W. STADJE

On the asymptotic equidistribution of sums of independent identically distributed random variables

Annales de l'I. H. P., section B, tome 25, nº 2 (1989), p. 195-203 http://www.numdam.org/item?id=AIHPB 1989 25 2 195 0>

© Gauthier-Villars, 1989, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Henri Poincaré,

Vol. 25, n° 2, 1989, p. 195-203.

On the asymptotic equidistribution of sums of independent identically distributed random variables

by

W. STADJE

Mathematik/Informatik, Universität Osnabrück, 45 Osnabrück, Postfach 44 69, West Germany

ABSTRACT. — For a sum S_n of *n* I.I.D. random variables the idea of approximate equidistribution is made precise by introducing a notion of asymptotic translation invariance. The distribution of S_n is shown to be asymptotically translation invariant in this sense iff S_1 is nonlattice. Some ramifications of this result are given.

Key words : Sums of I.I.D. random variables, asymptotic equidistribution, asymptotic translation invariance.

RÉSUMÉ. — On introduit, pour une somme S_n de *n* variables aléatoires indépendantes équidistribuées, une notion d'invariance asymptotique par translation, qui permet de rendre précise l'idée d'équidistribution approximative. On montre que la loi de S_n est asymptotiquement invariante par translation en ce sens si, et seulement si, la loi de S_1 est non arithmétique. On donne quelques extensions de ce résultat.

1. INTRODUCTION

Let T_1 , T_2 , ... be a sequence of independent random variables with a common distribution $P^{T_n} = P^{T_1}$ and let $S_n = T_1 + \ldots + T_n$. Intuitively, if

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques - 0294-1449 Vol. 25/89/02/195/9/\$2,90/© Gauthier-Villars

Classification A.M.S. : 60 G 50, 60 F 99.

W. STADJE

 $E(T_1)=0$ and $T_1 \neq 0$, the mass of the probability measure P^{s_n} is expected to be approximately "equidistributed", as *n* becomes large. If $E(T_1)>0$, one is inclined to think of something like an "approach to uniformity at infinity". An old result of this kind is due to Robbins (1953). If T_1 is not concentrated on a lattice,

$$n^{-1}\sum_{i=1}^{n}h(\mathbf{S}_{i}) \to \lim_{\mathbf{T}\to\infty} (2\mathbf{T})^{-1} \int_{-\mathbf{T}}^{\mathbf{T}}h(x)\,dx, \quad \text{as} \quad n\to\infty \qquad (1.1)$$

for all almost periodic functions h (*i.e.* if h is the uniform limit of trigonometric polynomials). For a partial sharpening of this result see Theorem 3 of Stadje (1985). In the case when T_1 is not concentrated on a lattice, $E(T_1) = 0$ and $0 < \sigma^2 := Var(T_1) < \infty$, the expectation of asymptotic equidistribution can also be justified by the limiting relation

$$\sigma (2\pi n)^{1/2} \mathbf{P}(\mathbf{S}_n \in \mathbf{I}) \to \lambda(\mathbf{I}), \quad \text{as} \quad n \to \infty$$
(1.2)

which is valid for all bounded intervals $I \subset \mathbb{R}$, where λ denotes the Lebesgue measure (Shepp (1964), Stone (1965, 1967), Breiman (1968), chapt. 10).

One might try to interpret approximate uniformity of P^{S_n} by stating that $P(S_n \in I)$ asymptotically only depends on the length of I. Since $\lim_{n \to \infty} P(S_n \in I) = 0$ for every bounded interval I, this idea should be made

reasonable by examining the speed of convergence of $P(S_n \in I)$. This is done in (1.2) stating $a_n P^{S_n}$ approaches the Lebesgue measure, where $a_n = \sigma (2 \pi n)^{1/2}$.

In this paper another approach to the idea of equidistribution of \mathbb{P}^{s_n} is developed. The essential property of an "equidistribution" is the invariance under translations. To measure the degree of translation invariance of a probability measure Q on \mathbb{R} , we introduce, for $a \in \mathbb{R}$ and t > s > 0, the quantities

$$d(a, t, Q) := \sum_{i=-\infty}^{\infty} \left| Q((a+it, a+(i+1)t]) - Q((a+(i-1)t, a+it]) \right| \quad (1.3)$$

$$\mathbf{D}(t, \mathbf{Q}) := \sup_{a \in \mathbb{R}} d(a, t, \mathbf{Q}) \tag{1.4}$$

$$\widetilde{\mathbf{D}}(s, t, \mathbf{Q}) := \sup_{s \le u \le t} \mathbf{D}(u, \mathbf{Q}).$$
(1.5)

We call a sequence $(Q_n)_{n \ge 1}$ of probability measures asymptotically translation invariant (ATI), if $\lim_{n \to \infty} \widetilde{D}(s, t, Q_n) = 0$ for all t > s > 0. The main

theorem of this paper states that $(P^{S_n})_{n \ge 1}$ is ATI if, and only if, P^{T_1} is not concentrated on a lattice. No moment conditions are needed for this equivalence. Let $D_n(t) := \tilde{D}(t^{-1}, t, P^{S_n}), t > 1$. Regarding the speed of convergence of $D_n(t)$ we remark that

$$\liminf_{n \to \infty} n^{1/2} \mathcal{D}_n(t) > 0 \quad \text{for all } t > 1, \qquad \text{if } \mathcal{E}(\mathcal{T}_1^2) < \infty. \tag{1.6}$$

To see (1.6), let without loss of generality $E(T_1) = 0$ and $E(T_1^2) = 1$. Then, by Chebyshev's inequality,

$$\mathbf{P}(\left|\mathbf{S}_{n}\right| < n^{1/2}) \ge 1 - n^{-1}.$$
(1.7)

The interval $(-n^{1/2}, n^{1/2})$ can be covered by $[2n^{1/2}/t] + 1$ half-open intervals of length t. One of these intervals, say I, obviously satisfies

$$P(S_n \in I) \ge (1 - n^{-1})/([2n^{1/2}/t] + 1) \ge \frac{1}{2} \frac{1}{2n^{1/2}t + 1}, \quad \text{if} \quad n \ge 2. \quad (1.8)$$

Choose $a \in [0, t]$ and $i_0 \in \mathbb{Z}$ such that $I = (a + i_0 t, a + (i_0 + 1) t]$. Then

$$d(a, t, \mathbf{P}^{\mathbf{S}_{n}}) \ge \sum_{i=-\infty}^{i_{0}} \left[\mathbf{P}(\mathbf{S}_{n} \in (a+it, a+(i+1)t]) - \mathbf{P}(\mathbf{S}_{n} \in (a+(i-1)t, a+it]) \right]$$

= $\mathbf{P}(\mathbf{S}_{n} \in (a+i_{0}t, a+(i_{0}+1)t]) \ge \frac{1}{4t+2}n^{-1/2}, \quad n \ge 2$ (1.9)

(1.6) follows from (1.9).

In order to derive a converse result to (1.6), we need a further notion. A distribution Q on \mathbb{R} is called strongly nonlattice, if its characteristic function ϕ satisfies

$$\limsup_{|\zeta| \to \infty} |\varphi(\zeta)| < 1.$$
(1.10)

The second main result of this note is that if P^{T_1} is strongly nonlattice,

$$\limsup_{n \to \infty} n^{1/2} \mathcal{D}_n(t) < \infty \quad \text{for all } t > 1. \tag{1.11}$$

2. THE MAIN THEOREM

We shall prove

THEOREM 1. – The following two statements are equivalent. (a) P^{T_1} is nonlattice.

(b) $(\mathbf{P}^{\mathbf{S}_n})_{n\geq 1}$ is ATI.

Proof. $(a) \Rightarrow (b)$. Assume first that $E|T_1|^3 < \infty$ and $E(T_1) = 0$. Let $\sigma^2 = E(T_1^2)$, $\mu_3 = E(T_1^3)$ and denote the distribution function of S_n by F_n . Then

$$d(a, t, \mathbf{P}^{\mathbf{S}_{n}}) = \sum_{i=-\infty}^{\infty} \left| \mathbf{F}_{n}(a+(i+1)t) - 2\mathbf{F}_{n}(a+it) + \mathbf{F}_{n}(a+(i-1)t) \right|. \quad (2.1)$$

Vol. 25, n° 2-1989.

Since P^{T_1} is nonlattice, a well-known expansion for distribution functions yields

$$F_n(n^{1/2}\sigma x) = \Phi(x) + \frac{\mu_3}{6\sigma^3 n^{1/2}}(1-x^2)\phi(x) + \varepsilon_n(x)n^{-1/2} \qquad (2.2)$$

for all $x \in \mathbb{R}$, where

$$\varepsilon_n := \sup_{x \in \mathbb{R}} |\varepsilon_n(x)| \to 0, \quad \text{as} \quad n \to \infty$$
 (2.3)

and Φ and φ are the distribution function and density of N(0, 1) (see e.g. Feller (1971), p. 539). It is easy to check that for each $j \in \mathbb{N}$ and $a \in [0, t]$

$$\sum_{i>j} \left| F_n(a+(i+1)t) - 2F_n(a+it) + F_n(a+(i-1)t) \right|$$

$$\leq 1 - F_n(a+(j+1)t) + 1 - F_n(a+jt) \leq 2P(S_n > jt) \quad (2.4)$$

and

$$\sum_{i < -j} \left| F_n(a + (i+1)t) - 2F_n(a + it) + F_n(a + (i-1)t) \right|$$

$$\leq F_n(a - jt) + F_n(a - (j+1)t) \leq 2P(S_n \leq -(j-1)t). \quad (2.5)$$

Inserting (2.2)-(2.5) into (2.1) we obtain, for $a \in [0, t]$,

$$d(a, t, \mathbf{P}^{\mathbf{S}_{n}}) \leq 2 \mathbf{P}(|\mathbf{S}_{n}| \geq (j-1)t) + (2j+1)\varepsilon_{n} n^{-1/2} + \sum_{i=-\infty}^{\infty} \left| \Phi\left(\frac{a+(i+1)t}{\sigma n^{1/2}}\right) - 2 \Phi\left(\frac{a+it}{\sigma n^{1/2}}\right) + \Phi\left(\frac{a+(i-1)t}{\sigma n^{1/2}}\right) \right| + \frac{|\mu_{3}|}{6\sigma^{3} n^{1/2}} \sum_{i=-\infty}^{\infty} \left| (1-x_{i+1}^{2}) \phi(x_{i+1}) - 2(1-x_{i}^{2}) \phi(x_{i}) + (1-x_{i-1}^{2}) \phi(x_{i-1}) \right|$$
(2.6)

where $x_i := (a + it)/\sigma n^{1/2}$. By Chebyshev's inequality,

$$2 \operatorname{P}(\left| \mathbf{S}_{n} \right| \ge (j-1)t) + (2j+1)\varepsilon_{n} n^{-1/2} \le \frac{2\sigma^{2}n}{t^{2}(j-1)^{2}} + (2j+1)\varepsilon_{n} n^{-1/2}. \quad (2.7)$$

The smallest order of magnitude of the righthand side of (2.7) is attained for $j=j_n$ being equal to the integer part of $n^{1/2} \varepsilon_n^{-1/3}$; in this case

$$2 \operatorname{P}(|\mathbf{S}_n| \ge (j_n - 1) t) + (2j_n + 1) \varepsilon_n n^{-1/2} = (1 + t^{-2}) O(\varepsilon_n^{2/3}), \quad \text{as} \quad n \to \infty.$$
(2.8)

Next we estimate the two series in (2.6). Let X be a standard normal random variable. Then the first sum at the righthand side of (2.6) is equal

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

198

to

$$\sum_{i=-\infty}^{\infty} \left| P(\sigma n^{1/2} X \in (a+it, a+(i+1)t]) - P(\sigma n^{1/2} X - t \in (a+it, a+(i+1)t)] \right|$$

$$\leq (\sigma n^{1/2})^{-1} \int_{-\infty}^{\infty} \left| \varphi (x/\sigma n^{1/2}) - \varphi ((x+t)/\sigma n^{1/2}) \right| dx$$

$$= 2 (\sigma^{1/2})^{-1} \left[\int_{-\infty}^{-t/2} \varphi ((x+t)/\sigma n^{1/2}) dx - \int_{-\infty}^{-t/2} \varphi (x/\sigma n^{1/2}) dx \right]$$

$$= 2 \int_{-t/2 \sigma n^{1/2}}^{t/2 \sigma n^{1/2}} \varphi (u) du = t O(n^{-1/2}), \quad \text{as} \quad n \to \infty. \quad (2.9)$$

To estimate the last sum at the right side of (2.6), note that the function $(1-x^2)\exp(-x^2/2)$ has four points of inflexion. Regarding the sequence

$$a_i := (1 - x_{i+1}^2) \, \varphi(x_{i+1}) - (1 - x_i^2) \, \varphi(x_i), \qquad i \in \mathbb{Z}$$

this implies that $(a_i - a_{i-1})_{i \in \mathbb{Z}}$ changes signs at most four times. Using its telescoping form the sum in question can be bounded from above as follows:

$$\sum_{i=-\infty}^{\infty} |a_i - a_{i-1}| \le 8 \sup_{-\infty < i < \infty} |a_i|.$$
 (2.10)

Further, by the mean value theorem,

$$|a_i| \leq |x_{i+1} - x_i| \sup_{x \in \mathbb{R}} \left| \frac{d}{dx} (1 - x^2) \varphi(x) \right| = K t/\sigma n^{1/2}$$
 (2.11)

for some constant K. Inserting (2.8)-(2.11) into (2.6) we arrive at

$$d(a, t, \mathbf{P}^{\mathbf{s}_n}) = (1 + t^{-2}) O(\varepsilon_n^{2/3}) + t O(n^{-1/2}), \quad \text{as} \quad n \to \infty, \quad (2.12)$$

so that

$$D(t, P^{S_n}) = (1 + t^{-2}) O(\varepsilon_n^{2/3}) + t O(n^{-1/2}), \quad \text{as} \quad n \to \infty.$$
 (2.13)

To establish the assertion without moment conditions we first remark that D(t, Q) is translation invariant in the sense that

$$\mathbf{D}(t, \mathbf{Q}) = \mathbf{D}(t, \mathbf{Q} \star \varepsilon_x) \quad \text{for all } x \in \mathbb{R}, \quad t > 0, \tag{2.14}$$

where * denotes convolution and ε_x is the point mass at x. Thus, (2.13) holds, if $E|T_1|^3 < \infty$ (without the assumption $E(T_1)=0$). Further, for probability measures Q and R we have

$$\mathbf{D}(t, \mathbf{Q} \star \mathbf{R}) \leq \mathbf{D}(t, \mathbf{Q}). \tag{2.15}$$

Vol. 25, n° 2-1989.

(2.15) is proved as follows:

$$D(t, Q * R) = \sup_{a} \sum_{i=-\infty}^{\infty} |(Q * R) ((a+it, a+(i+1)t]) - (Q * R) ((a+(i-1)t, a+it])|$$

$$\leq \sup_{a} \sum_{i=-\infty}^{\infty} \int_{-\infty}^{\infty} |Q((a+it-x, a+(i+1)t-x]) - Q((a+(i-1)t-x, a+it-x)])| dR (x)$$

$$\leq \int_{-\infty}^{\infty} \sup_{a} \sum_{i=-\infty}^{\infty} |Q((a+it-x, a+(i+1)t-x]) - Q((a+(i-1)t-x, a+it-x])| dR (x)$$

$$= \int_{-\infty}^{\infty} D(t, Q) dR (x) = D(t, Q). \quad (2.16)$$

Next suppose that $P^{T_1} = \alpha Q + (1 - \alpha) R$ for some $\alpha \in (0, 1]$ and probability measures Q and R such that Q satisfies, for some constants K_1 , K_2 ,

$$D(t, Q^{*n}) \leq (1+t^{-2}) K_1 \varepsilon_n^{2/3} + t K_2 n^{-1/2}, \quad \text{as} \quad n \to \infty$$
 (2.17)

 $(Q^{*n}$ is the *n*-fold convolution of Q with itself). Then

$$D(t, P^{s_n}) = \sup_{a} \sum_{i=-\infty}^{\infty} \left| \sum_{l=0}^{n} {n \choose l} \alpha^l (l-\alpha)^{n-l} \{ Q^{*l} * R^{*(n-l)} ((a+it, a+it)) \} \right|$$

$$= \sum_{l=0}^{n} {n \choose l} \alpha^l (1-\alpha)^{n-l} D(t, Q^{*l} * R^{*(n-l)})$$

$$\leq \sum_{l=0}^{n} {n \choose l} \alpha^l (1-\alpha)^{n-l} D(t, Q^{*l} * R^{*(n-l)})$$

$$\leq \sum_{l=0}^{n} {n \choose l} \alpha^l (1-\alpha)^{n-l} D(t, Q^{*l}). \quad (2.18)$$

Let $\delta_n := \sup_{l>n} \varepsilon_l$. Then $\delta_n \downarrow 0$ and, by Chebyshev's inequality for the binomal distribution and (2.17), it follows that, for arbitrary $\varepsilon \in (0, \alpha)$,

$$\sum_{l=0}^{n} {n \choose l} \alpha^{l} (1-\alpha)^{n-l} \mathbf{D}(t, \mathbf{Q}^{*l}) \leq 2 \sum_{\substack{l \leq (\alpha-\varepsilon) \ n}} {n \choose l} \alpha^{l} (1-\alpha)^{n-l} + (1+t^{-2}) \mathbf{K}_{1} \sup_{\substack{l > (\alpha-\varepsilon) \ n}} \varepsilon_{l} + t \mathbf{K}_{2} ((\alpha-\varepsilon) n)^{-1/2} \leq 2 \alpha (1-\alpha) \varepsilon^{-2} n^{-1} + \mathbf{K} [(1+t^{-2}) \delta_{(\alpha-\varepsilon) \ n} + t n^{-1/2}] \quad (2.19)$$

where $K = \max(K_1, K_2)$. (2.19) implies that $D_n(t) \to 0$, as $n \to \infty$, for all t > 1.

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

200

Now we choose a function f on \mathbb{R} such that 0 < f(x) < 1 for all $x \in \mathbb{R}$ and

$$\int_{-\infty}^{\infty} |x|^3 f(x) d\mathbf{P}^{\mathsf{T}_1}(x) < \infty.$$

Let $\alpha := \int_{-\infty}^{\infty} f(x) dP^{T_1}(x)$ and define the probability measures Q and R by $dQ := \alpha^{-1} f dP^{T_1}$, $dR = (1-\alpha)^{-1} (1-f) dP^{T_1}$. Then the third moment of Q is finite and Q is nonlattice so that Q satisfies (2.17). Since $P^{T_1} = \alpha Q + (1-\alpha) R$, it follows that $D_n(t) \to 0$.

 $(b) \Rightarrow (a)$. Let \mathbb{P}^{T_1} have span $\lambda > 0$. If $t \in (0, \lambda/2)$, at most one of the successive intervals (a+(i-1)t, a+it] and (a+it, a+(i+1)t] contains a multiple of λ . Therefore it is obvious that $d(a, t, \mathbb{P}^{S_n}) = 2$ for all $a \in \mathbb{R}$, $t \in (0, \lambda/2)$ and $n \in \mathbb{N}$.

3. THE STRONGLY NONLATTICE CASE

Concerning the speed of convergence of $D_n(t)$ we shall now prove

THEOREM 2. – If P^{T_1} is strongly nonlattice,

$$\limsup_{n \to \infty} n^{1/2} \mathbf{D}_n(t) < \infty \quad \text{for all } t > 1.$$
(3.1)

Proof. – Let $\eta := \limsup_{|\zeta| \to \infty} |\varphi(\zeta)| < 1$. We can decompose

 $P^{T_1} = \alpha Q + (1-\alpha) R$, where $\alpha \in (0, 1]$ and Q and R are probability measures such that Q is strongly nonlattice and concentrated on a bounded interval. If P^{T_1} itself is concentrated on a bounded interval, this is trivial. Otherwise let $\alpha_N := P(T_1 \in [-N, N])$, where N is large enough to ensure $0 < \alpha_N < 1$. Define, for Borel sets B,

$$Q_{N}(B) := \alpha_{N}^{-1} P(T_{1} \in B \cap [-N, N])$$

$$R_{N}(B) := (1 - \alpha_{N})^{-1} P(T_{1} \in B \setminus [-N, N]).$$

Then the characteristic functions $\tilde{\phi}_N$ and $\tilde{\tilde{\phi}}_N$ of Q_N and R_N satisfy $\tilde{\phi}_N = \alpha_N^{-1} (\phi - (1 - \alpha_N) \tilde{\tilde{\phi}}_N)$ so that

$$\limsup_{|\zeta| \to \infty} \left| \tilde{\varphi}_{N}(\zeta) \right| \leq \alpha_{N}^{-1} (\eta + 1 - \alpha_{N}), \tag{3.2}$$

and the righthand side of (3.2) is smaller than 1 for sufficiently large N, because $\alpha_N \uparrow 1$.

We proceed by proving the assertion for Q instead of P^{T_1} . Obviously we may assume that $\int xdQ(x) = 0$. Let F_n be the distribution function of

Vol. 25, n° 2-1989.

 Q^{*n} and $\sigma^2 := \int x^2 dQ(x)$. Since Q is strongly nonlattice and possesses moments of all orders, a well-known expansion yields, for every $r \ge 3$,

$$F_{n}(n^{1/2}\sigma x) - \Phi(x) - \phi(x) \sum_{k=3}^{r} n^{-(k/2)+1} R_{k}(x) = o(n^{-(r/2)+1}) \quad (3.3)$$

uniformly in x, where R_k is a polynomial depending only on the first r moments of Q(see, e. g., Feller (1971), p. 541). Letting r = 5 and proceeding as in (2.4)-(2.6) we obtain, for arbitrary j,

$$d(a, t, Q^{*n}) \leq 2 Q^{*n} \left(\mathbb{R} \setminus [-(j-1)t, (j-1)t]\right) + (2j+1)o(n^{-3/2}) + \sum_{i=-j}^{j} \left| \Phi\left(\frac{a+(i+1)t}{\sigma n^{1/2}}\right) - 2 \Phi\left(\frac{a+it}{\sigma n^{1/2}}\right) + \Phi\left(\frac{a+(i-1)t}{\sigma n^{1/2}}\right) \right| + \sum_{k=3}^{5} n^{-(k/2)+1} \sum_{i=-j}^{j} \left| \varphi(x_{i+1}) R_{k}(x_{i+1}) - 2 \varphi(x_{i}) R_{k}(x_{i}) + \varphi(x_{i-1}) R_{k}(x_{i-1}) \right|.$$
(3.4)

Here again $x_i = (a+it)/\sigma n^{1/2}$. Since each function $\varphi(x) R_k(x)$ has a bounded derivative and only a finity number of points of inflexion, the same reasoning as in the proof of Theorem 1 (for $R(x) = 1 - x^2$) shows that, for k = 3, 4, 5,

$$\sum_{i=-\infty}^{\infty} | \varphi(x_{i+1}) \mathbf{R}_{k}(x_{i+1}) - \varphi(x_{i}) \mathbf{R}_{k}(x_{i}) - [\varphi(x_{i}) \mathbf{R}_{k}(x_{i}) - \varphi(x_{i-1}) \mathbf{R}_{k}(x_{i-1})] |$$

$$\leq \mathbf{L} \sup_{-\infty < i < \infty} | \varphi(x_{i+1}) \mathbf{R}_{k}(x_{i+1}) - \varphi(x_{i}) \mathbf{R}_{k}(x_{i}) |$$

$$\leq \widetilde{\mathbf{L}} \sup_{-\infty < i < \infty} | x_{i+1} - x_{i} | = \widetilde{\mathbf{L}} t / \sigma n^{1/2}, \quad (3.5)$$

where L and \tilde{L} are appropriate constants. Thus the last term at the right side of (3.4) is $t O(n^{-1/2})$. Further using (2.9) for the remaining sum in (3.4) and Chebyshev's inequality we arrive at

$$d(a, t, Q^{*n}) \leq 2 Q^{*n} (\mathbb{R} \setminus [-(j-1)t, (j-1)t]) + (2j+1) o (n^{-3/2}) + t O (n^{-1/2}) = t^{-2} O (n/j^2) + (2j+1) o (n^{-3/2}) + t O (n^{-1/2}).$$
(3.6)

Choosing $j = j_n = n^{5/6}$, (3.6) implies that

$$d(a, t, Q^{*n}) = t^{-2} O(n^{-2/3}) + t O(n^{-1/2}).$$
(3.7)

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

Now arguing similarly as in (2.18) and (2.19),

$$D(t, P^{S_n}) \leq \sum_{l=0}^{n} {n \choose l} a^l (1-\alpha)^{n-l} D(t, Q^{*l})$$

$$\leq 2\alpha (1-\alpha) \varepsilon^{-2} n^{-1} + K [t^{-2} O(n^{-2/3}) + t O(n^{-1/2})], \quad (3.8)$$

where $\varepsilon > 0$ and K are constants. It follows that $D_n(t) = O(n^{-1/2})$ for each t > 1, as claimed.

REFERENCES

- [1] L. BREIMAN, Probability, Addison-Wesley, Reading, Mass., 1968.
- [2] W. FELLER, An Introduction to Probability Theory and Its Applications, Vol. II, 2nd Ed., J. Wiley, New York, 1971.
- [3] H. ROBBINS, On the Equidistribution of Sums of Independent Random Variables, Proc. Amer. Math. Soc., Vol. 4, 1953, pp. 786-799.
- [4] W. STADJE, Gleichverteilungseigenschaften von Zufallsvariablen, Math. Nachr., Vol. 123, 1985, pp. 47-53.
- [5] L. A. SHEPP, A Local Limit Theorem, Ann. Math. Statist., Vol. 35, 1964, pp. 419-423.
- [6] C. J. STONE, A Local Limit Theorem for Multidimensional Distribution Functions, Ann. Math. Statist., Vol. 36, 1965, pp. 546-551.
- [7] C. J. STONE, On Local and Ratio Limit Theorems, Proc. Fifth Berkeley Symp. Math. Statist. and Prob., Vol. III, pp. 217-224. University of California Press, Berkeley, 1967.

(Manuscrit reçu le 9 juin 1988.)