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ABSTRACT. - This paper is devoted to a systematic study of the basic

properties of the so-called Jumping Markov Processes (JMP in short). By
this we mean a Markov process X = (Xt)t2:o taking values in an arbitrary
measurable space (E, ?), and which is piecewise-deterministic in the sense
that it follows a "deterministic" path Xt = f (t, Xo) up to some random
time 71, at which time it "jumps" to some random value then it

follows the path f (t - XTl ) up to another random time 7-2 &#x3E; Tl, and so

on... Such processes had already been studied by M. H. A. Davis [3] in a

particular case, but here the emphasis is on the characterization of JMPs, in

particular in terms of the structure of the martingales, and on the properties
of the basic objects (additive functionals, semimartingales, semimartingale
functions) usually associated with Markov processes.
We also introduce a class of Markov processes which we call "purely

discontinuous" and appear as suitable limits of JMP’s.

RESUME. - Cet article est consacre a Fetude systematique des proprietes
d’une classe de processus de Markov, que nous appelons JMP (pour
"Jumping Markov Processes") et qu’ on peut decrire ainsi : un processus
de Markov X = (Xt)t2:o a valeurs dans un espace mesurable quelconque

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques - 0246-0203

Vol. 32/96/01/$ 4.00/© Gauthier-Villars



12 J. JACOD AND A. V. SKOROKHOD

(E, ~) est un JMP s’il suit une trajectoire « deterministe » Xt = f (t, Xo)
jusqu’ a un temps d’ arret Tl ; puis il « saute » a l’instant Ti en un point
aleatoire puis il suit la trajectoire f (t - Tl, jusqu’ a un autre
temps d’arret T2 &#x3E; Tl, etc. De tels processus ont deja ete etudies par
M. H. A. Davis [3] dans un cas particulier, mais ici nous mettons l’accent
sur la structure de la filtration et d’ une serie d’ objets habituellement associes
aux processus de Markov : martingales, semimartingales, fonctionnelles

additives, « fonctions semimartingales », etc.

Nous introduisons pour finir une classe plus vaste de processus de

Markov, obtenus comme limites convenables des JMP.

1. INTRODUCTION

1) We consider here the class of continuous-time E-valued homogeneous
Markov processes X which are piecewise-deterministic in the following
sense: there is a strictly increasing sequence (Tn ) of stopping times such that
on each interval (Tn, the process follows a deterministic curve in the

state space E. In order words we have a family of curves (~+ ~ t -~ f (x, t)
in E such that

Then at the (random) time Tl it "jumps" to some (random) value XTl ; then
it moves according to XTl +t = f t) for t  T2 - Tl (with the same
function f ), and so on.
The simplest and main example of such processes consists in step Markov

processes, where X is piecewise-constant (that is f (x, t) = x). The
structure of these processes is well known: the sequence (XTn ) constitutes
a Markov chain in E, and conditionally on this sequence the variables
Tn - Tn-i (with To = 0) are independent, exponentially distributed with a

parameter depending only on 

"Age" processes also fall within this scope, and have been considered
a long time ago. For instance if is an increasing random walk

(i.e. the variables Yn - are i.i.d. and (0, oo)-valued) starting at

Yo = 0, the R+-valued processes X and X’ defined by Xt = Yn - t
and satisfy the property above, with

respectively f (x, t) = (x - t)+ and f’ (x, t) = x + t, and Tn = Yn.
Many other processes of this type have been described in the literature,

often in connection with renewal theory, Markov renewal theory, queueing
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13JUMPING MARKOV PROCESSES

theory, models for dams and storage, etc. A large class of such processes
have been studied systematically by M. H. A. Davis [3] under the name of

piecewise-deterministic processes: namely those for which E = I~d and f
is the flow associated with a differential equation d~ (t) = g ( ~ ( ) ) t and the
first jump time Tl has a distribution absolutely continuous w.r.t. Lebesgue
measure. In this paper we wish to achieve the greatest possible generality
(for instance the state space E has no topological structure): so in order to

distinguish them form the case studied by Davis we will call them Jumping
Markov Processes (JMP in short).

2) JMP’s have of course interest of their own, even in the "general" case
when no topological structure on E is used. But our main motivation lies
in the class of Markov processes that are "limits" in some sense of JMP’s:

we are thinking about measure-valued branching processes (see e.g. [7])
with infinite mass, obtained as limits of usual branching processes where
the particles follow deterministic curves between branching times, and also
about infinite-dimensional interaction processes.

However, the aim of this paper is somewhat more modest: after defining
the class of JMP we study some "basic" properties of these processes,
and introduce a first notion of "limits" of JMP’s in what we call "purely
discontinuous" Markov processes. Because of the applications to branching
processes it is necessary to consider the non-homogeneous case. However
for the convenience of the reader, we have presented first all results in the
homogeneous case, and the non-homogeneous case is quickly considered
in Section 6.

3) Let us be more precise. The state space being possibly a non-

topological space, the "jump times" Tn are not really times of jump for the
process X, but rather for the filtration generated by the process: that
is n {Tn  t  so the filtration

is "constant" on the intervals [Tn’ and "jumps" at times Tn, so to
speak. Such filtrations have been called jumping filtrations and studied
in [10], and Section 2 is devoted to recalling and extending some of their
main properties.
Our definition of a JMP, at least in the quasi-left continuous case,

becomes the following: a strong Markov process having a quasi-left
continuous filtration is a JMP iff the filtration is jumping. In the non-
quasi-left continuous case the definition is a bit more complicated, due to
the intrinsic non-uniqueness of the stopping time Tl in (1). In Section 3
we draw consequences of this definition, then construct JMP’s starting
from the law Gx (dy, dt) of (XT1’ Ti) when Xo = x, and finally give

Vol. 32, n° 1-1996.



14 J. JACOD AND A. V. SKOROKHOD

some simple criteria for a JMP to be regular, that is the explosion time
T (X) = lim Tn is a.s. infinite.

n

In Section 4 we exhibit the special form taken in the JMP case by
many usual objects in the theory of Markov processes: of particular interest
are additive functionals, martingales, semimartingales, and semimartingale
functions. A short subsection is devoted to infinitesimal generators.

In Section 5, after some preliminaries about various transformations of
Markov processes, we introduce one of the fundamental notions of this

paper, namely the so-called purely discontinuous Markov processes. This is
only a tentative approach of the question, and undoubtedly much more can
be said (and perhaps the definition given here is not "optimal" yet, in the
sense that it makes the lifetime play too big a role).

Finally, as said before, we restate the main results, mostly without proof,
in the non-homogeneous setting in Section 6.

2. JUMPING FILTRATIONS

We start with a probability space (H, .~’, P) endowed with a right-
continuous filtration (.~’t ) . We use the standard notation of the theory of
processes (see e.g. Dellacherie-Meyer [4]). In particular, the "stochastic

interval" [S, T] is the set of all t) such that ,S’ (cv)  t  and

t  oo and [~j = [~ ~].
We say that is an a.s. jumping filtration on (~+ if there is an

increasing sequence (Tn) of stopping times with lim Tn = o a.s. and
n

To = 0, and if for all t &#x3E; 0, n E N the 03C3-fields 0t and FTn coincide

 up to P-null sets. Then (Tn) is called a jumping
sequence. In [ 1 O], these filtrations were simply called "jumping filtrations",
and the following was proved:

THEOREM 1. - a) (Ft) is an a. s. jumping filtration on (~+ iff all local

martingales are a.s. of locally finite variation.

b) If (Ft) is a quasi-left continuous a. s. jumping filtration, there is a

jumping sequence (Tn) such that
(i) Tn is totally inacessible for n &#x3E; 1, and Tn  if Tn  cxJ;

(ii) every totally inacessible time T has ~T ~ C U a. s.;
n&#x3E;1

(iii) any other jumping sequence (T~ ) has a.s.;

(iv) all local martingales are a. s. continuous outside 

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



15JUMPING MARKOV PROCESSES

c) If an a. s. jumping filtration with a jumping sequence satisfying
(i) above, it is quasi-left continuous.

In this paper we need to consider "exploding" jumping filtrations, for
which the jumping sequence increases to a stopping time which may be
finite.

Let us begin with some terminology. A predictable interval starting
at 0 is a random set of the form I = Tn], for some increasing
sequence (Tn) of stopping times. If 8 = we write
0

I = ~ 0, b Q. A local martingale on I is a process M such that each stopped
process Mt . - Mt^Tn is a local martingale; this does not depend on the
particular representation of I as I = U[0, Tn]. The process M is a.s.

locally of finite variation on I if each Mn above has (a.s.) finite variation
on compact intervals, or equivalently if for almost all w, t -~ Mt (cv)
has finite variation on any compact subset of I (cv ) . The filtration (0t)

0

is quasi-left continuous on I if for every predictable time T we have
o 0

E I ~ up to null sets, or equivalently if all
martingales (or all local martingales on I) have totally inaccessible jumps

0 0

only on the set I. Finally a totally inacessible time on I is a stopping time
o

T such that S = T o (i.e. S = T if T E I and ,S’ = o0 otherwise)
is totally inacessible.

DEFINITION 1. - a) We say that is a jumping filtration on I if

there is an increasing sequence of stopping times with To = 0,
I = U [0, Tn~, and

nEl~

_ 

J

b) is an a,s, jumping filtration on I if (2) holds up to P-null sets..
The sequence (Tn ) above is again called a jumping sequence. The usual

P-completion (i. e. adding to each all the null sets of the P-completion
of .~’~) of an a.s. jumping filtration on I is a jumping filtration on I. If
I = I~+ we recover the notion of an a.s. jumping filtration as it appears in
Theorem l, and this theorem takes the following form in the general case:
THEOREM ~. - Let I be a predictable interval starting at 0.
a) is an a.s. jumping filtration on I iff all local martingales on I

are a. s. of locally finite variation on I.

b) If is an a. s. jumping filtration on I and is quasi-left continuous
o

on I, there is a jumping sequence (Tn ) such that with b = lim ~ rn:
n

Vol. 3 2, nO 
° 1-1996.



16 J. JACOD AND A. V. SKOROKHOD

0

(i) Tn is totally inaccessible on I and T~ [ if Tn  b;
o 0

(ii) every totally inaccessible time T on I has I n[T] C a.s. ;

(iii) any other jumping sequence (Tn ) has a.s.;
0

(iv) all local martingales on I are a.s. continuous outside 
c) If (Ft) is an a. s. jumping filtration on I with a jumping sequence

o

satisfying (i) above, it is quasi-left continuous on I.
(iii) means that (Tn) is the (unique) "minimal" jumping sequence for the

filtration (0t) on I, while (ii) means that it is the "maximal" sequence
o

of totally inaccessible times on I. When the filtration is jumping but not
0

quasi-left continuous on I, there is still a sequence (Tn) satisfying (i) and
(ii), but this is not a jumping sequence for (0t).

Proof. - We have I = U[0, Tm] for some sequence of stopping times
Tm . For each n let = and also b = lim T~ .

n

If (0t) is an a.s. jumping filtration on I with jumping sequence (Tn ),
then each (.~t ) is an a.s. jumping filtration on L~+ with jumping sequence

given by T~ _ Conversely if each (.~’t ) is an a.s.
jumping filtration on R+ with jumping sequence (T: )nEN, then (0t) is an
a.s. jumping filtration on I with jumping sequence (Tr,,), where To = 0,

.

n&#x3E;1

With these facts, it is now trivial to deduce (a) from Theorem 1. For (b)
and (c), it is enough to reproduce the proof of Theorem 2 of [10], upon

0

substituting I with the class of all totally inaccessible times on I, and q
in (3) of [10] with q A Tq..

Suppose that is a jumping filtration on I, with jumping sequence
(Tn ) . (2) obviously implies

A trivial adaptation of Lemma (3.2) and Proposition (3.3) of [8] shows
that if (Tr,,) is a jumping sequence for the jumping filtration (0t) on I,
then we have the following:

If T is a stopping time, for each n E N there is a nonnegative
-measurable random variable Rn with

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



17JUMPING MARKOV PROCESSES

A process H is optional on I iff for each n E N there is an

-measurable process Hn with Ht = Ht on ( t  

and if Hrn is measurable on { Tn  (5)

A process H is predictable on I iff for each n E N there is an

-measurable process Hn with Ht = Ht on ( t  (6)

In the rest of the paper we will apply these results in the particular case
where the filtration is the (right-continuous) filtration generated by a
process X taking its values in a Blackwell measurable space (E, ~), under
the following two assumptions:

X is (Ft)-optional (7)
For any finite stopping time T, we have = 0T- (XT). (8)

Assume moreover that is a jumping filtration on I, with jumping
sequence Introduce the integer-valued random measure p on
R+ x E:

(this is a "marked point process"), and the smallest complete filtration ({It)
for which  is optional and such that G0 = 
LEMMA 1. - We have {It = restriction to the set ~ 
Proof. - Recall first that Tn is a (Gt)-stopping time, and that =

XTP l~TP ~s~ ) : p  n), and also that ({It) satisfies (2). Now (3)
and (8) yield == V ~ (Tn, hence the property that {It = .~’t
on Un { Tn S t  readily follows from (2) applied to and (
and we have the result..

Then we can apply the results of [9] for the structure of martingales.
In order to simplify the statements, we set xo where xo is some

arbitrary point in E. If Gn (w ; dx, dt) denotes the distribution of (XTn , Tn ),
conditional on FTn-1, the compensator of  is the measure

Further, any local martingale M on I is of the following form for some
predictable function 

Vol. 32, n° 1-1996.



18 J. JACOD AND A. V. SKOROKHOD

where outside a null set x) is integrable w.r.t.

for all t E I. Finally, if M above is locally square-integrable,
its predictable bracket is, with the notation Ut = x ) v ( ~ t ~ , dx)

3. JUMPING MARKOV PROCESSES:
DEFINITION AND CHARACTERIZATION

As said in the introduction, our definition of a JMP (Jumping Markov
Process) is not a "constructive" one (starting with ( 1 )), but is in terms of
the filtration of the process.

So, unless otherwise stated, we start with a normal strong Markov process
X = ( S2 , .~’, X t , dt , Px) (in the setting of B lumenthal-Getoor [ 1 ] ) with
values in a Blackwell space (E, £). Possibly there is a finite lifetime (
and a cimetary point A, and in all cases X ~ = A by convention. 
is the filtration generated by X, and is the usual Markov completion
of ( ~ + ) . The transition semi-group of X is (Pt)t’2o. We also assume that
(7) holds (this is not automatically satisfied, because E is not a topological
space and so there is no regularity of the paths t ~ Xt ; note also that the
03C3-iields F0t are not separable here, although £ is separable).
Now, loosely speaking, the process X is a JMP if is a jumping

filtration on I = n [0, Tn] for a jumping sequence (Tn ) . The difficulties in
formulating a proper definition for a JMP come from the following facts:

1) We do not want to impose (=00, because we want to accomodate
"minimal" JMP’s which are killed at the explosion time = lim i Tn.

.n

2) As seen in Section 2, the jumping sequence is not unique, and even
the set I on which is a jumping filtration is not unique, while we
obviously wish to have I as large as possible.

3) We are mainly interested in the case where (0t) is quasi-left continuous
0

on I, a property that is difficult to state when the set I is not known

beforehand! (we could assume that it is quasi-left continuous on the whole
R+, but this is a rather serious restriction, since in general the explosion
time T (X) will be predictable with 7~ if oo ) .

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



19JUMPING MARKOV PROCESSES

Before proceeding, we recall some usual terminology for Markov

processes: a stopping time is w.r.t. (.~’t ), and it is totally inaccessible
if it is Px-totally inaccessible for all x E E; a process is a martingale
(semimartingale, etc.) if it is a martingale (semimartingale, etc.) relatively
to each measure Px; a set A is null if Px (A) = 0 for all x;

3.1. Quasi-Hunt jumping Markov processes

Among all equivalent formulations we pick the most intuitive on for
a definition:

DEFINITION 2. - The process X is called a quasi-Hunt jumping Markov
process if is a jumping filtration on a set I = with the

jumping sequence (Tn ) having the following properties:
(i) Tn is totally inaccessible (hence Tn &#x3E; 0 a.s.) if n &#x3E; 1;

(ii) and Tn  a.s. on the set {Tn  ~ ~ .
Further, X is called regular if T~ .- lim T Tn = oo Px-a.s. for all

n

~; E E..

In virtue of Theorem 2 (ii, iii) the above sequence is a.s. unique, and it is
called the canonical jumping sequence of X. The terminology "quasi-Hunt"
refers to the usual definition of a Hunt process, as it is apparent in the

following theorem:

THEOREM 3. - Assume that the lifetime 03B6 has Px (( = ~) = 1 for all
x E E. The following three properties are equivalent:

(i) For each x E E, the Px-martingales are quasi-left continuous and
with locally finite variation.

(ii) The filtration is a jumping filtration on and for each x E E
the Px-martingales are quasi-left continuous.

(iii) X is a regular quasi-Hunt JMP.
The implications (iii) =~ (ii) =~ (i) readily follow from Theorem 1, and

the implication (i) ~ (iii) will be proved after the next two results. That
(i) =~ (ii) does not immediately follows from Theorem 1, because in (ii)
we ask the filtration (0t) to be jumping and not only a.s. jumping. The
first theorem below gives a set of conditions apparently much weaker than,
but in fact equivalent to, those of Definition 2. The second one shows that
the above have very special properties connected with the fact that
X is Markov. w

Vol. 32, n° 1-1996.



20 J. JACOD AND A. V. SKOROKHOD

THEOREM 4. - The process X is a quasi-Hunt JMP iff for every x E E
there is a stopping time Sx such that:

(i) Sx &#x3E; 0 Px-a.s., and the time ~~ ~ ~ s~ ~ is Px-totally inacessible.

(ii) Any Px-martingale which is constant after Sx is quasi-left continous
and with Px-a.s. locally finite variation;

(iii) there is (at least) a Px-martingale M which has at least one

jump on the interval ( 0, on the set ~ S~  
The necessary condition above is trivial: take Sx = Tl ((iii) is satisfied

with M = Y - Y, where % = and Y is the Px-compensator of
Y). The meanings of (i) and (ii) are clear, and (iii) insures that the a-field

in restriction  oo ~ is "sufficiently big".

THEOREM 5. - Suppose that X is a quasi-Hunt JMP, with the canonical
jumping sequence 

a) There exists a totally inaccessible terminal time T  ~ such that the
sequence (7n) is given by To = 0, Tn+1 = Tn + T o a. s. Call Hx and

Gx the laws of T and (XT, T ) under Px, and

b) If x E E, H~ has no atom except possibly ~ 
c) There is a measurable function f : E x ~+ --~ E such that

d) There exists a probability kernel T from E into Eo such that for all
x E E we have r (x, ~ ~ ~ ) = 0 and

Before proving these theorems we state a lemma, which is almost trivial
when the 03C3-nelds 0f are separable (because in this case there is a countable
family of martingales which "generates" for each x all Px-martingales), but

unfortunately not so in general.

LEMMA 2. - There is a sequence (Mn) of bounded martingales with
the following property : if x E E and if Sx is a stopping time such

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



21JUMPING MARKOV PROCESSES

that all Px-martingales are quasi-left continuous on 0,Sx, then for each
Px-martingale M we have

Proof - For every Px -martingale M, set D ( M ) _ ~ t &#x3E; 0 : 0 ~ .
1) First we show that, due to (7) and to the strong Markov property, if h

is bounded measurable on E, then t -~ h (Xt) is a.s. cadlag on [0, s]
(it is known that conversely this implies the strong Markov property). Set

Let MY be a cadlag version of the P-martingale M; = Ey ( h ( X s ) ~ .~’t ) . By
the strong Markov property YT = MT Py -a. s. for every finite stopping time
T. Since both MY and Y are (Ft )-optional (the later by (7)), it follows
from [4] that they are Py -indistinguishable. Thus, setting Y ( h, s)t = Yt
on the set where Y is cadlag and Y ( h, s)t = 0 elsewhere, we obtain an
(0t)-adapted cadlag process Y (h, s) with Y (h, s)t = Ey (h for
all y E E. The main point here is that Y (h, s) does not depend on y.

2) More generally, denote by Z the family of all variables of the form
Z (Xti ), where to = 0  ...  tn  oo and hi are bounded

measurable on E. If we set gj (y) = Ey [ ~ h~ and

Zj = n then

is a cadlag version of the martingale Ex for all x E E.

3) Next we construct the sequence (M") as follows. Let ?o be a

countable algebra generating the on E, and U be the family
of all ?o-measurable functions on E taking only finitely many rational
values. The set U x Q+ is countable, and we may write it as a sequence
(hn, Then we set M" = Y ( hn , sn), and D = U D ( M’2 ) .

rz&#x3E;1
4) Let s E Q+ and h be bounded measurable on E. There is a sequence gp

in U such that gP (Xs) -~ h (Xs) in L2 (Px). Then Y (gp, s)t -~ Y (h, s)t
in L2 (P~), uniformly in t E R+. Since the jumps of all Y (gp, s) are in
D, we have D (Y (h, s)) ç D Px-a.s.

Vol. 32, n° 1-1996.



22 J. JACOD AND A. V. SKOROKHOD

Next let s &#x3E; 0 and h be bounded measurable on E, and M = Y ( h, s ) .
If u e Q+ n [0, s] we have Mt = Pu-t h (Xt) = Y h, u)t
a.s. for t  u, hence [0, u) n D (M) C D Px-a.s. Since Mt = h(Xs)
for t &#x3E; s and since u is arbitrarily close to s, we deduce D (M) C
D U ~ s ~ Px-a.s. Using (18) it follows that for Z E Z as in Step 2) above,
D (Y (Z)) C D U {t1, ..., tn ~ Px-a.s. Now apply the property that Y (Z)
is P~ -quasi-left continuous on [0, to obtain

5) Finally if M is a Px-martingale and T is a jump (stopping) time of M,
there is bounded Px -martingale M’ with on {T  oo ~ .
There exists a uniformly bounded sequence Zn E Z converging to M~ in
L2 ( Px ) . Then Y ( Zn ) t --~ M; in L2 (Px ), uniformly in t E IR+. Since each
Y ( Zn ) satisfies (19), the same is true for M’ and thus T E D Px -a. s. on
the set ~ T  S~ ~ : hence the lemma is proved..

Proof of Theorems 4 and 5. - As said before, for Theorem 4 it only
remains to prove the sufficient condition. So we suppose that for each

x E E there is a stopping time Sx having (i, ii, iii) of Theorem 4, and we
will prove at the same time that X is a quasi-Hunt JMP and that (a, b, c, d)
of Theorem 5 hold.

Let (Mn ) be as in Lemma 2. Set a-n = inf (t : 0) and

T = ( A inf and use the notation Gx, Hx, r~ (x) associated with T
n

as in (a). 
n

1 (i) and Theorem 2 imply that

is a filtration on ~x = [0, S~~ (20)

Let be the jumping sequence constructed in Theorem 2 (b).
Combining (i), (ii) and (iii) gives a Px-totally inaccessible time T such that
Px-a.s.: 0  T :S Sx and T  ~ on the set { (  Sx ~ . Since Sx ,
Theorem 2 (b)-(ii) implies 7f  T Px-a.s., thus Ti  ~ Px-a.s., and

7f = T Px-a.s. on the set { 7f = S~ ~: hence Tf is Px-totally inaccessible,
and there is a Px-martingale M having 0394MTx1 = 1 on { 7f  oo }.
By Theorem 2 (b)-(iv) we have Px-a.s. o-n &#x3E; 7f, hence T &#x3E; 7f (recall

7f  (). Conversely, Lemma 2 applied to the martingale M constructed
above yields T  Tf Px-a.s., so finally:

Px-a.s. , and T is Px-totally inaccessible. (21)

In particular we deduce that Hx ( ~ t ~ ) = 0 for all t  oo, and (b) holds.

2) (20) and (21) yield a function f : ~ x R+ - E with

f (x, t), T &#x3E; t) = 0 for all t. Then Ex ~h (Xt) 
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h o f (x, t) Hx ( (t, for any bounded measurable h. Now, (x, t) -~
is measurable, as well as (x, t) ~ Hx ((t, 00]) and

x ~ r~ (x): thus (x, t) -~ h o f (x, t) ~~)1 is measurable. Then, up to
changing f (x, t) when t &#x3E; r~ (x) (with r~ defined by ( 13)), we can and will
assume that (x, t) -~ f (x, t) is measurable.

Using again (20) and (21), we have by (4):

Any stopping time T is Px-a.s. constant on { T  T ~. (22)

By (22) and the definition of f, the two optional processes t -~ Xt 
and t 2014~ f (x, t) coincide Px-a.s. on ~T  T~ for each stopping
time T, hence by [4]:

3) Set T’ = inf (t : f (Xo, t)). Obviously n ~t  T’~ _
cr (Xo) n ~t  T’~ so exactly as for (22) we get that T is Px-a.s. constant on
{ T  T’~, which contradicts (b) unless Px (T &#x3E; T’) = 1, and in view of (23)
we deduce Px (T = T’ ) = 1, and in particular we have the first part of ( 15).

Fix t &#x3E; 0 and set g (x, s) = f(x, s) + f ( f (x, t), s -
t) and T" = inf (s : g (Xo, s)). The same argument
as above shows Px (T &#x3E; T" ) = 1. Markov property at time t and the first
part of (15) imply that Px -a. s., T" = T if T  t and T" = t + T o ~t if
T &#x3E; t. Since T is P f (x, t) -totally inaccessible and Px (T = t) = 0, it follows
that T" is Px-totally inaccessible; then Theorem 2 (b)-(ii) and (21) yield
~r (r" &#x3E; ~) - 1, so finally Pr (~ = ~) = 1 and

Combining this, the first part of (15) and the Markov property at time t
on the set {T &#x3E; t}, we get

for all s e [0, A E ~o, and (16) follows by taking A = E..
Further, Px (T" = T) = 1 f (x, t + s) Px-a.s. on

~ T &#x3E; t -I- s ~ ; since f and g are deterministic, we deduce the second part
of ( 14), while the first part is obvious. Further, the strong Markov property
at time T and (23) imply XT+u = f (XT, u) Px-a.s. for all u small enough
on {T  (}. Then on the set A = ~ T  (, XT = f (x, T) ~ we have
T  r~ (x) Px-a.s., hence Xs = f (x, s) Px-a.s. for all s  T + E by (14),
for some c &#x3E; 0 (depending on w): this contradicts the first part of (15),
unless Px (A) = 0, hence the second part of (15) and (c) is proved.
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4) (24) means that T is a terminal time. By construction T  (, and (b)
implies Px (T &#x3E; 0) = 1 for all x E E.

Set To = 0, Tn = + T o as in (a). By the strong Markov
property at Tn, we have that is Px-totally inaccessible for all x E E
and that Xt = f Tn) for all t e [Tn, Px-a.s. for all x E E.
Since contains all null sets, we readily deduce that (0t) satisfies (2).
Therefore X is a quasi-Hunt JMP (see Definition 2) with canonical jumping
sequence (T~ ), that is the sufficient part of Theorem 4 is proved, as well
as (a) of Theorem 5.

5) It remains to prove (d). If A E we define a measurable function

(x, t) -~ Z (x, t, A) by

(with 0/0 = 0). Since t ~ Hx ((t. is continuous, Lebesgue derivation
Theorem implies

Now the (7-additivity of A -~ G ( A x B) and the Blackwell property
of (E, £) allow to obtain a probability kernel r from E into Eo such
that Z ( f (x, t), 0, A) = T ( f (x, t), A) Hx-a.s. in t on [0, oo) (exactly
like for the construction of the Levy kernel of a Hunt process). Since

= A, we deduce that (17) holds, and that one may choose F such that
r (x, ~ x ~ ) = 0 follows from the last property in (15)..

Proof of Theorem 3. - We only have to prove that (i) ~ (iii). Now, (i)
implies the conditions of Theorem 4, with Sx = oo, so X is a quasi-Hunt
JMP.

To check the regularity of X, we consider the jumping sequence ( Tn)
of Theorem 5. Fix x E E. For each n there is a Px-martingale Mn

having exactly one jump of size 1 at time Tn on the set {Tn  oc ~ and
continuous elsewhere. These martingales are pairwise orthogonal, because

Tn  if T n  oc. Hence the series M = 03A31 n M" converges in
L2 (Px). The variation of t ~ Mt is infinite on the  ~}, so
Px  oo) = 0 and we are finished. t!
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Remark 1. - For a quasi-Hunt JMP the set I = U[0, Tn] is uniquely
determined (up to an evanescent set): this follows from Theorem 5, or from
the argument of the previous proof. This is in contrast with what we will
see for general JMP’s below..

3.2. General jumping Markov processes
When we drop the quasi-left continuity of the filtration, we have to be

more careful: the proper definition of a general JMP makes use of the
specific form of the jumping sequence explicited in Theorem 5, and it goes
as follows:

DEFINITION 3. - The process X is called a T-JMP if T is a terminal time
with T  ( and Px (T &#x3E; 0) = 1 for all x E E and such that, if To = 0
and Tn+1 = Tn + T o is a jumping filtration on I = Un Q0, Tn]
with jumping sequence 

Further, it is called regular if T~ := lim T Tn = oo Px-a.s. for all
n

x E E..

Theorems 4 and 5 have the following versior of T-JMP:

THEOREM 6. - Let T be a terminal time with T  ~ and Px (T &#x3E; 0) = 1
for all x E E.

a) If for all t we have null sets,
then X is a T-JMP.

b) If X is a T-JMP, call Hx and Gx the law of T and (Xr, T) under
Px for x E E and define r~ (x) by ( 13). Then there is a measurable function
f : E x R+ - E satisfying (14) and

Furthermore there is a factorization

where G’ is a probability kernel from E x [0, ~] into Eo such that

c) Under the assumptions of (b), if Hx ( ~ t ~ ) = 0 for all t  oo, then T
is totally inaccessible and X is a quasi-Hunt JMP.
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Observe that in the quasi-Hunt case, (b) above reduces to (c)-(J) of
Theorem 5 (in this case Px (T  ~ (x)) = 1 if ~ (x)  oo: so (26) and
(15) are the same).

Proof. - a) Define by induction To = 0, = Tn + T o By
hypothesis there is a function f : E x R+ - E such that Xt = f (x, t)
Px-a.s. on ~ t  T ~. We see as in Step 2) of the proof of Theorem 4
that there is a version of f which is measurable and that (23) holds. The
strong Markov property at time Tn yields Xt = f Tn) a.s. for all
t E [Tn , Tn+ 1 ) . Then the same argument than in Step 4) shows that is
a jumping filtration with jumping sequence (Tn ) .

b) In view of (5) and (7) there is a measurable function: f : E x R+ - E
such that Xt = f (Xo, t) if t  T. The first part of ( 14) is obvious. (27) and
the second part of (14) readily follow from the Markov property applied at
time t on the set { t  T ~ and from the fact that T is a terminal time.

Set T’ = inf (t : f (Xo, t)). We have T  T’ and 0t n {t 
r’} = n {t  T’ ~ for all t. Thus T = T’ Px-a.s. by (4)
for some constant from the definition of ~ we deduce ~ (x)  ux
and thus T = T’ A r~ (x) Px-a.s., which is the first part of (26). On
the  A (, XT = f(x, T) ~ we have Px-a.s.
XT+u = f (XT, u) = f (x, T + u) for all u small enough, by the strong
Markov property applied at time T and (14): this contradicts the first part
of (26), unless Px (A) = 0, which yields the second part of (26). Finally,
there are always factorizations (28), and we may choose one satisfying (29)
by = A and (26).

c) For a jumping filtration the first jump time n = T is Px-totally
inaccessible iff its law is diffuse in restriction to R+, hence the claim..

Remark 2. - We cannot write G’(x, t; .) = r ( f (x, t), .) for some

probability kernel r on E in general: first because (27) is true only if
t  r~ ( ~ ) while here we may have Hx ( ~ r~ ( x ) ~ ) &#x3E; 0 and r~ ( ~ )  oc ;

second, even if Hx ( ~ ~ (x) ~ ) = 0 when r~ (~)  oo, we cannot use

Lebesgue derivation theorem as in Step 6) of the proof of Theorem 5
because t - Hx ( (t, oo]) may be discontinuous..

Remark 3. - If X is T-JMP (possibly quasi-Hunt) it is also a

a-JMP if a = T A r~’ (Xo) and r~’ is a function: E ~ [0, oc] having
~’ (x) = t + ~’ ( f (x, t) ) when ~’ (x) &#x3E; t. And of course it is possible
that Px ( T ~ a~ ) &#x3E; 0.

When X is a quasi-Hunt JMP, there is a "maximal" stopping time T for
which it is a T-JMP , in the sense that if it is also a 03C3-JMP then a  T a.s.
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(take the totally inaccessible time T occuring in Theorem 5). This is not
the case for general JMP’s, as seen in the following example:

Take E = (-oo, 0) U ~ l, 2 ~ and consider a cadlag E-valued process
X whose law for each starting point x is:

Then X is a T-JMP with r = inf (t : ~_ = 0). With the previous
notation, we have Hx = for x E {1, 2} and dt) =

~ c~~ (~i (dy) + ~2 (dy)) if x  0, and for the function f we can
take ~ below, with a arbitrary in E:

Now set

Then X is also a T’-JMP with the function f = f l above, and a T"-JMP
with the function f = f 2. But T’ V T" = oo a.s., and X is not a T’ V T’-
JMP. In this example there is no maximal terminal time 03C3 such that X
is a 

COROLLARY 1. - Assume that there is a measurable function f : E x (l~+ -~
E such that T .- inf (t : Xt ~ f (Xo, t)) satisfies Px (T &#x3E; 0) = 1 for all
.x E E. We call Hx the law of T under Px, and define r~ (x) by (13). Then
under either one of the following conditions:

a) T is a terminal time,

b) f satisfies ( 14),

c) Hx ( ~ t ~ ) = 0 for all t  oc,

the process X is a T-JMP, and it is quasi-Hunt under (c).
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Proof. - (a) =~ (b) by the Markov property at time t on { t  T }.
(b) r~ (a) is obvious. Since clearly 
result under (a) or (b) follows then from Theorem 6 (a).

Finally assume (c). Using once more 0t n ~ t  T } _ .~o n { t  T ~, we
see that T is Px-totally inaccessible for all x E E. Then one can reproduce
Step 3) of the proof of Theorem 4 to the effect that (b) holds..

Example. - Step Markov Processes. According to the classical notion, we
say that X is a step Markov process if the stopping time T = inf (t : Xt ~
Xo) is a.s. strictly positive and if A a.s. on the set { T  oo }.

Such a process is obviously a T-JMP (Condition (b) of Corollary 1

is met with f (x, t) = x for all t &#x3E; 0). Further, T has an exponential
distribution with some parameter a (.r,) &#x3E; 0 under Px (a (x) = 0 means
that T = oo Px-a.s.). This is easily checked, since (27) yields in this

case Hx ((t + s, oo]) = Hx ((t, oo]) Hx ((.s, oo]) for t  r~ (a;): this give
r~ (.x,) = oo and Hx ((t,, = ~~~ t for some a (x,) &#x3E; 0. Then in fact

X is a quasi-Hunt JMP.

3.3. The enclosed Markov chain and a construction of JMPs

We start with a definition.

DEFINITION 4. - The characteristics of the T-JMP X are the pair ( f, G)
of Theorem 6..

With a pair ( f, G) we always associate Hx (dt) = Gx (E,~, dt) (x)
defined by (13). We also complement G by setting

(so if ( f , G) are the characteristics of the T-JMP X, Gx is the law of (XT, T)
under Px for all x E E~, provided we set T = 0 on the set { ( = 0~).

Suppose that X is a T-JMP with characteristics ( f , G) and with the
jumping sequence (Tn ) of Definition 3 (or of Theorem 5 in the quasi-Hunt
case). Set an = Tn - We have _ (XT, T) O 2~Tn , hence
the strong Markov property of X immediately yields:

THEOREM 7. - a) The process is a Markov chain with transition

Q’ (x, s, .) = Gx ( . ) (and is also a Markov chain).

b) The process Tn) is a Markov chain with transition

Q (x, s ; dy, dt) = Gx (dy, s + dt) (it is a so-called "Markov random walk").

Now it is natural to look at the "converse" problem of constructing a
JMP with given characteristics (especially in view of the intuitive definition
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of JMPs as given in the introduction). To this effect, exactly as for step
Markov processes, we will use Theorem 7.

So we start with a pair ( f , G) where f is a measurable function from
E x R+ into E and Gx (dy, dt) is a probability kernel from Eo into
Eo x (0, oo]. This pair is called admissible if it satisfies (14), (27), (29)
and (30). As seen before the characteristics of a JMP are admissible,
and we presently show the converse: any admissible pair ( f , G) are the
characteristics of some JMP.

The method of construction closely follows the classical method for

constructing a step Markov process when one knows the parameters a (x)
of the holding times and the transition kernel r: essentially we construct a
Markov chain (Yn, Tn) with transition Q’ (x, s ; dy, dt) = Gx (dy, s + dt)
and set

Let us be more precise. Set E = E, x [0, ooj. Call SZ the space of all

sequences (Yn , an)nEN with values in E and such that = A if

A, with the canonical filtration Denote by Px the unique
probability measure on SZ for which (Yn, an) is a Markov chain with
transition Q (x, s ; dy, dt) = Gx (dy, dt) and starting at (Yo, (x, 0).
Then set To = 0, 7n = cri + ... + an if n &#x3E; 1, and define X by (31).
THEOREM 8. - If (/, G) is admissible, X is a T-JMP with T = T1.
All conditions for admissibility are necessary in an obvious way, except

perhaps the last property of (29): this property insures that Tl is indeed a

stopping time relatively to the filtration generated by X.

Proof. - Call c~ the point of 0 for which Yn = A and an = 0 for all
n &#x3E; 0. In view of (14) the family of maps ~t : SZ defined below
is a semi-group having Xt+s = Xt o ~s: we set dt (w) = c~ 
or if Yo (w) = A; if w = (Yn, and Tp  t  and Y0 ~ A
then dt (w) = with = 0, ~i - Tp+1 - t and
~n = ap+n for n &#x3E; 2. Let {.~’° ) be the filtration generated by X, and 
be the completion of (.~’° ) w.r.t. all Px.

If T = T1 then T = on { t  T } and = Hence T
is a terminal time relatively to the smallest filtration (Ht ) W.Lt. which all Tn
are stopping times and Yn is FTn -measurable. Clearly F0t C Conversely
if T’ = inf (t : Xt ~ f (Xo, t) ) then T’ &#x3E; T by (31), while (29) implies
T’  T Px-a.s.: hence T is an (Ft)-stopping time, hence all Tn’s as well
and Ht C 0t. Further, it is obvious that (Ht), hence as well, are
jumping filtrations with jump times Tn .
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It remains to prove the strong Markov property of X, which is obvious
for stopping times T &#x3E; (. We start by proving

It is enough to prove this for Z = g (Xr, T) Z’ o because
F= V-1T (F) V 03C3 (XT, T). Since T is terminal, Z o Vt = Z  T },
and dt = ~9, where {) is the shift of the chain (Yn , an). Furthermore Z’
does not depend on ao (recall (31 )), so due to the special form of transition
Q, the law of Z’ conditional on (Yo, ao) does not depend on ao. Therefore
the Markov property for the chain (Yn, and (3.8) yield:

Since (0t) is a jumping filtration, for any stopping time T there are

-measurable variables pn with T = on An = ~ Tn  T  ~,
and if B E there is Bn e with 
T o ~Tn ~ . Thus

(using the strong Markov property at Tn, which follows from = 

By (32), this is equal to

and the strong Markov property holds for T on An..

3.4. The semi-group equation

If X is a T-JMP with characteristics ( f , G) and jumping sequence (Tn )
and T~ = lim i Tn, we set

This process X * is called the minimal process associated with X, and it
is again a T-JMP, with the same ( f , G) as X (this is obvious). Denoting
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by ( Pt ) and (Pt) the submarkovian transition semi-groups of X and X *
(on E), we readily obtain from the strong Markov property at time T on
{ T that both of them satisfy

THEOREM 9. - a) Let ( f , G) be an admissible pair. Then equation (34) has
solutions that are sub-markovian semi-groups on E, and among these there
is a minimal solution (Pt ) (in the sense that Pt (x, A)  Pt (x, A) for all
t, A), which is the semi-group of the process constructed in Theorem 8.

b) If X is a T-JMP with characteristics ( f , G), then (Pt) is the

semi-group of the minimal process X* associated with X by (33).

Proof. - a) Let X be the process of Theorem 8, with its semi-

group (Pt ). Set (x, A) = Ex [lA (Xt) Then (x, A) _
Hx ( (t, lA ( f (x, t)) and, by the Markov property at T:

By the monotone class theorem (x, A) i Pt (x, A). Let (Pt) be
another semi-group solution to (34). We have Pt &#x3E; and by induction
on n we see that Pt &#x3E; for all n, hence Pt &#x3E; Pt and the claims
are proved.

b) Now let X be any T-JMP with characteristics ( f , G), and X * the
associated minimal process. Then (x, A) = Ex [lA (Xt by
induction on n, hence (Pt) is the semi-group of X * . .

3.5. Regularity
In this section we study the regularity of the T-JMP X, in terms of the

characteristics ( f , G). For any nonnegative function g on E x R+, set

Consider also the Markov renewal equation associated with the transition
Q of Theorem 7 and the function g above:
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(i. e. ~c = g + Q ~c, where Q is the sub-markovian transition on E x I~+
given by Q (x, s; dy, dt) = Q (x, s; dy, dt) (g, t) and with Q
like in Theorem 7).

THEOREM 10. - a) Equation (37) admits nonnegative (possibly infinite)
solutions, and among all these there is a minimal solution denoted by K.

b) The minimal solution satisfies for x E E:

Proof. - Define ic by (36), = That ic satisfies (35) is

n ~ N

obvious. Let u be any other nonnegative solution. Then u = g + +
... + Qn 9 + for all n, hence u &#x3E; ic: this proves (a) and that ic is
the minimal solution. For simplicity we write g (x, oo) = 0.
By Theorem 7, t + Tn )] = Ex(03B6nt ) 

03A3g(Xtp,t+tp). If Û(x,t)  ~, then 03B6t is Px-integrable and

p=n

03BEnt~ 0 as n ~ oo and 03BEnt  gt. Then Lebesgue Theorem yields (37)..
Below we denote by t the minimal solution of (35) for g (x, s) = 

THEOREM 11. - a) If lit (x, 0)  oo for all x E R+, then X is
regular and ut (x, s)  oo for all s, t &#x3E; 0.

b) The set So = {(.r, s) E E x (x, s)  oo, Vt E 

an invariant set for the submarkovian transition Q (i.e. Q (x, s; So) = 1
for all (x, s) E So).

Proof - a) Since ût (x, 0) = Ex (03A31{Tn~t}), the first claim is obvious,
n ~ N

and the second one follows from s) = 
nE~!

0).
b) We have s) = + x). Hence if (x, s) E So

we have Q (x, s ; At) = 0 where At = ~ (~, s ) : lit (x, s )  Since

t -~ ict (.c, s) is increasing we have n and the claim follows..

nEl~

Now we give two necessary and sufficient conditions for regularity. The
first one is in terms of the above sub-markovian transition Q on E x R+,
the second one in terms of the submarkovian transition Ga on E defined by

Annales de I’Institut Henri Poincaré - Probabilitês et Statistiques



33JUMPING MARKOV PROCESSES

These conditions are extensions of well-known regularity conditions for
step Markov processes (with the same proof).

THEOREM 12. - The T-jumping Markov process X is regular iff one of the
following two conditions holds (where ~ &#x3E; 0 is arbitrary):

a) Q has no non-trivial nonnegative bounded harmonic function ~c

satisfying sup u (x, s) -~ 0 as s ~ oo.
xEE

b) G~‘ has no non-trivial nonnegative bounded harmonic function.

Proof. - a) Assume first X regular, and let  be a bounded nonnegative
harmonic function for Q with v ( s ) . - s ) ~ 0 as s -~ oo .

x

We naturally set u(x, 0. Then + Tn) is a bounded

martingale under Px, converging to a limit xt having Ex (Xt) = t).
Now U (XTn’ t + Tn)  v (t + Tn) -~ 0 Px-a.s. since Tn ~ oo Px-a.s. It

follows that xt = 0 Px-a.s. and thus  = 0.

Conversely if X is not regular, ~cn (x, t) = Ex (exp - (t + Tn)] decreases
to the nonnegative bounded function u (x, t) = Ex (e-t-~ ) and there is at
least a value x E E with u (x, t) &#x3E; 0 for all t &#x3E; 0. Now Q un = 
and = ~c follows.

b) The strong Markov property yields ~Tn ~ _
( G~ )’~ f (~ ) . If f is bounded and X is regular, we deduce (G’ )" f (x ) --~ 0,
so if further f is harmonic we have f (x) = 0 for all x E E. Conversely if X
is not regular, f n (x ) = (GÀ)n 1 (x ) decreases to the bounded nonnegative
function f (x) = Ex (e-~~ ), and there is least a value x E E with f (x) &#x3E; 0.

Now G~ fn, hence f = G~/. N
As a trivial consequence, we obtain that if - inf Hx ([8, oo]) &#x3E; 0 for

xEE

some 8 &#x3E; 0, then X is regular: indeed in this case G~ 1 (x)  a  1,
which obviously implies Property (b) of the previous theorem.

4. MARTINGALES, SEMIMARTINGALES,
INFINITESIMAL GENERATOR

In this section we study the traditional objects of interest in Markov
processes, such as martingales, semimartingales, additive functionals, etc.
Apart from the first and very simple subsection, we deal only with quasi-
Hunt JMPs: the case of general T-JMPs is much more technical and

presumably not very important for applications.
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4.1. Martingales of T-JMP

Here we suppose that X is a T-JMP with characteristics ( f , G) and
jumping sequence (7 n) and = lim i Tn .

n

Since is again a JMP (by the strong Markov property at 
with an explosion time T~ and is a JMP with explosion time
T~, etc., by transfinite induction and use of Theorem 2 we have

THEOREM 13. - Any (local) Px-martingale of a T-JMP is a compensated
sum of jumps (however, these martingales may have infinite variation on
finite intervals [0, t], if t &#x3E; 

Consider now the integer-valued random measure  given by (9). Recall
that (7) holds by hypothesis, and (8) is easily deduced from (26). In view
of ( 10) and of Theorem 7, its compensator under each measure Px given by

Then ( 11 ) and the fact that a semimartingale is a local martingale plus a
process of locally finite variation yield:

THEOREM 14. - a) If M is a Px-local martingale on I = u Q0, Tn] there
exists a predictable function U on SZ x l~+ x E such that

Conversely, for any predictable function U satisfying (38) the formula (39)
defines a Px-local martingale on I.

b) A process is a semimartingale on I iff it is a.s. of finite variation on

any compact subset of I.

4.2. Local characteristics of a quasi-Hunt JMP

In all the rest of Section 4 we suppose that X is a quasi-Hunt JMP, with
characteristics ( f , G). We have the canonical jumping sequence (Tn), with
T = Tl. Recall H~ (dt) = Gx (Eo x dt) and ri (x) given by (13), and that
(14), (15), (16) and (17) hold.
The measure G used above is not a "good" characteristic, in the sense

that is not "local". So we introduce below two other characteristics. One
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governs the "size of jumps" and is the kernel F of ( 17). The other governs
the "rate of jumps" and is defined by

DEFINITION 5. - The local characteristics of the quasi-Hunt JMP X are
the triple (f, f, F) defined above..

This triple is admissible in the sense that

a) (x, t) ~ P~ (t) is a measurable map from E x R+ into [0, with

P~ (0) = 0 and t -&#x3E; ~~. (t) continuous increasing;
b) f is measurable from E x R+ into E and satisfies (14), with

r~ (a) = inf (t : I = oo);
c) f satisfies ~~ (t + s) == fx (t) (s) if s, t E R+;
d) f is a probability kernel on E with F (x, { ~ }) = 0.

((a) is obvious by (40), which also implies that 7/ as given by (13) is also
n (~) = inf (t : P~ (t) = oc); then (b) and (d) come from Theorem 5, and
(c) comes from (16) when t  ~~ (a;) and is obvious for t &#x3E; ~ (x)).

Conversely, suppose that ( f, f, f) is admissible. Define Hx by
= and G by (17) for x E E and (30) if x = A.

One readily checks that the pair ( f, G) is admissible in the sense of § 3.3
and Hx has no atom on R+: hence there is a quasi-Hunt JMP having
( f, ~, f) for local characteristics (apply Theorem 8).

Let us write some of the previous results with the help of the local
characteristics. First, the semi-group equation (34) becomes

Second, the predictable measure v takes the form

We even have a simpler expression. Introduce a continuous increasing
adapted process L as follows:
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Then we have

Example. - Step Markov processes. The quasi-Hunt JMP X is a step
Markov process iff its local characteristics ( f , .~, F) have f (x, t) = x and
.~x (t) = a ( x ) t, where a (x) is the parameter of the holding time at point x.
Then (41) is the usual forward Kolmogorov equation, and (44) becomes:

4.3. Additive functionals

By additive functional we mean a càdlàg adapted process A such that
for all x E E and all stopping times T:

(the usual terminology is "strong additive functional"). We say that A is an
additive functional on I = Tn~ if it is adapted, càdlàg on I, and (45)

n

holds on {T -E- s e .I ~ . We also set

(observe that XTn a.s. on ~ Tn  and that r .) is the

law of XTn , conditional on FTn-).
THEOREM 15. - Assume that X is a quasi-Hunt JMP.

a) With every additive functional A on I are associated a measurable
function a : E x I~+ -~ f~ with

and a measurable function a : E x (~, such that outside a null set A
is determined on I by induction, starting with Ao = 0, by

b) Conversely if a and a are as above, (49) defines an additive functional
A on I.
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Proof. - a) By additivity, it suffices to prove (49) for n = 0. By (5) there
is a measurable function a : E x (~+ -~ R such that At = a (Xo, t) for all
t  T. Since A is cadlag, (48) holds, while (47) follows from additivity,
and we have the first part of (49) for n = 0.

Next, equals a (Xo, XT, T) up to null sets, hence there is a measurable
function b : such that DAT = b (Xo, XT, T) a.s. on

{ T  By additivity we get DAT = 0394AT o dt a.s. on { T &#x3E; t }, hence

b (x, y, t) = b ( f (~, t), y, s - t) Gx-a.s. in (y, s) E E x (t, oo) (50)

We define a transition kernel from E into E x E x R+ by

It factorizes as Gx (dy, dz, dt) (dt) K (x, t; d~, dz), and

and by (27) and (50) the kernel Gx satisfies (27) as well. Then we

can reproduce Step 5) of the proof of Theorem 4 with Gx instead of

to obtain a probability kernel F from E into E x E such that a
version of K is K (~, t; dy, dz ) = r ( f (~, t) ; dy, dz ) . Comparing to
(52), we obtain a factorization f’ (u; dy, dz) = r (~c, dy) ~a (u, y) (dz)
for some measurable function a : E x E -~ R. Thus Gx (B) =

b) This is obvious..

For example, the process L of (43) is an additive functional on I, with
a (x, t) _ .~x (t) and a = 0.

Remark 4. - We can write the second half of (49) differently: there is
another measurable function a’ on E x E such that

(same proof as above, upon substituting b with a function b’ satisfying
AT = b’ (Xo, XT, T)). Now, if A is an additive functional on I which is
not cadlag, we still have the same result, provided we drop (48) and the
second half of (49) is replaced by (53)..
Remark 5. - If X is not quasi-Hunt, the same properties hold except that

the second half of (49) reads as

32, n° 1- ~ 996.
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where b is a measurable function: E x E x R+ - R satisfying (50)..
If A is continuous, then a = 0 and we replace (48) by the continuity of

a (x, .) on ~0, ri (x) ) . If A in non-decreasing (or equivalently nonnegative),
then a is non-decreasing (equivalently nonnegative) and a is nonnegative.
The following shows that one can approximate functions a satisfying (47)
and (48) by functions having (47) and further are continuous in time:

THEOREM 16. - a) If a satisfies (47) and (48) on following
functions satisfy (47) and converge to a as h -~ 0:

b) If g : E - R is measurable and t - g ( f (x, t) ) is locally bounded,
the function a (x , t) = ~t0 g o f (x, s) ds satisfies (47) and is continuous in t.

c) If the sequence an of functions converges to a and satisfies (47),
and (48) uniformly in n, then a satisfies (47) and (48).

Proof - Observing that ah (x, t) = 1 h ~t0 [a (x, s + h) - a (x, s)] ds the
first claim of (a) is obvious, and the second claim of (a) follows ’

and from the right-continuity of a (x; .). (b) and (c) are obvious..

4.4. Martingales and semimartingales

A) Martingales have the structure described in § 4.1. Since now v is

given by (42) or (44), we can be more explicit. Let M be a Px-local
martingale on I. Using first (44), we have a predictable function U on
SZ x x E such that

Px-a.s. on ~ t e I ~, and both the sum and the integral above are Px-a.s.
absolutely convergent on ~ t E I ~ .

Secondly, using (42) and (6), there are FTn ~ 7Z+ ~ ~-measurable function
Un on 03A9 x !R+ x E such that M is defined Px-a.s. (by induction, starting
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with Mo) on I by

with an a.s. absolutely convergent integrals in the first formula above.

DEFINITION 6. - The quasi-Hunt JMP X is called quasi-Ito if for

each x E E the predictable brackets of the (locally) square-integrable
Px-martingales are absolutely continuous w.r.t. Lebesgue measure on I..

THEOREM 17. - The quasi-Hunt JMP X is quasi-Ito iff there is a

measurable nonnegative functions ~ on E such that

Proof. - Under (55), v (dt, E) « dt by (42), and X is quasi-Ito by (12).
Conversely assume that X is quasi-Ito. The function U = 1 satisfies (38)
and the martingale M defined by (39) has

Then (t) « dt, and by the same argument than in Step 5) of the proof
of Theorem 4 we get (55)..

B) Now we study martingales and semimartingales which are additive.

THEOREM 18. - Assume that X is a quasi-Hunt JMP, and let A be an
additive functional on I, and a, a associated with it as in Theorem 15.

a) A is a semimartingale on I if~’

t ~ a (x, t) is càdlàg with locally finite variation on [0, ~ (x) ) . (56)

b) A is a local martingale on I we have
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In this case, a version of the function Un in (54) is

c) A is a special semimartingale on I iff we have (56) and (57). In this
case the canonical decomposition A = B + M of A does not depend on
the measure Px, and M is an additive local martingale on I, and B is the
additive functional on I defined by Bo = 0 and

where

There is a perhaps more pleasant way to explain the canonical

decomposition in (c) above: in fact if A is a special semimartingale on
I, it is also (because of (a) above) a.s. a cadlag process with locally
integrable variation on I and the term B in (c) is the compensator of A.
We can decompose A into the sum of two other additive functionals on I:

The associated pairs are respectively ad = 0, ad = a for Ad, a~ = a,
a~ = 0 for A~. We can apply (c) above separately to A~, and Ad, and
use (42), to obtain

COROLLARY 2. - Under the above assumptions, A~ is predictable and the
compensator of A is

Proof of Theorem 18. - a) Necessity is obvious, and sufficiency readily
follows from (49).

b) Assume first that A is a local martingale on I. Writing (54) for
M = A we get that M is continuous on I~ U [Tn], and comparing with (58)
gives Un (., Tn, = on  

The function Un given by (59) satisfies this and is FTn ~ R+ ~ ~-
measurable, hence (since a compensated sum of jumps is characterized

by its jumps) it can be used in (54) and the function U in (39) is

U (., t, y) = ~ Un (., t - Tn, y) (t). Then (57) follows from
n&#x3E;0

(38) written for t  T, while (58) follows from comparing the first halves
of (49) and (54).
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For the converse, define Un by (59) and U as above. (38) follows from
(57). Further M = A satisfies (54) (or equivalently (49)) by (58), (59) and
the additivity of A. Then A is a local martingale on I.

c) Assume first that A is a special semimartingale on I. That its canonical
decomposition A = B + M does not depend on Px and gives a predictable
additive functional B on I and a local martingale M on I follows from [2]
(recall that here "additive" means "strongly additive"; the fact that we are
restricted to the interval I makes no differences with additive functionals
on R+, because T is a terminal time).

Call ( a’ , a’ ) and ( a" , a" ) the terms associated with B and M in
Theorem 15. Clearly a = a’ + a" and a == a’ + a". Since B is predictable
we have 0394BTn = 0, hence 0394MTn = on { Tn  oo}. Therefore
a" = a and a’ = 0. Applying (b), we obtain (57) and also that a" is given
by the right-hand side of (58). Therefore a’ = a - a" satisfies (61), and
(60) follows from (49) written for B, with a’ and a’ = 0.

Conversely, assume (56) and (57). Set a" = a and define a" by the
right-hand side of (58): the pair (a", a") is associated with an additive
local martingale M and I by (b). If a’ is given by (61), (60) defines a
predictable process B on I. Since the function a’ satisfies also (56) and
(47), B is additive. Then A = B + M is a special semimartingale..

C) Levy measure. - We cannot speak about the proper Levy measure
of the process X here, because this process is not cadlag. However, in
a sense it is natural to define the Levy measure (or "Levy system") as
the compensator v of the random measure ~c of (9), that is the measure
given by (47) or (44).

In particular if h is a nonnegative measurable function on E x E such
that the process At = ~ h (X~, XTn ) is locally integrable on I (recall

nl 

"

(46) for its compensator is the process

(this follows e.g. from Corollary 2, upon observing that with the notation
of this corollary we have A~ = 0 and a = h).

4.5. Semimartingale functions

We say that a measurable function g on E is a semimartigale
(resp. special semimartingale, resp. martingale) function of X if g (X ) is
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a Px-semimartingale (resp. special semimartingale, resp. local martingale)
on I, for all x E E.

THEOREM 19. - Assume that X is a quasi-Hunt JMP.

a) g is a semimartingale function iff, with g (x; t) = g o f (x, t),

g (x,.) is càdlàg with locally finite variation on [0, ~ (x) ) . (62)

b) g is a special semimartingale function iff we have (62) and

In this case the predictable process B in the canonical decomposition
g (X) = B + M is given by (60) (starting with Bo = 0), where

c) g is a martingale function iff we have (62), (63), and

Proof - a) At = g ( X t ) - g (Xo) is always additive, so the first part
of (49) holds with r~ (~, t) = 9 (x, t) - 9 (x, 0). Then (a) follows from
Theorem 18 (a).

b) Assume (62). We also have the second half of (49) with some

measurable function a on E x E. Then a (XT ; XT) = g (XT) - 9 (Xo; T-)
a.s., and since the law of XT conditional on on ~ T  oo}, is

.), by taking the conditional expectation we get
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and the same without absolute values if the above is finite. This can also

be written as

and since .~x is continuous we can replace 9 (~, s-) by 9 (x, s) = go f (~, s)
above. Therefore (63) and (57) coincide, hence the necessary and sufficient
condition. Further, (64) and (61) also coincide, so the last claim follows
from Theorem 18 (c).

c) g is a martingale function iff it is a special semimartingale function
with B = 0 in the canonical decomposition g(X ) = B + M: hence
(&#x26;)~(c). N

4.6. Infinitesimal generator

Recall that (Pt) is the (sub-markovian) transition semi-group of X on E.
We denote by Bo the set of all bounded measurable functions g on E such
that Pt g - g pointwise as t --~ 0, and by (A, the (weak) infinitesimal

generator of (Pt) considered as a semi-group acting on Bo (cf Dynkin [6]).
We begin with a trivial lemma:

LEMMA 3. - Bo is the set of all bounded measurable functions g on E
such that g o f (x, t) -~ g (x) as t -~ 0 for all x E E, and in this case
t -~ g o f (x, t) is right-continuous on [0, r~ (~) ) .

Proof. - The first claim comes from the formula

and the second claim comes from the first one and from (14)..

THEOREM 20. - If g E P,4 we have (with Id the identity operator) :
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Proof. - Let g e DA. The process

is a bounded cad martingale, so Ex = 0. Further

because Bo, hence (A g) o f (x, s) Hx ( (s ~ --~ A 9 (x) as s -~ 0
by Lemma 3. (65) follows by lettin g t -~ 0 in - E x = 0..

If g E D~ then g is a special semimartingale function (recall (66)),
so we can also use Theorem 19: in fact, in the canonical decomposition

g (X) = B + M we must have Bt = (Xs) ds. Using (60) and (64)
for t  T, we get 

~0

This is a complicated relation, which relates the measures ds, dRx (s), and
ds [g o f (x, s)~ (recall that g satisfies (62) here). When X is quasi-Ito we
have (55), and (67) simplifies somewhat:

THEOREM 21. - a) If X is quasi-Ito and if g E then

b) If X is quasi-Ito and if 03BB o f (x, t) ~ 03BB (x) as t ~ 0 for all x E E,
then for any g E D~ such that r g E ~o we have
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(a) is deduced from either (65) or (67). This implies in particular that if
g E DA, then t ~ ,g o f (:~~ t) is differentiable from the right at t = 0.

Exemple. - Step Markov process. - If X is a step Markov process,
f(x, t) == x and À(x) = a (x). So = a (x) ~T g (~) - g (x)~ if

g e DA and fg E Bo..
We cannot go much further in the examination of the infinitesimal

generator (which, for instance, is not determined by the characteristics if
the process is not regular). Note that all previous results (Theorems 20
and 21 and (67)) still holds for extended generator (again introduced by
Dynkin [6]): this is the linear operator (A’, DA), where is the set of

bounded measurable functions g on E such that there exists a bounded
measurable function A’ g such that (compare to (66)):

is a martingale on I = u [0, Tn] (the restriction to I is ad hoc for JMP).
In fact, considering the additive functional L on I defined by (43), which

plays a basic role here, we can also consider the L-extended generator
(introduced by Kunita [11]): this is the linear operator (,,4", where

D~~~ is the set of bounded measurable functions g on E such that there
exists a bounded measurable function such that

is a martingale on I. Here again we have D,~~~ C But now, without any
condition on X (except being a quasi-Hunt JMP), we have the following,
which easily follows from Theorem 19:

THEOREM 22. - Assume that X is a quasi-Hunt JMP. Then a bounded
measurable function g on E belongs to iff there is a bounded
measurable function K g such that

and in this case A" g (x) = K g (x) + r g (x) - g (x).

5. PURELY DISCONTINUOUS MARKOV PROCESSES

In this section we introduce a sort of generalization of JMP’s, which
we call "purely discontinuous Markov processes". This supposes that our
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Markov process has cadlag paths, and so we assume in this section that E
is a Polish space with a metric p and the Borel a-field ?. In a sense, those

processes are the "natural" limits of JMP’s.

Roughly speaking, a purely discontinuous Markov process X is as

follows: for 0  ~  b we throw away all jumps of X of size between E
and 8; letting E ---~ 0 we should obtain a limit in law (for Jl topology) Y~
which of course has only jumps of size bigger than 8, and which should
be a JMP; then letting in turn 8 --~ 0 we should have weak convergence
of Y~ to the original process X. When for example X is a diffusion with
jumps, the fact that Yb is a JMP implies that the diffusion term should
not actually paper.

Since we want to remain within the Markov setting, throwing away jumps
needs some work, which is done in § 5.1. Because of technical questions
related to finite lifetime and non-regularity for JMP’s, it is unfortunately
not true that all JMP’s are purely discontinuous, but all "decent" ones

are. So what follows is a first attempt to some theory which is not well
rounded up yet.

5.1. Transformations of a process

The first two transformations below (continuation and killing) are well
known in much greater generality than what we quickly recall here, for the
convenience of the reader. We start with a normal strong Markov process
X = (f2, .F, X t , Px) with lifetime ( and cadlag paths t -~ X~ on
[0, (), so (7) is met. It is not a restriction to assume also that there is a

unique point c~ in Q such that ((9) = 0, so that ~t (c,~ ) = a if t &#x3E; ~ (cv ) .

A) Continuation. - Consider a transition probability N from ( SZ, .~’) into
(E~, such that

According to Meyer [13] we can construct a new normal strong Markov

process X = .F, X t, dt, called the minimal continuation of
X associated with the kernel N, as follows: set S~ = SZ~* , .~’ _ .~’~~* . We
denote by An the class of cylindrical sets in .~’ of the form A Ai

iEN*

with Ai and Ai for all i &#x3E; n + 1. For x e E~ we define Px on

 by induction on n, starting with Px (A) = Px if A = II Ai E .Al
.~n
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and setting for A e An if we know Px on 

where A’ _ ~ Ai+1. As is well known, this extends uniquely into a
i&#x3E;1

probability kernel Px from ~o ) into (Q, It remains to define the

process X and the shifts ~t by setting for w = 

Finally we denote by the usual Markov completion of the filtration
generated by X, as is associated with X. An important feature of
X is that it is defined on an extension of the original space SZ, and that,
with some obvious abuse of notation:

A particular case is when

where ~ is some probability kernel on E. A continuation of X associated
with N as above will be simply called continuation associated with ~.

B) Killing. - Now we consider a terminal time a of X, having a  ~
and Px (a &#x3E; 0) = 1 for all x E E. Set

It is well known that the process X* = (S2, .~’, X~ , Px) is a
normal strong Markov process with lifetime (* = cr, called the process
killed at time ~.
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C) Throwing out jumps. - Let C be a measurable subset of E x E
such that aC = ( A inf (t &#x3E; 0 : (Xt- , Xt) E C) (a terminal time) has
Px &#x3E; 0) = 1 for all x e E.

DEFINITION 7. - The process obtained from X by throwing out jumps
inside C is the minimal continuation X C associated with the kernel
~ (x, dy) = ~x (dy) (remember (69)) of the process X*c which is X
killed at 

Now we look at what happens when our cadlag Markov process is also a
T-JMP. The function f (x, ~ ) of Theorem 6 is obviously cadlag on ~0, ~ (~ ) ) .
In the Hunt case, we have the following:

a) If X is Hunt and is a quasi-Hunt JMP, the function f (x, .) is
continuous on [0, r~ (~) ) (otherwise there would be predictable jumps). If
X is Hunt and is a regular T-JMP, it also a quasi-Hunt JMP (we do not
know whether this is true in the non-regular case).

b) If X is a regular quasi-Hunt JMP with f (x, .) continuous on [0, ri (x))
it is a Hunt process (if it is not regular, it may have a predictable jump or
no left-hand limit at the first explosion time).
THEOREM 23. - Assume that X is a T-JMP with characteristics ( f , G),

having the following:

Let C be a measurable subset of E x E which does not intersect the diagonal.
Then X C is a JMP with characteristics ( f , GC), where GC satisfies

Further, for each A E ~o, (x, t) ~ G~~ (A x ~0, t]) is the unique bounded
measurable solution of Equation (70) on ~ (x, t) : x E E, 0  t  r~ (x) ~.

In particular if X is a quasi-Hunt JMP, (a) and (b) are satisfied. Further
Gx (Eo , ~ ) is diffuse, so G~ ( Eo , ~ ) also by (70): therefore X ~ is again
a quasi-Hunt JMP.
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0

Proof - Since X is continuous on I B(U~Tn~), obviously X’ := is
a T-JMP with the same function f and the same time T than X.

For the construction of the process X = X C, use the notation of § A.
Let TC be the first jump time of Xc, and (’ be the lifetime of X’, and
assume that we start at x. Three cases are possible:

If Gx denotes the law of TC) (starting at x) then (70) easily follows
from the Markov property for X C at time T.

Since T we have r~C (x) &#x3E; r~ (x), so (71) holds when r~ (x) = oo.
Assume now r~ (x)  oo. Set ao = 0, ~n (w) _ ~’ + ... + ~’ (wn)
(notation of § A). Suppose that

for some n. If TC &#x3E; we have (’ = T  o0

and Xf = f (x, t) for t C o-n+1 Px -a.s. (use ( 14)); (b) implies
T  ~l o f and since r~ (x) _ ~n = r~ o f ~r
if ~ (x) &#x3E; a n by (27), it follows that (72) holds for n + 1. Since (72) is
obvious for n = 0, it holds for all n. Thus if an  TC  we have
TC = an + T  ~ (x). Further TC  .- lim an (= the lifetime
of It follows from all this that TC (x) and that TC = if
T~ = r~ (x), this gives ~C (x) (~), hence r~C (x) = r~ (~). and
also the last part of (71): hence (71) is always satisfied.

It remains to prove the uniqueness. Fix A E ~o, x e E and T  r~ (x).
Call g (s, t) the first integral in (70) with f (x, s) instead of x, and

T ~, in view of (14), (70) with f (x, s) instead of x gives

Gx ([0, T])  1 by definition of T. Hence if we consider g, as elements
of the set B of all bounded Borel functions on ST, endowed with the
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uniform norm, we can write (73) as h = g + K h where K is an operator
on B with norm strictly smaller than 1. Then (73) has a unique bounded
measurable solution on ST and since T is arbitrary in ~0, r~ (x) ) this gives
the last claim..

5.2. Purely discontinuous Markov processes

In all this subsection, X = (SZ, .~’, 0t, dt, Xt, Px) is a cadlag normal
strong Markov process taking values in the Polish space E, with lifetime (.

DEFINITION 8. - X is called deterministic if there is a measurable function

f : E x R+ - E such that Px (Xt = f (x, t) Vt  () = 1 for all

x E E..

Note that a deterministic process X in the above sense is not properly
speaking "deterministic", since the lifetime ( is random. It is a (-JMP by
Corollary 1, and one may choose f (x, .) to be cadlag. Further X is a Hunt
process iff f (x, .) is continuous and ( is totally inacessible.
Below we shall consider weak convergence for Markov processes,

which is defined as follows. Denote by ® ( ~0, t~ ) the space of all

cadlag function from [0, t] into E, endowed with the J 1 topology. Let
X" = xn pn) be a sequence of E-valued normal
strong Markov cadlag processes, with lifetimes ~n. We say that X n weakly
converges to X, and write W, if for all t &#x3E; 0, x E E, and all
bounded continuous function cp on D([0, t]),

where of course cp is the function (~ evaluated for the restriction of
X" to the interval [0, t].
With the notation of Definition 7, we write X ~ ~ s = X C when

= ~ ~~~ ~) : ~  p (~~ ~J) ~ b ~, and X~ = °°.

DEFINITION 9. - a) The process X is called purely discontinuous if for
every 8 e (0, oo) there is a quasi-Hunt JMP Ys such that

b) The process X is called weakly purely discontinuous if there exists a
deterministic process Y such that X~ w Y as ~ ~ 0..

We provide first some general results for these processes.

THEOREM 24. - A purely discontinuous process is weakly purely
discontinuous.
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Proof. - By Theorem 5 a quasi-Hunt JMP which is continuous up to its
lifetime is deterministic in the sense of Definition 8. Hence it is enough to

prove that the process Y(X) of (75) with 8 = oo is continuous. Now, the

jumps of X~ = X ~~ °° are smaller than e (i. e. p (Xt ,  ~), hence by
(75) the jumps of are also smaller than E on (0, ~°° ), where ~°° is the
lifetime of Y°° . Since 6 &#x3E; 0 is arbitrary, Y(X) is continuous on [0, ~°° ),
hence the result..

THEOREM 25. - If X is a T-JMP such that ~ (x) = 00 and that f (x , . ) is

continuous for all x E E, then it is weakly purely discontinuous.

Proof. - By Theorem 23 we know that X~ is a for some stopping
time Té. Denote by H~ the law of T~ when Xo = x, and h~ (t) = H~ ( ~0, t~ ),
and ax (t) = Gr (dy, du) 1{.u~t, P ~ f (x, u~, y~~~ (notation of Theorem 6
for X), and ,~x (t) = Px (T  t). Then (70) yields

(27) yields 1- h~ (t) = (u)] (t-u)]  (t-u),
hence (77) implies hx (t)  cx~ (t) -f- ,~x (t) hx (t), hence h~ (t) S
03B1~x (t) / [1-,03B2x (t)]. If we fix t  ~, we have 03B2x(t)  1 because ri (x) = oo,
and 03B1~x (t) ~ 0 as ~ ~ 0 because of (29), thus h~x (t) ~ 0 as ~ ~ 0. This
readily implies that X ~ ~ Y where Y is the (obviously deterministic)
process having Px (Yt = f (x, 0) = 1..
THEOREM 26. - If X is a quasi-Hunt JMP such that X and each 

are regular, then X is purely discontinuous (we have already mentionned
after Theorem 23 that is a quasi-Hunt JMP).

Proof. - a) Fix 8 E (0, oo]. In a first step, we construct the continuation
(for ~ E [0, 8)) of the process X killed at the first time there is a

jump of size in (~, b~, based on X itself and not on the killed process.
This is a trivial modification of the procedure described in § A, which

goes as follows.

We start with the regular quasi-Hunt JMP X = (0, .~’, Px).
Set ~~ = inf (t : e  p (Xt- Xt)  8), which is the lifetime of the

killed process (since X is regular, Px (( = oo) = 1 if x E E and X is
cadlag on R+). By convention = A. Let n, An be as in § A.

If A E An we set
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which extends uniquely into a probability kernel P~ ~ s from (E~, ~o )
into The process and shifts ~9t’ s are defined by setting for
i5 == .

Finally we denote by (.~t ’ s )t&#x3E;o the usual Markov completion of the
filtration generated by X ~ ~ s . Then X ~ ~ s = (Q, ,~’t ~ s ~ Xt ~ s ~ ~g~ , s ~ p~ ~ s )
is clearly a version of the wanted process.

b) Next we compare X~~ s and X°~ b. Set C (n, ~) _ ~ W = (Wp)p&#x3E;1 ;
~~ = ~° for 1  2  n ~, and D (n, t, ~) = C (n, ~) f1 ~ ~° &#x3E; t ~.
From the construction above,

Therefore if cp is a bounded function on D ([0, t] ), we have

Furthermore, for V = 0 and V = c, we have D (n, t, e) ~{ 03B603B8 &#x3E; t }, hence

c) We have o-°  o-~, and Px (~°  -~ 0 as e -~ 0. Then (78)
yields P°- s (C (i, + 1, ~)) ~ 0 as ~ ~ 0 for all i, hence

e)) -~ 1. Further P°~ s (~o - oo) - 1 if x E E since 
is regular by hypothesis. Hence

Finally P~ ~ s (D (n, t, ~) ) = P°~ s (D (n, t, e)) by (79), so (79) and (80) yield
E~,03B4x [03C8(Xe,03B4) 1{03B6~&#x3E;t}] [03C8 (X°’s) as ~ ~ 0, for every
bounded function cp on D ([0, t~ ) : that is, we have (75) with Ys = X °; s .
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d) It remains to prove (76). Set T8 = inf (t : 0  p (Xt- , Xt)  8).
In view of (68) we have X °’ ~ = Xt for all t  T8. Since X is regular,
T~ --~ oo Px-a.s. for all x E E, so (76) is obvious..
Now we consider various examples of quasi-Hunt JMP which are or are

not purely discontinuous. The first one is a step Markov process which
is not purely discontinuous (note that by Theorem 25, every step Markov
process is weakly purely discontinuous).

Example 1. - We consider the countable state space E = ~ 1 /z : i E

N* } U { 0 ~ endowed with the metric induced by the usual metric on R.
Take for X the minimal step Markov process with jump transition matrix
7r = x, y E E) and parameters of holding times ( ax : x E E )
given by = 1 and a1/i = i if i E N*, and ao = 1, = 1.

The lifetime is (= lim inf (t : 0  Xt  ~).’ ’

Let 0  ~  b  1/2, let n and m be the integers such that

- - 20142014-  ~  -- and --  b  -.
n n m m+l- m-1 m

Then X~~ s is the conservative minimal step Markov process with jump
transition matrix 7r, and a~,03B41/i = i for z  m - 1 or i &#x3E; n, and = 0

if m  z  ~ - 1 and = 1. Clearly X~~ ~ as c ~ 0, where
is the conservative minimal step Markov process with the same 7r and
= i for i  m - 1 and = 0 if i &#x3E; m and = 1. Since each

is conservative while X is not, we cannot have X °~ ~ ~ X as 6 2014~ 0

because (74) fails for the function (/? = 1 on D ( ~0, t~ ) . .
The next example shows that in Theorem 26 the assumption that each

X°~ ~ is regular is not necessary for the conclusion to hold.

Example 2. - Let X be an N-valued minimal step Markov processes with
jump transition matrix 7r and parameters of holding times (ai : i E N)
given by a2i+1 == 0 and a2i = 1 /i for i E N (the odd integers are absorbing
points), and i+1 = i+2 = 1/2. Then X is regular, and Xt converges
to a limit as t -~ oo with

Endow N with the usual metric. Then is a minimal Markov process
with the following characteristics (recall ~  b below):

a) If 0  ~  l, b &#x3E; 2: each point is absorbing.
b) If 0  ~  1  b  2: each odd integer is absorbing; the holding

time in the even state z is 2 ai, and with probability 1 the process jumps
from i to z + 2 if i is even.
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c) If 1  ~  2  b: each odd integer is absorbing; the holding time
in the even state z is 2 ai, and with probability 1 the process jumps from
i t0 i + 1 if i is even.

d) In all other cases, X ~~s = X.

Clearly X is purely discontinuous. However the process X ~~b for

0  ~  1  b  2 is not conservative..

The next example is a regular quasi-Hunt JMP which is not weakly
purely discontinuous.

Example 3. - The state space is E = ( 0, ~) x [0, oo ) . We consider the
regular quasi-Hunt JMP X with characteristics ( f , H, F) given by

These characteristics are admissible. We have r~ (~, 0) = 1 I x and

r~ (x, y) = oo if y &#x3E; 0. A more concrete description of X is as follows: if
Xo = (x, y) with ~/ &#x3E; 0 then Xt = (tx; t~) for all t. If Xo = (x, 0), then

Xt = (x 1-ts,0) for t  T and T is uniformly distributed on (0, l/.c) and

for all t &#x3E; 0.

If e &#x3E; 0 the process X~ is again a regular quasi-Hunt JMP, whose
characteristics are ( f , HE, F), with

if x  1/c and y) 
= y~ otherwise. Then if we start at (x, 0), the

processes X~ do not converge in law as E --~ 0, because the limit, if it

existed, would explose at time t = 1/x.
In this example, Theorem 25 fails because 7/ (x , 0)  oo, and Theorem 26

fails because the process is non-regular..
We end this section by checking which real-valued processes with

stationary independent increments (in short PIIS) are purely discontinuous
in the sense of Definition 9. Fix a continuous "truncation" function, i.e.
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a continuous function h on R with compact support and h (x) = x on a
neighbourhood of 0. Recall that the characteristics of a PIIS X are a triple
( b, c, F) with b e R, c E and F (the Levy measure) a measure on
R integrating A 1 and with F ( ~ 0 ~ ) = 0, and they are related to X
via E = ~~‘~ with

THEOREM 27. - Let X be a PIIS with characteristics (b, c, F). There
is equivalence between:

a) X is purely discontinuous.

b) X is weakly purely discontinuous.

c) We have c = 0 and

(81)

(c) above is fulfilled if X has locally finite variation (i. e. c = 0 and F

integrates A 1). It is also fulfilled if c = 0 and F is symmetric about
0 (e.g. for symmetric stable processes).

Proof. - For 0  e  b  oo the process X ~~ s is again a PIIS with
characteristics ( b~ ~ s , c~ ~ s , F~ ~ s ) given by

Let us introduce the second "modified" characteristics:

Let us first study (b). As is well known, X~ = X ~~ °° converges weakly
to a limit Y (necessarily another PIIS, with characteristics (b’, c’, F’)) iff

for all continuous bounded g which are 0 in a neighbourhood of 0, as

~ -~ 0. Now, (83) holds iff (81) holds, in which case b’ = b - ,~, c’ = c
and F’ = 0. Further, Y is deterministic in the sense of Definition 8 iff

c’ = 0, F’ = 0.. Therefore (l~~ ~ (c).
Now, assume (c). If ~ ~ 0 we clearly have
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for g as in (83), as ~ ~ 0 (F0,03B4 is defined by (82)). Therefore X~,03B4w ys,
where Ys is a PIIS with characteristics (b°~ s, 0, F°~ s). Since F°~ s (R)  oo,

Y~ is a compound Poisson process with linear drift, and so is a quasi-Hunt
JMP. Finally, as 6 --~ 0 we have

and thus X. Thus we have (a). Finally (a) ~ (b) by Theorem 24..

6. NON-HOMOGENEOUS JUMPING MARKOV PROCESSES

In this section we wish to consider the JMP property in the non-

homogeneous case. We start with a non-homogeneous normal strong Markov
process X = (SZ, .~’, Xt, Ps, x ) taking values in the Blackwell space
(E, ?): let us briefly recall some essential properties here; see Dynkin [5]
for a general account on the subject. We have a measurable space (Q, .~’)
and a transition probability from ~+ x Eo into (SZ, .~’); X is an
E.-valued process with lifetime ( (Xt = (); we consider the
a-fields .~’°’ S (Xr : s  r  t) for s  t, and we denote by 
the usual completion of the filtration (.~’°+S ) t &#x3E; S relative to the family of

measures ~c (dx) Ps, x, where ~c runs through all finite measures on ~.

Property (7) is replaced by:

For each s &#x3E; 0, the process is optional w.r.t. (.~t )t&#x3E;s. (84)

The normally of the process is Ps,x(Xs = x) = 1. The strong Markov

property is

for any bounded measurable g and any time T &#x3E; s, where

the family (P (s, x, t, dy) : s  t) is the non-homogeneous transition
semi-group of X defined by P (s, x, t, A) = E A). As mentionned
in the proof of Lemma 2 for the homogeneous case, if the process X is
Markov (i.e. it satisfies (85) for T deterministic) and has (84), then it is

strong Markov iff the processes r --~ P (r, Xr, t, A) are Ps, x-a.s. cadlag
for r E [s, t] (for all s  t, A E ~): this is regularity in Dynkin’s sense,
not to be confused with the regularity of a JMP as introduced before.

It is well known that the associated space-time process is a normal

strong homogeneous process, and we say that X is a JMP if the associated
space-time process is a JMP (see eG;G; Mayer [12]). However it is just as
simple to rewrite everything in the non-homogeneous case than to translate
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the results from the space-time process to the original non-homogeneous
process X.

6.1. Quasi-Hunt jumping Markov processes

We consider only the quasi-Hunt case. Of course the filtration (.~’~ )t&#x3E;s,
which "starts" at time s, is said to be jumping if it satisfies the conditions
of Definition 1 with To = s instead of To = 0.

DEFINITION 10. - The process X is called a quasi-Hunt jumping Markov
process if for each s &#x3E; 0 the filtration (.~’t )t&#x3E;s is a jumping filtration on
a set Is = U ~s, with a jumping sequence (Tn ) having the following

, 

n

properties:
(i) Tn is PS, x-totally inaccessible for all x E E, n &#x3E; 1;

(it) Tn  ~ and Tn  on the set ( Tn  ~ ~, Ps, x-a.s. for all x E E.
Further, X is called regular if T~ . - lim T Tn = oo Ps, x-a.s. for all

n

x E E, s &#x3E; 0..

The results of § 3.1 read as follows in the non-homogeneous case:

THEOREM 28. - Assume that the lifetime ~ has Ps, x (( = oo ) = 1 for all
s &#x3E; 0, x E E. The following three properties are equivalent:

(i) For all s &#x3E; 0, x E E, the Ps, x-martingales (w. r. t. the filtration
(.~’t ) t &#x3E; S ) are quasi-left continuous and with locally finite variation.

(ii) For each s &#x3E; 0 the (Fst)t~sfiltration is a jumping filtration on [s, oo),
and for each x E E the Ps, x-martingales are quasi-left continuous.

(iii) X is a regular quasi-Hunt JMP.

THEOREM 29. - The process X is a quasi-Hunt JMP iff for all s &#x3E; 0,
x E E there is a stopping time ,S’~ such that:

(i) ( S~ &#x3E; s ) = 1 and is Ps,x-totally inacessible;
(it) any Ps,x-martingale which is constant after is quasi-left

continuous with Ps, x-a.s. locally finite variation;
(iii) there is (at least) a Ps,x-martingale M which has at least

one jump on the interval ( 0, ,5’~ ~, on the set ~ ,S’~  
The sequences are of course related, and to describe the

relationship we introduce an ad-hoc terminology. An optional subset D
of SZ x f~+ is of type A if the sections DW = ~ t : (c,~, t) are closed,
at most countable, and inf ( s E s &#x3E; t) &#x3E; t for all t E Dw. If one
denotes by C~ the class of all countable ordinals, a random set D is of
type A iff it has the form D = U where the Ta’ s are stopping times,

03B1~
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with &#x3E; Ta if T03B1  ~, and T03B1 = sup Ta when 03B1 is a limit ordinal
Qa

(recall that the section is empty when T (c~) = oo).
THEOREM 30. - Suppose that X is a quasi-Hunt JMP. There is an 

optional set D of type A contained in 0, 03B6 such that, if we set To = s,
= s V [( n inf (t ED: t &#x3E; for n &#x3E; l, and if Hs,x and Gs,x

are the laws of Tf and ( X Tl , Tf) and

we have the following properties:
a) (.~t ~ t &#x3E; s is a jumping filtration on I s = U Qs, with jumping

sequence and the Tn are Ps, ~-totally inaccessible for all x E E,
n &#x3E; l.

b) For all s &#x3E; 0, x E E, then has no atom except perhaps ~ ~.
c) There is a measurable function f : I~+ x E x I~+ -~ ~ such that

cl) There exists a probability kernel T from R+ x E into E~ such that
for all x E E we have r ( t, ~ ~ ~ ) = 0 and

An homogeneous quasi-Hunt JMP is a quasi-Hunt JMP in the sense of
Definition 10. If we compare Theorems 5 and 30 in the homogeneous case,
we have ~ = 7~ and 7=7~ and the set D of Theorem 30 is D = U 

03B1~
where the are defined by induction as To = 0, == r~ + r o ~
and Tc, = sup To if /3 is a limit ordinal.
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In the non-homogeneous case, the property for each T~ to be a "terminal
time" is expressed by the fact that if Ti &#x3E; t, then Ti = Tf.

Proof of Theorems 28, 29, 30. - 1 ) First we observe that Lemma 2

remains valid, with the following formulation: for each s &#x3E; 0 there is

a sequence of bounded (i. e. martingales for
for all x E E) such that, if x E E and Sx is an 

time such that all PS, x-martingales are quasi-left continuous on Qs, 
then any Ps, x-martingale M has

(the proof is the same, using the comments after (85)).
Now, if M = is a Ps, -martingale and r &#x3E; s, then

M = is a for Ps,x-almost all w with

Xr (w) E E; therefore we have also ~ t : s  t  0 ~ C

U U t &#x3E; 9" : OMt ’ r ~ 0 ~ 
n r~, r&#x3E;s

2) Next we reproduce the proof of Theorems 4 and 5 with the

following changes: first, set crn = inf(t &#x3E; s : 0) and

Ts = ( A 
n &#x3E; i , 

inf 
s , 

03C3rn. Then (w, s) ~ TS (w) is measurable, and

(20) becomes

is a Ps, x-a.s. jumping filtration on Ix = ~0, ,5’x~, (20’)

with a jumping sequence and instead of (21) we get

s  Tl’ x = Ts C ~x Ps~ x-a.s., and Ts is x-totally inacessible. (21’)

In Step 2), we have a function f : R+ x E x R+ - E such that for
all s  t, x E E, Ps, x (Xt ~ / (s, x, t), s  t  TS) = 0, and since
(w, s) -~ Ts (w) is measurable we deduce the measurability of f, and thus
(23) becomes

In Step 3) we set T’S = inf (t &#x3E; s : f (s; Xs, t)) and get
Ps, x (T’s = Ts) = 1. Next if t &#x3E; s we set g (x, u) = f (s, x, u) +

f (t, f (s, x, t), u) and T" = inf (u &#x3E; s : g u)).
Then &#x3E; T") = 1 and T" = TS if TS  t, and by the Markov
property T" = Tt if TS &#x3E; t. Then T" is P~, x-totally inaccessible and finally
Ps,x (T" = Ts) = 1. Hence we get instead of (24):
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Then we get, with Gs,x being the law of (Xrs, TS) under 

and the rest of Step 3) to obtain (c) is essentially unchanged.
Step 4) is replaced by the following: we set D’ = U and D is

SE~+
the closure of D’, and we define Tn as in the statement of Theorem 30.
Then using the strong Markov property at each Tn we deduce as in Step 4)
that (a) of Theorem 30 holds, and Step 5) is unchanged to obtain (d) of
Theorem 30.

3) Finally Theorem 28 is proved exactly as Theorem 3., .

Corollary 1 becomes (with the same proof):

COROLLARY 3. - Assume that there is a measurable function f :
R+ x E x R+ ~ E such that Ts = inf (t &#x3E; s : Xt ~ f (s, XS, t))
satisfies TS &#x3E; s Ps, x-a.s. We call Hs, x the law of Ts under PS, x, and we
define ri (s, x) by (86). Then if either f satisfies (87) or H s, x (~ t ~) = 0
for all t  oo, the process X is a quasi-Hunt JMP.

The first claim of Theorem 7 has no counterpart, but the second claim is:

THEOREM 31. - If X is a quasi-Hunt JMP, for any s &#x3E; 0 the process

(XT~ , is an homogeneous Markov chain, with transition probability
Q (x, t; dy, du) _ G t, x (d y , du) if x E E and Q (0, t; d y , 

(dy, du) independent from s. Further

The pair ( f , G), or equivalently the triple ( f , H, F), will be called the
characteristics of X, and it is admissible in the sense that it satisfies (87),
(88), (89) with F (t, x, ~ x ~ ) = 0, and Hs, x ( ~ t ~ ) = 0 for all t  oo.

Conversely if we start with an admissible pair ( f , G) we can construct a
Markov chain (Yn, Tn) with transition Q as in the previous theorem, and set

Then we have as in Theorem 8 (the technical details being similar):

THEOREM 32. - Under the above assumptions, X is a quasi-Hunt JMPTHEOREM 32. - characteristics ( f , G) . ~M~-T~M~ 
VMP
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If X is a quasi-Hunt JMP, its submarkovian transition semi-group
P (s, x, t, dy) (on E) satisfies the following equation, similar to (34):
p (s, ~, t~ A) = ((t~ lA ( f (s, ~~ t)

Conversely, if we start with an admissible pair ( f , G), this equation for
any given s &#x3E; 0 has solutions, and there is a minimal one P* (s, x, t, dy).
Further, P* (0, x, t, E) = 1 for all x e E, t &#x3E; 0 implies P* (s, x, t, E) = 1
for all s  t, x E E, and this is necessary and sufficient for the

corresponding JMP to be regular. Another necessary and sufficient condition
for regularity is given by Theorem 12 (a), with the same Q (and Q as in
Theorem 31).

6.2. Additive functionals, martingales, semimartingales

Now we quickly review the main results of Section 4 for a non-

homogeneous quasi-Hunt JMP X, and we use the notation of Theorem 30.
We do not provide proofs, which are the same as in the homogeneous case.

Additive functionals. - By additive functional on I we mean a family
A = (At : t e IS) of processes, such that for every s &#x3E; 0 we have:

(i) the process At lIs (t) is adapted to (~’t )t&#x3E;s, càdlàg, with As = 0;
(ii) (s, w, t) -~ ~4~ (w) is measurable;

(iii) for every time T &#x3E; s we have

For all s &#x3E; 0, n &#x3E; 1, we set (recall (46)):

(One easily checks that if 7-~=7~ then X~ ~ XJ on the set

{Tsn-1  Tsn  ~} n  Ttm  oo}: hence X" is a "process" on
the subset of all isolated points of the set D of Theorem 30). Theorem 15
becomes:

THEOREM 33. - Assume that quasi-Hunt JMP.

a) With every additive functional A on I are measurable

function a : R+ x E x R-~ 2014~ R with
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and a measurable function a : ~+ x E x Eo --~ ~, such that outside a
Ps, x-null set As is determined on ~s by induction, starting with As = 0, by

b) Conversely if a and a are as above, (92) defines an additive functional
A on I.

The basic example of additive functional is associated with the function:

It is the increasing continuous additive functional L = ( Lt ) defined by (92)
with a = .~ and a = 0, that is

Consider the following family of integer-valued random measures on
f~+ x E~ :

Then p/ is and its Ps, x -compensator of each x is

Martingales. - Any Ps, x-local martingale is a compensated sum of jumps,
and has locally finite variation on I S = U ~s, Any Ps, x -semimartingale
has locally finite variation on IS. If M n is a Ps, x-local martingale on IS,
there is an (Fst)t~s-predictable function on 03A9 x [s, oo ) x Eo such that
for t E IS:

It also has a second representation, with FsTn ~ R+ ~ ~0394-measurable
functions Un on SZ x R+ x E,~ (by induction, starting from ~s):
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In both (93) and (94), all integrals are Ps, x-a.s. absolutely convergent.
At this point, it is worthwile to note that (90) yields (.~Tn ) Xrs :
p  n ) up to Ps, x-null sets. Then we can u, y ) ==

gn+l (Tf, XTs1,..., Tsn, XTs1, u, y) for some measurable function 

on (R+ x so the first half of (94) is also

for

Semimartingales. - An additive functional A = (Ag) on I is called a
semimartingale (special semimartingale, local martingale) if for each s &#x3E; 0

the process (At )tEls is a Ps, x-semimartingale (special semimartingale,
local martingale) on I s for all x E E.

THEOREM 34. - Assume that X is a quasi-Hunt JMP, and let A = ( At ) be
an additive functional on I, and a, a associated with it as in Theorem 33.

a) A is a semimartingale on I iff
t -~ a (s, x , t) is cadlag with locally finite variation on ~s, r~ (s, ~)). (95)

b) A is a local martingale on I iff we have the next two properties:

c) A is a special semimartingale on I iff we have (95) and (96). In this
case the canonical decomposition AS = MS of AS is the same for all
measures (x E E) and M = (Mt ) is an additive local martingale on
I, and B = (Bg) is the additive functional on I defined by Bs = 0 and

where
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In view of the definition of the in Theorem 30, the following is

obvious:

COROLLARY 4. - If X is a regular quasi-Hunt JMP, an additive functional
A = (Ag) on I is a semimartingale (resp. special semimartingale, local
martingale) iff the process is a Po, x-semimartingale (resp. special
semimartingale, local martingale) for all x E E.

Semimartingale functions. - We say that a measurable function g :

~+ x Eo -~ ~ is a semimartingale (special semimartingale, martingale)
function of X if the family At = g (t, Xt) - g (s, Xs ) is a semimartingale
(special semimartingale, local martingale) additive functional on I, in

the sense given above. Note that (Ag) has always the properties of an
additive functional on I, except perhaps that it is not cadlag. Observe
also that if X is regular, then it amounts to saying that t -~ g (t, Xt)
is a Po, x-semimartingale (special semimartingale, local martingale) for all
x E E.

THEOREM 35. - Assume that X is a quasi-Hunt JMP.

a) g is a semimartingale function iff, with g (s, x, t) = g (t, f (s, x, t)),

g (s, ~; ~) is cadlag with locally finite variation on ~s, r~ (s, ~)). (98)

b) g is a special semimartingale function iff we have (98) and

In this case the predictable compensator Bs of (g (t, Xt) - g ( s, 
under each Ps, x is given by (97), with Bs = 0 and

c) g is a martingale function iff we have (97), (98) and a’ = 0 in (99).

6.3. Transformation of the phase space

In this section we consider again a non-homogeneous normal strong
Markov process X = (0, .~, .~’t , Xt, Ps; x), with values in (E, ~).
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We consider another Blackwell space (E’, E’) and a measurable map
U : R+ x Ev with U (t, A) = A, and the process U (t, Xt ) .
The process X’ is of course not Markov in general, but when it is and

when X is a JMP, then obviously X’ will be a JMP as well (because it

generates filtrations (.~’ts) which are smaller than (.~’t )).
To begin with, it is clear that the process X’ cannot take at time s an

initial value x’ which does not belong to the image of E by U (s, .). So
in order to be able to start with any initial value, we assume that U (s , . )
is surjective for each s &#x3E; 0.

In fact there is a rather simple set of conditions on the characteristics of
X when it its a JMP, which insures that X’ is also a JMP.

THEOREM 36. - Assume that X is a regular quasi-Hunt JMP with
characteristics ( f , H, r). Let the following conditions be fulfilled:

a) There is a probability kernel Hs ~, from f~+ x E’ into [0, oo~ with
0, x E E.

b) There is a measurable function f’ : ~+ x E’ x R+ - E’ with
f’ (s, U (s, x), t) = U (t; f (s, x, t)) for all x E E, 0  s  t  r~ (s, x).

c) There is a probability kernel T’ from ~+ x E’ into Eo such that
h’ {t, U (t, x), .) is the image of I‘ (t, x, .) by the map U (t, .) for all

Then X’ is a regular quasi-Hunt JMP with characteristics ( f’, H’, h’).
Proof - The first thing to do is to show that the triple ( f ’ , H’ , r’ )

is admissible (see after Theorem 31), and this comes from elementary
computations (note that r~’ (s, U {s, x)) = r~ (s, x)). Associate G’ with
( f ’ , H’, r’ ) by (89), and Q’ with G’ as in Theorem 31. If g’ is a bounded
measurable function on E’ x [0, we set g (x, s) = g’ (Ll (s, x), s) (with

x ) = Ll ( s , A) = A) and another elementary computation shows
that (Q’ g’) (U {s, x), s) _ (Q g) (x, s). Then if Tn = T° and = .~’°,
we have by Theorem 31:

Hence (XT,~ ; is an homogeneous Markov chain under each Ps, x,
with transition probability Q’. Further, (90) implies

That is, X’ satisfies the first half of (91 ) with Yn = and the second half
is empty here since X is regular. Then Theorem 32 gives the result..
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Remark 6. - This result is not true when X is not regular. Indeed in this
case the conditions of Theorem 36 tell nothing about what happens at the
explosion time Too, and it may happen that X’ is not a Markov process..
Remark 7. - Conversely it is easy to see that if X is regular, and if X’

is a Markov process, then (a) and (b) above are met and (c) is "almost"

true, in the sense that f’ (t, U (t, x), .) is the image of F (t, ~), .) by the
map U (t, .) for Hs, x (dt)-almost t, for all x E E, s &#x3E; 0 (we could indeed
replace (c) in Theorem 36 by this slightly weaker condition)..
By analogy with the homogeneous case, we call quasi-Hunt non-

homogeneous step Markov process a quasi-Hunt JMP whose first

characteristic is f (s, x, t) = x, or in other word a non-homogeneous
strong Markov process which is right-continuous for the discrete topology
of E and whose jump times are totally inacessible.

COROLLARY 5. - Assume that X is a regular quasi-Hunt JMP with
characteristics ( f , H, T ), such that for all 0  s  t the function
~ 2014~ f (s, x, t) admits an inverse (s, x; t) that f (s, x, u) _
f (t, f (s, x, t), u) for (i.e. the second part
of (87) is true with r~ (s, x) = oo) and that U (t, x) = (0, x, t) is
measurable on (~+ x E.

Then Xt = U (t, Xt) is a quasi-Hunt non-homogeneous step Markov
process with characteristics ( f’, H’; T’~ given by f’ (s; x, t) = x and

Proof - One readily checks that the conditions (a) and (c) of Theorem 31
are met. for (b), we first note that f (0, x, t) = f (s, f (0, x, s), t) (true
for all 0  s  t  oc) implies that f (s, ~, t) = f (0, U (s, ~/), t), hence
~/ -~ f(s, y, t) is invertible with y, t) = f(O, U(t, ?/), s). Then
U (t, ~) _ ?~l (s, ~-1 (s, y, t)), and thus U (t, f (s, x, t)) = U (s, x): hence
(b) is satisfied as well..

Remark 8. - If (87) is true only for u  r~ (s, x), there is still a

version of this corollary, involving a more complicated definition for the
transformation U..
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