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Hydrodynamical limit for asymmetric attractive

particle systems on Zd

C. LANDIM

Centre de Mathematiques Appliquees,
Ecole Polytechnique, 91128 Palaiseau Cedex, France

Ann. Inst. Henri Poincaré,

Vol. 27, n° 4, 1991, p. 559-581. Probabilités et Statistiques

ABSTRACT. - We prove conservation of local equilibrium for asymmetric
attractive particle systems on Zd starting from some initial configurations.
These initial profiles have density (3 in some cone H and density a in the
complement. We assume that the flow is a vector in H or in - H. The

d-dimensionnal results allow us to prove hydrodynamical behavior for
systems on Z starting from some non monotone initial profiles.

Key words : Local equilibrium, hydro dynamical equation, attractive systems, entropy
solution.

RÉSUMÉ. - Nous demontrons la conservation de 1’equilibre local pour
des systemes de particules asymetriques et attractifs sur Zd pour certaines
configurations initiales. Ces profils initiaux ont densité 03B2 dans un cone H
et densite a dans le complémentaire. Nous supposons que la derive moy-
enne est un vecteur de H U ( - H). Ces resultats d-dimensionnels nous
permettent de demontrer le comportement hydrodynamique de systemes
sur Z dont le profil initial n’est pas monotone.

Classification A.M.S. : 60 K 35.
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560 C. LANDIM

INTRODUCTION

The zero range process is one of the most studied interacting particle
systems. It can be informally described as follows. Consider undistinguish-
ables particles moving on Zd. Let g : N ~ R be a non negative function
with g (0) = 0 and P (x, y) transition probabilities on Zd. Suppose there are
k particles on a site x of Zd. These particles wait a mean 1 /g (k) exponential
time at the end of which one of them jump to y with probability P (x, y).

In this paper we are interested in conservation of local equilibrium. To
describe the results, consider a system of particles moving on Zd. Suppose
that this Markov process in NZ has an infinite family of extremal invariant
measures vp caracterized by a parameter p in some open subset P of R".

In the sequel, for x E Zd, we denote by ix the translation by x in Nzd
and extend them to the functions and to the measures in the natural way.
Hence, for and

Let ~ be a sequence of probability measures on We shall say that
the sequence satisfies the local equilibrium property if there is a

regular function p : Rd  P such that:

where [Y] denotes the interger part of r and the limit, as all measure limits
in this paper, is taken in the weak* sense.

Let St be the semigroup of the Markov process. We shall say that there
is conservation of local equilibrium if there exists a time renormalisation
T (s) and a regular function p : R + x Rd  P such that,

We expect p (t, x) to be the solution of some P.D.E. with initial condition
given by p (x). This partial differential equation is called the hydrodynami-
cal equation of the process. The time renormalisation T (E) is usually E -1
in the asymmetric case and E ~ 2 in the symmetric case.

In [DIPP] one can find precise statements about hydrodynamical
behavior of many particles systems and a list of references.

In asymmetric particle processes under the Euler rescaling T (E) = E -1,
the hydrodynamical equations obtained are quasi-linear hyperbolic equa-
tions of first order:

where cp is a concave function.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Theses P.D.E. do not admit, in general, smooth solutions. Therefore
we have to consider weak solutions, in which case we loose unicity.
Kruzkov proposed in [K] a criterion to pick up among the weak solutions
the one with physical meaning, called the entropy solution. The function
p (t, x) which describes the hydrodynamical behavior of attractive asym-
metric particle processes is exactly the entropy solution of (0.0).

In this paper we prove conservation of local equilibrium for attractive
particle systems on Zd for some initial configurations.

This problem has been considered before by several autors. Rost in
1981 [R] gave the first contribution to the field considering the totally
asymmetric simple exclusion process. His results were later improved in
[AK], [BF1], [AV], [BF2], [L], [BFSV] and [Re]. There is a problem in the
proof of Proposition 1 in [BF1] which is being corrected by the authors.
This paper is the sequel of [L], where we considered attractive particle
systems on Zd.

1. RESULTS AND NOTATION

Let be the zero range process. This is the Markov process on
Nz2 = X whose generator acts on cylindrical functions as

where

All over this paper we will make the following assumptions on g and
P:

(i ) The function g is nondecreasing and bounded, 
(ii) P (x, y) = P (0, y - x) = p ( y - x) and there is A e N such that:

The existence of this Markov process, under more general assumptions
than ours, is proved in [A]. Before proceeding, we introduce some notation
which will be used troughout this paper.

(a) ~~ denotes the set of probability measures on Nz2.
(b) St denotes the semigroup of the Markov process and F the set of

probability measures invariant under (St).
E Z2} denote the shifts on X: 03C4t ~ (z) = 11 ( y + z) for every y, z

in Z 2, 11 in X. We extend the shift to the functions and to the measures

Vol. 27, n° 4-1991.



562 C. LANDIM

in the natural way: = ~) and f d (iy )=(03C4yf)d . f denotes

the probability measures invariant under the group {03C4y y E Z2}. Remark
that the assumptions on the process imply that Ty and S~ commute.

(d) For r in R, [r] will denote the integcr part of r.

( f ) For a subset A of Rd, A° is the interior of A.
(g) H is a closed cone with non empty interior.
We introduce in X the partial order defined by ~ ~ 03BE if 11 (x) ~ 03BE (x) for

every x in Z2. Denote by M the class of continuous functions on X which
are monotone in the sense that f (r~ )  f (~) whenever r~ __ ~. We extend

the partial order to u in the natural way: if fd ~f d03BD for every
f EM. A Feller process, with semigroup St is said to be attractive if St
preserves the order in i. e., if for every It is

proved in [A] that the monotonicity of g implies the attractiveness of the
zero range process. This property is the crucial point in the proof of
conservation of local equilibrium as we shall see.
With the same proof as the one of Corollary 11.2.8 of [Li], if in

order to prove that Jl = v, we only have to show that

It is proved in [A] that the set of extremal measures in ~ (~ Y is
the weakly continuous family of translation invariant product measures
~ vp, o ~ p  oo ~, such that:

where x (p) is a normalizing factor, 0)]=p and

Therefore, every measure in J n Y can be written as

for some probability measure X on R + .
To state the theorems, we define the product measures 03B1,03B2 on NZ2:

de l’Institut Henri Poincaré - Probabilités et Statistiques
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In section 2, we will prove the following

THEOREM l. - Suppose that:
(a) cp given by ( 1 . 3) is concave, y ( - y) is in H and a ((3 __ a)

or suppose that

(b) cp given by (1. 3) is strictly concave, y ( - y) is in H and oc (a  
Then,

for every continuity point (t, V2)) of p, the entropy solution of the 2-
dimensionnal P.D.E. (0.0) with initial condition

The important assumption of the theorem is that the shocks all diffuses
or they all propagates (yeH, a  Our techniques at their

present stage do not apply to the case where one front diffuses and the
other propagates.

Consider the 1-dimensionnal nearest neighbor zero range process. This
is the Markov process whose generator acts on cylindrical functions as

where ~k,j is given by ( 1.1 ) and p ( 1 ) =1- p ( -1 ) = p > 1 /2.
Define ma, ~ as the product measure on NZ:

In section 3, we prove

THEOREM 2. - Suppose that cp given by (1 . 3) is strictly concave and that
oc  (3. Then,

for every continuity point (t, v) of p, the entropy solution of the I -dimension-
nal P.D.E. (0.0) with initial condition

Remark 1.1. - With a change of variables T = t ~ -1, we see that in
order to prove Theorem 1 for the case where and cp is concave,

Vol. 27, n° 4-199 I .



564 C. LANDIM

it is enough to prove that

where (vl, ~, v2, c) _ lo ([3) - cp oc] (Y1, Y2) . In the other cases

(y ~ H, ... ), analogous remarks can be stated.
Remark 1.2. - Remarks 5.1 and 5.2 in [AV] remain valid in our

context. We can construct similar couplings to the one presented in
section 3 for the nearest neighbor "misanthrope" process.
Theorem 1 can be proved in higher dimensions with the same arguments.

2. PROOF OF THEOREM 1

In this section we prove Theorem 1, proving the assertion made in
Remark 1.1. We consider the case where cp given by (1.3) is concave, y is
in H and The other situations are handled in the same way.
The method presented here was introduced in [AV] to prove conserva-

tion of local equilibrium for attractive particle systems on Z. It was

extended in [L] to attractive processes on Zd.
The proof of Theorem 1 follows from a sequence of lemmas. Some of

them appeared before in [AV] or in [L]. Since we need slight modifications
in the statements of these lemmas and in the sake of clearness, we present
the staments and omit partially or totally the proofs when they appear in
[AV] or in [L].
Remark 2.1. - In the proof of Theorem 1, we need only to consider

the case where y E Q 1= ~ (x, y) E R2; x >_ 0, y >-- 0 ~ c H°. Indeed, if Y E HO,
with a change of variables which sends Z2 onto Z2, we can transform the
process and the initial condition in order that they satisfy the above
assumption (c.f’. [L], Remark 7.2, for a similar problem). On the other
hand, if y E H - H°, approximating H by cones HN such that H c H~, we
see that we can restrict our study to the case where y E HO (cf. Lemma 3.2
of this paper).
LEMMA 2.1. - Under the hypotheses of Theorem 1 and under the

assumptions presented in Remark 2.1,

The proof is the same as the one of Proposition 5.1 of [L].
With the next lemma, we begin the proof that

lim if We should observe that we
f - oo

do not use in Lemmas 2.2 and 2.4 the assumption that yeH.

l’Institut Henri Poincaré - Probabilités et Statistiques
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LEMMA 2.2. - Let  be a probability on Nz2 and H be a closed cone
which interior contains Ql. Suppose that there are 0~ 03B81~ 03B82  oo such that;

i ) I~  Ve~
and

every (k, H.

Then, or every sequence TN T oo there exists a subsequence and two

countables and denses subsets ~i, I~z of R, such that, for every

(vi, x 

for some D ~.

Proof. - Almost all the proof is omitted since it is similar to the one
of Lemma 3.1 of Consider a countable and dense subset A of R~.
As in [AV], we obtain a subsequence TNk for which for every V2)EA,

For (vi, let v2) = ~{v1’ v~~ [r~ (o, o)]. We extend F to Rz in the
natural way:

F defined in this way is non decreasing in each coordinate and bounded.
Let be a dense and countable subset of R. For each define

Fv as the real function such that v) for every For each

the set C~ of discontinuity points of F~ is countable. Therefore,
U Cv is countable. Let D ~ be a dense and countable subset of R,

ve D2

D1 ~ U C" = QS. It is not difficult to see that F is continuous at every
veD2

point v2) of D=Di X D2. The rest of the proof follows just as the
one of Lemma 3.1 of [AV]. D

We fix some notation which will be needed later. For (v 1, v2) in D x D2,
denote

and

We extend those functions to R2 as we did in Lemma 2.2.

Remark 2.2. - In Lemma 2.2, the hypothesis that Ql c HO was neces-
sary to insure that the dense and countable subset D of R2 can be taken

- 

Vol. 27, n° 4-1991.
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as the product of two dense and countable subsets of R. Under the weaker
assumption that Ql c H, a similar proof shows that there is a countable
and dense subset D of R2 with the properties listed in Lemma 2.2.
By (1.4), since for (ci, x D2, there exists a

probability measure a.~"1, v2~ on [81, 82] such that,

LEMMA 2.3. - With the notation of Lemma 2.2 and with ~, there
exist vl and v2, such that,

The proof is omitted since it is similar to the one of Lemma 2.2 of [L].
Remark 2.3. - If yftH U (- H) and with the notation of

Lemma 2.2 and with i = ~, the same proof gives that there exist vl and
v2, such that,

Now, we arrive at the main point in the proof of Theorem 1. Lemma 2.4

is also the most important modification needed in the arguments of [L] to
prove Theorem l. This lemma computes the density in a 2-dimensionnal
macroscopic box.

LEMMA 2.4. - Let ~, be a probability on NZ2 and suppose that there are
two dense subsets D1 and D2 of R and a sequence TN T oo such that:

and

where

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Then, for every (ul, u2), (vl, v2) in D1 X D2 with ui  vi, i =1, 2,

where F and G are given by (2 .1 ) and (2 . 2).
The proof of this lemma, which relies on a long computation on the

generator, is postponned to the appendix. The reader should remark that
no assumption is made on y.

LEMMA 2.5. - With the notation of Lemma 2.2 and with ~, = ~, we

have:

Proof. - First, take U1) in D1  D2 such that for i =1, 2.
Consider v1) in D1  D2 such that and vi > ui for i = 1, 2. By
attractiveness, we know that

Therefore, Lemma 2.4 applied to the sequence TNk obtained in
Lemma 2.2 states that

is bounded above by P (v 1- u 1 ) (v2 - u2).
Applying Lemma 2.3, we obtain that

Now, we consider partitions u2 = ao  al ...  6M = v2, such that, 
for 0 _ i _ M. Thus, the first integral in the right hand side of the last

Vol. 27, n° 4-1991.
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expression is equal to

Since cp is a concave function and Yi 1 > o, this expression is bounded above
by

and this term is equal to

iviHandling in the same way the expression [03C6 (@) - G (r, u2)] dr, from
ui

(2 . 4), we obtain that

Since F is increasing in each coordinate and bounded above by P,
remembering that = Y~ [cp (~i) -- cp (oc)]/[~3 - Cl], we obtain from the defini-
tion of ui, i = l , 2, that if and that if

6 > ul. This shows that W2~ [r~ (0, 0)] _ ~i for every (wl, w2) E D~ x D2
such that, i = l, 2. Since by attractiveness w2~  v~, from
(1. 2) we obtain that if for i = l, 2, because F is

continuous at D ~ x D2.
Finally, since for every (k, j) E H, by attractiveness we

obtain that = 

v~ if (Vl’ v2) E (D x D~) U (ve + H°). D

Remark 2.4. - If H U ( - H) and y2  0  with the notation of

Lemma 2.2 and with p, Remark 2.3 and the same proof gives that

Remark 2.5. - Assume that for every sequence TN and every subsequ-
ence TNk the measures v~~ obtained in Lemma 2.2 are equal to some
ve in an open set U of R2. The proof below of Theorem 1 shows that in

this case lim t~, w2 for every (ci, v2) in the open set U.
t

This method will be used in the next section to prove conservation of

local equilibrium without further comments.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Proof of Theorem 1. - Choose (vl, v~) such that (~1, By
attractiveness and from the inequality ~,~y ~ ~ v~, we know that the set

is relatively compact. Let § be a cluster point of this set and a

subsequence associated to this cluster point. From this sequence we obtain
by Lemma 2.2 a subsequence TNk and subsets D1 and D2 of R for which,
by Lemma 2.5,

for every (w1, w~) in D1 x D2 such that (Wi’ w2) is in v~ + I~°.
On the other hand,

Since we can find (w~, wz) in D1 x D2 such that (Wt, w2) is in Vc + HO and
v2) is in w + H°, we get that v~ = w2~ ~ ~.. ~l

Remark ~.6. - If y ~ H ( - H) and y2 ~ 0  the same proof together
with the result stated in Remark 2.5 show that

3. PROOF OF THEOREM 2

In this section, with the results obtained in the previous section for 2-
dimensionnal attractive processes, we prove Theorem 2. Throughout this
section, the product measure 03B1,03B2 is

and the zero range process is the one with jump rates equal to

-1 ) = p =1- p ( - I , 1 ) > 1 /2. In this case, y ~ = -- ~2 = y ---- (2 p -1 ). The
reader should remark that the one-dimensionnality and the nearest

neighbour assumption is only needed in the proof of Lemmas 3.3 and
3.5.

Theorem 2 is a corollary of the next theorem which proof is divided in
5 lemmas. Before stating the theorem, we introduce some notation. Define

Vol. 27, n° 4-I991.
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a : [ - ycp’ (a), - ycp’ ([i)] --~ R as the continuous and increasing function

Throughout this section, for a fixed 
- ycp’ (~3)], 6 (v2). We omit v2 when no confusion arises.
Consider J : [ - ycp’ (a), - ycp’ (~3)] ~ R the continuous function:

THEOREM 3. - With the notation just introduced,

03B1,03B2 St 

The proof of this theorem is divided in 5 Lemmas. The proof of the
first lemma is omitted since it is similar to the one of Proposition 5.1
in [L].

LEMMA 3 . 1:

LEMMA 3.2 :

Proof - For N E N, let HN be the cone

and the product measure

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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From Remark 2. 6, for N sufficiently large,

if

Fix (T i , T2) E R2 such that T i > Y lO (03B2) - O (03B1)]/[03B2 - Ul, v2 > - YO’ ( #) .
From ( 1 . 2) and by attractiveness, to prove that
lim 03B1,03B2St03C4([v1t],[v2t]) 

= 

v03B2, it is enough to prove that
t - w

’im i«, 03B2St03C4([v1t], [v2t]) In (k i , = # for every (k i , k2) E Z2.
t - w

Fix (k ~ , k~) E Let u;  w;  v;, I = 1 , 2 and u ~ > y [~p ( @) - ~p (a)] /[@ - a] ,
u2 > -03B303C6’ (@). For t sufficiently large,

We couple the measure 03B1,03B2 and N in the following way. First, we
place ~-particles on Z2 distributed according to 03B1, 03B2. Then we add 03BE-
particles so that 11 + 03BE is distributed according to The particles jump
in order that 11 and r~ + ~ evolve as zero-range processes with generator
introduced in the begining of section 2. Let ~,N be the coupling measure.
From (3.1), we obtain that for every integer N,

Therefore, to prove this Lemma, it is enough to show that

Vol. 27, n° 4-1991.
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This is done with similar arguments to the ones used in the proof of
Lemma 2.2 in [L]. D

In lemmas 3.3 and 3. 5, we proceed as described in Remark 2. 5. We
consider a sequence oo . Applying Lemma 2. 2, we obtain a subset D
of R2, a subsequence TNk and measures for 
We will show that these measures y2~ are equal to some measure ve in
open sets of R2, what is enough, as observed in Remark 2.5, to prove
Theorem 3.

Lemma 3 . 3 consists on obtaining the true a-region:

LEMMA 3.3 :

Proof - Since r is an open set, by Remark 2. 5, it is enough to show
that V2) = va for every V1) E D U r.
To prove this assertion, we only have to show that

v2) _ "2j [~ (0, 0)] = a for every (vl, v2) E D ~ T. Indeed, suppose
that this last statement is true. Fix such a V2). In view of (1.2), since

~,2>, to prove that it is enough to show that

"2~ [r~ (k, j)] = a for every (k, j) E Z2. Since r is open and D dense in
R2, there is (W1’ w~), r; i =1, 2. By attractiveness,

To prove that F v2) = a for every v2) E D (~ r, fix v2) E D fl r
such that v + v2 > o.

Holding in mind that a = a (V2)’ define H~ as the cone

Consider the product measure 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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As in Lemma 3.1, with a proof similar to the one of Proposition 5.1 in
[L], it is easy to show that

if

and

Since v 1 + v2 > o, let c 1 and c2 be constants such that

0  cl + v2  c2 - 1. We couple the measures 03B1,03B2 and 03C3 in the following
way. We place first on Z~ r)-particles distributed according to wa. Then
we add particles, called 3(1-particles, in such a way that the particles 11 
are distributed according to 03C3. Now, we add x2 and ~3-particles for
11 + xl + X2 being distributed according to and 11 + 3(1 + x3 being distri-
buted according to Let § = ~1 + x2 and § = xl + x3 and denote by  this
coupling measure. With the notation just introduced we have:

CLAIM. - There exist positive constants Kl and K2 which depend only
on c1 and c2, such that, for every t > 0

for every k E Z and for every [c 1 t]  K _ [c2 t].
The proof of this claim is deferred to the end of the proof of this

Lemma. We proceed with the proof of the Lemma.

the set

Then,

Vol. 27, n° 4-1991.
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By attractiveness, for a fixed t > 1,

Since from the claim we have that the
last expression is bounded above by

Since for every (wl, w2) such that and

+0,

Therefore, for every such a point,

Hence, it is easy to show that

From (3 . 2), (3 . 3) and (3 . 4), we obtain that h (0, 0)] = a. Therefore,
to conclude the proof of this lemma, we only have to prove the Claim.

Proof of the Claim. - Fix t > o, 0  [cl t]. Define A as the
set

It is easy to see that there are positive constants K 1 and Kl which depend
only on cl and c~ such that,

We have that

Annales de l’Institut Henri Poincaré - Probabilites et Statistiques
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Therefore, to prove the claim, we only have to construct a dynamic for
which 11 + ç and 11 + ~ evolve as a zero range processes and for which the
set A is absorbing. Indeed, if we construct such a coupling, we have that

Now, we construct the coupled process. To construct this coupled
process, we use the one-dimensionnality of the zero range and the nearest
neighbour assumption. Since the particules evolve only on a line, we
describe the coupling in dimension 1.

Since there exist an integer L such that

we label the § and the ç-particles from the left to the right. In order to
have the same number of labeled ~ and §-particles, we place, if necessary,
ç or §-particles in +00. These particles do not move. A configuration
(~, 0 is in the set A if and only if for every j E N, the jth labeled ~ particle
is not at the right of the jth labeled ~ particle. We construct a coupling
which preserves this order. Let (~, Q E A.
The ~-particles evolve as first class particles, while the others as second

class particles. Fix a site i in Z. Let ko be the number of first class particles
on i. To keep notation simple, let h (j) = g (ko + j) - g (ko), Let a

and b (c and d) be the least and the greatest label of the ç-particles (03B6-
particles) on i. Thus, c -- a and d _ b. There are four possible cases. Suppose
that a = c and b = d. In this case, the particles a and c (b and d) jump
together to i -1 (i + 1 ) at rate ( 1- p) h (b - a + 1 ) ( ph (b - a + 1 )). If c  a and
d  b, then the particules a, b, c and d jump, independently one from the
others, to 7+1, i - 1 and i + 1 at rate 

and ph(d-c+l), respectively. If c = a and d  b, then
the particules a and c jump together to i-I at a rate 
the particules a, b and d jump, independently one from the others, to
i -1, i + 1 and i + 1 at rates equals respectively to

and ph(d-c+I). The last
case is similar to the third one and is omitted. It is simple to see that this
coupling has the required properties. D

The proof of the next lemma is omitted since it is similar to the second
part of the proof of Theorem 2 in [L]. It is a corollary of Lemmas 3 . I

and 3. 2.

Vol. 27, n° 4-1991.
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LEMMA 3 . 4. - For (vl, v2) such that - (a~ ~ v~ ~ -’Yc~‘ and

It remains to study the region - (a) ~ v2 ~ - y(p’ (P),

LEMMA 3.5. - For v~) such that --  v~ ~ -~ (~3~ and

proof - To prove this lemma, we will argue that if it was not true, we
would have lost mass, which is impossible since the system is conservative.

Fix (w~, ~~) ~ D such that J (a (~~~~ ~ ~~  y (~~ ~- (?’ (a)]/[a - a]. Define
as the product measure

We know from [L] that for every (wl, w2)
t - 00

such that - p’ ~a) ~ w~ ~ ~- (p’ (P). Since ~ ~« p, by attractiveness,
~cv~, ~,~~ ~ v~ ~"~~. Thus, from (1, ~) and with similar arguments to those used
in the begining of the proof of Lemma 3,3, to prove that ~.wl, v~~ *x V (J 
we only have to show that 

Let

V~e claim that [~ (r, s) ~- cx] dr ds = [~ -~ cx~ e~/~. Since ~’ ~ ~’ and
E

(r, s) - 03B1] dr ds = [03B2- 03B1] c22/2, we have one inequality. The other is

obtained in the following way. Fix ~ > o. Let {rj, j~ Z }, { st, i~ Z} be two

Annales cle l’Institut Henri Poincaré - Probabilites et statistiques
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partitions of R such that for every i, j and

where vi, ~) E D and ui, ~ > ~~ + 1, vi, ~ > si + 1 for every i, j. From the defini-
tion of the function F and by attractiveness, the right hand side of the
last expression without s is bounded below by

A simple computation leads that this term is bounded below by

where

Therefore,

Since F and F increase in each variable, F = F a. e. Since D (~ n are
continuity points of boths F and F, for every

(1 II. D

4. APPENDIX

PROOF OF LEMMA 3. - Since the proof of this lemma is similar to the
one of Lemma 3.1 of [L], we will omit several details. Fix (u2, u2) and
(vl’ V1) in D1 x D2. We first rewrite (2. 3) as
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It is easy to see that the function H is differentiable for every t such

that ui t, u2 t, vi t and v2 t are not in Z. Moreover,
i i 

Tr~lim , H 
= lim , H’ (t) dt.

N T2N N T2N

We compute the integral lim g íT H’ (t) dt. 21 terms of 5 different
N Tr~ ~o

kinds appear. In what follows, we show how to deal with each kind of
term. The first kind is of the form:

It is easy to show that this term converges to zero by hypothesis (i ) and
by attractiveness.
The second kind of term is of the following form:

By the same reasons, this kind of term converges to zero.
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The third kind of term is of the following form:

Let E > 0 be fixed and consider a partition u2 = ~o  a 1  ... 
such that for and After simple compu-

tations using that the process is of finite range and the attractiveness, we
obtain that this expression is bounded above by

By hypothesis (ii ) and since the function G (v 1, . ) is bounded and increas-
ing, this expression converges to zero when E ~ 0. In the same way, we
can bound below the expression (4.1) by a term which converges to zero.
The fourth kind of term is of the following type:

Fix E > o. Consider the partition with the same properties as before. If
v 1 > 0, the expression (4. 2) is bounded above by

By hypothesis (iii), by attractiveness and since the function F (v 1, . ) is

bounded and increasing, when E goes to zero, this last expression converges
to

Finally, the last term is

This expression is similar to the one which appears in the proof of lemma
5.1 of [L]. We therefore omit some details. After some computations, we
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obtain that (4.3) is bounded above by a sum of expressions of the form

where Y is an integer random variable k). Now, we

proceed just as we did in the last two cases and obtain that the expression
(~ . 3) converges to

This concludes the proof. D
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