiently
large,

We also have

Vol. 32, n° 3-1996.



358 D. KHOSHNEVISAN AND T. M. LEWIS

where

However, = --~ 0 and Ek -~ 0 as 1~ --~ oo ; consequently, by
Lemma 3.1, for all k large enough,

Thus, by (3.3) for all k sufficiently large we have,

By the definition of > 1~ and the above, infinitely often we have

where we have used the obvious fact that ATk  Tk. Since Tk >

implies tk  it follows that infinitely often Dk 
where

Given e > 0 and (3.2), we see that infinitely often Dk  (1 +
which is to say

Finally, since Z(Tk)  + Dk, we have

By the law of the iterated logarithm for iterated Brownian motion,

Combining this with Lemma 3.2, we obtain

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Thus, by the definition of lim inf and Z and (3.4), we obtain

Now let e -~ 0 and p --~ 1 to obtain:

The optimal choice for cx is which yields the desired upper bound. 0
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