Additions and correction to “The bootstrap of the mean with arbitrary bootstrap sample”
Annales de l'I.H.P. Probabilités et statistiques, Volume 27 (1991) no. 4, p. 583-595
@article{AIHPB_1991__27_4_583_0,
     author = {Arcones, Miguel A. and Gin\'e, Evarist},
     title = {Additions and correction to ``The bootstrap of the mean with arbitrary bootstrap sample''},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {27},
     number = {4},
     year = {1991},
     pages = {583-595},
     zbl = {0747.62019},
     mrnumber = {1141249},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_1991__27_4_583_0}
}
Arcones, Miguel A.; Giné, Evarist. Additions and correction to “The bootstrap of the mean with arbitrary bootstrap sample”. Annales de l'I.H.P. Probabilités et statistiques, Volume 27 (1991) no. 4, pp. 583-595. http://www.numdam.org/item/AIHPB_1991__27_4_583_0/

[1] A. Araujo and E. Giné, The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, New York, 1980. | MR 576407 | Zbl 0457.60001

[2] M.A. Arcones and E. Giné, The Bootstrap of the Mean with Arbitrary Bootstrap Sample Size, Ann. Inst. Henri Poincaré, Prob. Stat., Vol. 25, 1989, pp. 457-481. | Numdam | MR 1045246 | Zbl 0712.62015

[3] D.J. Bickel and D.A. Freedman, Some Assymptotic Theory for the Bootstrap, Ann. Statist., Vol. 9, 1981, p. 1196-1217. | MR 630103 | Zbl 0449.62034

[4] M. Csörgö and L. Horvath, Asymptotic Representation of Self-Normalized Sums, Prob. Math. Statist., Vol. 9, 1988, pp. 15-24. | MR 945676 | Zbl 0694.60016

[5] R. Le PAGE, M. Woodroofe and J. Zinn, Convergence to a Stable Distribution via Order Statistics, Ann. Prob., Vol. 9, 1981, pp. 624-632. | MR 624688 | Zbl 0465.60031

[6] B.F. Logan, C.L. Mallows, S.O. Rice and L.A. Shepp, Limit Distributions of Self Normalized Sums, Ann. Prob., Vol. 1, 1973, pp. 788-809. | MR 362449 | Zbl 0272.60016

[7] W. Stout, Almost Sure Convergence, Academic Press, New York, 1974. | MR 455094 | Zbl 0321.60022