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Potential theory for a family
of several Markov processes

Steven N. EVANS

Statistical Laboratory, University of Cambridge, England

Ann. Inst. Henri Poincaré,

Vol. 23, n° 3, 1987, p.499-530. Probabilités et Statistiques

ABSTRACT. - We develop some potential theory for multi-parameter
processes of the form X (t) =(X 1 (tl), ... , Xk (tk)), where are

Markov processes. In particular, we investigate the "small sets" for these
processes and study the properties of the fine topology.
As an application of the "small sets" results we study the existence of

multiple points in the path of a Levy process. In the symmetric case we
prove a conjecture due to Hendricks and Taylor and we improve the
results of previous authors for the general case. Finally, we obtain sufficient
conditions for a set to contain multiples of a planar Brownian motion
which are weaker than those thus far obtained.

RESLJME. - On décrit une théorie du potentiel pour des processus à
indices multiples et du genre X ( t) _ (X 1 ( tl), ... , Xk (tk)), of t = (ti) E et

..., Xk sont des processus de Markov. En particulier, on etudie les
« petits ensembles » de ces processus et les propriétés de la topologie fine.
Comme application des résultats concernant ces « petits ensembles » on

etudie l’ensemble des points multiples sur la trajectoire d’un processus de
Levy. Dans le cas symétrique on prouve une conjecture par Hendricks et
Taylor et on améliore pour le cas general les résultats des auteurs prece-
dents. Finalement, on obtient des conditions suffisantes pour un ensemble
contenant des points multiples d’un mouvement brownien plan et qui sont
plus faibles que celles obtenues juqu’à present.

~ 

Mots elés : Theorie du potentiel, processus de Markov, topologie fine, points multiples.
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500 S. N. EVANS

1. INTRODUCTION

The objects which we investigate in this paper are multi-parameter
processes of the form X ( t) _ ( X 1 ( t 1 ), ... , X k (tk)), where

t = (t1,..., and X 1, ... , Xk are independent Markov processes.
Some properties of these processes have already been studied in [6]. Our
aim is, in the main, to extend to this setting some of the known result
from the potential theory of Markov processes. We will also consider
some of the applications of our results to the study of multiple points in
the sample paths of one-parameter processes.

After introducing some notation in Section 2, we present a few useful
preparatory results in Section 3. Chief among these are a section-type
theorem and a "strong Markov" property in which the appearance of
stopping-times is replaced by that of optional random measures. This
formulation allows us to partially overcome the unfortunate inutility of
stopping-time methods in the multi-parameter theory.

In Section 4 we employ these tools to establish a partial extension of
the well-known result that if f is an excessive function for a standard
Markov process Y then has right-continuous paths almost surely.
The fine topology for X is constructed in Section 5 and the results of

Section 4 are reconsidered as statements about the fine topology.
We restrict attention in Section 6 to the case where each of the Xi is a

symmetric process. In this setting we discuss two notions of "small set"
and develop a necessary condition for a set to be "small".

Section 7 is more or less a reprise of Section 6 for the case where each
of the X ‘ is a Levy process, although the methods used are markedly
different.

Several applications of the "small set" results to the study of sufficient
conditions for the existence of multiple points in the path of a Levy
process are given in Section 8. In particular, we verify a conjecture due to
Hendricks and Taylor concerning such a condition for symmetric Levy
processes. In the general (i. e. not necessarily symmetric) case we show
how our methods can improve the results of Shieh [21] for this problem.

Annales de l’Institut Henri Poincaré - Probabilites et Statistiques



501SEVERAL MARKOV PROCESSES

Finally, we sharpen the condition given by Tongring [22] for a set in the
plane to contain multiple points of a planar Brownian motion.
For the sake of the reader who is primarily interested in the "small set"

results and their application to the study of multiple points, we remark
that the results of Sections 6 to 8 are essentially independent of those
contained in Sections 3 to 5.

2. NOTATIONS

Suppose that 1  i _ k, are standard pro-
cesses (see e. g. [3], 1-9) with state spaces (Ei, fJli) augmented by A’. As
usual, we set EsL = E‘ U and let be the ~-field on Eai generated by
ffii.

Set E Ei Define Ed and similarly. We will adopt
i i

the convention that when the domain of a function is not expressly stated
it will be assumed to be E. We extend such functions to Ed by setting
them to be 0 on We also adopt the analagous convention for
measures.

Define a measurable space (Q, by setting Oi and Jt Jlti.
i t

We have a Rk+-indexed filtration on this space given by Mt=03A0Mtt1, where

t={t1,..., tk)~Rk+. ° Similarly, set Xt (03C9)=(Xiti(03C9i)), 8t and

px=npxi for 03C9=(03C91,..., ook)EQ and x = (x, ... , 

If Jl is a 03C3-finite on (Ee, B0394) we may define a measure P  on (Q, M)

by P~ ( . ) _ Let ~~ be the completion of ~’ with respect to

P; Denoting by ~ the collection of P~ null sets in set

and define ~s 1 similarly. Let ~ls = U... U J/ k.
If Xi has transition function pi(ti, xB B’) set

Vol. 23, n° 3-1987.



502 S. N. EVANS

For a = ( a 1, ... , with put

and

3. SOME GENERAL RESULTS

The following result is the analogue of the Blumenthal 0-1 Law.

( 3 . 1) LEMMA. - Let

Fix x~E0394 and let N denote the collection af Px-null sets in the Px-completion
of ~~. Set

then for each A~H we have Px (A) = 0 or 1.

Proof - By a monotone class argument and the one-parameter 0-1
law, the conclusion of the Lemma holds if we replace Je by there-

fore suffices to prove that, for each IA is Px-equivalent to a ego.
measurable random variable.

Suppose that then by 1-8-13 of [3]

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



503SEVERAL MARKOV PROCESSES

A monotone class argument then establishes that I ~) = Px (B ‘~o)
for all and hence for all Be [~ ~ v ~V’]. In particular, if then

~o) and the result follows.
Suppose for the rest of this section that k = 2. In what follows we wish

to use some of the "general theory" which has been developed for two-
parameter processes; in particular, those elements which appear in [2]. To
this end we remark that, for a fixed probability measure p., the probability
space (Q, P~) with the two filtrations i) satisfies the regularity
conditions set out at the beginning of Section II in [2]. In particular we
have

and so the F-4 commutation condition holds.

Now it is a well-known feature of the multi-parameter general theory
that whilst the formal concept of a stopping-time can be extended to the
multi-parameter setting the notion is nowhere near as useful as it is in the
one-parameter theory. For instance, an example of Cairoli (see e. g. [4])
shows that there are well-behaved sets which are almost surely disjoint
from the graph of any stopping time. Thus there is no hope of obtaining
any sort of an analogue for the section theorem. The following result,
however, indicates a means of "getting hold" of certain random sets which
will be sufficient for our purposes. We refer the reader to [2] for the
definitions of the optional a-field and an integrable increasing process.

(3.2) LEMMA (cf the "selection lemma" of [18]). - For a probability
measure ~. on EA consider the probability space (S~, P~ equipped with
the filtrations i ~. If C is a non-evanescent optional subset of SZ x 
then there is an optional integrable increasing process A such that:

(i) dAt is concentrated on C;
(ii) &#x3E; 0.

Proof - If we add an isolated point a to then the remark of III-
45 [5] shows that there exists an M -measurable mapping

such that and

P~ ~ T (c~) ~ a ~ = P~ ~ ~ (C) }, where 1t (C) is the projection of C onto Q.
Let At = I~ T  r ~, then A is a (non-adapted) integrable increasing process.

Following [2] we may define A by where A is the dual optional

Vol. 23, n° 3-1987.



504 S. N. EVANS

projection of A. Then A is an optional increasing process satisfying (i).
Moreover, by an argument similar to that which establishes Théorème 9
in [2] we have

and so (ii) also holds.
The way in which we intend to exploit Lemma 3.2 is to replace

arguments which involve evaluating a process at a stopping-time by argu-
ments which involve integrating a process with respect to the measure
induced by an increasing process. This latter operation has many of the
properties of the former, such as the following analogue of the strong
Markov property.

(3.3) THEOREM. - If A is an integrable optional increasing process on
(Q, P ) equipped with the filtrations {M ,is then for B~B0394 and

we have

Proof. - Since both sides above are measures, it will suffice to show
that equality holds if we replace IB by f where x2) = f 1 (xl) f (x2)
with f ~ a non-negative, bounded continuous function on Eo=.
Both sides of the resulting equation will be right continuous in t. By

the unicity Laplace transforms, it thus suffices to show for a=(aB a2)
with a’ &#x3E; 0 that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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For i, j, put

and set to be the point mass at (i, j) 2-". Let

We will first show that (3.3.1) holds with A replaced by An. The right
hand side of ( 3 . 3 . 1 ) is then

By definition 7~n, ~~ E ~~ 2 -n. An application of the Markov property of
the X ~ and the remark above that E~ ( . I ~s ) = E~ ( . gives that the
term in [ ] in (3.3.2) is E~ Ex ~~i, j) 2 -n~ f (X t)). Substituting this shows
that (3. 3.1) holds with A replaced by An.
Now note that if we set

then gi is an a-excessive function for X~ and so, by II-2-12 of [3],
s ~ g (XS) _ fl gt is almost surely right continuous. Clearly, the process

inside [ ] of the right hand side of ( 3 . 3 .1 ) is almost surely continuous.
Hence taking limits as n - oo shows that (3 . 3.1) holds.

4. COMPOSITION WITH "POTENTIALS"

An important and useful property of standard processes is, roughly
speaking, that they are right processes. More specifically, if f is a 03BB-
excessive function for some standard process Y then the paths of f (Y t)
are almost surely right continuous (see e. g. II-2-12 of [3]).

Vol. 23, n° 3-1987.
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In considering possible multi-parameter analogues for this result two
difficulties present themselves. Firstly, it does not seem to be at all clear

what is an appropriate definition of "excessive function" in this setting. It

appears that there is no definition which shares all the pleasing properties
of the one-parameter case. Secondly, the existing proofs of the above result
rely on the existence of right-limited modifications of supermartingales
or at least on the convergence of discrete parameter supermartingales.
Unfortunately, neither of these latter two results hold in general for the
natural multi-parameter analogue of the supermartingale.
We avoid these difficulties by restricting attention to the regularity

properties of g (Xt), where g (x) = G°‘ (x, f ) with f a bounded, non-negative
function. This class of functions (which must be subsumed in any reasona-
ble multi-parameter definition of "a-excessive") has extra analytic structure
which enables us to proceed without the above-mentioned convergence
theorems.

We assume for the rest of this section that k = 2.

(4. 1) THEOREM. - Let f be a non-negative, bounded measurable function.
For ex = (exl, oc2) with the process G°‘ (Xt, ~ is a. s. right continuous.

The proof will proceed via a sequence of Lemmas. The first of these is
a "Doob-Meyer"-type decomposition of G°‘ (Xr, ~.

(4.2) LEMMA. - Set

and define r2 analogously. Put

If we f x x, then on the probability space (Q, Px) with the filtrations
(Mxti) we have (see [19] for the relevant definitions of (0394i)-submartingale and
martingale).

(i) A (t; f ) is a bounded, continuous increasing process;

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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(li) bounded (Ai)-submartingale;
(iii) M (t; f ) is a bounded martingale.

Proof. - Suppose first that f (y) _ ~ f i (yi), then
t

It is easily checked that f ~), is a one-parameter non-negative,
bounded martingale on (Q’, 
We have

It is clear that ( M ( t; f ), At) is a martingale on (Q, ~, P x) and the
examples on p. 27 of [19] show that f ), At) is a (0394i)-submartingale
on this space.
As Ex (. ~t) = Ex ( . we see that the conclusions of the Lemma

hold for f of this form.
Now note that if ~,1, ~,2 &#x3E; 0 and fi, f2 are non-negative, bounded func-

tions then M (t; ~,1, fl + ~2 f2) _ ~I M (t; fi) + ~2 M (t; f2). Also if fn ~. f
bounded pointwise as n -~ oo then M (t; fn) - M (t; f ) bounded pointwise.
Similar comments hold for the Si. Since the classes of bounded martingales
and bounded (Ai)-submartingales are each cones closed under bounded
pointwise convergence, the Lemma then follows by writing f as the boun-
ded pointwise limit of functions of the form fn = ~ Àn, k fn, k where

1 (n) 
’

and fn, k is of the product form considered above.

(4. 3) LEMMA. - In the notation of Lemma 4. 2 each of the processes
M (t; f ), Si(t; f ) has a right-continuous modifcation.

Proof - The result for M follows from Lemma 4. 2 (iii) and the
Theoreme of [1].

Vol. 23, n° 3-1987.
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The result for Si will follow from Lemma 4. 2 (ii) and Theorem 3. 4 (iii)
of [19] once we have shown that t -; f ) is right-continuous, but a
simple calculation gives that

with a similar expression holding for Ex S2 ( t; f ).

(4.4) Proof of Theorem 4.1. - It will suffice to show that

Y (t; f ) = exp ( - a . t)Gf1(Xt, 1) is a. s. right-continuous.
Let J be the class of bounded, non-negative, measurable functions f f or

which Y ( t; f ) is Px - a. s. right continuous. By II-2-12 of [3], J contains
all f of the xA2) where In particular we have.

(i) 1E E J.
We also have

(ii) If J1’ f2 E J and ~,1, ~,2 &#x3E; 0 then ~,1 fi + ~2 fi e J.
(iii) If f1’ fi &#x3E;__ f2 then fl - f2 E J.

Thus if we can show

(iv) If fn E J, fn - f bounded pointwise then f E J
the Theorem will follow by a monotone class argument.
From Lemma 4. 3 we know that Y ( . ; f ) has a right-continuous modifi-

cation which we will denote by Z.
We have that Y ( . ; f ) &#x3E;_ Y ( . ; fn) for all n and hence, using the right-

continuity of Z and Yn we have except on an evanescent
set. Thus Z (t) &#x3E;__ Y (t; f ) off an evanescent set.

It therefore suffices to show that the set

B = ~ (~, t) : Z ( m, t) &#x3E; Y ( m, t; f ) ~ is evanescent. The process Y ( ; f ) is

clearly optional and Z is optional, being right-continuous (cf théorème 8
of [2]). Hence B is optional. Applying Lemma 3. 2 we may construct a
non-trivial optional increasing process A such that dA is concentrated
on B.

Let An be defined from A as in the proof of Theorem 3. 3. The right-
continuity of Z implies

Px - a. s., since Z ( s) = Y ( s; f ’ ) Px - a. s. for each s.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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On the other hand, we have from Theorem 3. 3 that

Putting this all together, we get

which establishes the desired contradiction.

5. THE FINE TOPOLOGY

If B then for each x E EA we have from Lemma 3 . 1 that

is either 0 or 1. Conforming with the one-parameter terminology, we will
say that A c E is finely open if for each x E A there exists a set B such
that c B and the probability above is 0.

It is easy to see that the class of finely open sets form a topology on E
which we will call the fine topology. This topology is at least as strong as
the product of the fine topologies for each of the X’.
The following result is a restatement of Theorem 4.1 in terms of these

concepts.

Vol. 23, n° 3-1987.
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(5.1) COROLLARY (cf II-4-2 of [3]). - Under the conditions of
Theorem 4 . l, G°‘ (x, f ) is finely continuous.

Proof. - Suppose that U ~R is open. If x E (G°‘ (., f ) -1 (U) = V then

by the right-continuity of f ) established in Theorem 4 .1.

6. SMALL SETS

FOR SYMMETRIC PROCESSES

In this section we consider the situation where each of the transition

functions pi (ti, xi, B‘) is symmetric with respect to a Radon measure m~
on Ei (see e. g. 2-2 in [9]). In this setting the classes of "small set" that we
wish to investigate are:

(6.1) DEFINITION A set B E ~ is

(i) polar if Px (3 t &#x3E; 0 : Xt E B) = 0 for all x E E.
(ii) exceptional if Pm ( 3 t &#x3E; 0 : Xt E B) = 0, where m m‘.

Clearly, every polar set is exceptional. The conditions under which the
two classes coincide are the counterparts of those in the corresponding
one-parameter situation (cf [11], Theorems 4-2-2 and 4-3-4).

(6 . 2) THEOREM. - The following are equivalent conditions on X.
(i) Each exceptional set is polar.
(ii) For each a &#x3E; 0 and x E E the measure G°‘ (x, . ) is absolutely continuous

with respect to m..

(iii) For each t &#x3E; 0 and x E E the measure p (t, x, . ) is absolutely conti-
nuous with respect to m.

Proof {i) ~ (ii). - If is exceptional for X 1 then

A 1 x E~ x ... x Ek is exceptional for X. By assumption, A 1 x E2 x ... x Ek
is polar for X and hence A 1 is polar for Thus every set exceptional
for X~ is also polar for X~ and Theorem 4-2-2 of [11] gives that

G°‘1 ~ 1 (xl, . ) is absolutely continuous with respect to m 1 for each 
and Xl EEl. A similar argument holds for each of the X’ 

i and recalling
that G" (x, . ) = n i (xi, . ) completes the proof.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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(ii) ~ (1). - If is exceptional, then for

m - a. e. x. Note that p (t, x, u) -_ U (x) and p (t, x, u) --~ U (x) as t 
- 0. Thus

and so A is polar.

(ii) ~ {iii). - This follows from Theorem 4-3-4 of [11] once we note
that p (t, x, . ) ~ m is equivalent to pi (t‘, x‘, . )  mi for each i and that a
similar equivalence holds for G* (x, . .).
We will now investigate analytic conditions which ensure that a given

set does not belong to one of these classes.
One procedure for obtaining this sort of result in the one-parameter

case (see e. g. [11]) is to associate a Hilbert space (the associated Dirichlet
space) with the process and use the structure in this space to define a
capacity on the subsets of E. The desired conditions are then expressed in
terms of this capacity.
However in the multi-parameter case there are difficulties in setting up

a relevant notion of capacity. Analytically, this seems to be intimately
bound up with the fact that the Hilbert space which we associate with the

process is no longer a Dirichlet space (although, typically, it is the tensor

product of the Dirichlet spaces associated with the component processes
[7]). In particular, "normal contractions" [9] no longer operate on the
space. Seen from a probabilistic point of view, the notion of capacity in
the one-parameter setting is related to the concept of first hitting times,
which have no counterpart for the (partially ordered) multi-parameter
problem.
One way around this impasse is to develop a theory wholly based on

an extension of the classical notion of energy. Dynkin has shown in [8]
that it is possible to establish many of the known one-parameter results
in this way without recourse to the use of capacities. Moreover, in [6]
Dynkin carries through, albeit implicity, the multi-parameter programme
in the case where pi x‘, . ) is absolutely continuous with respect to m‘.

Vol. 23, n° 3-1987.
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Our approach will be to use these methods to treat the general multi-
parameter case.
The idea behind this technique is to demonstrate that a set A is not

small by constructing a non-trivial random measure that is concentrated
on the It is thus conceptually related to the Fourier-
analytic "local time" technique used in [12] for treating confluences of
several Brownian motions (see also [21]).
We begin by "embedding" the structure of our process X into the

structure of a stationary process indexed by the whole of (~k and governed
by a single a-finite measure.

(6.3) DIsCUssIoN. - Consider an arbitrary symmetric standard process
(Q’, Xt, 8t, P’x) with state space (E’, ~’) and symmetrising
measure m’. Then, in the sense of 0.1 in [6], there is a canonical standard
Markov process with the same transition function (in the notation of [6],
if W is the space of cadiag paths, w, in E’ over some interval [o, ~ (w)[
then it suffices to let Px, xeE’, be the image measure of P’x under the
mapping o/ -~ X’. ( ~’) on the interval { t : X~ t ( ~’) E E’ ~ ) .

Given this canonical standard Markov process, we can apply the cons-
truction in 0.2 of [6] to obtain a canonical standard time-reuersible process

in the sense of [6] Section 2. Let so that Y has cadlag paths on
]a~ ~[~
The salient feature of this construction which make it useful in studying

our original process X’ is that and under the law

ofYon]0, 03B2[is the law of X’ (.) on {t&#x3E;0:X’t~E’} under P’x.
If we now return to our family {Xi} of standard processes, we can

perform this construction to get k canonical standard time reversible
processes Pi, Ji (Ii), Pi; x, pu) and thence k processes {Yi}.
As usual set

and

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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In what follows, we adopt the convention that expressions such as f (Yr)
are to be evaluated as 0 if t ~ ]*[ 0394i.

We will depart slightly from the notation of [6] and denote by i the
sample spaces for the canonical time reversible processes corresponding
to the X i. Setting =03A0i, denote a representative of this space by 03BE=(03BEi).

Also, we will denote the translation operators in E’ by and define

~lr (~) _ f ~‘))-
We use E to denote expectations under the measure P.
The preceding discussion sets up the "probabilistic" (typically, P is not a

finite measure) structure with which we will work. The following definitions
provide the complementary analytic framework which corresponds to the
associated Green (or, equivalently, Dirichlet) space of the one-parameter
theory.

(6 . 4) DEFINITION. - (i)For fi~ L2 (mt), t‘ &#x3E; 0, xi E Ei set

Tt~ f = pi (ti, XI~ f).
(ii) For fEL2(m), t &#x3E; 0, xeE set x, ~. As in Proposition

2-1 [9] it is easy to check that these operators form a ]0, ~[k-indexed
semigroup of self-adjoint contractions on L2 (m).

(iii) Denote the norm and inner-product on L2 (m) by II ‘ and ( , )
respectively.

(iv) Denote by K the space of functions cpt (x), t &#x3E; 0, x E E such that

In much the same manner as Proposition 3-2 [9] it follows that I~ is a

Hilbert space with inner-product ( cp, = dt. Set

The next few results are devoted to showing that there is an "additive
functional" corresponding to each element of K + . For the rest of this
section we will freely quote elements of the one-parameter theory from [6]
with the implicit understanding that we are referring to the multi-parameter
analogues of these results which follow by simple monotone class argu-
ments.

Vol. 23, n° 3-1987.
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(6 . 5) THEOREM. - For every and s  u,

Proof - Set

Then

where D = ~ -1,1 ~k and R (d) _ ~ (t, 
From (2-17) of [6] it follows that

and hence

Thus

as 8, e -~ 0 and this sufficient to establish the Theorem.

(6.6) DiscussioN. - Let d be the class of intervals ]s, u] c f~+ with

o s  u and let ~° be the subclass of ~ consisting of those intervals ]s, u]
with s, 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Suppose that It follows from Theorem 6. 5 (i) that we may
choose a sequence 6 (n) - 0 and a set 8’ c E with P(EBE’) = 0 such that

for all çeE’ and Using Lemma 5-1 of [6] and Theorem 6. 5 (ii) we
may then choose E" c E’ with = 0 such that, for § ci E", a~ ( ~, . )
is uniquely extendable to a measure A ~ ( ~, . ) If we set

A~ (~, . ) - 0 for ~ ~ E" then it is clear that A~ is a ra~ .n

( ‘(f~+) with A,(]s, u[) P-equivalent to a u[)-n
variable for all s  u.

(6 . 7) THEOREM. - T’here exists a set E* c ~ with 

for and lEd we have

and

If T = max ( ti - tr _ 1 ) then

by Theorem 6. 5 (ii).
Thus if in is a sequence of such partitions with - 0 we see that

This and complementary arguments for the other axes
n

show that there is a set E** c E with P ("B~* *) = 0 such that, f or ~ E ~ * *,
A~ (~, . ) has no mass in any of the 

a E IR+, 
Suppose If lEd then for S &#x3E; 0 there exist I1,

with I1~I~I2 such that A03C6(03BE, I2BI1)  b. Now

Vol. 23, n° 3-1987.
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Thus A~ (~, I) = lim cps t"~ (Yt (~)) dt for all I. Sincen i

this establishes the result.

(6 . 8) DISCUSSION. - For each random measure cp E K +, we may

define a measure on by v ( C) = E 

From Theorem 6 . 7 we know that v (dt, dy)=dt(dy) for some measure ~
on ~. We call j the characteristic measure of A~.
We wish to show that B~B is not "small" for X by constructing an

appropriate random measure concentrated on ( t : Xt E B ~. It would there-
fore be useful to have some explicit means of obtaining ~, from cp.
The following assumption on the transition functions pi ( . , . , . ) will

enable us to make such a calculation. The imposition of this assumption
is an intermediary technical step, and a simple device will allow us to use
the calculations for this restricted case to obtain results which are applica-
ble to general transition functions.

(6 . 9) ASSUMPTION. - For fiE L2 (mi), ci E ~+ set

]0,ci] Titifidti. Similarly, for set

Gcf= ]0, c] Ttf dt. Denote by the set of functions fiEL2(mi) such

that Gi f i - exists in L2(mi). Define DG and G similarly.

Assume that, for i =1, ..., k, we have

(i) If ei E DG; is bounded then G‘ e‘ is also bounded.
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(ii) There exists a bounded, strictly positive function fiE 

(6.10) PROPOSITION. - Under Assumption 6.9 there exists a bounded

function h &#x3E; 0 such that

{i) h E L2 (m).
(ii) h is P-a. s. right-continuous on ] - ~, ~[B{ 03B1} and s.

right-continuous on [0, ~[ for each 03C3-finite measure v on (E, B).

(iii) For every cp E K +, h (y)  ~, where  is the characteristic

measure of A~.
We first prove three Lemmas.

{b .11) LEMMA. - Under Assumption 6 . 9, if d~0394Gi is bounded then

(s)) is P-a. s. right-continuous on ] - ~, oo [B{03B1i} and 

a. s. right-continuous on [0, oo for each b E and each y E E‘.

Proof - Note that and so, as the difference of

two bounded functions which are excessive for p‘ { . , . , . d is such

that is P‘x - a. s. cadlag on [0, ~[ for each (see II-2-12
in [3]). The result then follows from the construction of Y (cf 0 . 4 of [6]
for a similar argument).

(~ .12) LEMMA. - Under Assumption 6 . 9 set g=Gc f and F(t, y)=
g (y). Then F ( t, is P-a. s. right-continuous on ] - ~, u [B{ a }.

Proof. - As

it suffices to prove that F‘ (ti, Y~ (ti)) is P - a. s. right-continuous on ] - oo,
u‘ [~~ for 1 __ i _ k.

Put

for sk[.
From Lemma 6.11 we have for each k that Y ‘ (s)) is P-a. s. right-

continuous on ] - oo, u [B~ oc‘ } and so the same is true of FT (s, Y‘ (s)).
Observe that F~ (s, yi) - Fi (s, yt) I _ 2 sup f (z) . i ~, so letting i I -~ 0

z

gives the result.
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(6.13) LEMMA. - Under Assumption 6.9 and in the notation of Lemma
6. 12

Proof. - From (2-16) of [6] we have so it will suffice

by the Cauchy-Schwartz inequality to show that

Let ..., A~ ~ be a partition of ]0, u] into rectangles tk].
Set bA (t) = tk for t E Ak.

Recall from the Discussion 6. 6 that A~ {]s, t]) = A~ (]s, t[) is P-equivalent
to an element of t[). Using (2.12) and (2.14) of [6] it then follows
that

Thus

By considering a sequence with I --~ 0, and
applying Lemma 6. 12 and Fatou’s Lemma we see that

(6.14) Proof of Proposition 6 . 10. - Consider h=Gug. Clearly, h is
bounded and (i) holds. Since p (t, x, E) - 1 as t - 0 for each x E E it is
also clear that g and thence h is strictly positive.

Fubini’s theorem gives that with gi~DGi bounded.
i

Lemma 6.11 then establishes statement (ii).
The proof is completed by recalling from Theorem 6.5 that

u])EL2(P) and then applying Lemma 6 . 13.
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(6.15) DEFINITION. - Let M be the class of d-finite measures, ~, on (E,

B) such x, (dy) with 

(6.16) THEOREM. - Under Assumption 6 . 9, if v E M then v is the characte-
ristic measure of where c~ is the element of K + corresponding to v.

Proof. - If f and h are as in Assumption 6.9 and Proposition 6.10
respectively and h’ is a non-negative, bounded continuous function on E
set In = 1 A n f and H = hh’.
Now, if s  u  v then from (2.12) and ( 2 . 14) of [6] and the fact that

A,(]s, t]) is P-equivalent to a ff (]s, t[)-measurable random variable we
have

where Fn V’ ) = H l.y) Tv - u fn V’ )’
By (2-17) of [6] and Theorem 6. 5

Also, denoting expectations with respect to the measure by Eo, v’ we
have from ( 2 .13) and (2.14) of [6] that
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Thus

Now suppose that 0  c  v and A. _ ~ A; ~ is a partition of ]0, c] into

rectangles. If we define b~ (t) as in the proof of Lemma 6.11 then the

foregoing shows that

From Lemma 6 .11 H (Y t) is P-a.s. right-continuous on ] - oo, a ~
and Po, v- a. s. right-continuous on [0, oo[. By construction, AW concentra-
tes its mass on A n [0, oo [. Thus, by dominated convergence

Letting we see that if we define two measures on

D= {(r, u)E(Il~+)2 : 0t l, by

then they coincide for each rectangle ]0, c] x ]v, oo [, 0  c  l, c  v. Since

~, (dy) h (y)  oo we have that ~yi is finite on each of these rectangles and

so ’Y1 (I~) = Yz ~D)~
That is, using 2-4 A of [6].
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The equality between the extreme members of this chain extends to the
case where h’ is an arbitrary non-negative measurable function and this is
sufficient to give ~, = v.

(6.17) DEFINITION. - Define transition functions by pi (t‘, x‘, B‘)
= exp ( - (t‘~ x‘~ B’). It is clear that (., ., .) is symmetric with respect
to m’. Let K and M be the spaces defined in Definitions 6.4 (iv) and
6. 15, respectively, with pi replaced by pl.

(6.18) COROLLARY. - If B~B and (B)&#x3E;0 for some ~M then B is not
exceptional for X.

Proof - By 111-3 of [3] there exists, for each i, a standard process X’ 
‘

with the transition function pi. It follows from the construction of Xi that
B will be exceptional for X if and only if it is exceptional for X, where X
is the process formed from the X’ in the same manner as X is formed
from the X i.

Suppose that there exists ~M with  (B) &#x3E; O. Straightforward calcula-
tions show that Assumption 6 . 9 holds for pa, i = l, ..., k. If Yl is the

canonical standard time-reversible process constructed from X~ then

Theorem 6.16 implies (in an obvious notation) that

P ( ~ t &#x3E; 0 : ~ ( t) E B) &#x3E; 0. Using ( 2 .12) and ( 2 . 15) of [6] this gives
Po, m (~ t &#x3E; 0 : Y ( t) E B) &#x3E; 0. Hence, by the relationship between Y and X,
we have Thus B is not exceptional for X and, as
we remarked above, this is sufficient to show that B is not exceptional for
X.

7. SMALL SETS FOR LEVY PROCESSES

In this section we consider the special case of our general set-up that
obtains when each of the X’ are Levy processes on E‘ _ The notion of
a polar set in this setting is still meaningful and our definition is unchanged
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from that of Definition 6 . 1 (i). As p (t, x, B) =p (t, y + x, y + B) for y e E,
Lebesgue measure on E plays a distinguished role in the study of X which
is similar to that played by the symmetrising measure in the study of
symmetric processes. For instance, the counterpart for exceptional sets is:

(7 .1) DEFINITION. - A set B~B is essentially polar if

P03BB(~t&#x3E;0 : Xt~B)=0 where 03BB=03A003BAi is Lebesgue measure on E.

Every polar set is essentially polar and the conditions under which the
two classes coincide are again analogues of those for the one-parameter
case ( see [14], Theorem 2-1).

(7 . 2) THEOREM. - The following are equivalent conditions on X.
(i) Each essentially polar set is polar.
(ii) For each a &#x3E; 0 and x E E the measure G°‘ (x, . ) is absolutely continuous

with respect to À.

Proof (i) ~ (it). - This is essentially just a reprise of the proof of the
similar result in Theorem 6 . 2 with Theorem 2.1 of [14] providing the
necessary result from the one-parameter theory.

(ii) ~ i). - That m is symmetrising for p ( . , . , . ) plays no part in the
proof of the corresponding result in Theorem 6.2. That proof shows
generally that if P~ {~ t &#x3E; 0 : Xt E B) = 0 for some measure ~ and G°‘ (x, . )
is absolutely continuous with respect to Jl for all a, x then B is polar.
We now investigate criteria which will ensure that a given set is not

essentially polar.

(7.3) NOTATION. - If ~ is a measure we denote its Fourier-Stieltjes
transform by ~. As usual, we define the exponent of Xi to be the function
B)/ such that exp ( - t’ (Zl)) = (Pl (tl, 0, )) "(z’). If Jl is a measure on E we
set

(7. 4) THEOREM. - If K is compact subset of E then a suffcient condition
for K to be not essentially polar is that there exists a finite measure ~,
supported on K such that I  oo.

Proof - Consider the measures
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Then and so Following (10) of [15] we therefore
t t

have

Thus, as in the proof of Theorem 2 in [15], we may use Theorem 1 of

[15] to show that

Therefore

and K is not essentially polar for X.
If X’ is symmetric in the sense that p~ {ti, 0, Bi) = p‘ 0, - BI) then it is

also symmetric in the sense of Section 6, with ~,t acting as the symmetrising
measure. Thus, if this condition holds for each of the X’ then the considera-
tions of Section 6 apply. In this case, the notion of exceptional set and
essentially polar set coincide and Corollary 6.18 and Theorem 7.4 give
two seemingly different sufficient conditions for a set not to belong to this
class. As we shall see, however, in the presence of transition densities there
is no essential difference between the two criteria.

(7 . 5) NOTATION. - Suppose that p~ xi, . )  ?~i, i =1, ..., k, then by
Theorem 2-2 of [14] there are canonical families of probability densities
~ pti ~, i =1, ..., k, such that:

(i) ( ti, x~) -~ pt= is jointly measurable;
(ii) Xi -~ pti (xi) is lower semicontinuous;
(iii) p~i = pti +si everywhere;

(7 . 6) THEOREM. - If pt (ti, x‘, Bi), i =1, ..., k, is symmetric with canonical
densities piti(xi) then a finite measure  is in M if and only if I (03C8; )  oo.
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Prrof - Define a pairing on the measures on E by

It is easy to see that Jl E M if and only if ~]  oo and if ~,, v e M then

[Jl, v] _ ( cp, where cp, r; are the corresponding elements of K. Note also
that if we define a measure v by v (A) = v ( - A), then [Jl, v] _ (u* v) (0).

Suppose first that Jl e M. If, - x) then Jlx e M
and [Jlx, The pairing [ , ] obeys a Cauchy-Schwartz inequlity
on M, since the same is true of ( , ) K. Thus

Thus u* j* ~, is the bounded density of a finite measure on E. By the
Corollary to Theorem 3 . X V-3 of [10] The conclusion

 oo follows upon noting that u (z) _ ~ ((1 (see e. g.
i

[14]) and is real-valued when p~ ( . , . , . j is symmetric.
Conversely, suppose that  ~. Then, by Theorem 3, XV-3 of

[10] the measure with density u* J.l* J.l has a bounded continuous density.
The lower semicontinuity of pt~ and Fatou’s Lemma give that u* ~* jl is

lower-semicontinuous. Thus

and j E M.

8. APPLICATIONS

As a first application of our results, we verify the sufficiency of the
Hendricks-Taylor conjectured condition (see e. g. [17]) for the existence of
multiple points for a symmetric Levy process.
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(8 .1) THEOREM. - Let Y be a symmetric Levy process on (~d with canonical

densities qs (z). Set If ~ z j  for

some k E { 2, 3 ... ~ then the sample paths of Y have k-tuple points almost
surely.

Proof. - Let X 1, ... , Xk be k copies of Y. As we have remarked,
each X has Lebesgue measure on (~d as a symmetrising measure so the
considerations of Section 6 hold. In the notation of 7. 5, the integrability

condition ensures that where 11 is the restric-

tion of Lebesgue measure on a = ~ x E (f~a)x : x I = ... = xk ~ to the set

{x E a : ~1/2}. As in the proof of Theorem 7 . 6 we see that ~M and
so, by Corollary 6. 18, we have that a is not exceptional (or, equivalently,
not essentially polar) for X.

Set h (x) = Px ( 3 t &#x3E; 0 : Xt E a), x E Note that

where À is Lebesgue measure on If h (x) = 0 for some then

It is shown in [16] that v is strictly positive on the interior of the support
of v (z) dz. Since Y is symmetric the support of v (z) dz is the whole of (~d.
Thus u &#x3E; U, and so this last equation implies that h = o ~, - a. e. which

contradicts our conclusion that ~ is not exceptional for X.
Thus for all Using the observation on

p. 85 of [13] concerning the reduction on multiple point problems to range
intersection problems we see that Y has k-multiple points with positive
probability and a simple 0-1 argument using the independent increments
property of Y completes the proof.

Hendricks and Taylor conjectured that the integrability condition in
Theorem 8 . 1 is also necessary for the sample paths of Y to possess
k-multiple points. Although we have nothing to add on this point. It is

perhaps worth pointing out that Theorem 8. 1 represents the best result
that we can obtain using the techniques of Section 6.
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More precisely, suppose that we define a pairing on the measures on

IRd by ( ~,, (dw) v (dz) [v (w - so that, in the notation of the proof

of Theorem 7. 6,  ~, v ~ _ [~,*, v*], where ~,*, v* are the canonical liftings
of ~,, v to the family of measures on a. Then it might appear that we
would be using the full force of Corollary 6.18 in the proof if we replaced
the integrability condition by a requirement that (  oo for some

a-finitc measure ~. on !Rd.
To see that this apparent gain in generality is illusory, suppose that

  oo and let ~,’ be the convolution of Jl with the standard normal

distribution on IRd i. e. li’ (A) cp (w) dw where ~,w ( . ) _ ~, ( . - w) for

and cp is the standard normal density on !Rd. Referring to the proof
of Theorem 7 . 6 we see that and that ( , ) obeys a
Cauchy-Schwartz inequality. Thus

and since J.1’ has a strictly positive continuous density the integrability
condition of Theorem 8. 1 holds.

Let us now remove the assumption that our Levy process is symmetric.
It is clear that the technique used in the proof of Theorem 8. 1 can still
be used to obatin various criteria for the existence of multiple points if

we replace the use of Corollary 6. 18 by an appeal to the results of

Section 7. Rather than carry this programme through in the fullest genera-
lity possible, we will content ourselves with presenting a fairly simple
criterion which is nevertheless powerful enough to include that obtained
in [21] using "local time" methods.

(8 . 2) NOTATION. - If and f is a measurable function on IRd set
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(8. 3j THEOREM. - Let Y be a Levy process on with canonical densities

qs (z). Set v (z) = exp ( - s) qs (z) ds. If supp then

sup I I v I (k, a  oo for k ~ ~ 2, 3, ... ~ implies that the sample of Y have k-tuple
a E (l~d

points almost surety.

Proof - Let X, a and ~, be as in the proof of Theorem 8. l. In the
notation of the proof of Theorem 7. 6 we have, by Holder’s inequality.

Thus sup [Jlx’ ]  ~. As in the proof of Theorem 7. 6 we see that
x E (Rd)k

this implies I Jl)  oo and hence, by Theorem 7. 4, 1 is not essentially
polar for X. The proof is now completed in exactly the same manner as
the proof of Theorem 8.1.
The following corollary is essentially Theorem 1 of [21].

(8. 4) COROLLARY. - Let Y be a Levy process on Rd with canonical
densities qs (z). Assume that q satisfies the following conditions

(i) qs (z) is continuous in z for each s &#x3E; 0;

Then the sample paths of Y have k-tuple points almost surely.
Proof - As qS (0) &#x3E; 0 by assumption (ii), assumption (i) implies that

there is a § &#x3E; 0 such that qs (z) &#x3E; 0 for all I z I _ ~. From 7. 5 (iii) we see
that for A similar argument shows that if

q~ (z) &#x3E; 0 then qt (z) &#x3E; 0 for all t &#x3E; s. Thus, in the notation of Theorem 8. 3,
v &#x3E; 0 everywhere.
Now
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Thus sup ~v~k,a  oo and the result follows from Theorem 8. 3.
a .

As a final example we will show how our methods may be used to

improve the results in [22] on the characterisation of those sets in 1R2
which can contain the multiple points of a planar Brownian motion.

Set and let Ck denote the capacity associated with
this kernel. Theorem 1 of [22] states that if K c 1R2 is compact and

C2 k _ ~ (Kj &#x3E; 0 then they are almost surely k-tuple points of a planar
Brownian motion contained in K. We can sharpen this result as follows.

(8.5) THEOREM. - is compact and &#x3E; 0 then there are

almost surely k-tuple points of a planar Brownian motion contained in K.

Proof - Suppose that X ~, ... , Xk are planar Brownian motions. Fix
an open ball D ~ K and let X’ be the process obtained by killing X’ at the
boundary of D. The results of 111-3 in [3] show that we may construct a
standard process conforming to this intuitive notion.
Theorem 4-3 of Chapter 2 [20] shows that the X’ are symmetric with

respect to the restriction of Lebesgue measure on D and have transition
densities pi (ti, xi, yi) with respect to this measure which we will denote

by mi. Set gi (xi, Yt) = pi (f, Xi, yî) dt’ and g (x, y) = 

Since Ck (K) &#x3E; 0, there exists a non-trivial finite measure  supported by
K such that

By the same argument as in Theorem 7-19 of Chapter 6 in [20], this

implies that
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and hence

where ~,* is the canonical lifting of J.l to the family of measures on

= xk ~. Therefore, if M is definied as in Definition
6.15 with pi replaced by pi, we have that J.l* eM.

It follows from Proposition 2-7 of Chapter 2 in [20] that Assumption
6.9 holds for the ~~. In the same manner as Corollary 6.18, aK is not
exceptional for X. Certainly then, aK is not exceptional for X. Since X t

has everywhere positive transition density it follows as in the proof of
Theorem 8 .1 that t &#x3E; 0 : Xt E oJ &#x3E; 0 for all x E (1R2)k.
The observation at the end of the proof of Theorem 8.1 and a 0-1

argument using the recurrence properties of planar Brownian motion
complete the proof.
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