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Markov dilations of nonconservative dynamical
semigroups and a quantum boundary theory
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New Delhi - 110016, India
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Vol. 31, n° 4, 1995, p. .651 Probabilités et Statistiques

ABSTRACT. - A boundary theory for quantum Markov processes
associated with nonconservative one parameter semigroups of completely
positive linear contractions on a von Neumann algebra is initiated along
the lines of Feller, Chung and Dynkin.

Key words: Completely positive maps, weak Markov flow, exit and entrance cocycles,
exit time, boson Fock space.

On developpe une theorie des frontieres pour des processus
de Markov quantiques associes a des semi-groupes non conservatifs de
contractions completement positives sur une algebre de von Neumann,
parallèlement à la theorie classique de Feller, Chung et Dynkin.

’ 

~ 

1. INTRODUCTION

In classical probability theory it is well known that, to any one parameter
semi group of substochastic matrices or transition probability operators, one

Classification A.M.S.: 81 S 25, 60 J 50, 46 L 55
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602 B. V. RAJARAMA BHAT AND K. R. PARTHASARATHY

can associate a Markov process with an exit time which can be interpreted
as a stop time at which the trajectory of the process goes out of the state
space or hits a boundary. There are various possibilities for continuing the
process after the exit time in such a manner that the Markov property and

stationarity of transition probabilities are retained. Feller [Fe 1,2] initiated the
study of this problem by a functional analytic approach based on resolvents
or Laplace transforms of one parameter positive contraction semigroups
whereas Chung [Cl,2] and Dynkin [Dy] outlined a pathwise approach. The
aim of the present paper is to investigate the same problem for quantum
Markov flows when substochastic matrices or transition probability operators
are replaced by completely positive linear contraction maps on a unital von
Neumann algebra of operators in a Hilbert space.

In Section 2 it is shown how, by using the famous Stinespring’s theorem
[St, P 1 ) and the GNS construction, one can associate a canonical weak
Markov flow to any one parameter semigroup of completely positive
contractions on a von Neumann or C* algebra. To any such semigroup
we introduce, in Section 3, the notion of entrance and exit cocycles and
demonstrate how a Feller perturbation of the semigroup can be constructed
using a pair (S, cv) where S is a cocycle and w is a state. The resolvent of
the perturbed semigroup is an exact quantum analogue of Feller’s formula
in [Fe 2]. This raises the basic open problem of constructing the Markov
flow of the perturbed semigroup from the flow of the original semigroup. In
order to study this problem we present in Section 4 a general procedure of
gluing two quantum processes and their filtrations by using quantum stop
times [H, PS] which are adapted spectral measures in the closed interval
[0, oo]. In Section 5 a quantum Markov flow for the perturbed semigroup
is obtained by gluing countably many copies of a Markov flow for the
unperturbed semigroup when the exit cocycle is the expectation of an exit
time. We conclude the last section with several examples of nonconservative
quantum Markov flows which admit exit times. Eventhough the presentation
is done for the case of continuous time the reader can easily construct the
discrete time analogue of many of our results.

Alternative approaches to dilations of quantum dynamical semigroups
on a C* algebra may be found in [EL], [Em], [Sa] and [Vi-S]. However,
they are too weak especially because nothing concrete is mentioned about
the conditional expectation of an observable at time t when the algebra
of observables up to time s is fixed for some 0  s  t. Our approach
in Theorem 2.12, 2.13 is much more direct and closer to the spirit of
classical probability. This is illustrated by several examples in the course
of the present exposition. A more elaborate and leisurely treatment of these
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603MARKOV DILATIONS OF NONCONSERVATIVE DYNAMICAL SEMIGROUPS

ideas is included in the Ph.D. thesis of Bhat [B]. The case of dilation of a
nonstationary quantum dynamical evolution is examined in the note [BP].

2. COMPLETELY POSITIVE SEMIGROUPS
AND WEAK MARKOV FLOWS

Motivated by the notion of a quantum Markov process introduced by
Accardi, Frigerio and Lewis [AFL] and influenced by the absence of
conditional expectation in many situations in quantum probability we
introduce here a weaker notion of a Markov flow and describe how such
a weak Markov flow can be associated to any one parameter semigroup of
completely positive linear maps of a von Neumann algebra into itself. This
may be viewed as a continuous time version of Stinespring’s theorem [St].

Let ~-l be any complex Hilbert space with scalar product  . , . &#x3E; linear
in the second variable. By a weak filtration F on ~( we mean a family
F = {F(t), t &#x3E; 0} of orthogonal projection operators nondecreasing in
the variable t. Denote by the algebra of all bounded operators on
~-l and write

for every t. Then {.Lit~ , t &#x3E; 0} is a nondecreasing family of * subalgebras
of .t3(7-L). The a(7-L) -&#x3E; defined by

is called the weak conditional expectation with respect to F at time t.

PROPOSITION 2.1. - The weak conditional expectation maps ~ ~ ~ , t &#x3E; 0 ~
satisfy the following :

(i) E~ is a completely positive and contractive linear map;

Proof. - Immediate..

Vol. 31, n° 4-1995.
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DEFINITION 2.2. - Let A be a von Neumann algebra of operators on
a Hilbert space and let {T~ ~ 0} be a one parameter semigroup of
contractive and completely positive linear maps of A into itself with To being
identity. A triple (7~, F, jt) is called a weak Markov flow with expectation
semigroup ~Tt} if ~-l is a Hilbert space containing xo as a subspace, F is a
weak filtration on 1t with F(0) having range Ho and { jt, t &#x3E; 0~ is a family
of * homomorphisms from A into satisfying the following

= XF(0) and jt(X)F(t) = F(t)jt(x)F(t) for all

E A;
(ii) = for all 0 ::; s  t  00, X E A.
The flow is said to be subordinate if jt(I)  F(t) for all t. If jt(I) = F(t)

for all t it is said to be conservative.

Condition (i) describes faithfulness of jo and adaptedness of the flow to
the filtration F whereas condition (ii) describes the Markov property of the
flow. In the case of a subordinate flow the factor F(s) on the right hand side
of (ii) may be dropped. It may be noted that if (~-l, F, jt) is a weak Markov
flow then is a subordinate weak Markov flow.

For any X E A denote by Lx and Rx respectively the linear maps
from A into itself defined by LXY = XY and RXY = YX for all

YEA. Lx and ~ commute with each other for any X, Y. For any finite
sequence t = (tl, ..., tn) in ~+ and X = (Xl, ..., Xn) in A (of length n)
write j(t,X) =~(tl,tz,...,t~,Xi,...,X~) In

particular, j(t, X) = jt(X). For s = ~51~...~5",~~~’ _ ..., Xm),f =
(tl,...,tn),Y = (Y1,...,Yn) we = j((s,t),(X,Y))
where (s, t) = (sl, ..., s,n, tl, ..., tn), (X, Y) _ (Xi,...,X~,Yi,...~).
Since each jt is a homomorphism we 
j(,t,X,YZ), and j(s,X)j(s,t,Y,Z) = j(s,t,XY,Z). With these

conventions we shall establish a few elementary propositions concerning
the operators j (t, X ) and their expectation values.

PROPOSITION 2.3. - Let (7~, F, jt) be a weak Markov flow with expectation
semigroup ~Tt} on a von Neumann algebra of operators on a Hilbert space
?-Lo. Then the following holds :

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Proof. - From property (i) in Definition 2.2 we have

This proves (i). To prove (ii) we use property (i) of this proposition and the
increasing nature of F(t) repeatedly. Thus

Now (ii) follows by induction on n. A similar argument yields (iii)..

PROPOSITION 2.4. - Let (~-l, F, jt) be a subordinate weak Markov flow
with expectation semigroup {Tt} on a unital von Neumann algebra A of
operators on a Hilbert space 7-l0. Then the following holds:

Proof. - First we prove (i). Since F(t) is increasing and jt is a

homomorphism Definition 2.2 together with the hypothesis that j(t, I ) 
F(t) implies

Vol. 31, n° 4-1995.
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Now (i) follows by induction on n. To prove (ii) we apply (i) to the sequence
tn  ti  t2+1  ...  tn-i and obtain

where

Now observe that

which implies (ii)..

The next theorem is of particular importance in reducing the computation
of moments.

THEOREM 2.5. - Let (~, F, jt) satisfy the conditions of Proposition 2.4.
Then for any sequence tl,t2,...,tn in R+ and X 1, ..., Xn in A there
exists a sequence s 1, s 2 , ..., sm in R+ and Yl, ..., Ym in A such that

s2...s?.,.torsl &#x3E; 82 &#x3E; ... &#x3E; 8m
or 81 &#x3E; s2 &#x3E; ... &#x3E; s~   ...  for some k and j(t, X ) = j (s, Y).

Proof. - Without loss of generality we may assume that t2 ~ ~ ~ ~ ~
tn. If itself is either monotonic increasing or decreasing there is nothing
to prove. If tl  ...  ti &#x3E; t2+1 then either ti+l  tl  ...  ti or

tl  ...  tk-1  ti+l  tk  ...  ti for some k. By Proposition 2.4
we may then express j(t1, ..., ti+l, Xl, ..., Xi+l) as j (ti , ti+1, Y, XZ+1) or
j ( t 1, ... , ti+ 1, Xl, ..., Y ) . In any case the length of the t-sequence
gets reduced in j (t, X ). If tl &#x3E; ... &#x3E; tk   ...  &#x3E; 

we may once again express j (tk , ... , Xk, ... , in

terms of a sequence of length not exceeding .~ + l. Rest follows by induction
on the length..

COROLLARY 2.6. - Let (~-L, F, jt ) satisfy the conditions of Proposition 2.4.
Then for any sequence in R+ and in A there
exist tl = 81 &#x3E; s2 &#x3E; ... &#x3E; &#x3E; 0, m  n and Yl, Y2, ..., Ym in A such

that j (t, X )F(o) = j (s, Y)F(o).
Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Proof. - In view of Theorem 2.5 we may assume without loss of generality
that ti &#x3E; t2 &#x3E; ... &#x3E; tm   ...  tn. Now by Proposition 2.4 and
the fact that F(0) = jo(I) we have

for some Y in A. This completes the proof..

PROPOSITION 2.7. - Let (H, F, jt ) be as in Proposition 2.4. Suppose that it
is also conservative. If 81 &#x3E; s2 &#x3E; ... &#x3E; &#x3E; 0, tl &#x3E; t2 &#x3E; ... &#x3E; 0 and

s2, ..., sm~ C t2, ..., tn~ then for any Xl, X2, ..., Xm in A

where

Proof - Let t21 = s 1, ...,~ = sm. Then

from which the required result follows..

PROPOSITION 2.8. - Let (~-l, F, jt) be as in Proposition 2.4. Suppose
t ~ ... &#x3E; 0, X2, ..., X k, Y, Z2 ~ ..., 2~ E A. Then

Proof. - We have

Now the required result follows by repeating the same argument successively
replacing the role of t by that of s 1, s 2 , ... , s ~ . .

Vol. 31, n° 4-1995.
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PROPOSITION 2.9. - Let (H, F, jt ) be as in Proposition 2.4. Suppose
81 &#x3E; 82 &#x3E; ... &#x3E; 8k 2:: t 2:: 0, X 1, X 2 ~ .., Y, 22 ~ .., ,2~ E ,~. Then
there exist elements X ~ , Z[ depending only on 81, ..., Xl, ..., Xk and
,Zz , ..., Zk such that

Proof - Since t  s~  si we have

Repeating this argument we get

where Z~ depends only on 5i,...~~Zi,...,Z~. Since sk   ... 

and t we have from (i) in Proposition 2.4

where X~ depends only on Combining the two we
obtain

Since 0 ~ t we have

PROPOSITION 2.10. - Let (~-l, F, jt) be as in Proposition 2.4. Suppose
that s~ &#x3E; s2 &#x3E; ... &#x3E; t &#x3E; s2 &#x3E; ... &#x3E; Xl, X2, ..., Xk, Y,

..., Zk E A Then 
-

where depend only on 81, ... , ... , Z1, ... , Z2_1.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Proof. - By (i) in Proposition 2.4 we have

where depends only on 5i,...,~-i,Xi,...,X~i. Since ~  S2  si

we have

Repeating this argument up to the pair Si-2, we get

Since si ~ t ~ Si-l we have

Combining (2.1)-(2.3) and using Proposition 2.8 for the sequence

s k , sk - i , ... , si , t , si , Si+l, ... , sk we obtain the required result. []

PROPOSITION 2.11. - Suppose (H,F,jt) is a conservative weak Markov

flow with a strongly continuous expectation semigroup (Tt ) on a unital von
Neumann algebra A of operators on a Hilbert space H0. Then for any
u, u’ E H0, finite sequences 2 = (si , ..., = (s[ , ..., in R+ and
Xl, ... , Xk , Y, X( , ... , X[, E A the function

is continuous in t E R+.

Proof. - Since = u, F(~)~c’ - u’ we can apply Corollary 2.6
and assume without loss of generality that si &#x3E; ~2 &#x3E; ’" &#x3E; sk and

s~ &#x3E; s~ &#x3E; ... &#x3E; ~- Since the flow is conservative we can apply Proposition

Vol. 31, n" 4-1995.
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2.7 and assume without loss of generality that the sequences s and s’ are
same and strictly decreasing. Then ~(t) assumes the form

Now the strong continuity and contractivity properties of ~Tt ~ together with
Proposition 2.8, 2.9 and 2.10 respectively imply the continuity of ~(t) in
the intervals 00), [0 , s~~ and i = k , k - 1, ... , 2 ..
THEOREM 2.12. - Let A be a unital von Neumann algebra of operators

in a Hilbert space ?~o and let ~Tt ~ be a semigroup of completely positive
linear maps of A into itself such that To is identity and Tt (I ) = I for
all t. Then there exists a conservative weak Markov flow (x, F, jt) on A
satisfying the following :

(i) ~o C ?~ and ~Co is the range of F(0);
(ii) The set {j(f, X )2G, 2G E = (tl, t2, ..., ti ~ 0, _X =

X2~ ~~~~ Xn)~ Xi E A, 1 ~ i ~ n, n = 1, 2, ...~ is total in ~;
(iii) The expectation semigroup of (H, F, jt) is ~Tt ~;
(iv) If (H’, F’, jt) is another subordinate weak Markov flow with

expectation semigroup ~Tt ~ such that the range of F’ (0) is ~Co and (ii)
holds with j, H replaced by j’, ?~C’ then there exists a unitary isomorphism
U : ~nC -~ H’ satisfying

.

(v) If ~Tt ~ is strongly continuous on the Banach space A then the maps
t -~ F(t) and t -~ jt (X ) are strongly continuous for each X E A.

Proof. - From [P2] it is known that there exists a family {/~~ &#x3E; 0~ of
Hilbert spaces with ho = Ho, * unital homomorphisms Jt : ,~4. -~ 8(ht)
and isometries Tl (s, t) : hs - ht for 0  s  t  oo such that (a)
Jo(X) = X ; (b) = I; (c) = JS(Tt-S(x))’
(d) V(t, u)V(s, t) = V(s, u) for all 0  s  t  u  00. Let M = U hs

s&#x3E;o
be the disjoint union of all the hs considered as abstract sets. Define the
map K : M x M - C by

whenever denoting the maximum of sand t. We claim
that K is a positive definite kernel on M . Indeed, consider arbitrary scalars

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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which proves the claim. Hence by the GNS theorem there exists a Hilbert
space 03BA and a map A : M - )( such that {A(i6), u E .M} is total in )( and

If u, v E ht then

Thus A is an isometry from ht onto a subspace ICt of /C. If s  t and
u E hs then V(s, t)u E ht and

Thus C J’Ct whenever s  t. Denote by E(t) the projection onto lCt
and define jt by

where ~-1 is the inverse of the map A : ht - /Q. Since the range of jt(X)
is contained in ICt and Jt is a * homomorphism from A into B(ht ) it follows
that jt(X) = E A is a * homomorphism from A
into B(K) and jt(I) = E(t).
Now consider u, v E hs, s  t. Then

Vol. 31, n° 4-1995.
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Thus

Denote by 7Y C /C the closed subspace spanned by the set M of all vectors
of the form j(f, X )u, u E t = (tl, ..., tn), ~ _ (Xl, ..., Xn), ti 2:: 0,
Xi ~ A, n = 1,2,... Denote by Ht c H the closed subspace spanned by
the set Mt C M of all vectors of the same form j(t., X)u with ti  t
for every z. We now claim that 1tt = H n /Ct. Indeed, 

(X~, ..., X~,), t ~ si ~ 0,X, E A, u e ?~o.
Then ç is in the range which is contained in /Ct. Thus
Mt C 7~ n Kt and therefore ~Ct C H n Now consider an element of
the form ~ = E(t)j(s, X )u where u E Ho, s = (sl, ..., sn) and si ~ 0

..., Xn)u. Since (J’C, E, jt) is a conservative
weak Markov flow it follows from Corollary 2.6 that we can express
~ - j(t, s~, ..., s~, ~’o, ~’1, ..., Y’,2)u where t &#x3E; ... &#x3E; ~ &#x3E; 0 and
hence ~ e 1ft. Thus E(t)M C 1tt and therefore H n lCt C proving
the claim. Denote by F(t) the projection on Ht in the Hilbert space H and
jt(X) the restriction of jt (X ) to ~‘~C. Then (7~ F, jt ) is a conservative weak
Markov flow satisfying properties (i) - (iii) of the theorem.
To prove (iv) we observe that the proofs of Theorem 2.5, Corollary 2.6

and Proposition 2.8 imply that

for allu, v E = (~~, ..., sm), ~ _ (tl, ..., tn), X = (Xl, ..., Xm), ~ _
(Y1, ..~, This shows that the correspondence j(, X ) u ~ j’ ( s, X ) u is
isometric and hence extends uniquely to a unitary isomorphism from ?-iC
onto 1{,’ satisfying (iv). Observe that cyclicity (property (ii») forces j~ to
be conservative.

Property (v) of the theorem is immediate from Proposition 2.11 and the
fact that jt is a homomorphism for every t &#x3E; 0..

Now we extend Theorem 2.12 to non-conservative contractive semi groups.
THEOREM 2.13. -- Let A be a unital von Neumann algebra of operators

in a Hilbert space H0 and let be a semigroup of completely positive
linear maps of A into itselfsuch that To is identity and for all t.
Then there exists a subordinate weak Markov flow (7i, F, jt ) on A satisfying
(i) - (v) of Theorem 2.12.

Proof - Consider the extended von Neumann algebra ,A = A acting
on the Hilbert space Ho == EÐ C . For convenience we denote the element

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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X ~ c of A, for X and c E C, by the column vector (~). Define
the maps Tt : ,,4. -~ ~4 by

Then ( it ) is a conservative one parameter semigroup of completely positive
linear maps. If ~Tt ~ is strongly continuous so is {T~}. Thus Theorem 2.12
becomes applicable for and we have a conservative weak Markov flow

(7~ F, ~t ) on A with expectation semigroup {T~}. Define the operators F (t)
and jt (X ) by,

Before obtaining the required Markov flow we prove the following
statements. For 0  s  t, X E A and c e C

(a) is a family of projections nondecreasing in t;

(b)~(X)~~) ~o(~(X)=0; , ,

(c) {F(~)} is a family of projections nondecreasing in t;
(d) Range of F(0) is Ho and range of F(t) increases to the orthogonal

complement of range of as t increases to oo;

(e) = + cF’(s).

Property (a) follows from the identity

Now make use of (a) to obtain

Vol. 31, n° 4-1995.
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and

Clearly F(t)* = F(t). This proves (b) and. (c). The range of F(0) is
Ho 0 C and hence the range of F(0) is Ho. The second part of (d) follows
as 3t (i) increases to the identity operator in ~-l as t increases to oo. Now
from (a) and (b),

Let ?~C be the orthogonal complement of the range of 30 ~ 1 in Making
use of (a)-(d) we can restrict F(t) and jt (X ) to H and verify that (~C, F, jt) is
a subordinate weak Markov flow with expectation semigroup ~Tt ~ satisfying
(i), (iii), and (v) of Theorem 2.12. Denote by Ht the closed subspace
spanned by the set Mt of all vectors of the form j(Í, X)u, with ti ~ t for
every i and u E Ho. We now claim that the range of F(t) is 1tt. Indeed,
consider ~ = j(Í, X)u with t2  t for every i and u E Ho. Then,

and hence the ragne of F(t) contains Ht. Now for t &#x3E; 0, Xi E A,
Ci e C for 1 ~ i  n and u E E C, consider 1] = 3 s ~~ From the statement (e) proved above, 

c / / W

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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By induction on n we conclude that is a linear combination of
elements in Mt. The closed linear span of all vectors ~ of the form above
is the range of F(t) and as the range of F(t) is clearly contained in the
range of F(t) we conclude that Ht contains the whole of the range of
F(t). This proves properties (ii) and (iv) of Theorem 2.12 for the Markov
flow (~-l, F, jt). 1

Note that the construction in (2.4) is the quantum probabilistic analogue
of associating with a substochastic semigroup Pt = ((pi~ (t))),1  i, j  oo

of matrices the stochastic semigroup Pt = ((pi~ (t)), 0  1, j  oo where

In other words we have incorporated an absorbing boundary. This is reflected

in the increasing nature of the family of projections {3t (~)}. It may also
be noted that in general is not a commuting family of projections.
We conclude this section with three examples of the construction involved

in Theorem 2.12 and 2.13.

Example 2.14. - Let A be the commutative von Neumann algebra of 2 x 2
diagonal matrices and let Tt : ~t 2014~ ~ be the semigroup defined by

for a, b E C, c &#x3E; 0 being a fixed constant. A acts on C2 in a natural way.
Put H = C2 EÐ L2(R+) with filtration F given by F(t) = I EÐ xt where I
is the identity operator in (2 and xt denotes multiplication by the indicator
function X[O,t] in L~(R+). Define jt : A - by

where Q(t) is the rank one projection onto the subspace generated by the
unit vector with

Vol. 31, n° 4-1995.
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A routine computation shows that F(s)jt(X)F(s) = for all
X E A and 0  s  t. Thus (~-l, F, jt) provides a weak Markov flow
with expectation semigroup {Tt} satisfying all the properties mentioned in
Theorem 2.12. It is instructive to compare this with the Markov flow of

classical probability theory associated with the one parameter semigroup of

2 x 2 stochastic matrices e 0 - : -! .

Example 2.15. - Let H be a positive selfadjoint operator in 7-l0. Consider
the nonconservative one parameter semigroup {Tt } of completely positive
maps on defined by

Following [HIP] introduce the unitary operators {!7(5,~0 ~ ~  t  oo}
in the Hilbert space

given by

where uo and u = u ( ~ ) are the components of an arbitrary element in ~-l
with respect to the direct sum decomposition in the definition of H and

It is known from [HIP] that

and U(s, t) is an operator of the form in the

direct sum decomposition ~-l = where =

H0 EÐ t], H0). Define F(t) to be the projection on the subspace
~(0~) and put

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Then jt(I) = jt(I)F(t) ::; F(t). From the fact that {U(s,t)} is a time

orthogonal dilation of the positive contraction semigroup it follows

that F(s)U(0, t)F(s) = where the term

in { } on the right hand side is with respect to the decomposition
~ = 00)~0). Thus

In other words (~-l, F, jt) is a subordinate weak Markov flow with expectation
semigroup ~Tt ~ .

Example 2.16. - Let (Jt, t &#x3E; 0 ~ be an Evans-Hudson flow [P 1, Me]
determined by structure 0} on a unital von Neumann
algebra of operators on a Hilbert space Ho so that the quantum stochastic
differential equations

are fulfilled in the Hilbert space H = Ho 0 f(L2(1R+) 0 £2),f indicating
the boson Fock space over its argument. Let F(t) denote the projection onto
the subspace Ht = r(L2[0, t] 0 £2) 0 where is the Fock

vacuum in o .~2). Define jt(X) = Jt(X )F(t), t &#x3E; 0, X E A.
Then (~-C, F, jt ) is a conservative weak Markov flow with expectation
semigroup Tt = &#x3E; 0. However, this need not satisfy the cyclicity
condition (ii) of Theorem 2.12.

3. FELLER PERTURBATIONS OF POSITIVE SEMIGROUPS

In his analysis of Kolmogorov equations Feller [Fe 1,2,3] constructed a
class of substochastic semigroups called minimal semigroups and outlined
a method of constructing new semigroups including stochastic ones by
perturbing their resolvents (or Laplace transforms) appropriately. The same

goal was achieved more directly by a pathwise approach in the works of

Chung [Cl ,2] and Dynkin [Dy ]. In the context of quantum Markov processes
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minimal semigroups associated to Lindblad equations were introduced by
Davies [Da] and their dilations to Evans-Hudson flows were studied by
Mohari [Mo] and Fagnola [Fa]. Following the spirit of Feller and Chung
we outline a general method of perturbation for positive semigroups on a
von Neumann algebra.

Let A be a von Neumann algebra of operators in a Hilbert space H and
let Tt : ~4 2014~ ,~4, t &#x3E; 0 be a strongly continuous positive semigroup of
linear maps so that the following conditions are fulfilled : (i) To (X ) = X
for all X E A; (ii) = Ts+t(X) for all X E A, s, t &#x3E; 0;
(iii) lim Tt(X) = for all X E A, s &#x3E; 0; (iv) Tt (X ) &#x3E; 0 for all
X &#x3E; 0 , X E A, t ~ 0 .

We consider two types of perturbations of ~Tt ~ which yield new
semigroups. The first type arises from what we call an exit cocycle for
the semigroup ~Tt~. The second arises from a dualisation of the first and is
based on an entrance cocycle for the same semigroup. The terminology is
motivated from considerations of classical Markov processes.

DEFINITION 3.1. - Let be the family of all bounded Borel subsets
of R+. A map S : ,A+, the cone of nonnegative elements in
A, is called an A+-valued Radon measure on R+, if, for any sequence

of disjoint elements in such that U Ei E S(UEi) =
_ 

i i

where the right hand side converges in the strong sense.
i

DEFINITION 3.2. - An ,,4.+-valued Radon measure S on R+ is called an
exit cocycle for the semigroup ~Tt ~ if

Remark 3.3. - The strong continuity of the semigroup {Tt } and the
fact that To is identity imply that every exit cocycle is nonatomic, i.e.,
S({t}) = 0 for all t &#x3E; 0.

Example 3.4. - Choose and fix an element B in A+. Define

Then the semigroup property and positivity of ~Tt ~ imply that SB is an
exit cocycle.

Another class of exit cocycles is obtained by the following definition.
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DEFINITION 3.5. - Let A E A. Then A is called excessive for the semigroup
{Tt} if Tt(A)  A for all t &#x3E; 0. If Tt(A) = A for all t &#x3E; 0, A is said
to be harmonic.

Example 3.6. - Let A E A be excessive for {Tt}. Define a Radon measure
S by putting

Since A is excessive and Tt is positive we have S([a, b]) = 
0. Since Tt(S([a, b])) = S([a + t, b + t]) it follows that S is

an exit cocycle.
It should be noted that in this example if .C is the generator of {Tt}

and A is in the domain of G then 9([a, bJ) = / reduces to

Example 3.4. If B E A+ is harmonic and ~, denotes the Lebesgue measure
in R+ then SB (E) = which is a special case of Example 3.4.

Example 3.7. - If we replace the von Neumann algebra A by a C*-
algebra the definitions given in the preceding discussions are meaningful.
For example let A denote the C* algebra of bounded continuous functions
on R+ and let {Tt} be the semigroup of translation operators defined by

Define the Radon measure S by

for some fixed 6, 0  8  1. Then

and hence b~)(~) = bs - ab  oo. Clearly S([a, b~)(~) &#x3E; 0. The
x

cocycle property is obvious. This cocycle if expressed as ~(x + s)ds
then = 8x8-1 is unbounded and § / A. On the other hand if

S([a, b]) = Tby/J then = c - x6 for some constant c, is
unbounded and does not belong to A.

Example 3.8. - Let A be the C* algebra of all bounded continuous
functions on the real line R and {Tt } be the semigroup defined by
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where B(t) denotes the standard Brownian motion process on R. Define S by

From Tanaka’s formula (page 137 in [CW]) we know that

where L(t, x) is the local time at -x. L(t, x) is jointly continuous in
the variables t and x and L(t, x) is nondecreasing in t for fixed x. Thus
S((O,t~)(x) is increasing in t and continuous in (t,x). Since B(t) has a
symmetric distribution it follows that 8([0, t])(x) = 8([0, t])(-x). When
x &#x3E; 0 we have

which shows that

The cocycle property is now immediate from the standard properties of
Brownian motion.

We now go back to the semigroup {Tt } on the von Neumann algebra A
and associate a perturbation series with a pair (S, w) where S is an exit
cocycle for {Tt ~ and w is a state on A. To this end we introduce the Radon
measure M defined by

and some notation. For any t &#x3E; 0, n = 0,1,2,... define the linear maps
on A by
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for all X where

For 0  s  t  oo and 0  m  n define

otherwise

for all X E A, where

PROPOSITION 3.9. - For each X the infinite series

converges in operator norm. The convergence is unaform in t over bounded
intervals.

Proof. - It follows from Remark 3.3 and the definition of p in
(3.4) that  is nonatomic. Hence lim ([0, s]) = ({0}) = 0. Choose
and fix to &#x3E; 0 such that  1. We shall now estimate

([0, t~&#x3E; = (~(t~, ..., tn) : tl + ... + t}~. Let tl + ... + tn  t
and r = #{i : 1 ~ i  n, ti &#x3E; to}. Then t &#x3E; tl + ... + rto and, in

particular, r ~ [t t0] + 1 = j, say. Hence
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From (3.5) we have for n &#x3E; 1

which implies the required result..
In order to show that is a semigroup we need the following lemma.

LEMMA 3.10. - For any s, t E R+ and X E .4 the following holds:
/_B /..,.B v I _ 

~ ~

Proof. - First we prove (i). Clearly (i) holds when m = n = 0. When
1 we have

Consider the change of variables

Then the cocycle property of S and the definition of  imply

and under the change of variables, the conditions 0 and ti + ... + tn  t

become s  si + ... + and si + ... + + t respectively. By
the nonatomicity of S we may as well write s  ~i + " - + so that
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and (3.6) shows that the right hand side is the same as T§J%’§£+" (X) . When
m = 0, n &#x3E; 1 we have 

Changing the variables to si = s + = t2, ..., sn = tn yields the
required result as before. When m ~ 1, n = 0 the semigroup property of
~Tt ~ implies

and completes the proof of (i).
Property (ii) is obvious for k = 0. When k &#x3E; 1 property (i)

together with the observation that + t) is the disjoint union of
{0",,k(s, s + t), 0  k~ for all sand t implies (ii) and completes
the proof of the lemma..

THEOREM 3.11. - Let Tt : ,A -~ A be a positive strongly continuous
semigroup of linear maps. Suppose w is a state on A and S is an exit
cocycle for {Tt~. Then the family {Tt} defined by (3.7) is also a positive
strongly continuous semigroup of linear maps on A. If {Tt } is completely
positive so is fTt}.

Proof. - Clearly To(X) = To (X ) = X for all X E A. For 0  s, t  00

and X E A we have from Lemma 3.10.

Thus ~Tt ~ is a semigroup. By (3.5), is strongly continuous..in t. and
linear on ,A for each n and Proposition 3.9 implies the same property for

~Tt ~ . If ~Tt ~ is positive or completely positive so is each ~T ~’~~ ~ and hence
also shares the same property..
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The semigroup occurring in Theorem 3.11 is called the Feller

perturbation of ~Tt ~ determined by the exit cocycle S and the state w.

Remark 3.12. - Theorem 3.11 holds good when A is a C* algebra and
the proof remains the same.

Remark 3.13. - From the proof of Proposition 3.9 it follows that

v = 80 -~- ~c + ~c*2 + ... is a Radon measure on R+ where 80 is the

Dirac measure at 0 and  is defined by (3.4). This shows that the perturbed
semigroup Tt can be expressed as

when S * v is the positive operator-valued Radon measure defined by

If X is in the domain of the generator £ of {Tt}, u, v are elements of the
Hilbert space ~-l (with A C 13(x)) and (u, S * v(~0, t] )v) is differentiable
at the origin then

In particular, if

In order to compare the perturbed semigroup with Feller’ s

construction we shall compute its resolvent. At this stage it is useful to

recollect the well known Hille-Yosida theorem which makes precise the one
to one correspondence between a semi group and its resolvent.

THEOREM 3.14 (Hille-Yosida [Y], [Dy]). - Let X be a Banach space.
Let be a family of operators in X, with ,Q’ 2:: 0 a fixed scalar,
satisfying the following:

(i) i.G - À)-l Ra -- for ~i, i,L &#x3E; ’~." /.~;

M(A - j3)-1 for all 03BB &#x3E; 03B2 and some positive constant M ;
(iii) s - lim for all ~c &#x3E; E X;

~-~~
(iv) Range of Ra is dense in X for some ~ &#x3E; {3.
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Then there exists a unique strongly continuous semigroup ~Tt ~ of

operators in X such that .  and Ra (X ) = 1 
for all 03BB &#x3E; {3, X E X . 

0

Conversely, if Tt : x ~ X, t &#x3E; 0 is a strongly continuous semigroup of
operators then there exist constants M, (3 &#x3E; 0 such that ~Tt~ II ]  Me03B2t for
all t &#x3E; 0 and Ra (X ) - defines a family of operators

satisfying (i) - (iv). The semigroup ~Tt ~ is contractive if and only if M and
,Q can be chosen to be 1 and 0 respectively.

Proof. - We omit the proof (See page 30, Vol. I, [Dy])..
THEOREM 3.15. - Let the semigroup ~Tt ~ in Theorem 3.11 satisfy the

inequalities (  Me03B2t for M &#x3E; 0, {3 &#x3E; 0 and all t &#x3E; 0. Let

&#x3E; {3} be its resolvent. Then there exists a /3 &#x3E; 0 such that the

resolvent {03BB,03BB &#x3E; is given by

where

Proof. - Choose and fix a to such that = a  1. Let
b = By the cocycle property

Hence

Since = w(S(E)) we have
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Since a  1 we conclude the existence of a constant /3 &#x3E; 0 such that

Thus, for X E A, A &#x3E; /3, we have

Remark 3.16. - As a direct consequence of the cocycle property of S
it follows that

Using this relation we can verify that jix satisfies the resolvent identity. So
we could as well have defined jix directly by (3.8) and (3.9), used the Hille-
Yosida theorem and recovered the semigroup ft. Indeed, Feller [Fe 2] had
taken this approach. We shall compare the formula for jix with that of Feller.

Let A E A+ be excessive for ~Tt} and let S be defined as in Example
3.6 so that S(t) = S((0, t]) = A - Tt(A). Then

i.e., Aa = A - Hence (3.8) becomes

~)=~~+T~~~))~-~(~ ~
Now consider the special case A = qI for some q &#x3E; 0 and w(X) = tr pX
for some density matrix p describing the state. Then
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where m = 201420142014. If is contractive and 0 then is also
q

contractive. When m = 0 and {Tt} is not conservative it follows that
= I and hence ~Tt ~ is conservative. When A and ~Tt } is the

minimal semigroup of substochastic matrices associated with a Kolmogorov
equation, formula (3.11 ) coincides with the expression (8.1 ) in [Fe 2]. This
suggests that the density matrix p in (3 .11 ) mediates the transition from a
"boundary point" back into the "state space" of the Markov flow and 
is the probability that it is stuck in the boundary. Of course, it is desirable to
have a clearer picture of the manner in which p mediates the transition.
We now proceed to a brief discussion on entrance cocycles. Let A*

denote the predual of the von Neumann algebra A C B(1t). Then A* is a
subalgebra of the algebra of all trace class operators on ?-~.

DEFINITION 3.17. - An A* -valued nonnegative Radon measure ~ on R+ is
called an entrance cocycle for the semigroup ~Tt ~ if

Imitating Example 3.4 and 3.6 we can obtain examples of entrance cocycles
provided there exists a semigroup in A. satisfying

In such a case we have the following examples.

Example 3.18. - Let p E A* be positive. Define the Radon measure by

Then is an entrance cocycle for the semigroup {Tt}.
Example 3.19. - Suppose po E A* is excessive for {7ft}. Define 9 by

Then 9 is an entrance cocycle.
Let 03C8 be an entrance cocycle for the semigroup {Tt } and let Z be a fixed

positive element in A. In analogy with (3.7) define
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for t &#x3E; 0, X E A.

THEOREM 3.20. - The series on the right hand side of (3.16) converges
in norm and is a strongly continuous positive semigroup. If ~Tt } is

completely positive so is 

Proof. - This is exactly along the same lines of the proof of Theorem
3.11..

THEOREM 3.21. - Let Ra and Ra be the resolvents of {Tt } and {Tt}
respectively for 03BB &#x3E; 03B3 for some "Y &#x3E; 0. Then

where 0152À is the positive linear functional on A given by

Proof. - This is obtained by a direct computation..

We conclude this section with some remarks on perturbations of direct
sums and tensor products of semigroups. Suppose Ai is a von Neumann

algebra of operators in a Hilbert space Hi and ~T~Z~ ~ is a positive strongly
continuous semigroup of linear maps on for each i = 1, 2. Let wi
be a state in A and let Si be an exit cocycle for each i. For the

semigroup Tt = T(1)t ~ T(2)t, S = S1 ~ S2 is an exit cocycle and for

any 0 ~ p  1,03C9 = p03C91~(1 - p)03C92 is a state on A = A1 ~ A2.
Expressing any element of A as a column vector (;), X E A2
we see that the perturbed semigroup associated with the pair (S, w)
has its resolvent jix given by

where is the resolvent of and = ~0e-03BBtSi(dt). When

A2 = C,p = 0,~(c) = c and = I - being
contractive (3.17) reduces to
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This is the resolvent of a semi group which is the quantum probabilistic
analogue of a Markov chain with an absorbing boundary point as described
after Theorem 2.13.

Just like direct sums we can also perturb tensor products of semigroups.
Indeed, let Tt = T~1~ ~ in A = A1 ~ A2. Then there exists an
exit cocycle S for {Tt } such that ~([0,~]) = ~i([0~]) 0 ~([0~]) for
all t. It should be noted that ~([~6]) ~ Sl ( ~a, b~ ) 0 SZ ( ~a, b~ ). It is also

interesting to note that A2 is excessive for {Tt} if Ai is excessive

for {T~2~}, i = 1, 2. Indeed,

If H is harmonic for {T ~2~ } then 8([0, t]) = Sl ( ~0, t]) 0 H defines an
exit cocycle for {Tt}. If Tt = identity we can express the resolvent of
the perturbed semigroup {Tt} associated with the exit cocycle S and any
state w on A as

A similar analysis can be done with entrance cocycles.

4. GLUING ADAPTED PROCESSES USING STOP TIMES

In Section 2 we saw how it is possible to construct weak Markov flows
out of one parameter semigroups of completely positive contractive linear
maps on a von Neumann algebra. Given such a semigroup {Tt} and its
Feller perturbation {Tt} based on an exit cocycle S and a state w it is

natural to examine the relationship between the flows associated with {Tt}
and {Tt}. If we follow the classical approach of Chung [Cl] it is not

difficult to see the possibility of obtaining the flow associated with 
by appropriately "gluing" independent copies of the flow associated with
{Tt} at suitable stop times.

Just as a classical stochastic process is a family of random variables
~~(t)} a quantum stochastic process may be viewed as a family of operators
{X (t) } in some Hilbert space. Given two classical stochastic processes
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{~(t)} and {r~(t)~ with t &#x3E; 0 and a stop time T for {ç(t)} we can glue them
at time T and obtain a new process {~(t)} by defining

Already from the papers of Hudson [H] and Parthasarathy and Sinha [PS]
the fruitfulness of looking upon stop time as an adapted spectral measure on
R+ is evident. Our aim in the present section is to outline a method of gluing
operator-valued processes in different Hilbert spaces by using appropriate
spectral measures and obtain the glued process in their tensor product. To this
end we begin with the definition of an integral of an operator-valued function
with respect to a spectral measure. Since this notion will be used extensively
in the sequel we present a list of its basic properties for ready reference.

Let (H, 0, jj) be a totally finite standard measure space and let P~ denote
the canonical spectral measure on S2 so that P~(E) is the operator of

multiplication by the indicator function xE of E in the Hilbert space

Suppose k is a Hilbert space and X : 0 ~ B(k) is a map satisfying
the following:

(i) the map w -&#x3E; (u,X(w)v) on S2 is measurable for every E k;
(ii)  oo.

Note that the Hilbert space k is isomorphic to the Hilbert space
k) where

with

f, g, ... denoting equivalence classes modulo p-null sets. Making use of
this identification between L~(~) (g) k and L2(~, k) we define the operator

J on k by

Then L is a bounded operator on L2(~c) ~ k with
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It is natural to denote the operator given by (4.2) as / P~(cf~) 0 X(c~) but
we drop the symbol 0 for notational convenience.
Now suppose that P is any spectral measure on the standard Borel

space with values in the lattice of orthogonal projections in a
Hilbert space H. By a part of the Hahn-Hellinger theorem [PI] there
exist totally finite measures {~,a, a E S} on and a unitary
operator U : H ~ ~L2( 03B1) such that UPU-1 = Let now

a a

X : S2 -&#x3E; B(k) be a weakly measurable map satisfying sup  oo.
P

Then we define the integral of X(.) with respect to P by

Then the left hand side yields an operator on H with

PROPOSITION 4.1. - Let (0, 0) be a standard Borel space and let ~‘~C, k be
Hilbert spaces. Suppose P is a spectral measure on .~ with values in the
lattice of orthogonal projections in ?~. Let ,J~ be the * unital algebra of all
weakly measurable maps of the form X : 0 ~ B(k) satisfying the condition

 00. Then the following holds:
P

(i) the map X ~ is a * unital homomorphism from .l~
into 0 k) such that (4.3) holds;

(ii) for any u, u’ E ?~C, v, v’ E k

Proof. - This is immediate when 1t = LZ(~,) and P = P~‘. Rest follows
from (4.4) and (4.5) ..

DEFINITION 4.2. - By a bounded process X = {~(~)~ ~ 0} in
a Hilbert space ~-l we mean a family of bounded operators in ~-l

satisfying the following: (i) the map t - X (t) is weakly measurable;
(ii) sup [  oo for every t. Such a process is called contractive,

isometric or coisometric according as all the operators X (t), t &#x3E; 0 possess
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the same property. If F is a weak filtration in H then X is said to be

adapted to F if

A stop time in ~-l is a spectral measure on the closed interval

[0, oo] = R+ U {00} with values in the lattice of projections in ~-l. A

stop time P is called a stop time for the bounded process X in 7-l if

= for every t. P is called an F-adapted stop
time for the bounded process X if, in addition,

We shall now introduce a quantum analogue for the construction in (4.1 ).
Let Xi be a bounded process in the Hilbert space i = 1, 2 and let Pi be
a stop time for Xl, Then the glued process Xl opl X2 is defined by

where the first term is actually the ampliated operator X1 (t) ( 1 - Pl (t) ) 0
12 , Pl (t) = Pl ( [0, t~ ) and 12 is the identity operator in ~2. By Proposition
4.1 it follows that Xi opl X2 is a bounded process in 0 ~2. When the

stop time Pi is clear in a context we shall write X 1 o X2 for X 1 X 2 .
The event that the process Xi is stopped at a time not exceeding t is

described by the projection Pl (t). Since and Pl (t) commute with
each other we may express the first term on the right hand side of (4.6)
also as 

Normally Pi({0}) = 0 so that Xi 0~2(0) = Xi(0)Pi((0, oo]) =
Xi(0), i.e., the glued process starts at Xi(0). Otherwise Xi o X2(0) =

+ Pi({0})X2(0). This may be interpreted as an

instantaneous change from Xi(0) to X2 (U) (with some probability in a
given state).

PROPOSITION 4.3. - Let Pi be a stop time in i = 1, 2. Then P1oP1 P2
is a stop time in ® ?-~2. If in addition, Pi is a stop time for the bounded

process Xi, i = 1, 2 then Pl oPl P2 is a stop time for the glued process
Xl 0~ X2.
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Proof - We have from (4.6)

This proves the first part. The second part is immediate from Proposition
4.1 and the definition of a stop time for a bounded process..
We denote the stop time Pi opl P2 by Pi o P2 and call it the cumulative

stop time of Pi followed by P2. In other words we wait till the stop time Pi
first and subsequently wait till P2 so that the total waiting time is Pi o P2.
Such a view is useful in gluing more than two processes.

PROPOSITION 4.4. - Let Xi be a bounded process in i = 1, 2, 3 and let
Pi be a stop time for Xi, i = 1, 2. Then

for all t &#x3E; 0 in H1 (g) H2 @ H3.

Proof. - By repeated application of (4.6) we have
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which agrees with the right hand side of (4.8) owing to the fact that P2 is
a stop time for X2. Similarly by Proposition 4.1 we have

which once again agrees with the right hand side of (4.8)..
In view of Proposition 4.4 we can now take the liberty of denoting the

left hand side of (4.8) as Xl o X2 o X3 whenever the concerned stop times
Pi and P2 are unambiguously fixed.

Consider a sequence of triples Xn, Pn, n = 1, 2, ... where Hn is a
Hilbert space, Xn is a bounded process and Pn is a stop time for Xn for each
n. Let ® ~-C2 0 " ’ ® ~‘~Cn. Define the operators Xn+1 (t), 
and in by

for n &#x3E; 1,
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for n &#x3E; 1, where the m-th term which looks like an operator in

is, indeed, ampliated to It is to be emphasized that
= Xl o X2 o the glued process obtained from the sequence

through the stop times Pi , P2 , ... , Pn. Define the spectral
measures Pnj in by

for any Borel set E C [0,oo], and denote their ampliations by the same
symbols. Then, for any fixed t, = t] ) is a decreasing sequence
in n and

with the understanding that PO] (t) - I. We have the estimates

Let now ~n ’be a unit vector in Hn, n = 1, 2, ... Consider the countable
00

tensor product ~-C = defined with respect to the stabilizing sequence
~=1

Assume that

On ampliating to 7-l we see from (4.14) and (4.16) that the infinite
series

converges strongly and

Roughly speaking, is the glued process Xi oX2 o ... Note that the infinitely
glued process depends on the stabilizing sequence {~}. The next two
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propositions describe the basic properties of the operation of gluing a finite
or countable number of bounded processes.

PROPOSITION 4.5. - Let Xn, Yn be bounded processes in the Hilbert space
~n for each n = 1, 2, ... satisfying (4.18) and let Pn be a stop time for both

Xn and Yn for each n. Then the following holds for all 2  n  00:

(i) Xn] + Yn] _ (X + s

(ii) X n] Yn] _ (XY)n];
(iii) (X n] ) * = _ 

-

(iv) Xn] is positive or contractive according as each Xi is positive or
contractive.

Proof. - Immediate from Proposition 4.1 and the definition of glued
processes..

PROPOSITION 4.6. - In Proposition 4.5 suppose that Xn is the process In
where In(t) == I in for each n. Then

Define the probability measures on [0,00] associated with the

stabilizing sequence by -

Then

if and only if

for all 0  t  oo.

Proof. - The first part is immediate from the relations =

(t), = I and the fact that in (4.11) becomes
To prove the sufficiency in the second part consider an element

u = ~2 ~ ’ " ~ ~ ~ §k+2 © ’" in 7-l and observe that (4.11)
yields _

when _ I for all i, n &#x3E; being the measure defined by
~(E) = = 1 , 2 , ... , k and E any Borel subset of [0,oo].

’ 
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Now (4.21) implies that the left hand side of (4.22) converges to 0 as n - oo.
Since vectors of the form u are total in ?-~ it follows that - 0

strongly as 7~ 2014~ oo for every t. Now (4.12) and (4.19) together with the
first part imply that = I for all t &#x3E; 0.
To prove the necessity of (4.21) observe that vi * 1/2 * ... * vn ( ~0, t])

decreases monotonically in n for every fixed ~ &#x3E; 0.
Suppose that lim ... * vn([0, to]) = 8 &#x3E; 0 for some to &#x3E; 0. Then

(4.12) implies that for the unit vector u = 03C61 @ 03C62 @ ... in H

In other words (to ) is a proper projection..
Remark 4.7. - From Proposition 4.5 and 4.6 it is clear that for 2  n  00

the bounded process Xn~ is isometric, coisometric or unitary according as
each XZ , i = 1, 2, ... has the same property. If the measures ~ vn ~ defined in
Proposition 4.6 satisfy the condition (4.21 ) then X~] is isometric, coisometric
or unitary according as each XZ, i = 1, 2, ... has the same property.

PROPOSITION 4.8. - Let Pn , n = 1 , 2, ... be as in Proposition 4.5.
Suppose that the maps t -t Xn(t) are strongly right continuous for each
n. Then is strongly right continuous in t for every 2  n  oo. If
Xn (t) is strongly continuous in t and Pn has no atoms in R+ for every n
then is strongly continuous in t for every 2  n  oo.

Proof. - Consider an element u = Ul 0 u2 0 ... in ~ where each un
is a unit vector and un = ~~ for all n exceeding some no. From (4.14)
and (4.19) we have

Consider a fixed bounded interval [0, T] and observe that (4.14), (4.16) and
(4.18) imply the existence of a positive constant C depending on T such that
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for all 0  t  Note that when n = 0 the right
hand side of the inequality above is to be interpreted as C(1 - ~i([0, t] ) ) . It
follows from (4.23) and (4.24) that the right hand side of (4.23) converges
uniformly in t E [0,T]. Thus, in order to prove the first part of the

proposition, it suffices to show that the map t - Xn+1(t)u is strongly right
continuous. We have

Thus

where C is the positive constant mentioned earlier, Un] = ui 0 "’ ~ un,
h &#x3E; 0, t ~- h  T. Since (t) and Pn+l ( (t, 00]) are both right continuous
for every n the right continuity of Xn(t) in t follows from the inequality
above. It is to be noted that we have used the fact that vectors of the form u

described at the beginning are total in H. The second part of the proposition
is proved in the same manner..
Now we proceed to define the glued filtration which may be considered

as the natural filtration for glued processes. To this end we consider a

sequence 1, 2, ... where Hn is a Hilbert space and Fn

is a weak filtration in 7~ such that the map t - Fn (t) is strongly
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right continuous. Let Xn be a bounded process adapted to Fn and let
Pn be a stop time for Xn so that Pn is adapted to Fn in the sense of
Definition 4.2. We choose the stabilizing sequence of unit vectors 
such that ~~ is in the range of Fn(0) for each n = 1, 2, ... Denote by
4~ ( l"’~ &#x3E; ’~1 ) " one dimensional

projection ampliated to or H whenever necessary and using the same
symbol for operators and their ampliations introduce the operators 
by

for 1 ~ n  oo and the operators in H = H1 0 ... 0 ... by

Here we have used the notations (4.9) and (4.10). It is important to compare
(4.25) and (4.26) with (4.12) and (4.19).

PROPOSITION 4.9. - defined by (4.25) is a right continuous weak
filtration in for every 2  n  oo. If Xn is an Fn-adapted bounded
process in ~ln and Pn is an Fn-adapted stoptime for every n then is

Fn+1]-adapted for every 1  n  oo.

Proof. - We prove the result first when n = 1. From Proposition 4.1 it
follows easily that the operator
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with Ø2 in the range of F2 (0) is a projection. For 0 ::; s ::; t  00 we have

which shows that F2] (t) is increasing in t. In other words F2] is a filtration.
To prove the adaptedness of with respect to F2] observe that

which proves the claim for n = 1. Now assume that the Proposition is true
for n  k. Then on gluing with using the cumulative stop time

Pi o P2 o ... o given by

we have a new filtration G given by
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which is easily verified to be the same as Hence is also a
filtration. Since Xk+2] = o Xk+2 a repetition of the earlier argument
shows that Xk+2] is ~+2]-stapled.
The strong right continuity of Fn~ (t) in t is proved exactly as in Proposition

4.8.

PROPOSITION 4.10. - In Proposition 4.9 suppose that the sequence

of probability measures {03BDn} in the closed interval [0, 00] defined by
1/~ ( ~ ) 1, 2, ... satisfies (4.21 ). Then defined by
(4.26) is a strongly right continuous weak filtration in x = H1 @ H2 @ ...
If Xn is an Fn-adapted process and Pn is an Fn-adapted stop time for Xn
for every n then is F~]-adapted.

Proof. - Proceeding along the lines of the proof of Proposition 4.6 we
conclude that = s. lim (t), = s. lim (t). The

strong right continuity of in t is proved exactly as in Proposition 4.8.
Rest is immediate from Proposition 4.9..

5. GLUING MARKOV FLOWS

In classical probability theory a Markov process governed by a

nonconservative or substochastic semigroup of transition probability
operators on a state space H is interpreted as a Markov process whose
trajectories may get out of the space SZ (or hit the boundary) at an exit
time depending on the individual trajectory. Such an exit time provides a
natural stop time at which the trajectory may be stopped at the boundary
with probability p or continued with probability q = 1 - p along a new
independent trajectory of the original flow starting from a point x E SZ
chosen according to a suitable entrance probability law. Such a procedure
can be repeated ad infinitum. The aim of the present section is to quantize
this idea or, equivalently, express it in the language of operators in a Hilbert
space by adopting the gluing mechanism described in Section 4 with respect
to suitable exit times for a nonconservative Markov flow mediated by a
one parameter semigroup ~Tt ~ of completely positive and contractive linear
maps on a unital von Neumann algebra and thereby obtain a new Markov
flow whose expectation semigroup is a Feller perturbation of ~Tt ~ .

DEFINITION 5.1. - Let (7~ F, jt ) be a weak Markov flow on a unital von
Neumann algebra A of operators in a Hilbert space Mo with expectation
semigroup ~Tt ~. A spectral measure P on the closed interval [0, oo] with
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values in the lattice of orthogonal projections in ~-C is called an exit time for
the flow (~‘~C, F, jt ) if the following conditions hold:

(iii) If Sp denotes the positive operator-valued Radon measure defined

onR+by .

then 8p(E) E A and

Condition (ii) expresses the adaptedness of the stop time P and for

any initial state A on ~A(~([0~])) is the probability that "hitting the
boundary" occurs at or before time t. Condition (i) can be interpreted as the
fact that if the system or flow goes out of A before time t the event jt (X )
for any projection X in A cannot occur at time t. Condition (iii) emphasizes
the covariant nature of the exit time under the flow.

PROPOSITION 5.2. - If and P are as in Definition 5.1 then the
Radon measure Sp satisfying (5.2) and (5.3) is an exit cocycle for the

expectation semigroup ~Tt ~ of the flow (?~, F, jt ).

Proof. - Taking conditional expectation E ~ in (5.3) we have from the
Markov property of the flow

Let = 1, 2, ... be copies in Definition

5.1. Note that equation (5.1) together with its adjoint and condition (ii) of
Definition 5.1 imply that the exit time P is also an F-adapted stop time
for the bounded process {~(X)~ &#x3E;: 0~ for every X E A. Choose and fix
a unit vector 4&#x3E; in the range of F ( 0 ) in H. Let  = H1 Q9 H2 Q9 ... where

the countably infinite tensor product is taken with respect to the stabilizing
sequence { ~~ ~ with ~n - ~ in the n-th copy for each n. Using { Pn ~ we
make an infinite gluing of the processes {j~~(X)} for each X E A as in
Section 4 to obtain the processes
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By (5.1) we have jt(X)P((t, = j§ (X) and (5.4) can be expressed as

where

and for

where On and t) are as in (3.5) - (3.7). It is useful to compare the
two expressions above with (3.5) and (3.6) and interpret as a description
of the glued process at time t under the knowledge that exactly n exits
have occurred upto time t. Similarly describes the glued process under
the knowledge that exactly n exits upto time t and m exits upto time s
have been made.

THEOREM 5.3. - Let F, jt, Tt, P, Sp be as in Definition 5.1 and let 03C6
be a unit vector in the range of F(o). Define the maps jt : ,A. --~ 

by (5.4). Let F = be the glued filtration in ~-C defined by (4.26). Then
F, j~ ) is a weak Markov flow with expectation semigroup which is

the Feller perturbation of ~Tt ~ determined by the exit cocycle Sp and the
vector state w with density matrix (11.

Proof. - It follows from Proposition 4.5 that for each t, jt is a

* homomorphism from A into From (5.4) and (5.1) we have

30(X) = jol~ (X~) ( 1 - Pi (0)) = which is jo (X) in the first copy
of ?~ ampliated to Thus
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Since the measure p defined by /~( ) = (~~P( ’)4» is not degenerate at 0 it
is clear that lim ([0, t] ) = 0 for every t &#x3E; 0. Hence by Proposition 4.10-

the process { jt (X ) } is adapted to the filtration F for every X E A.
Fixing 0  s  t and using (5.4), (5.5) and (4.26) we obtain

where

and for m  n

From the Markov property of jt it follows that (5.7) can be expressed as

In (5.8) make the change of variables:
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and use (5.3) in the form

Then we obtain

Plugging the expressions (5.9) and (5.10) in (5.6), first summing over the
variable n - m from 0 to oo and then over the variable m from 0 to 00

we obtain

where is the Feller perturbation of based on the exit cocycle Sp
and the vector state 

Remark 5.4. - Theorem 5.3 can be easily adapted to the case of

Feller perturbations based on 8 p and a state determined by a density
matrix of the form p = is an orthonormal

sequence in the range of F(0) and is a probability sequence,

i.e., pn ~ 0 for each n and = 1. We do this as follows. Put

~a - Ho, A’ = {Ia 0 X,X E ~t}~(7o 0 X) = 7o 0 Tt(X)
for all X E A where Io is the identity operator in Ho. Let

x’ - H, F’(t) - I0 ~ F(t), j’t(I0 ~ X) = I0 ~ jt(X), pf =

Io 0 P, ~p, - Then (H’, F’, jt~ is a weak Markov flow on

A’ with exit time P’ and expectation semigroup ~Tt ~ . ,S’~,, is an exit cocycle
for ~Tt ~ . Now consider the vector state on A’ determined by the unit vector
~‘ - ~,~ 0 ~~ in ?~o. We may view ~’ as an element in the range
of F’(0) and construct the infinitely glued flow ~7‘~’, F’, ,3;) according to
Theorem 5.3. This glued flow is a weak Markov flow on A’ with expectation
semigroup ~T~ } where X) = 7o 0 being the Feller
perturbation of based on (Sp, p).

It is interesting to note that for any initial state (j on A and projection
Q E A the probability that according to the glued flow (~nC’, F’, 3;) exactly
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m exits occur upto time s, n exits occur upto time t and the event Q occurs
at time t is equal to

where 0  s  t  oo and  = trpSp.

Example 5.5. - Using isometric cocycles arising naturally from the theory
of quantum stochastic differential equations (q.s.d.e.) in the Fock spaces one
can construct many examples of nonconservative flows with an exit time.
Indeed, let ~-l = 1to 0 r(7~(R+) 0 k) as in [Mo]. Consider an isometric
cocycle U = {U(s, t), 0  s  t  oo} obeying the q.s.d.e

where {L~ ) is a family of operators in (See [Mo]). By the cocycle
property U(0, s)U(s, t) = U(0, t) for all 0  s  t  oo. Define

where we denote an operator and its ampliation by the same symbol. Then
= U(0, t)U(0, t)* is a projection. For any 0  s  t  E ~-l

we have

This shows that {~(7)} is a family of projections decreasing in t. Using
the strong continuity ofj~(X) in t we conclude the existence of a spectral
measure P on [0, 00] such that P ( ~0, t]) = 1 - jf(I) for all t where
1 and I denote the identity operators in ?~C and respectively. Let
~Tt ~ be the semigroup of completely positive linear maps on 

satisfying for all t &#x3E; 0, X E A where Eo] is the
Fock vacuum conditional expectation. Let S be the positive operator-valued
Radon measure determined by 9([0, t] ) = I - Tt (I ) for all t &#x3E; 0. Denoting
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by Es] the usual conditional expectation with respect to the Fock vacuum
vector in (0) 0 k) we have ,

Let F(t) denote the projection on to the subspace H0 8 
k) ~ ~[t C H. Define

Then (H, F, jt) is a subordinate weak Markov flow on B(Ho) with

expectation semigroup {Tt}. Furthermore

and (5.11 ) implies

In other words P is an exit time for (~, F, jt ) .
More generally, consider a family of non-conservative Evans-Hudson

on a unital von Neumann algebra Ao C taking
values in 00), k] ) ) with structure maps ~8~ ~ so that

for s  t. Extend the domain of definition of from Ao to Ap by putting

for X E Ao and Z E B(r(L2([s, oo), k)), where Z is the ampliation of Z
to an element of = Ao 0 B(r(L2([0, s), k))) ~ 00), k))).
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Then

This shows, in particular, that

Since j2,t is a contractive * homomorphism it follows that {j°(I)~ is a
family of projections which is decreasing and strongly continuous in t. Thus
there exists a spectral measure P on [0, oo] such that P(~0, t] ) = 1- jt (1) , 1
being the identity operator in x. As before define jt(X) = 
Then (7~, F, jt) yields a weak Markov flow with exit time P.

Example 5.6. - The simplest example of a nonconservative flow is

constructed from a given conservative flow (~-l, F, jt) on A with expectation
semigroup as follows. Consider a classical Poisson process with

intensity Ao whose probability measure ~ in the path space yields the Hilbert
space H1 = L2( ).

Let P1([0, t]) be the projection in H1 which is multiplication by the
indicator function of the event that the Poisson path undergoes a jump in
the interval [0, t]. Let 7-L = H Q9 H1 and let P be the spectral measure in
[0,oo] determined by

Define

Note that P({oo}) = 0. If Fi (t) is the projection on to the subspace of
functions of the Poisson path upto time t and F(t) = -F(~) 0 Fl (t) it follows
from the fact that the Poisson process has independent increments, that

for all 0  s  t  oo. In other words we have a weak Markov flow

(~F,~) with expectation semigroup is easily verified that
P is an exit time for this flow.

Example 5.7. - If A is a unital von Neumann algebra of operators in x©
and ~Tt ~ is a uniformly continuous contraction semi group of completely
positive linear maps on A then by the method outlined in it can be

shown that the infinitesimal generator ,C has the form
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where Go is the generator of a conservative and uniformly continuous
contraction semigroup of completely positive linear maps on A and B is
a positive element of A.
As a special case when A = it follows that G has the form

where Ho, Lj and B are bounded operators in is selfadjoint, B
is positive and ~ is strongly converent. We shall now construct a
concrete Markov flow whose expectation semigroup has generator £. To this
end consider B(Ho EÐ and represent any element in it in the form of a

matrix () where Xj j e for each Define the operators 
,

Consider the standard Evans-Hudson flow jt induced by a unitary cocycle
in the Hilbert space

satisfying = for all X E 0  ~ 

t  oo where Tt has generator £ given by

and ES~ is Fock vacuum conditional expectation. When X == { n } an
easy computation shows that
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where £(X) is given by (5.12). Let F(t) = It] 0 where 1~] is

the identity operator in (B 0 r(L2 ~0, t] 0 ~2) and is the vacuum

vector in ~). Put

Then we get a weak Markov flow F, jt ) with expectation semigroup
~Tt ~ . It is not clear whether the projection

is increasing in t. If it were so, it would determine an exit time for the

flow F, jt ) .
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