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Limit laws for a coagulation model of interacting
random particles

G. NAPPO and E. ORLANDI

Dipartimento di Matematica,
Universita di Roma "La Sapienza",

Piazza A. Moro, 2, 00185 Roma, Italy

Ann. Inst. Henri Poincaré,

Vol. 24, n° 3, 1988, p. 319-344. Probabilités et Statistiques

ABSTRACT. - We consider in brownian particles which interact
with each other and eventually die. Each particle is represented by the
process ( x i"~, ~in~) (i = 1, , ..., n) where the is brownian motion and ~in)
is a process in D([0, T]; ~0, 1}) which defines the state of the particle:
death or life.

We prove propagation of chaos and a fluctuation theorem for the
empirical distribution using a martingale method.

Key words : Martingale, empirical distributions, propagation of chaos.

RESUME. - On considère n particules browniennes en (~d qui réagissent
réciproquement entre elles et finalement meurent. Chaque particule est
représenté par le processus (x~"~, ~I"~) (i -1, ..., n) où les x~"~ sont des
mouvements browniens et les ~i"~ sont des processus dans D([0, T]; ~0, 1})
qui définissent 1’etat des particules : mort ou vie.
On prouve la propagation du chaos et un théorème sur les fluctuations

des distributions empiriques en utilisant une méthode de martingales.

Classification A. M. S. : 60 K 35.
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0. INTRODUCTION

Problems concerning interacting processes have been extensively treated
since Kac ([10], [11]). McKean formulated them in terms of non linear
Markov processes ([14], [15]).
A large number of authors has worked on such problems in several

contexts with different methods. M. Metivier [17], Oelschläger [19],
Leonard [13], proved propagation of chaos using a martingale method.
Sznitman [21] proved with a similar approach propagation of chaos for a
system of interacting particles in a bounded domain with reflecting normal
conditions. He dealt with fluctuations using an argument based on Gir-
sanov formula.
Dawson in [5] examines the dynamics and the fluctuations of a collection

of anharmonic oscillators in a two-well potential with an attractive mean
field interaction. Some critical phenomena appear in the limit behaviour
depending on diffusion constant.

This list is not exaustive. In all the papers quoted the interaction is of
mean field type: weak interaction. Sometimes these limit problems are
called Vlasov-limits [6].
The model we consider consists of a system of n independent brownian

particles in Every particle can die according to a rate which depends
on the configuration of the particles still alive; the dependence is of mean
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321LIMIT LAWS FOR A COAGULATION MODEL

field type. We describe the change by a spin process which assumes values
0 (dead) or 1 (alive). We represent the model by a process 
satisfying :

where

w; are independent brownian motions,
Pi are independent Poisson processes of parameter 1,
q is a continuous, non negative function with compact support.
(x~"~ (0), ~i"~ (0)), i = l, ..., n are independent identically distributed ran-

dom variables with values in IRd x ~0, 1}.
We are interested in the asymptotic behaviour of the system as the

number of particles goes to infinity.
We show the propagation of chaos, that is a law of large numbers for

the empirical distribution of the processes. Moreover we get fluctuations
results for the empirical distributions of the particles which are still alive.
Our model differs from those previously described because the processes

of the system have both diffusion and jumps components.
We chose the Wiener process as the diffusion component to semplify

the calculations.
One can easily extend our results to the case of diffusions weakly

interacting, making suitable hypotheses on the coefficients.
An interesting related problem is to increase the strength of the interac-

tion q and to shrink its range, in the sense that q depends on n:

In the moderately interacting case 0  03B2  d , the mascroscopic equa-
d-2 

p

tion for the limit probability density v of the alive particles solves:

where c = q (x) dx (in this direction, for different models, see [3], [20]).
In the strong interaction case P =  the constant c in the macroscopic

d-2

equation should take a different value. This case, for the Smoluchowsky
model of colloids, has been studied by Lang-Xanh [12] by means of

Vol. 24, n° 3-1988.



322 G. NAPPO AND E. ORLANDI

the B.B.G.K.Y. hierarchy and by Sznitman [23] with a Wiener sausage
approach.
We state the main results in paragraph 2. In paragraph 3 we analyze

some properties of the model (0.1). In paragraph 4 there is the proof of
the propagation of chaos and paragraph 5 deals with fluctuations. The
problem of moderate interaction is considered in a forthcoming paper.
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Prof. G. Dell’Antonio for the stimulating discussions.

1. NOTATIONS

If Z is a complete, separable metric space:
f!J (Z) is the Borel a-field.
C (Z) is the Banach space of bounded continuous functions from Z to

R with sup norm I I 
M (Z) is the space of measures ~, of bounded variation ( with the

topology induced by C (Z).
M1 (Z) c M (Z) is the subset of probability measures.
C([0, T]; Z) is the Polish space of continuous trajectories from [0, T] to

Z with the uniform topology.
D ([0, T]; Z) is the Polish space of trajectories continuous on the right

with limits on the left, from [0, T] to Z with the Skorohod topology.
If 11 is a random variable with values in Z.

~ ( r~ ) E M 1 ( Z) is the law of q.
S = C ([0, T]; x D ([0, T]; ~0, 1~); (S, ~ ) is a measurable space fil-

tered with the canonical filtration:

ç) is the canonical process in S.
If veM(S) is a measure on (S, ~ ) .
v (s) = vs is the measure on (~d x ~0, 1 ~

vs (A, B ~ ~0, 1 ~
vl (s) = vs is the measure on (~d

Annales de Henri Poincaré - Probabilites et Statistiques



323LIMIT LAWS FOR A COAGULATION MODEL

Cp = Cp is the space of continuous functions f such that

is the space of measures ~, on borelians of IRk such that

! ~ !~ = (1 + I x 12)P12 II (dx)  00, Mp is the topological dual of Cp.
C~ = C ( ~k) is the space of infinitely differentiable functions with com-

pact support.
~ _ ~ ( f~k) is the Schwartz space of rapidly decreasing C~ functions.
~’ _ ~’ is the dual of ~.

Wp = Wp ( f~k) is the space of measurable functions f such that

where Da denotes the distribution derivative and oc = (ocl, ..., 0

is a multiindex and I rl | = 03A3 a;.

is the dual of Wjp.
is the space of functions f E ~’ such that

where l is the Fourier transform.
For Wi coincide with Wb 
* denotes convolution: q* (x) = q (x - y) (dy).

( , ) denotes duality: we drop the dependence on the spaces, but it will
be clear from the context. The same symbol is used for scalar product.

If M, N are martingales with real values.
 M ~t is the Meyer process associated to M: the unique predictable

process such that M~ - ~ is a martingale.
~ M, NB is the unique predictable process such that NB

is a martingale.

2. RESULTS

We denote by

Vol. 24, n° 3-1988.



324 G. NAPPO AND E. ORLANDI

the empirical distribution of the process in the system (0.1); vn is a random
variable with values in M~ (S).
We consider the operator

with f (., ~) E C 2 ( (~d), ~ = o, 1 and 
We say that the probability v on (S, ~) is solution of the non linear

martingale problem (2.3) if and only if:

is a v-martingale for every f such that f (., ~) E C2 ( ~8d), ~ = 0, 1.

[See paragraph 1 for the definition of v~ (s)].
We are able to state a law of large numbers for the empirical distribu-

tions.

THEOREM 1. - The converges to ~~ in M 1 ( M 1 ( S))
where v is a measure in M 1 ( S) such that

(i) v is the unique solution of the martingale problem (2.3).
(ii) v1 (t) has density u (t) which is the solution of

provided that
(A) the initial conditions of (o.l) are identical independent random

variables, with ~i"~ (0) = 1, n i = l, ..., n such that ~vn (o) ~ is convergent
in law to vo, where vo = vl (0) x 

(B) vl (0) is absolutely continuous w. r. t. Lebesgue measure..
We want to point out that we consider vn as random variables in M 1 ( S),

instead of considering them as processes in D ([0, T]; M 1 x ~0, 1 )).
This is due to the fact that we want to exploit the simmetry properties

of system ( 1.1) in the propagation of chaos (see for details paragraph 4 . 1).
The next stage is the central limit theorem for

For each t _ T, v~ (t) is a positive measure on IRd which counts only
the particles still alive at time t, and v~ is a process in D([0, T]; 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



325LIMIT LAWS FOR A COAGULATION MODEL

We investigate the limit of:

as n goes to infinity, i. e. the fluctuations around the "living" particles
measure vl (t) of point (ii) of Theorem 1.

THEOREM 2. - Suppose that the hypotheses of Theorem 1 are satisfied,
q E Co, the sequences {E [ (0) |*2 p]} and {E [ ( (o) I I2 j]} are uniformly
bounded for some p &#x3E; d, and j &#x3E; max d + 1 ~2 a + 2 and the sequence

~~ (Y" (o)~ converges to (0)) in M1 (~’), then the sequence ~Y"~,
considered as a sequence of processes in D ([0, T]; ~’), converges in law to
the generalized gaussian random process Y, solution of the linear stochastic
equation:

..~ , _ ,

The process N is a continuous gaussian martingale with independent
increments, with zero mean and covariance:
E [(h, N (t)) (g, N (t’))]

Moreover if the hypotheses on the initial conditions are satisfied with

is uniformly bounded for

some p’ &#x3E; d and l &#x3E; 0, then the sequence considered in D ([0, T], 
converges in law to the Y process realized in D ([0, T], W-~). .

3. PROPERTIES OF THE n-PARTICLE SYSTEM

In this paragraph we will examine some properties of system (O.1) that
we will use in the sequel.

System (0.1) has a unique solution (xi"~, ~in))n=1 in (~ + for every initial
condition (x~n~ (0), ~i"~ (O)) ~ =1. However we consider the process in a

bounded interval of time [0, T] and we will always refer to the canonical

Vol. 24, n° 3-1988.



326 G. NAPPO AND E. ORLANDI

solution on the space S" endowed with the filtration:

and with the probability measure P" equal to the law of the solution of
(0.1). For semplicity of notations when writing expectations sometimes we
will drop out the dependence on n and on the initial conditions.

For the same reason we will always assume (without mentioning) that
q (o) = o. In particular this assumption allows to write:

Our system defines a Markov process (x~"~, ~~"~) in x ~0, whose
generator Ln acts as follows: 

[here (x, ~) E ( (~d)n x ~0, 1 ~n and the components of ~‘ are defined by
03BEij = 03BEj if j ~ i and 03BEii = 0] on the family D = {03A6: (Rd)n  {0, 1}n ~ R such
that the f unction ~ ( . , for every § fixed in {0, 1 ~ n ~ .
Moreover for every 03A6 in this family we can define the process

t) - ~ lx(") (~)~ ~(n) ~t)) ~ ~x(n) ~~)~ ~(0))

The process is a real valued martingale with trajectories in

D([0, T]; R) in the filtered probability space ( S", (~ t )t E ~o ~ T], P") and its
associated Meyer process is [9]:

With the particular choice of ~(x~)= ~ ~ /(x,, ~), f ( . , ~)eC~(~),
- 

we set and recalling (3.1) from (3.3):

where is defined in ( 2. 2) .

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



327LIMIT LAWS FOR A COAGULATION MODEL

Then f rom (3.4)

where f(O) (x, ~) = f (x, 0) for every x E ~d, ~ E f 0, 1 }.

4. PROPAGATION OF CHAOS

4.1. Methodology

Propagation of chaos for system (0.1) means that there exists a v E M1 (S)
such that

for every choice of ..., cpk in C (S).
This is the same as asking that there exists the limit measure poo on S~

of the sequence {Pn} and that

The main tool is the n-exchangeability of the system: if (0), ~1"~ (0))
(i =1, ..., n) are independent identically distributed random variables,
then for every permutation o of the indexes {1, 2, ..., n~ the law of

~a"~i~) (l = l, ..., n) is the same as the law P" of (xi"&#x3E;, §)~~)
(i =1, ..., n).
Then any limit point poo of the sequence is excheangeable, or

symmetric, namely it is n-exchangeable for every n E N. One can therefore
apply De Finetti’s theorem ([2], p. 51) and a characterization of the limit
probability ([2], p. 55) to state that propagation of chaos is equivalent to
the Law of Large Numbers for the empirical distributions {vj, namely
~ ( vn) -~ s~~}.

Therefore to achieve the thesis of Theorem 1 we need to show the
tightness of the empirical distributions (see Proposition 4.1) and the
uniqueness of the limit points for ~~ (vn)~, which is divided in two steps:

(i) every limit point in M~ (M~ (S)) has support on the set of
solutions of the non linear martingale problem (2.3) (see Proposition 4.2).

(ii) the martingale problem (2.3) has a unique solution v (see
Proposition 4.3); this assures both the convergence and the
propagation of chaos, since the support of the limit law is then the
singleton {v}.

Vol. 24, n° 3-1988.
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4.2. Tightness

For sake of semplicity in this paragraph we will suppose that

~i"~ (o) =1, n E (~I, i = l, ..., n.

PROPOSITION 4.1. - Under the condition A of Theorem 1 the sequence
tight in M 1 (S)..

Proof - It is sufficient to show tightness of the processes (xi, ~i) since
by Sznitman result ([22], lemma 3.2), the is tight in

M 1 ( M 1 ( S)) if and only if the ~ i"~)~ is tight in M 1 ( S).
As far as the first component (t) = (0) + wl (t) is concerned, tight-

ness follows immediately from the convergence of the initial conditions.
To show the tightness in D([0, T]; {0, 1}), where 03C4n1 is the
instant of death for the first particle, it is sufficient to show

Relation (4.2) follows from

and Markov property.

4.3. Identification

We characterize the limit points 

PROPOSITION 4.2. - Under the condition A of Theorem 1, the support of
any limit point Q of M1(M1(S)) is contained in the set of
measures v EM 1 (S) such that v is a solution of the nonlinear martingale
problem (2. 3)..

Proof - The proof is based on the following idea.
Let us set

where G: S - R is continuous, s-measurable and bounded by 1 and
1.

Then v is a solution of the martingale problem (2.3) if and only if

F (v) = 0 for every choice of f, G and s, T].
The thesis is therefore equivalent to require that F (v) =0 Q. a. s. that

is:

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



329LIMIT LAWS FOR A COAGULATION MODEL

The functionals F are continous Q. a. s., since for all t &#x3E; 0
v ((x, ~)/~ (t) ~ ~ (t-)~ = 0 Q. a. s. and bounded.

Moreover, since Q is the limit of some subsequence of ~~ (vn)~, we
have:

_ _ --- ,-,

Then (4.4), and a fortiori the thesis, is proven once we show that:
_ _ _ __,. _ _

We refer to the following lemma for its proof.

LEMMA 4.1. - Under the condition A of theorem l, for every F defined
as in (4.3)

Proof. - If we denote by C,(x, ç) the function f (x;, ~i), taking into
account (3.2) and (3.3), we can write down explicitly F (vn)

Then, setting ~I"~) we have

We can compute ( through (3.4) by the polarization identity
and we get that for i ~ j the martingales are orthogonal while for i = j we
get, through (3.4):

Vol. 24, n° 3-1988.
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Therefore

4.4. Uniqueness

PROPOSITION 4.3. - The martingale problem (2.3) has a unique solution
for every vo E ~ where

vo (., ç) is absolutely continuous
w. r. t. Lebesgue measure~. .

Proof - The basic idea of the proof is based on the following facts:
(i) the class ~ is invariant for the martingale problem (2.3), that is if

v0 ~  then, for any solution v of the problem (2.3), the distribution vt of
v at time t is still in the class %’.
Here the idea is to note that if v E M1 (S) is a solution of (2.3), then its

marginal À on C([0, T]; I~d), defined by ~, ( B) = v ( B x D ( [o, T]; ~0, 1 ~))
for B belonging to E3 (C([0, T]; is the Wiener measure with initial
distribution

Then

(ii) If v and v~ are solutions of (2.3), with vo in the class ~, then the
distributions at time t, vt and v;, coincide (see Lemma 4 . 2).
By a slight modification of the usual argument (see [7]) one can then

prove that properties (i) and (ii) imply uniqueness of the solution for the
martingale problem (2.3) for any 
We observe that, since (4.6), uniqueness of vt is equivalent to uniqueness

of v; or equivalently of its density u (t). Moreover, for any 

since v is a solution of the martingale problem (2.3).
This is the mild form of the Cauchy problem (2.4).

LEMMA 4.2. - The Cauchy problem (2.4) has a unique solution u (t) such
that M(.)eC([0, T]; L 1 ( f~d) ), u (t) &#x3E;__ 0..

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Proof. - Suppose that u’ and u" are both solutions of the Cauchy
problem (2.4) and set

From the mild form of (2.4) we get that

and by Gronwall inequality ~v(t)~L1 = 0, t E [0, T].

5. FLUCTUATIONS

5.1. Preliminary results

In order to prove the results on the fluctuations (Th. 2) we consider the
Yn as processes with values in for suitable j and p.
More precisely, we prove that Yn can be represented (Prop. 5.1) as a

semimartingale. In Proposition 5.2 we derive the Meyer process associated
to the martingale part of Yn.
The definition of the Meyer process is recalled in the Appendix toghether

with the Sobolev inequalities which we largely use in the following.

PROPOSITION 5. 1. - The process Y" admits the following semimartingale

representation in with j &#x3E; d + 2.

where N~"~ (t) is a W-martingale with values in 

Proof - From the martingale formulation for stated in (3.5), for
functions f (x, ~) _ ~ h (x) with h E Wi (remark that Wi cz C2 since Sobolev
embedding theorem [1]), we have that:

With little abuse of notation we wrote M~ instead of M f.

Vol. 24, n° 3-1988.



332 G. NAPPO AND E. ORLANDI

For each M~ is a real P"-martingale.
We want to prove that the application is a linear continuous

functional on W’, so there exists for each t an element M" (t) E such
that

The linearity is straight f orward and f or the boundedness we have that:
,______, , , - , , I , - - . ,

Taking into account that from Sobolev inequalities:

we have that for some constants Ci and C2

Therefore for v~ (t) the following representation holds in W -’

where the martingale M" (t) E 
Moreover we have that:

Then the representation ( 5. I ) for follows defining
N~ = / M~.

PROPOSITION 5. 2. - If j &#x3E; max (d 2 + 2, d + I and E [ ) vl (0) fl p] is finite,

p &#x3E; d, then »t, defined as

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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for h, g in Wi, is the Meyer process associated to N" (t) in W -’. .

Proof. - From Proposition 5. 1 and from (3.6) by using polarization
identity we have that:

To get the thesis we have to show that if j is suitably chosen the operator
« N" » defined as

is nuclear.
To this end we show that «Nn » t : Wp -~ Wp l is a linear, bounded

operator, f or P &#x3E; d and l &#x3E; d 2 + 1 ~ ~ indeed the Sobolev ine q ualities assure
that W l + q is Hilbert Schmidt embedded in Wl if q &#x3E; d 2 and &#x3E; d

(Th. A . 3), therefore settingj=l+q we have:

~(h, « N" »tg)( I
...

Therefore to estimate | (h, « N" » tg)| is sufficient to give an estimate
for |v1n (s)|2 n

Here v~ (~) = - ~ i. e. the empirical distribution of n independent
n i= 1

brownian motions.

where Cp Cp, are constants.
The last inequality holds because Doob’s inequality for submartingale.

Vol. 24, n° 3-1988.
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Therefore, since (5.8), (5.9), (5.10):

where KT is a constant.
We stress only the dependence on T even though it depends also on

Therefore from the hypothesis on the initial conditions we get the thesis.
Remark. - The results stated in Proposition 5. 1 and 5. 2 hold in Wp.’

for p’ &#x3E; 0 provided we make stronger assumptions on the initial conditions,
respectively: for Proposition 5.1 E [I vn (0) ~p,] is finite and for

Proposition 5. 2 E [I v; (0) I2 (p+ p’)] is finite.
The proof goes in the same way, taking into account the Sobolev

inequalities in Theorem A. 3.

5. 2. Convergence of martingales

In this section we prove the convergence of the martingales N" as
processes and we characterize the limit points. The
tightness of N", the martingale part of Yn, is given in terms of the
associated Meyer process « Nn » . Sufficient conditions needed to prove
the tightness of Nn are recalled in the Appendix (Th. A. 2.).

PROPOSITION 5.3. - If E [) vn (o) (2 p], p &#x3E; d, is bounded uniformly in n,
then the sequence is tight in D ([0, T], with

PROPOSITION 5.4. - Under the hypotheses of Theorem 1 and moreover

if E [~ vn (0) I2 p], p &#x3E; d, is uniformly bounded we have that the sequence of
the martingale converges weakly in D ([0, T]; to the continuous,
gaussian process with independent increments N, with covariance given by

where vl is the measure defined in (ii) of Theorem 1. 1

Proof of Proposition 5.3. - We have only to verify that the conditions
(A . 3) and (A. 4) of Theorem A. 2 hold.
We note that we can always chose on orthonormal basis {hk} in 

oo

l, q as in Proposition 5.2 such that L because w’+q is

Hilbert-Schmidt embedded in W~.
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Therefore from the (5.11) we have that

This implies both conditions in (A.3), since the hypothesis on the initial
conditions.

For the condition (A.4), from Cheybeshev inequality, it is enough to
show that:

as b -~ 0, uniformly in n.
From the explicit form of « Nn » (5.6) we have that for the same basis

{hj, using ( 5 . 8) and ( 5 .10)

From the uniform boundedness hypothesis on the initial condition, (A.4)
is proven.

Proof of Proposition 5.4. - We show that each limit point of
is solution of the following martingale problem on

C([0, T]; W - ~) : setting JV the canonical process in C([0, T]; W - ~), for
each g E W’:

(i) the real process (g, JV (t)) is a Q°°-local martingale;
(ii) (g, ~ (t))2 - ~9 (t) is a martingale where

The operator « N » is deterministic and then from the characterization
[7] of continuous Gaussian processes with independent increments as the
unique solution of (i) and (ii) the thesis follows.
The fact that

implies that the limit Q°° has support on C([0, T]; W- j).
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In order to verify point (i) and (ii) we apply Ito’s formula to the real
martingale (g, Nn (t)): for o E C2

with ~~t ~ ‘~° 9 a martingale.
We need also to consider the following stopping times on Sn and

D([0, T]; W -’) :

For the proof of point (i) we consider cp E C2 such that:

The Ito’s formula (5.15) for such a choice of gives

Consider G E (‘~S = o’ {JV (r), r ~ s~) and set Gn = N" (o) E G}

since (5.16).
To show that (g, rf (t)) is a local martingale it is enough to notice that:

The last equality holds since (5.13) for m =1 and the hypothesis on the
initial conditions.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Similarly, for proving ( ii), we use the fact that

One can get (5.17) applying Ito’s formula (5.15) to cp = ~«, ~« E C2

and showing that:

The relation (5.18) follows immediately from the weak convergence of
v" to v and from the fact that F : M1 (S) --~ R,

is a continuous bounded functional and that

5.3. Convergence of fluctuations

So far we have shown that the martingale part of the fluctuations
converges in W- j to a continuous gaussian martingale with independent
increments.

This and the estimates given in the following Proposition 5.5, enable us
to prove easily Theorem 2.

PROPOSITION 5.5. - For the sequence of processes {Yn} the following
estimate holds:

provided that the sequences ~E I v,i, (o) ~2 p~, p &#x3E; d and ~E [II Yn (o) II _~]~ are
uniformly bounded..

Proof - From the semimartingale representation of of

Proposition 5.1, and from Ito’s formula applied to the function
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f M = (y, y) we have that:

Here [N’~] is the quadratic variation of N".
Taking the expectation of (5.19) and using the monotonicity of the

Laplacian in w-j we have:

But

and

and

because of (5.13) with m =1 and the hypothesis on the initial conditions.
Therefore (5.20) is estimated as:

The thesis follows from Gronwall inequality.

Remark. - The result of Proposition 5. 5 holds in W;J, p’ &#x3E; 0 provided
that E [I v~ (0) and E [I Y, (o) II2 ~, p.] are uniformly bounded.
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Proof of Theorem 2. - In order to prove the convergence in

D([0, T]; Y’) we show that:
(A) the processes Yn are tight in D ([0, T]; Y’).
(B) any limit point Y is solution of the following stochastic equation

Here N (t) is the continuous gaussian process with independent incre-
ments defined in Proposition 5.4.

(C) the uniqueness of the solution of (5.23).
To prove conditions (A) we use Mitoma result [18] that is:

if the sequence of processes Yn (t)) is tight in D([0, T]; R) for
each f ~  then is tight in D([0, T]; ’).
For the tightness of z~ in D ( [o, T]; R) we use Theorem A.I and

Proposition 5.5:

and

It is easv to see that:

Therefore (5.24) is less or equal to:
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Using (5.8), (5.10) and the hypothesis on the initial conditions we have
that .

To identify the limit we add and subtract to (5.1)

Therefore we have that:

The point (B) follows from the continuity of (5.25) and the boundedness
of the non linear term (Prop. 5.5)

The condition (C) is implied by Proposition 5.4 and by the linearity of
(5.23).

For the convergence of in D([0, T], W- j) we have only to show
tightness. The identification of the limit point and the uniqueness follows
as previously.
The (i) of (A.1) consists of

and it is verified for j &#x3E; max ~+1, - +2 ) (Prop. 5.5).
For the (ii) of (A.I) we note that if is an orthonormal basis in Wi

If we choose p’ &#x3E; d, j = l + q, q &#x3E; w , 2 l &#x3E;_ 0 then the embedding

Wp, is Hilbert-Schmidt and therefore one can choose such that
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w

 oo’ Then the uniform boundedness of (see
k=1

Remark of Proposition 5.5) proves (ii).
For the Aldous condition (A.2) we have that, for 6  ~

The last inequality follows from (5.14).

Then since E is bounded for

(Prop. 5.5), condition (A.2) holds.

APPENDIX

In order to make the paper selfcontained we formulate the theorems
we use in proving tightness for processes in D([0, T]; ~f), where ~f is a
separable Hilbert space with scalar product ( . , . ) and norm !! . !!.
Vol. 24, n° 3-1988.
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THEOREM A 1 ([9], [17]). - A sequence of processes ~z~"~~ in D ([0, T]; ~)
is tight if the following conditions are satisfied:

where is an orthonormal basis.

If = N" is a martingale process one can use the Rebolledo idea that
the tightness of {N"~ is implied by the tightness of the associated Meyer
process « N" » .

In our case ~ = W -’, so the Meyer process is defined as the

unique predictable process with values in the space of nuclear operators
from wj to with the property that

is a local martingale for any h, g e W’.
Since t is a nuclear operator we can define the operato]

« N" » i ~2 which is Hilbert-Schmidt; we remind that in this cast
00

THEOREM A. 2 [17]. - If the sequence of martingales with values in

~ verifies
(A . 3) There exists on orthonormal basis in such that ~~ &#x3E; 0,

(A . 4) For E &#x3E; 0 there exists ~ &#x3E; 0 such that for each sequence of stopping
times ~i"~, T

then ~~ (N")~ is tight in D ([0, T]; ~P). .
We state the results of Sobolev inequalities in the following theorem.
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THEOREM A . 3 [1]. - If l &#x3E; ~ , r &#x3E; 0 then

therefore Mr  Wr-l.

If l ~ 0, &#x3E; d r &#x3E;- 0, s &#x3E; d then the embedding Wl is Hilbert-

Schmidt, therefore also the embedding cz is Hilbert-
Schmidt..
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