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Time reversal of non-Markov point processes

Robert J. ELLIOTT (1) and Allanus H. TSOI (2)
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University of Alberta,
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Ann. Inst. Henri Poincaré,

Vol. 26, n° 2, 1990, p. 357-373. Probabilités et Statistiques

ABSTRACT. - Time reversal is considered for a standard Poisson process,
a point process with Markov intensity and a point process with a predic-
table intensity. In the latter case an analog of the Fréchet derivative for
functionals of a Poisson process is introduced and used in techniques of
integration-by-parts to obtain formulate similar to those of Föllmer in the
Wiener space situation.

Key words : Point processes, Poisson process, predictable intensity, non-Markov, integra-
tion-by-parts, Frechet derivative.

RESUME. - Le retournement du temps est considere pour un processus
de Poisson, un processus ponctuel avec intensité markovienne et un pro-
cessus ponctuel avec intensité prévisible. Pour le dernier cas, nous introdu-
isons une sorte de derivee Fréchet pour les fonctionnels d’un processus de

Poisson et l’utilisons dans les méthodes d’intégration par parties pour
obtenir des formules qui sont similaires à celles de Follmer pour la

situation brownienne.
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358 R. J. ELLIOTT AND A. H. TSOI

1. INTRODUCTION

The time reversal of stochastic processes has been investigated for some
years. One motivation comes from quantum theory, and this is discussed
in the book of Nelson [11]. The time reversal of Markov diffusions is

treated in, for example, the papers of Elliott and Anderson [4], and
Haussman and Pardoux [8]. However, the first discussion of time reversal
for a non-Markov process on Wiener space appears in the paper by
Follmer [7], in which he uses an integration-by-parts formula related to
the Malliavin calculus.

In the present paper an analog of the Fréchet derivative is introduced
for functionals of a Poisson process. The integration-by-parts formula on
Poisson space, see [6], is formulated in terms of this derivative and

counterparts of Follmer’s formulae are obtained.

In Section 2 the time reversed form of the standard Poisson process is

derived. Section 3 considers a point (counting) process N with Markov

intensity h (Nt), so that Qt=Nt- is a martingale, and obtains

the reverse time decomposition of Q for t E (0, 1]. Finally, in Section 4,
the situation when h is predictable is considered using the "Fréchet"
derivative and integration-by-parts techniques mentioned above.

’ 

2. TIME REVERSAL UNDER THE ORIGINAL MEASURE

Consider a standard Poisson process N = ~ Nt : 0 __ t _ 1 ~ on (Q, ff, P).
We take No = 0. Let ~ ~ t ~ be the right-continuous, complete filtration
generated by N. Let G° = a { NS : t _ s _ 1 ~ be the left-continuous

completion of { G° ~ .
The following result is well known; see, for example, Theorem 2.6 in

[9]. For completeness we sketch the proof.
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359TIME REVERSAL

THEOREM 2. 1. - Under P, N is a reverse time Gt-quasimartingale, and
it has the decomposition:

where M is a reverse time Gt-martingale.
Proof. - Since N is Markov, we have, 

(see [5] and [10]). Thus

By Stricker’s theorem [12], Nt is a reverse time Gt-quasimartingale. Con-
sidering approximate Laplacians we see it has the decomposition

where from (2.1) and (2. 2), for almost all t

3. TIME REVERSAL AFTER A CHANGE OF MEASURE:

THE MARKOV CASE

Consider a process which satisfies: There exist positive cons-
tants A, K > 0 such that for all t, a. s.
Define the family { At, 0  t __ 1 ~ of exponentials:

Vol. 26, n° 2-1990.



360 R. J. ELLIOTT AND A. H. TSOI

Then A is an (Ft)-martingale under P, and is the unique solution of the
equation

Define a new probability measure Ph by

Then under Ph, the process is an (Ft)-martingale
t

(see [3]). Let (3 (t) = so that P is positive and increasing in t

because h is positive. Write

LEMMA 3 . .1. - (Nt) is a Poisson process under (Q, ~ , (~ t), Ph).
Proof - Since is an (Ft)-martingale under Ph,

Ht = ~t~ 
= N, ~t~ - t is an (/§)-martingale under By Itô ’ s rule,

Hence H203C8(t) - t is also an (/§)-martingale under Ph. Therefore, {N’t} is
Poisson by Levy’s characterization (Theorem 12.31 in [2]). D

LEMMA 3 . 2. - N is Markov under Ph.

Proof. - Consider any cp E Co (IR). For t > s, by Bayes’ formula,

because N is Markov under P, where

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



361TIME REVERSAL

Hence

and N is Markov under Ph. D

Note that

Thus Ht is a reverse time Gt-quasimartingale under Ph if and only if Nt
is. To determine the reverse time decomposition we again investigate the
approximate Laplacians, as in [4].

THEOREM 3.3.

Proof. - By Lemma 3 .2,

Consider a bounded, differentiable function cp on R and its restriction to
Z (the range of N). Now

So

Since

Vol. 26, n° 2-1990.
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is a martingale under Ph,

Now, if I cp I __ C,

Thus from (3 . 3),

However,

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques
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And

Hence,

Thus from (3 . 4) and (3 . 5),

or

By Theorem 3. 3 and an argument similar to that in [4], we see that N,
and hence H, is a reverse time Gt-quasimartingale under Ph, and it has

the decomposition

Moreover, we have the following expression for at :

THEOREM 3. 4. - The integrand at that appears in (3. 6) is given by

Vol. 26, n° 2-1990.
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P~oof. - From (3 . 1 ) and (3.6),

Thus for almost all t

From Theorem 3 . 3, ett has the stated form. D

4. TIME REVERSAL AFTER A CHANGE OF MEASURE:

THE NON-MARKOV CASE

This section involves an integration by parts for Poisson processes which
is effected by using a Girsanov transformation to change the intensity and
then compensating by a time change. In contrast, the integration by parts
considered in [1] is obtained by introducing a perturbation of the size of
the jumps. The topic is further investigated in [6].

is a Poisson process with jump times

T 1 n 1, ... , Tn n 1, ... be a real predictable process satisfying
{ is positive and bounded a. s.

For E > 0, consider the family of exponentials:

Then { ~t} is an { Ft}-martingale with E [~t] = 1 (see [6]). Define a proba-
bility measure PE on F1 by

Set

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



365TIME REVERSAL

and write

Then the process Nt = N,~E ~r~ is Poisson on (Q, ~ , (~ t), PE) with jump times
cpE (T 1 ) A 1, ... , c~£ (Tn) A 1, ... (see [6]).

-t
as above, set Ut = us ds. Suppose gs (w) is }-predictable

function on [0,1]. Then for A 1,

and in general, for Tn - 1 A A 1,

Note that by setting gs (0, 0, ... ) = g (s) for 0 _ s __ T 1 A 1,
gs ((s - T 1 ) v 0, ..., (s - Tn -1) v 0), 0, 0, ... ) for Tn -1 A 1  s -- T n A 1,
etc., such a g can be written in the form

Therefore, we shall consider a predictable function g of this form, and
further assume that if

then all the partial derivatives ags exist for all s and there is a constant
a~~

K > 0 such that

We now define the analog of the Fréchet derivative for functionals of the
Poisson process.
Write

Then

Vol. 26, n° 2-1990.
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Define

where ~Ti is the point mass at Ti. Then

where

Write

Note that

DEFINITION 4 .1. - A process {gs} of the form (4 . 1 ) is said to be
differentiable if it satisfies (4.2) and (4.3) for all u satisfying (i) and (ii)
above, and for all s. We call Dg~ ( . , U) the derivative of gs in the direction
U. It is of interest to note that this concept of differentiability of a function
of a Poisson process is an analog of the Fréchet derivative of a function
of a continuous process. See Follmer [7], where similar formulae arise
using the Fréchet derivative.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Now suppose { is a bounded, { Ft }-predictable process of the form
given by (4.1), which satisfies:

(a) h is differentiable in the sense of Definition 4.1.

(b) exists, and there exists a constant A > 0 such that  A for( ) 
as 

’ 

as

all s, a. s.

(c) There are constants B>O, C > 0 such that for all s,
a. s.

It is easy to check that hs = hs ((s - T 1) v 0, (s - T 2) v 0, ... ) is predict-
able. Consider the family of exponentials:

Then {Gt} is a martingale with E [Gt] = 1. Since for each fixed m, if

Tn-1 Gt is a function of (t, T 1 (m) , ..., Tn _ 1 (~)), we see as
above that Gt can be considered to be of the form

THEOREM 4 . 2. - (Gt) defined in (4 . 5) is differentiable in the sense of
Definition 4 .1.

Moreover,

where

Proof - The first identity follows from the definition and properties
of the derivative. To determine DGt ( . , U) we calculate the derivative of

Write

Vol. 26, n° 2-1990.
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so

Then

Differentiate (4. 7) with respect to E, and then set 8 = 0, to see

From (4.4) this is

(Formally, the differentiation of the indicator functions ct~ introduces

Dirac However, P (Ti = t) = 0 and we later will take

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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expectations, so these can be ignored.) From (4.8),

which is (4. 6). D

Consider the family of exponentials defined by (4. 5) and define a new
probability measure Ph on F1 by:

Then (see [3]) the process

where Qt=Nt-t, is an (Ft)-martingale under Ph. We want to show that
Zt is a reverse time Gt-quasimartingale under Ph, having the decomposition

From (4. 9), we can write

Now for almost all t

Vol. 26, n° 2-1990.
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Hence, to show that Zt has the decomposition given by (4 . 10), it again
suffices to consider approximate Laplacien as in [4] and show that

exists.

THEOREM 4.3. - For almost all t E [0, 1 ]

where

and

Proof. - First we note that if H ((1- T 1) v 0, ..., ( 1- Tn) v 0, ... ) is
a square integrable functional and its first partial derivatives are all

bounded by a constant, then, using a similar argument as in [6], we have
the integration by parts formula

where DH (., U) is the derivative in direction U of Definition 4 .1.
A direct consequence is the product rule

Let H = G1 be the Girsanov density, then (4.13) becomes

Now fix 1). Write Tk (to) for the k-th jump time of Nr greater than
to. Suppose F is a bounded and Gto measurable function. Furthermore,
we suppose that F is a differentiable function (in the sense of Definition

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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4.1) of the form

and that the derivatives of F are bounded. Then the measure DF (., dt) is
concentrated on [to, 1] and (4. 14) holds for such an F. Take

us = to~ (s) in (4 .14). For such an F

Therefore, we have from (4 .14) .

From (4.15), for almost all t

Using (4.15) again with E=to=t, we have

Now let Theorem 4 . 2 to obtain

Vol. 26, n° 2-1990.
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Hence (4.17) becomes

Now take (s) in Theorem 4 . 2 to obtain

Multiply both sides of (4.19) by F, and then take expectations

Divide both sides of (4. 20) by s, and then let s 1 0, to obtain for almost
all t

Combining (4.16), (4.18) and (4 . 21 ), we have

Thus we have proved (4. 11). D

As a consequence of Theorem 4. 3, Zt is a reverse time Gt-quasimartin-
gale having the decomposition given by (4.10). It follows immediately
that the integrand at in (4. 10) is given by
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