Annales de l'I. H. P., Section B

W. Stadje

On the asymptotic equidistribution of sums of independent identically distributed random variables

Annales de l'I. H. P., section B, tome 25, no 2 (1989), p. 195-203
http://www.numdam.org/item?id=AIHPB_1989__25_2_195_0
© Gauthier-Villars, 1989, tous droits réservés.
L'accès aux archives de la revue «Annales de l'I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

On the asymptotic equidistribution of sums of independent identically distributed random variables

by
W. STADJE
Mathematik/Informatik, Universität Osnabrück, 45 Osnabrück, Postfach 44 69, West Germany

Abstract. - For a sum S_{n} of n I.I.D. random variables the idea of approximate equidistribution is made precise by introducing a notion of asymptotic translation invariance. The distribution of S_{n} is shown to be asymptotically translation invariant in this sense iff S_{1} is nonlattice. Some ramifications of this result are given.

Key words : Sums of I.I.D. random variables, asymptotic equidistribution, asymptotic translation invariance.

Résumé. - On introduit, pour une somme S_{n} de n variables aléatoires indépendantes équidistribuées, une notion d'invariance asymptotique par translation, qui permet de rendre précise l'idée d'équidistribution approximative. On montre que la loi de S_{n} est asymptotiquement invariante par translation en ce sens si, et seulement si, la loi de S_{1} est non arithmétique. On donne quelques extensions de ce résultat.

1. INTRODUCTION

Let T_{1}, T_{2}, \ldots be a sequence of independent random variables with a common distribution $\mathrm{P}^{\mathrm{T}_{n}}=\mathrm{P}^{\mathrm{T}_{1}}$ and let $\mathrm{S}_{n}=\mathrm{T}_{1}+\ldots+\mathrm{T}_{n}$. Intuitively, if
$E\left(T_{1}\right)=0$ and $T_{1} \not \equiv 0$, the mass of the probability measure $P^{S_{n}}$ is expected to be approximately "equidistributed", as n becomes large. If $\mathrm{E}\left(\mathrm{T}_{1}\right)>0$, one is inclined to think of something like an "approach to uniformity at infinity". An old result of this kind is due to Robbins (1953). If T_{1} is not concentrated on a lattice,

$$
\begin{equation*}
n^{-1} \sum_{i=1}^{n} h\left(\mathrm{~S}_{i}\right) \rightarrow \lim _{\mathrm{T} \rightarrow \infty}(2 \mathrm{~T})^{-1} \int_{-\mathrm{T}}^{\mathrm{T}} h(x) d x, \quad \text { as } \quad n \rightarrow \infty \tag{1.1}
\end{equation*}
$$

for all almost periodic functions h (i.e. if h is the uniform limit of trigonometric polynomials). For a partial sharpening of this result see Theorem 3 of Stadje (1985). In the case when T_{1} is not concentrated on a lattice, $\mathrm{E}\left(\mathrm{T}_{1}\right)=0$ and $0<\sigma^{2}:=\operatorname{Var}\left(\mathrm{T}_{1}\right)<\infty$, the expectation of asymptotic equidistribution can also be justified by the limiting relation

$$
\begin{equation*}
\sigma(2 \pi n)^{1 / 2} \mathrm{P}\left(\mathrm{~S}_{n} \in \mathrm{I}\right) \rightarrow \lambda(\mathrm{I}), \quad \text { as } \quad n \rightarrow \infty \tag{1.2}
\end{equation*}
$$

which is valid for all bounded intervals $\mathrm{I} \subset \mathbb{R}$, where λ denotes the Lebesgue measure (Shepp (1964), Stone (1965, 1967), Breiman (1968), chapt. 10).

One might try to interpret approximate uniformity of $\mathrm{P}^{\mathbf{S}_{n}}$ by stating that $P\left(S_{n} \in I\right)$ asymptotically only depends on the length of I. Since $\lim \mathrm{P}\left(\mathrm{S}_{n} \in \mathrm{I}\right)=0$ for every bounded interval I , this idea should be made $n \rightarrow \infty$
reasonable by examining the speed of convergence of $\mathrm{P}\left(\mathrm{S}_{n} \in \mathrm{I}\right)$. This is done in (1.2) stating $a_{n} \mathrm{P}^{\mathrm{S}_{n}}$ approaches the Lebesgue measure, where $a_{n}=\sigma(2 \pi n)^{1 / 2}$.

In this paper another approach to the idea of equidistribution of $\mathrm{P}^{S_{n}}$ is developed. The essential property of an "equidistribution" is the invariance under translations. To measure the degree of translation invariance of a probability measure Q on \mathbb{R}, we introduce, for $a \in \mathbb{R}$ and $t>s>0$, the quantities

$$
\begin{gather*}
d(a, t, \mathrm{Q}):=\sum_{i=-\infty}^{\infty}|\mathrm{Q}((a+i t, a+(i+1) t])-\mathrm{Q}((a+(i-1) t, a+i t])| \tag{1.3}\\
\mathrm{D}(t, \mathrm{Q}):=\sup _{a \in \mathbb{R}} d(a, t, \mathrm{Q}) \tag{1.4}\\
\tilde{\mathrm{D}}(s, t, \mathrm{Q}):=\sup _{s \leqq u \leqq t} \mathrm{D}(u, \mathrm{Q}) . \tag{1.5}
\end{gather*}
$$

We call a sequence $\left(\mathrm{Q}_{n}\right)_{n \geqq 1}$ of probability measures asymptotically translation invariant (ATI), if $\lim _{n \rightarrow \infty} \tilde{\mathrm{D}}\left(s, t, \mathrm{Q}_{n}\right)=0$ for all $t>s>0$. The main theorem of this paper states that $\left(\mathrm{P}^{\mathrm{S}_{n}}\right)_{n \geqq 1}$ is ATI if, and only if, $\mathrm{P}^{\mathrm{T}_{1}}$ is not concentrated on a lattice. No moment conditions are needed for this equivalence. Let $\mathrm{D}_{n}(t):=\tilde{\mathrm{D}}\left(t^{-1}, t, \mathrm{P}_{n}\right), t>1$. Regarding the speed of convergence of $\mathrm{D}_{n}(t)$ we remark that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} n^{1 / 2} \mathrm{D}_{n}(t)>0 \quad \text { for all } t>1, \quad \text { if } \quad \mathrm{E}\left(\mathrm{~T}_{1}^{2}\right)<\infty \tag{1.6}
\end{equation*}
$$

To see (1.6), let without loss of generality $\mathrm{E}\left(\mathrm{T}_{1}\right)=0$ and $\mathrm{E}\left(\mathrm{T}_{1}^{2}\right)=1$. Then, by Chebyshev's inequality,

$$
\begin{equation*}
\mathrm{P}\left(\left|\mathrm{~S}_{n}\right|<n^{1 / 2}\right) \geqq 1-n^{-1} . \tag{1.7}
\end{equation*}
$$

The interval ($-n^{1 / 2}, n^{1 / 2}$) can be covered by $\left[2 n^{1 / 2} / t\right]+1$ half-open intervals of length t. One of these intervals, say I, obviously satisfies

$$
\begin{equation*}
\mathrm{P}\left(\mathrm{~S}_{n} \in \mathrm{I}\right) \geqq\left(1-n^{-1}\right) /\left(\left[2 n^{1 / 2} / t\right]+1\right) \geqq \frac{1}{2} \frac{1}{2 n^{1 / 2} t+1}, \quad \text { if } \quad n \geqq 2 \tag{1.8}
\end{equation*}
$$

Choose $a \in[0, t]$ and $i_{0} \in \mathbb{Z}$ such that $\mathrm{I}=\left(a+i_{0} t, a+\left(i_{0}+1\right) t\right]$.
Then

$$
\begin{align*}
& d\left(a, t, \mathrm{P}^{\mathrm{S}_{n}}\right) \geqq \sum_{i=-\infty}^{i_{0}}\left[\mathrm{P}\left(\mathrm{~S}_{n} \in(a+i t, a+(i+1) t]\right)\right. \\
&\left.\quad \quad-\mathrm{P}\left(\mathrm{~S}_{n} \in(a+(i-1) t, a+i t]\right)\right]
\end{aligned} \quad \begin{aligned}
& \quad=\mathrm{P}\left(\mathrm{~S}_{n} \in\left(a+i_{0} t, a+\left(i_{0}+1\right) t\right]\right) \geqq \frac{1}{4 t+2} n^{-1 / 2}, \quad n \geqq 2 \tag{1.9}
\end{align*}
$$

(1.6) follows from (1.9).

In order to derive a converse result to (1.6), we need a further notion. A distribution Q on \mathbb{R} is called strongly nonlattice, if its characteristic function φ satisfies

$$
\begin{equation*}
\limsup _{|\zeta| \rightarrow \infty}|\varphi(\zeta)|<1 . \tag{1.10}
\end{equation*}
$$

The second main result of this note is that if $\mathrm{P}^{\mathrm{T}_{1}}$ is strongly nonlattice,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} n^{1 / 2} \mathrm{D}_{n}(t)<\infty \quad \text { for all } t>1 \tag{1.11}
\end{equation*}
$$

2. THE MAIN THEOREM

We shall prove
Theorem 1. - The following two statements are equivalent.
(a) $\mathrm{P}^{\mathrm{T}_{1}}$ is nonlattice.
(b) $\left(\mathrm{P}^{\mathrm{S}_{n}}\right)_{n \geqq 1}$ is ATI.

Proof. $-(a) \Rightarrow(b)$. Assume first that $\mathrm{E}\left|\mathrm{T}_{1}\right|^{3}<\infty$ and $\mathrm{E}\left(\mathrm{T}_{1}\right)=0$. Let $\sigma^{2}=\mathrm{E}\left(\mathrm{T}_{1}^{2}\right), \mu_{3}=\mathrm{E}\left(\mathrm{T}_{1}^{3}\right)$ and denote the distribution function of S_{n} by F_{n}. Then

$$
\begin{align*}
d\left(a, t, \mathrm{P}^{\mathrm{S}_{n}}\right)=\sum_{i=-\infty}^{\infty} \mid \mathrm{F}_{n}(a+(i+1) t)-2 \mathrm{~F}_{n}(a+i t) & \\
& +\mathrm{F}_{n}(a+(i-1) t) \mid \tag{2.1}
\end{align*}
$$

Since $\mathrm{P}^{\mathrm{T}_{1}}$ is nonlattice, a well-known expansion for distribution functions yields

$$
\begin{equation*}
\mathrm{F}_{n}\left(n^{1 / 2} \sigma x\right)=\Phi(x)+\frac{\mu_{3}}{6 \sigma^{3} n^{1 / 2}}\left(1-x^{2}\right) \varphi(x)+\varepsilon_{n}(x) n^{-1 / 2} \tag{2.2}
\end{equation*}
$$

for all $x \in \mathbb{R}$, where

$$
\begin{equation*}
\varepsilon_{n}:=\sup _{x \in \mathbb{R}}\left|\varepsilon_{n}(x)\right| \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty \tag{2.3}
\end{equation*}
$$

and Φ and φ are the distribution function and density of $N(0,1)$ (see e.g. Feller (1971), p. 539). It is easy to check that for each $j \in \mathbb{N}$ and $a \in[0, t]$

$$
\begin{align*}
& \sum_{i>j}\left|\mathrm{~F}_{n}(a+(i+1) t)-2 \mathrm{~F}_{n}(a+i t)+\mathrm{F}_{n}(a+(i-1) t)\right| \\
& \leqq 1-\mathrm{F}_{n}(a+(j+1) t)+1-\mathrm{F}_{n}(a+j t) \leqq 2 \mathrm{P}\left(\mathrm{~S}_{n}>j t\right) \tag{2.4}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{i<-j}\left|\mathrm{~F}_{n}(a+(i+1) t)-2 \mathrm{~F}_{n}(a+i t)+\mathrm{F}_{n}(a+(i-1) t)\right| \\
& \leqq \leqq \mathrm{F}_{n}(a-j t)+\mathrm{F}_{n}(a-(j+1) t) \leqq 2 \mathrm{P}\left(\mathrm{~S}_{n} \leqq-(j-1) t\right) \tag{2.5}
\end{align*}
$$

Inserting (2.2)-(2.5) into (2.1) we obtain, for $a \in[0, t]$,

$$
\begin{array}{rl}
d\left(a, t, \mathrm{P}^{\mathrm{S}}\right) \leqq 2 & \mathrm{P}\left(\left|\mathrm{~S}_{n}\right| \geqq(j-1) t\right)+(2 j+1) \varepsilon_{n} n^{-1 / 2} \\
+\sum_{i=-\infty}^{\infty}\left|\Phi\left(\frac{a+(i+1) t}{\sigma n^{1 / 2}}\right)-2 \Phi\left(\frac{a+i t}{\sigma n^{1 / 2}}\right)+\Phi\left(\frac{a+(i-1) t}{\sigma n^{1 / 2}}\right)\right| \\
& \left.+\frac{\left|\mu_{3}\right|}{6 \sigma^{3} n^{1 / 2}} \sum_{i=-\infty}^{\infty} \right\rvert\,\left(1-x_{i+1}^{2}\right) \varphi\left(x_{i+1}\right) \\
& -2\left(1-x_{i}^{2}\right) \varphi\left(x_{i}\right)+\left(1-x_{i-1}^{2}\right) \varphi\left(x_{i-1}\right) \mid \tag{2.6}
\end{array}
$$

where $x_{i}:=(a+i t) / \sigma n^{1 / 2}$. By Chebyshev's inequality,

$$
\begin{equation*}
2 \mathrm{P}\left(\left|\mathrm{~S}_{n}\right| \geqq(j-1) t\right)+(2 j+1) \varepsilon_{n} n^{-1 / 2} \leqq \frac{2 \sigma^{2} n}{t^{2}(j-1)^{2}}+(2 j+1) \varepsilon_{n} n^{-1 / 2} \tag{2.7}
\end{equation*}
$$

The smallest order of magnitude of the righthand side of (2.7) is attained for $j=j_{n}$ being equal to the integer part of $n^{1 / 2} \varepsilon_{n}^{-1 / 3}$; in this case

$$
\begin{align*}
2 \mathrm{P}\left(\left|\mathrm{~S}_{n}\right| \geqq\left(j_{n}-1\right) t\right)+\left(2 j_{n}+1\right) \varepsilon_{n} & n^{-1 / 2} \\
& =\left(1+t^{-2}\right) O\left(\varepsilon_{n}^{2 / 3}\right), \quad \text { as } \quad n \rightarrow \infty \tag{2.8}
\end{align*}
$$

Next we estimate the two series in (2.6). Let X be a standard normal random variable. Then the first sum at the righthand side of (2.6) is equal
to

$$
\begin{align*}
& \sum_{i=-\infty}^{\infty} \mid \mathrm{P}\left(\sigma n^{1 / 2} \mathrm{X} \in\right.(a+i t, a+(i+1) t]) \\
& \quad-\mathrm{P}\left(\sigma n^{1 / 2} \mathrm{X}-t \in(a+i t, a+(i+1) t)\right] \mid \\
& \leqq\left(\sigma n^{1 / 2}\right)^{-1} \int_{-\infty}^{\infty}\left|\varphi\left(x / \sigma n^{1 / 2}\right)-\varphi\left((x+t) / \sigma n^{1 / 2}\right)\right| d x \\
&=2\left(\sigma^{1 / 2}\right)^{-1}[{\left[\int_{-\infty}^{-t / 2} \varphi\left((x+t) / \sigma n^{1 / 2}\right) d x-\int_{-\infty}^{-t / 2} \varphi\left(x / \sigma n^{1 / 2}\right) d x\right] } \\
&= 2 \int_{-t / 2 \sigma n^{1 / 2}}^{t / 2 \sigma n^{1 / 2}} \varphi(u) d u=t O\left(n^{-1 / 2}\right), \quad \text { as } n \rightarrow \infty . \tag{2.9}
\end{align*}
$$

To estimate the last sum at the right side of (2.6), note that the function $\left(1-x^{2}\right) \exp \left(-x^{2} / 2\right)$ has four points of inflexion. Regarding the sequence

$$
a_{i}:=\left(1-x_{i+1}^{2}\right) \varphi\left(x_{i+1}\right)-\left(1-x_{i}^{2}\right) \varphi\left(x_{i}\right), \quad i \in \mathbb{Z}
$$

this implies that $\left(a_{i}-a_{i-1}\right)_{i \in \mathbb{Z}}$ changes signs at most four times. Using its telescoping form the sum in question can be bounded from above as follows:

$$
\begin{equation*}
\sum_{i=-\infty}^{\infty}\left|a_{i}-a_{i-1}\right| \leqq 8 \sup _{-\infty<i<\infty}\left|a_{i}\right| \tag{2.10}
\end{equation*}
$$

Further, by the mean value theorem,

$$
\begin{equation*}
\left|a_{i}\right| \leqq\left|x_{i+1}-x_{i}\right| \sup _{x \in \mathbb{R}}\left|\frac{d}{d x}\left(1-x^{2}\right) \varphi(x)\right|=\mathrm{K} t / \sigma n^{1 / 2} \tag{2.11}
\end{equation*}
$$

for some constant K. Inserting (2.8)-(2.11) into (2.6) we arrive at

$$
\begin{equation*}
d\left(a, t, \mathrm{P}_{n}\right)=\left(1+t^{-2}\right) O\left(\varepsilon_{n}^{2 / 3}\right)+t O\left(n^{-1 / 2}\right), \quad \text { as } \quad n \rightarrow \infty \tag{2.12}
\end{equation*}
$$

so that

$$
\begin{equation*}
\mathrm{D}\left(t, \mathrm{P}_{n}\right)=\left(1+t^{-2}\right) O\left(\varepsilon_{n}^{2 / 3}\right)+t O\left(n^{-1 / 2}\right), \quad \text { as } \quad n \rightarrow \infty . \tag{2.13}
\end{equation*}
$$

To establish the assertion without moment conditions we first remark that $\mathrm{D}(t, \mathrm{Q})$ is translation invariant in the sense that

$$
\begin{equation*}
\mathrm{D}(t, \mathrm{Q})=\mathrm{D}\left(t, \mathrm{Q} * \varepsilon_{x}\right) \quad \text { for all } x \in \mathbb{R}, \quad t>0 \tag{2.14}
\end{equation*}
$$

where $*$ denotes convolution and ε_{x} is the point mass at x. Thus, (2.13) holds, if $\mathrm{E}\left|\mathrm{T}_{1}\right|^{3}<\infty$ (without the assumption $\mathrm{E}\left(\mathrm{T}_{1}\right)=0$). Further, for probability measures Q and R we have

$$
\begin{equation*}
\mathrm{D}(t, \mathrm{Q} * \mathrm{R}) \leqq \mathrm{D}(t, \mathrm{Q}) \tag{2.15}
\end{equation*}
$$

(2.15) is proved as follows:

$$
\begin{align*}
& \mathrm{D}(t, \mathrm{Q} * \mathrm{R})= \sup _{a} \sum_{i=-\infty}^{\infty} \mid(\mathrm{Q} * \mathrm{R})((a+i t, a+(i+1) t]) \\
&-(\mathrm{Q} * \mathrm{R})((a+(i-1) t, a+i t]) \mid \\
& \leqq \sup _{a} \sum_{i=-\infty}^{\infty} \int_{-\infty}^{\infty} \mid \mathrm{Q}((a+i t-x, a+(i+1) t-x]) \\
&\quad-\mathrm{Q}((a+(i-1) t-x, a+i t-x)]) \mid d \mathrm{R}(x) \\
& \leqq \int_{-\infty}^{\infty} \sup _{a} \sum_{i=-\infty}^{\infty} \mid \mathrm{Q}((a+i t-x, a+(i+1) t-x]) \\
& \quad \mathrm{Q}((a+(i-1) t-x, a+i t-x]) \mid d \mathrm{R}(x) \\
&=\int_{-\infty}^{\infty} \mathrm{D}(t, \mathrm{Q}) d \mathrm{R}(x)=\mathrm{D}(t, \mathrm{Q}) . \tag{2.16}
\end{align*}
$$

Next suppose that $P^{\mathbf{T}_{1}}=\alpha Q+(1-\alpha) R$ for some $\alpha \in(0,1]$ and probability measures Q and R such that Q satisfies, for some constants K_{1}, K_{2},

$$
\begin{equation*}
\mathrm{D}\left(t, \mathrm{Q}^{* n}\right) \leqq\left(1+t^{-2}\right) \mathrm{K}_{1} \varepsilon_{n}^{2 / 3}+t \mathrm{~K}_{2} n^{-1 / 2}, \quad \text { as } \quad n \rightarrow \infty \tag{2.17}
\end{equation*}
$$

($\mathrm{Q}^{* n}$ is the n-fold convolution of Q with itself). Then

$$
\begin{array}{r}
\mathrm{D}\left(t, \mathrm{P}_{n}\right)=\sup _{a} \sum_{i=-\infty}^{\infty} \left\lvert\, \sum_{l=0}^{n}\binom{n}{l} \alpha^{l}(l-\alpha)^{n-l}\left\{\mathrm{Q}^{* l} * \mathrm{R}^{*(n-l)}((a+i t,\right.\right. \\
\left.a+(i+1) t])-\mathrm{Q}^{* l} * \mathrm{R}^{*(n-l)}((a+(i-1) t, a+i t])\right\} \mid \\
\leqq \sum_{l=0}^{n}\binom{n}{l} \alpha^{l}(1-\alpha)^{n-l} \mathrm{D}\left(t, \mathrm{Q}^{* l} * \mathrm{R}^{*(n-l)}\right) \\ \tag{2.18}
\end{array}
$$

Let $\delta_{n}:=\sup _{l>n} \varepsilon_{l}$. Then $\delta_{n} \downarrow 0$ and, by Chebyshev's inequality for the binomal distribution and (2.17), it follows that, for arbitrary $\varepsilon \in(0, \alpha)$,

$$
\begin{align*}
& \sum_{l=0}^{n}\binom{n}{l} \alpha^{l}(1-\alpha)^{n-l} \mathrm{D}\left(t, \mathrm{Q}^{* l}\right) \leqq 2 \sum_{l \leqq(\alpha-\varepsilon) n}\binom{n}{l} \alpha^{l}(1-\alpha)^{n-l} \\
& +\left(1+t^{-2}\right) \mathrm{K}_{1} \sup _{l>(\alpha-\varepsilon) n} \varepsilon_{l}+t \mathrm{~K}_{2}((\alpha-\varepsilon) n)^{-1 / 2} \\
& \leqq 2 \alpha(1-\alpha) \varepsilon^{-2} n^{-1}+\mathrm{K}\left[\left(1+t^{-2}\right) \delta_{(\alpha-\varepsilon) n}+t n^{-1 / 2}\right] \tag{2.19}
\end{align*}
$$

where $K=\max \left(K_{1}, K_{2}\right)$. (2.19) implies that $\mathrm{D}_{n}(t) \rightarrow 0$, as $n \rightarrow \infty$, for all $t>1$.

Now we choose a function f on \mathbb{R} such that $0<f(x)<1$ for all $x \in \mathbb{R}$ and

$$
\int_{-\infty}^{\infty}|x|^{3} f(x) d \mathrm{P}^{\mathrm{T}_{1}}(x)<\infty
$$

Let $\alpha:=\int_{-\infty}^{\infty} f(x) d \mathrm{P}^{\mathrm{T}_{1}}(x)$ and define the probability measures Q and R by $d \mathrm{Q}:=\alpha^{-1} f d \mathrm{P}^{\mathrm{T}_{1}}, d \mathrm{R}=(1-\alpha)^{-1}(1-f) d \mathrm{P}^{\mathrm{T}_{1}}$. Then the third moment of Q is finite and Q is nonlattice so that Q satisfies (2.17). Since $\mathrm{P}^{\mathrm{T}_{1}}=\alpha \mathrm{Q}+(1-\alpha) \mathrm{R}$, it follows that $\mathrm{D}_{n}(t) \rightarrow 0$.
$(b) \Rightarrow(a)$. Let $\mathrm{P}^{\mathbf{T}_{1}}$ have span $\lambda>0$. If $t \in(0, \lambda / 2)$, at most one of the successive intervals $(a+(i-1) t, a+i t]$ and $(a+i t, a+(i+1) t]$ contains a multiple of λ. Therefore it is obvious that $d\left(a, t, \mathrm{P}^{\mathrm{S}_{n}}\right)=2$ for all $a \in \mathbb{R}$, $t \in(0, \lambda / 2)$ and $n \in \mathbb{N}$.

3. THE STRONGLY NONLATTICE CASE

Concerning the speed of convergence of $\mathrm{D}_{n}(t)$ we shall now prove
Theorem 2. - If $\mathrm{P}^{\mathrm{T}_{1}}$ is strongly nonlattice,

$$
\begin{equation*}
\lim \sup n^{1 / 2} \mathrm{D}_{n}(t)<\infty \quad \text { for all } t>1 \tag{3.1}
\end{equation*}
$$

Proof. - Let $\eta:=\limsup _{|\zeta| \rightarrow \infty}|\varphi(\zeta)|<1$. We can decompose $\mathrm{P}^{\mathrm{T}_{1}}=\alpha \mathrm{Q}+(1-\alpha) \mathrm{R}$, where $\alpha \in(0,1]$ and Q and R are probability measures such that Q is strongly nonlattice and concentrated on a bounded interval. If $\mathrm{P}^{\mathrm{T}_{1}}$ itself is concentrated on a bounded interval, this is trivial. Otherwise let $\alpha_{N}:=P\left(T_{1} \in[-N, N]\right)$, where N is large enough to ensure $0<\alpha_{N}<1$. Define, for Borel sets B,

$$
\begin{gathered}
\mathrm{Q}_{\mathrm{N}}(\mathrm{~B}):=\alpha_{N}^{-1} \mathrm{P}\left(\mathrm{~T}_{1} \in \mathrm{~B} \cap[-\mathrm{N}, \mathrm{~N}]\right) \\
\mathrm{R}_{\mathrm{N}}(\mathrm{~B}):=\left(1-\alpha_{\mathrm{N}}\right)^{-1} \mathrm{P}\left(\mathrm{~T}_{1} \in \mathrm{~B} \backslash[-\mathrm{N}, \mathrm{~N}]\right) .
\end{gathered}
$$

Then the characteristic functions $\tilde{\varphi}_{N}$ and $\tilde{\underline{\varphi}}_{N}$ of Q_{N} and R_{N} satisfy $\tilde{\varphi}_{N}=\alpha_{N}^{-1}\left(\varphi-\left(1-\alpha_{N}\right) \widetilde{\tilde{\varphi}}_{\mathrm{N}}\right)$ so that

$$
\begin{equation*}
\limsup _{|\zeta| \rightarrow \infty}\left|\tilde{\varphi}_{N}(\zeta)\right| \leqq \alpha_{N}^{-1}\left(\eta+1-\alpha_{N}\right) \tag{3.2}
\end{equation*}
$$

and the righthand side of (3.2) is smaller than 1 for sufficiently large N , because $\alpha_{N} \uparrow 1$.

We proceed by proving the assertion for Q instead of $\mathrm{P}^{\mathrm{T}_{1}}$. Obviously we may assume that $\int x d \mathrm{Q}(x)=0$. Let F_{n} be the distribution function of
$\mathrm{Q}^{* n}$ and $\sigma^{2}:=\int x^{2} d \mathrm{Q}(x)$. Since Q is strongly nonlattice and possesses moments of all orders, a well-known expansion yields, for every $r \geqq 3$,

$$
\begin{equation*}
\mathrm{F}_{n}\left(n^{1 / 2} \sigma x\right)-\Phi(x)-\varphi(x) \sum_{k=3}^{r} n^{-(k / 2)+1} \mathrm{R}_{k}(x)=o\left(n^{-(r / 2)+1}\right) \tag{3.3}
\end{equation*}
$$

uniformly in x, where R_{k} is a polynomial depending only on the first r moments of Q(see, e. g., Feller (1971), p. 541). Letting $r=5$ and proceeding as in (2.4)-(2.6) we obtain, for arbitrary j,
$d\left(a, t, \mathrm{Q}^{* n}\right) \leqq 2 \mathrm{Q}^{* n}(\mathbb{R} \backslash[-(j-1) t,(j-1) t])$

$$
\begin{gather*}
+(2 j+1) o\left(n^{-3 / 2}\right)+\sum_{i=-j}^{j} \left\lvert\, \Phi\left(\frac{a+(i+1) t}{\sigma n^{1 / 2}}\right)\right. \\
\left.-2 \Phi\left(\frac{a+i t}{\sigma n^{1 / 2}}\right)+\Phi\left(\frac{a+(i-1) t}{\sigma n^{1 / 2}}\right) \right\rvert\, \\
+\sum_{k=3}^{5} n^{-(k / 2)+1} \sum_{i=-j}^{j} \mid \varphi\left(x_{i+1}\right) \mathrm{R}_{k}\left(x_{i+1}\right)-2 \varphi\left(x_{i}\right) \mathrm{R}_{k}\left(x_{i}\right) \\
+\varphi\left(x_{i-1}\right) \mathrm{R}_{k}\left(x_{i-1}\right) \mid . \tag{3.4}
\end{gather*}
$$

Here again $x_{i}=(a+i t) / \sigma n^{1 / 2}$. Since each function $\varphi(x) \mathrm{R}_{k}(x)$ has a bounded derivative and only a finity number of points of inflexion, the same reasoning as in the proof of Theorem 1 (for $\mathrm{R}(x)=1-x^{2}$) shows that, for $k=3,4,5$,

$$
\begin{align*}
& \sum_{i=-\infty}^{\infty} \mid \varphi\left(x_{i+1}\right) \mathrm{R}_{k}\left(x_{i+1}\right)-\varphi\left(x_{i}\right) \mathrm{R}_{k}\left(x_{i}\right) \\
& \quad \begin{array}{l}
\quad-\left[\varphi\left(x_{i}\right) \mathrm{R}_{k}\left(x_{i}\right)-\varphi\left(x_{i-1}\right) \mathrm{R}_{k}\left(x_{i-1}\right)\right] \mid \\
\leqq \mathrm{L} \sup _{-\infty<i<\infty}\left|\varphi\left(x_{i+1}\right) \mathrm{R}_{k}\left(x_{i+1}\right)-\varphi\left(x_{i}\right) \mathrm{R}_{k}\left(x_{i}\right)\right| \\
\leqq \tilde{\mathrm{L}} \sup _{-\infty<i<\infty}\left|x_{i+1}-x_{i}\right|=\tilde{\mathrm{L}} t / \sigma n^{1 / 2}
\end{array}
\end{align*}
$$

where L and $\tilde{\mathrm{L}}$ are appropriate constants. Thus the last term at the right side of (3.4) is $t O\left(n^{-1 / 2}\right)$. Further using (2.9) for the remaining sum in (3.4) and Chebyshev's inequality we arrive at

$$
\begin{align*}
d\left(a, t, \mathrm{Q}^{* n}\right) \leqq 2 \mathrm{Q}^{* n}(\mathbb{R} \backslash & {[-(j-1) t,(j-1) t]) } \\
& +(2 j+1) o\left(n^{-3 / 2}\right)+t O\left(n^{-1 / 2}\right) \\
& =t^{-2} O\left(n / j^{2}\right)+(2 j+1) o\left(n^{-3 / 2}\right)+t O\left(n^{-1 / 2}\right) \tag{3.6}
\end{align*}
$$

Choosing $j=j_{n}=n^{5 / 6}$, (3.6) implies that

$$
\begin{equation*}
d\left(a, t, \mathrm{Q}^{* n}\right)=t^{-2} O\left(n^{-2 / 3}\right)+t O\left(n^{-1 / 2}\right) \tag{3.7}
\end{equation*}
$$

Now arguing similarly as in (2.18) and (2.19),
$\mathrm{D}\left(t, \mathrm{P}_{n}\right) \leqq \sum_{l=0}^{n}\binom{n}{l} a^{l}(1-\alpha)^{n-l} \mathrm{D}\left(t, \mathrm{Q}^{* l}\right)$

$$
\begin{equation*}
\leqq 2 \alpha(1-\alpha) \varepsilon^{-2} n^{-1}+\mathrm{K}\left[t^{-2} O\left(n^{-2 / 3}\right)+t O\left(n^{-1 / 2}\right)\right] \tag{3.8}
\end{equation*}
$$

where $\varepsilon>0$ and K are constants. It follows that $\mathrm{D}_{n}(t)=O\left(n^{-1 / 2}\right)$ for each $t>1$, as claimed.

REFERENCES

[1] L. Breiman, Probability, Addison-Wesley, Reading, Mass., 1968.
[2] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, 2nd Ed., J. Wiley, New York, 1971.
[3] H. Robbins, On the Equidistribution of Sums of Independent Random Variables, Proc. Amer. Math. Soc., Vol. 4, 1953, pp. 786-799.
[4] W. Stadje, Gleichverteilungseigenschaften von Zufallsvariablen, Math. Nachr., Vol. 123, 1985, pp. 47-53.
[5] L. A. Shepp, A Local Limit Theorem, Ann. Math. Statist., Vol. 35, 1964, pp. 419-423.
[6] C. J. Stone, A Local Limit Theorem for Multidimensional Distribution Functions, Ann. Math. Statist., Vol. 36, 1965, pp. 546-551.
[7] C. J. Stone, On Local and Ratio Limit Theorems, Proc. Fifth Berkeley Symp. Math. Statist. and Prob., Vol. III, pp. 217-224. University of California Press, Berkeley, 1967.
(Manuscrit reçu le 9 juin 1988.)

