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Markov dilations of nonconservative dynamical
semigroups and a quantum boundary theory

B. V. RAJARAMA BHAT* and K. R. PARTHASARATHY
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7, S.J.S. Sansanwal Marg
New Delhi - 110016, India

Ann. Inst. Henri Poincaré,
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ABSTRACT. - A boundary theory for quantum Markov processes
associated with nonconservative one parameter semigroups of completely
positive linear contractions on a von Neumann algebra is initiated along
the lines of Feller, Chung and Dynkin.

Key words: Completely positive maps, weak Markov flow, exit and entrance cocycles,
exit time, boson Fock space.

On developpe une theorie des frontieres pour des processus
de Markov quantiques associes a des semi-groupes non conservatifs de
contractions completement positives sur une algebre de von Neumann,
parallèlement à la theorie classique de Feller, Chung et Dynkin.

’ 

~ 

1. INTRODUCTION

In classical probability theory it is well known that, to any one parameter
semi group of substochastic matrices or transition probability operators, one
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602 B. V. RAJARAMA BHAT AND K. R. PARTHASARATHY

can associate a Markov process with an exit time which can be interpreted
as a stop time at which the trajectory of the process goes out of the state
space or hits a boundary. There are various possibilities for continuing the
process after the exit time in such a manner that the Markov property and

stationarity of transition probabilities are retained. Feller [Fe 1,2] initiated the
study of this problem by a functional analytic approach based on resolvents
or Laplace transforms of one parameter positive contraction semigroups
whereas Chung [Cl,2] and Dynkin [Dy] outlined a pathwise approach. The
aim of the present paper is to investigate the same problem for quantum
Markov flows when substochastic matrices or transition probability operators
are replaced by completely positive linear contraction maps on a unital von
Neumann algebra of operators in a Hilbert space.

In Section 2 it is shown how, by using the famous Stinespring’s theorem
[St, P 1 ) and the GNS construction, one can associate a canonical weak
Markov flow to any one parameter semigroup of completely positive
contractions on a von Neumann or C* algebra. To any such semigroup
we introduce, in Section 3, the notion of entrance and exit cocycles and
demonstrate how a Feller perturbation of the semigroup can be constructed
using a pair (S, cv) where S is a cocycle and w is a state. The resolvent of
the perturbed semigroup is an exact quantum analogue of Feller’s formula
in [Fe 2]. This raises the basic open problem of constructing the Markov
flow of the perturbed semigroup from the flow of the original semigroup. In
order to study this problem we present in Section 4 a general procedure of
gluing two quantum processes and their filtrations by using quantum stop
times [H, PS] which are adapted spectral measures in the closed interval
[0, oo]. In Section 5 a quantum Markov flow for the perturbed semigroup
is obtained by gluing countably many copies of a Markov flow for the
unperturbed semigroup when the exit cocycle is the expectation of an exit
time. We conclude the last section with several examples of nonconservative
quantum Markov flows which admit exit times. Eventhough the presentation
is done for the case of continuous time the reader can easily construct the
discrete time analogue of many of our results.

Alternative approaches to dilations of quantum dynamical semigroups
on a C* algebra may be found in [EL], [Em], [Sa] and [Vi-S]. However,
they are too weak especially because nothing concrete is mentioned about
the conditional expectation of an observable at time t when the algebra
of observables up to time s is fixed for some 0  s  t. Our approach
in Theorem 2.12, 2.13 is much more direct and closer to the spirit of
classical probability. This is illustrated by several examples in the course
of the present exposition. A more elaborate and leisurely treatment of these
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ideas is included in the Ph.D. thesis of Bhat [B]. The case of dilation of a
nonstationary quantum dynamical evolution is examined in the note [BP].

2. COMPLETELY POSITIVE SEMIGROUPS
AND WEAK MARKOV FLOWS

Motivated by the notion of a quantum Markov process introduced by
Accardi, Frigerio and Lewis [AFL] and influenced by the absence of
conditional expectation in many situations in quantum probability we
introduce here a weaker notion of a Markov flow and describe how such
a weak Markov flow can be associated to any one parameter semigroup of
completely positive linear maps of a von Neumann algebra into itself. This
may be viewed as a continuous time version of Stinespring’s theorem [St].

Let ~-l be any complex Hilbert space with scalar product  . , . &#x3E; linear
in the second variable. By a weak filtration F on ~( we mean a family
F = {F(t), t &#x3E; 0} of orthogonal projection operators nondecreasing in
the variable t. Denote by the algebra of all bounded operators on
~-l and write

for every t. Then {.Lit~ , t &#x3E; 0} is a nondecreasing family of * subalgebras
of .t3(7-L). The a(7-L) -&#x3E; defined by

is called the weak conditional expectation with respect to F at time t.

PROPOSITION 2.1. - The weak conditional expectation maps ~ ~ ~ , t &#x3E; 0 ~
satisfy the following :

(i) E~ is a completely positive and contractive linear map;

Proof. - Immediate..

Vol. 31, n° 4-1995.
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DEFINITION 2.2. - Let A be a von Neumann algebra of operators on
a Hilbert space and let {T~ ~ 0} be a one parameter semigroup of
contractive and completely positive linear maps of A into itself with To being
identity. A triple (7~, F, jt) is called a weak Markov flow with expectation
semigroup ~Tt} if ~-l is a Hilbert space containing xo as a subspace, F is a
weak filtration on 1t with F(0) having range Ho and { jt, t &#x3E; 0~ is a family
of * homomorphisms from A into satisfying the following

= XF(0) and jt(X)F(t) = F(t)jt(x)F(t) for all

E A;
(ii) = for all 0 ::; s  t  00, X E A.
The flow is said to be subordinate if jt(I)  F(t) for all t. If jt(I) = F(t)

for all t it is said to be conservative.

Condition (i) describes faithfulness of jo and adaptedness of the flow to
the filtration F whereas condition (ii) describes the Markov property of the
flow. In the case of a subordinate flow the factor F(s) on the right hand side
of (ii) may be dropped. It may be noted that if (~-l, F, jt) is a weak Markov
flow then is a subordinate weak Markov flow.

For any X E A denote by Lx and Rx respectively the linear maps
from A into itself defined by LXY = XY and RXY = YX for all

YEA. Lx and ~ commute with each other for any X, Y. For any finite
sequence t = (tl, ..., tn) in ~+ and X = (Xl, ..., Xn) in A (of length n)
write j(t,X) =~(tl,tz,...,t~,Xi,...,X~) In

particular, j(t, X) = jt(X). For s = ~51~...~5",~~~’ _ ..., Xm),f =
(tl,...,tn),Y = (Y1,...,Yn) we = j((s,t),(X,Y))
where (s, t) = (sl, ..., s,n, tl, ..., tn), (X, Y) _ (Xi,...,X~,Yi,...~).
Since each jt is a homomorphism we 
j(,t,X,YZ), and j(s,X)j(s,t,Y,Z) = j(s,t,XY,Z). With these

conventions we shall establish a few elementary propositions concerning
the operators j (t, X ) and their expectation values.

PROPOSITION 2.3. - Let (7~, F, jt) be a weak Markov flow with expectation
semigroup ~Tt} on a von Neumann algebra of operators on a Hilbert space
?-Lo. Then the following holds :
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Proof. - From property (i) in Definition 2.2 we have

This proves (i). To prove (ii) we use property (i) of this proposition and the
increasing nature of F(t) repeatedly. Thus

Now (ii) follows by induction on n. A similar argument yields (iii)..

PROPOSITION 2.4. - Let (~-l, F, jt) be a subordinate weak Markov flow
with expectation semigroup {Tt} on a unital von Neumann algebra A of
operators on a Hilbert space 7-l0. Then the following holds:

Proof. - First we prove (i). Since F(t) is increasing and jt is a

homomorphism Definition 2.2 together with the hypothesis that j(t, I ) 
F(t) implies

Vol. 31, n° 4-1995.
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Now (i) follows by induction on n. To prove (ii) we apply (i) to the sequence
tn  ti  t2+1  ...  tn-i and obtain

where

Now observe that

which implies (ii)..

The next theorem is of particular importance in reducing the computation
of moments.

THEOREM 2.5. - Let (~, F, jt) satisfy the conditions of Proposition 2.4.
Then for any sequence tl,t2,...,tn in R+ and X 1, ..., Xn in A there
exists a sequence s 1, s 2 , ..., sm in R+ and Yl, ..., Ym in A such that

s2...s?.,.torsl &#x3E; 82 &#x3E; ... &#x3E; 8m
or 81 &#x3E; s2 &#x3E; ... &#x3E; s~   ...  for some k and j(t, X ) = j (s, Y).

Proof. - Without loss of generality we may assume that t2 ~ ~ ~ ~ ~
tn. If itself is either monotonic increasing or decreasing there is nothing
to prove. If tl  ...  ti &#x3E; t2+1 then either ti+l  tl  ...  ti or

tl  ...  tk-1  ti+l  tk  ...  ti for some k. By Proposition 2.4
we may then express j(t1, ..., ti+l, Xl, ..., Xi+l) as j (ti , ti+1, Y, XZ+1) or
j ( t 1, ... , ti+ 1, Xl, ..., Y ) . In any case the length of the t-sequence
gets reduced in j (t, X ). If tl &#x3E; ... &#x3E; tk   ...  &#x3E; 

we may once again express j (tk , ... , Xk, ... , in

terms of a sequence of length not exceeding .~ + l. Rest follows by induction
on the length..

COROLLARY 2.6. - Let (~-L, F, jt ) satisfy the conditions of Proposition 2.4.
Then for any sequence in R+ and in A there
exist tl = 81 &#x3E; s2 &#x3E; ... &#x3E; &#x3E; 0, m  n and Yl, Y2, ..., Ym in A such

that j (t, X )F(o) = j (s, Y)F(o).
Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Proof. - In view of Theorem 2.5 we may assume without loss of generality
that ti &#x3E; t2 &#x3E; ... &#x3E; tm   ...  tn. Now by Proposition 2.4 and
the fact that F(0) = jo(I) we have

for some Y in A. This completes the proof..

PROPOSITION 2.7. - Let (H, F, jt ) be as in Proposition 2.4. Suppose that it
is also conservative. If 81 &#x3E; s2 &#x3E; ... &#x3E; &#x3E; 0, tl &#x3E; t2 &#x3E; ... &#x3E; 0 and

s2, ..., sm~ C t2, ..., tn~ then for any Xl, X2, ..., Xm in A

where

Proof - Let t21 = s 1, ...,~ = sm. Then

from which the required result follows..

PROPOSITION 2.8. - Let (~-l, F, jt) be as in Proposition 2.4. Suppose
t ~ ... &#x3E; 0, X2, ..., X k, Y, Z2 ~ ..., 2~ E A. Then

Proof. - We have

Now the required result follows by repeating the same argument successively
replacing the role of t by that of s 1, s 2 , ... , s ~ . .

Vol. 31, n° 4-1995.
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PROPOSITION 2.9. - Let (H, F, jt ) be as in Proposition 2.4. Suppose
81 &#x3E; 82 &#x3E; ... &#x3E; 8k 2:: t 2:: 0, X 1, X 2 ~ .., Y, 22 ~ .., ,2~ E ,~. Then
there exist elements X ~ , Z[ depending only on 81, ..., Xl, ..., Xk and
,Zz , ..., Zk such that

Proof - Since t  s~  si we have

Repeating this argument we get

where Z~ depends only on 5i,...~~Zi,...,Z~. Since sk   ... 

and t we have from (i) in Proposition 2.4

where X~ depends only on Combining the two we
obtain

Since 0 ~ t we have

PROPOSITION 2.10. - Let (~-l, F, jt) be as in Proposition 2.4. Suppose
that s~ &#x3E; s2 &#x3E; ... &#x3E; t &#x3E; s2 &#x3E; ... &#x3E; Xl, X2, ..., Xk, Y,

..., Zk E A Then 
-

where depend only on 81, ... , ... , Z1, ... , Z2_1.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Proof. - By (i) in Proposition 2.4 we have

where depends only on 5i,...,~-i,Xi,...,X~i. Since ~  S2  si

we have

Repeating this argument up to the pair Si-2, we get

Since si ~ t ~ Si-l we have

Combining (2.1)-(2.3) and using Proposition 2.8 for the sequence

s k , sk - i , ... , si , t , si , Si+l, ... , sk we obtain the required result. []

PROPOSITION 2.11. - Suppose (H,F,jt) is a conservative weak Markov

flow with a strongly continuous expectation semigroup (Tt ) on a unital von
Neumann algebra A of operators on a Hilbert space H0. Then for any
u, u’ E H0, finite sequences 2 = (si , ..., = (s[ , ..., in R+ and
Xl, ... , Xk , Y, X( , ... , X[, E A the function

is continuous in t E R+.

Proof. - Since = u, F(~)~c’ - u’ we can apply Corollary 2.6
and assume without loss of generality that si &#x3E; ~2 &#x3E; ’" &#x3E; sk and

s~ &#x3E; s~ &#x3E; ... &#x3E; ~- Since the flow is conservative we can apply Proposition

Vol. 31, n" 4-1995.
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2.7 and assume without loss of generality that the sequences s and s’ are
same and strictly decreasing. Then ~(t) assumes the form

Now the strong continuity and contractivity properties of ~Tt ~ together with
Proposition 2.8, 2.9 and 2.10 respectively imply the continuity of ~(t) in
the intervals 00), [0 , s~~ and i = k , k - 1, ... , 2 ..
THEOREM 2.12. - Let A be a unital von Neumann algebra of operators

in a Hilbert space ?~o and let ~Tt ~ be a semigroup of completely positive
linear maps of A into itself such that To is identity and Tt (I ) = I for
all t. Then there exists a conservative weak Markov flow (x, F, jt) on A
satisfying the following :

(i) ~o C ?~ and ~Co is the range of F(0);
(ii) The set {j(f, X )2G, 2G E = (tl, t2, ..., ti ~ 0, _X =

X2~ ~~~~ Xn)~ Xi E A, 1 ~ i ~ n, n = 1, 2, ...~ is total in ~;
(iii) The expectation semigroup of (H, F, jt) is ~Tt ~;
(iv) If (H’, F’, jt) is another subordinate weak Markov flow with

expectation semigroup ~Tt ~ such that the range of F’ (0) is ~Co and (ii)
holds with j, H replaced by j’, ?~C’ then there exists a unitary isomorphism
U : ~nC -~ H’ satisfying

.

(v) If ~Tt ~ is strongly continuous on the Banach space A then the maps
t -~ F(t) and t -~ jt (X ) are strongly continuous for each X E A.

Proof. - From [P2] it is known that there exists a family {/~~ &#x3E; 0~ of
Hilbert spaces with ho = Ho, * unital homomorphisms Jt : ,~4. -~ 8(ht)
and isometries Tl (s, t) : hs - ht for 0  s  t  oo such that (a)
Jo(X) = X ; (b) = I; (c) = JS(Tt-S(x))’
(d) V(t, u)V(s, t) = V(s, u) for all 0  s  t  u  00. Let M = U hs

s&#x3E;o
be the disjoint union of all the hs considered as abstract sets. Define the
map K : M x M - C by

whenever denoting the maximum of sand t. We claim
that K is a positive definite kernel on M . Indeed, consider arbitrary scalars

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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which proves the claim. Hence by the GNS theorem there exists a Hilbert
space 03BA and a map A : M - )( such that {A(i6), u E .M} is total in )( and

If u, v E ht then

Thus A is an isometry from ht onto a subspace ICt of /C. If s  t and
u E hs then V(s, t)u E ht and

Thus C J’Ct whenever s  t. Denote by E(t) the projection onto lCt
and define jt by

where ~-1 is the inverse of the map A : ht - /Q. Since the range of jt(X)
is contained in ICt and Jt is a * homomorphism from A into B(ht ) it follows
that jt(X) = E A is a * homomorphism from A
into B(K) and jt(I) = E(t).
Now consider u, v E hs, s  t. Then

Vol. 31, n° 4-1995.
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Thus

Denote by 7Y C /C the closed subspace spanned by the set M of all vectors
of the form j(f, X )u, u E t = (tl, ..., tn), ~ _ (Xl, ..., Xn), ti 2:: 0,
Xi ~ A, n = 1,2,... Denote by Ht c H the closed subspace spanned by
the set Mt C M of all vectors of the same form j(t., X)u with ti  t
for every z. We now claim that 1tt = H n /Ct. Indeed, 

(X~, ..., X~,), t ~ si ~ 0,X, E A, u e ?~o.
Then ç is in the range which is contained in /Ct. Thus
Mt C 7~ n Kt and therefore ~Ct C H n Now consider an element of
the form ~ = E(t)j(s, X )u where u E Ho, s = (sl, ..., sn) and si ~ 0

..., Xn)u. Since (J’C, E, jt) is a conservative
weak Markov flow it follows from Corollary 2.6 that we can express
~ - j(t, s~, ..., s~, ~’o, ~’1, ..., Y’,2)u where t &#x3E; ... &#x3E; ~ &#x3E; 0 and
hence ~ e 1ft. Thus E(t)M C 1tt and therefore H n lCt C proving
the claim. Denote by F(t) the projection on Ht in the Hilbert space H and
jt(X) the restriction of jt (X ) to ~‘~C. Then (7~ F, jt ) is a conservative weak
Markov flow satisfying properties (i) - (iii) of the theorem.
To prove (iv) we observe that the proofs of Theorem 2.5, Corollary 2.6

and Proposition 2.8 imply that

for allu, v E = (~~, ..., sm), ~ _ (tl, ..., tn), X = (Xl, ..., Xm), ~ _
(Y1, ..~, This shows that the correspondence j(, X ) u ~ j’ ( s, X ) u is
isometric and hence extends uniquely to a unitary isomorphism from ?-iC
onto 1{,’ satisfying (iv). Observe that cyclicity (property (ii») forces j~ to
be conservative.

Property (v) of the theorem is immediate from Proposition 2.11 and the
fact that jt is a homomorphism for every t &#x3E; 0..

Now we extend Theorem 2.12 to non-conservative contractive semi groups.
THEOREM 2.13. -- Let A be a unital von Neumann algebra of operators

in a Hilbert space H0 and let be a semigroup of completely positive
linear maps of A into itselfsuch that To is identity and for all t.
Then there exists a subordinate weak Markov flow (7i, F, jt ) on A satisfying
(i) - (v) of Theorem 2.12.

Proof - Consider the extended von Neumann algebra ,A = A acting
on the Hilbert space Ho == EÐ C . For convenience we denote the element

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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X ~ c of A, for X and c E C, by the column vector (~). Define
the maps Tt : ,,4. -~ ~4 by

Then ( it ) is a conservative one parameter semigroup of completely positive
linear maps. If ~Tt ~ is strongly continuous so is {T~}. Thus Theorem 2.12
becomes applicable for and we have a conservative weak Markov flow

(7~ F, ~t ) on A with expectation semigroup {T~}. Define the operators F (t)
and jt (X ) by,

Before obtaining the required Markov flow we prove the following
statements. For 0  s  t, X E A and c e C

(a) is a family of projections nondecreasing in t;

(b)~(X)~~) ~o(~(X)=0; , ,

(c) {F(~)} is a family of projections nondecreasing in t;
(d) Range of F(0) is Ho and range of F(t) increases to the orthogonal

complement of range of as t increases to oo;

(e) = + cF’(s).

Property (a) follows from the identity

Now make use of (a) to obtain

Vol. 31, n° 4-1995.



614 B. V. RAJARAMA BHAT AND K. R. PARTHASARATHY

and

Clearly F(t)* = F(t). This proves (b) and. (c). The range of F(0) is
Ho 0 C and hence the range of F(0) is Ho. The second part of (d) follows
as 3t (i) increases to the identity operator in ~-l as t increases to oo. Now
from (a) and (b),

Let ?~C be the orthogonal complement of the range of 30 ~ 1 in Making
use of (a)-(d) we can restrict F(t) and jt (X ) to H and verify that (~C, F, jt) is
a subordinate weak Markov flow with expectation semigroup ~Tt ~ satisfying
(i), (iii), and (v) of Theorem 2.12. Denote by Ht the closed subspace
spanned by the set Mt of all vectors of the form j(Í, X)u, with ti ~ t for
every i and u E Ho. We now claim that the range of F(t) is 1tt. Indeed,
consider ~ = j(Í, X)u with t2  t for every i and u E Ho. Then,

and hence the ragne of F(t) contains Ht. Now for t &#x3E; 0, Xi E A,
Ci e C for 1 ~ i  n and u E E C, consider 1] = 3 s ~~ From the statement (e) proved above, 

c / / W
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