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On the joint distribution
of the maximum and its location

for a linear diffusion

Endre CSÁKI (*), Antónia FOLDES (*), Paavo SALMINEN (**)

Ann. Inst. Henri Poincaré,

Vol. 23, n" 2, 1987, p. 179-194. Probabilités et Statistiques

ABSTRACT. - For a linear diffusion X let Mt = and
T = inf ~ s: XS = In this note we compute the joint distribution
of Mt, Xt and T. As an application of our formula we rederive a result
of Borodin which gives the distribution for the supremum of the Brownian
local time. Further, some examples are presented.

Linear diffusion, maximum, location of the maximum, joint distribution,
Brownian local time.
AMS classification: 60 J 60, 60 J 55.

RESUME. - Soient X une diffusion linéaire, Mt = et

T = inf ~ s : X~ = Nous determinons la distribution simultanee de

Mt, Xt et T. Notre formule est employee pour rederiver un resultat de
Borodin donnant la distribution du maximum du temps local Brownien.
Nous donnons aussi quelques exemples.

1. INTRODUCTION

Let X be a regular one-dimensional diffusion (in the sense of Ito-

McKean [8 ]) taking values on the interval I E Let for a fixed t > 0
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180 E. CSAKI, A. FOLDES AND P. SALMINEN

Mt = Xs and T = inf {s : XS = Mt }. The main aim of this note
is to derive the joint distribution of Xt, Mt and T. In the literature one can
find expressions for this in some special cases. Levy [10], Vincze [18],
and Louchard [77] ] treated Brownian motion, Shepp [7~] ] Brownian

motion with drift, Imhof [~] ] [7], and Louchard [72] ] killed Brownian
motion and three-dimensional Bessel process. Proofs in these works are

based on special analytical properties of the particular processes.
The formula presented here with two proofs covers all linear diffusions.

The first proof, which uses excursion theory, duality, and properties of
processes with independent increments, shows the probabilistic structure
of the formula. The second proof is short, but purely analytical and
completely unmotivated. As an application of our formula we rederive
a result of Borodin [2 ], which gives the distribution for the supremum of
the Brownian local time. Further we work out some specific examples
to give more flavor to our formula.

2. DISTRIBUTION OF (Xt, M t, T)

Let X be as above, and denote with Px the probability measure associated
with X when started from x. Further denote with S and m the scale function

and the speed measure of X (see [8 ]).

THEOREM A. - For a fixed t > 0 let Mt = and T = inf ~ s :
Then we have for x  y, z  y

(2.1) Px(Mt E dy, Xt E dz, T E ds) = nx(s ; y)nz(t -s; y)S(dy)m(dz)ds,

where nx(. ; y) is the Px-density of Ly = inf { s : XS = y }.
(2 . 2) Remarks. i ) The timepoint when X attains its maximum value
before the time t is Px-a. s. unique. We refer to Williams [19 j ; although
our case with a fixed time t is not treated there, it is quite obvious that a
similar argument applies.

ii ) The densities nx(. ; y) exist for all x and y. This must be well known,
but the only reference we have is Getoor [5 (10.10). This is not however
directly formulated for diffusions. In the course of our proof of (2.1) it

is seen how this result applies.
We give below two proofs of Theorem A. The first one might be called

probabilistic, and the second one computational. In our probabilistic
proof Theorem A is derived from a more general result Theorem B-,
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181JOINT DISTRIBUTION OF THE MAXIMUM AND ITS LOCATION

which we now formulate. Let Z = ~ Zt ; t > 0, Zo = o ~ be a continuous
non-decreasing stochastic process such that its right-continuous inverse
H = {Ht; t >_ 0, Ho = 0 } is a stochastically continuous, increasing process
with independent increments. In this case the Lévy-Khintchine represen-
tation takes the form

Here for all a > 0 II((o, a) x . ) is a measure on Be ( = Borel sets on [8, +00),
where 8 > 0 is given), and for all U e Be the function a t2014~ II((o, a) x U)
is non-decreasing and continuous. The second term on the right hand side
of (2.3) gives the probability for the explosions, i. e.

For typographical reasons we introduce the following convention

Assume further that there exist a measure S on [0, + oo ) and a kernel
K( a, U), a >_ 0, U E Be ( = smallest a-field which contains Be and ( + oJ ) )
such that

THEOREM B. - Let Z and H be as above. Then for a  b

Proof By the independence of the increments we have

Vol. 23, n° 2-1987.



182 E. CSAKI, A. FOLDES AND P. SALMINEN

Next we compute

Using (2.4) this gives

and, by the uniqueness of the Laplace transforms,

The function u )2014~ P(H~ - u) being non-increasing it is seen that (2 . 5)
holds uniformly in u on compact sub-intervals of (0, + oo). Further it

is obvious by the regularity properties of the functions b !2014~ P(Hb - Ha > u)
and b E--~ S(a, b) that there exists a division a = ao  al  ...  a,~ = b
such that for a given 8 > 0 and for all v  t

Letting n --~ + oo and v i t concludes the proof.

Proof of Theorem A. Here the process t H Mt and its right continuous
inverse La = inf ~ t : Xt > a ~ play the roles of Z and H in Theorem B. It
is well known (see Ito and McKean [8 ] (4 .10)) that a - La is a stochastically
continuous process with independent increments having the Levy-Khint-
chine representation (a  b)

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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where S is the scale measure and the kernel K- is given by

We introduce also

and set K := K+ + K _ . Now Theorem B gives

Next we show that

where 1 is the left endpoint of the state space I. To see this consider the local
time (with the Itô-McKean normalization) at the point y. Let AY be its
right continuous inverse. The process AY is a Levy-process with

(see Ito-McKean [8 (6.1) (6 :2)). Now consider excursions ofX from the
point y going below y. We use results of Getoor [5 ], and assume therefore
that’ = + oo Px-a. s. for all x, where ( is the lifetime of X. From [5 ] (7 . 29)
it follows that for z   t

where Qi is the excursion entrance law and 03BBty = 
Now (2. 8) clearly follows from (2. 9), if we prove

To see this we use [5] (10.10). Because the transition density (w. r. t. the speed
measure) of X is symmetric i. e. p{t; x, y) = p{t; y, x) (see Itô-McKean [S ],
p. 149) it follows that X is self dual. Let q*(t; z, y) be the density of Qi

Vol. 23, n° 2-1987.
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w. r. t. m (which exists by [5 (10.7)). Consequently by [5 (10.10) and self
duality of X we obtain

(2.11) E dt) = q*(t; x, y)dt.

By our previous notation nx(t; y) = q*(t; x, y) and (2.10) results. Note

that (2.11) says that the density ofTy always exists (cf. (2 . 2) it )). So we have
proved

It is clear from the probabilistic structure of this formula that

Hence to deduce (2.1) we have to do the identification (0  s  t, x, z  a)

But because the time point of the maximum is unique almost surely (cf.
(2 . 2) i )) (2.12) is equivalent with

This follows, however, immediately by taking v = s in the following gene-
ralization (based on the strong Markov property) of (2.9)

The proof is now complete in the case’ = + 00 almost surely. If ,  +00

with a positive probability we still have (2. 7) but now we are interested in
the quantity Because the entrance law measures

all the paths living at the time point t it is obvious that (2.1) holds also
in this case.

Second proof of Theorem A. Let A be the infinitesimal operator of X,
and denote with and §’ the increasing and decreasing solution, respec-
tively, of the equation

Au == (Xu, a > 0

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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such that

where p(t; x, y) is the transition density w. r. t. the speed measure and B is
the Wronskian (a constant)

Here §’ + and §’ + are the right derivatives w. r. t. the scale function. For
these facts see Ito-McKean [8 ]. Now the key observation is the following
expression for the Green function

where r is the right hand endpoint of I. Using (2.13) it is easily seen that (2.14)
holds. Next we compute

where we used the strong Markov property and (2.14). Differentiate w. r. t. y
to obtain

Vol. 23, n° 2-1987. ~
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Inverting the Laplace transform gives

Finally using again the strong Markov property we have

which completes the proof.

3. EXAMPLES

. 3.1. Brownian motion.

The scale function and the speed measure for a Brownian motion are
S(x) = x and m(dx) = 2dx, respectively. Hence the formula (2.1) has the form

(3.1) Px(Mt E dy, Xt E dz, T E ds) = 2nx(s; y)nz(t - s; y)dydzds.

I. For a standard Brownian motion we have

and (3.1) is due to Levy [10 ], see also Louchard [11 ].

II. For a reflected (at zero) Brownian motion we have (x  y)

(see Ito-McKean [8 ], p. 29), and inverting this (see Erdélyi [4 ] (37), p. 258)
gives

Annales de l’lnstitut Henri Foineare - Probabilités et Statistiques
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The formula (3.1) with (3.2) is probably known but we have no reference
where this is explicitly stated.

III. For a killed (at zero) Brownian motion we have ~:  y

(see Itô-McKean [8 ], p. 29), and inverting this (see Erdelyi [4 ] (31 ), p. 258)
gives 1

The formula (3.1) with (3.3) is explicitly stated in Imhof [6].

IV. Next consider a Brownian bridge with duration L This is a Brownian
motion conditioned by {Xy = 0}. We denote its law by Poo. Then for-
mula (3.1) gives

where

is the transition density w. r. t. the speed measure of a standard Brownian
motion. The formula (3 . 4) is due to Vincze [18 j.

V. Finally we consider a Brownian motion with a drift ,u. This is a diffu-
sion with S(dx) = e- 2/lXdx, and the first passage time density

So we have the formula

Shepp [16] derives (3. 5) from the corresponding formula for a standard
Brownian motion using absolute continuity.

Vol. 23, n° 2-1987.
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3.2. Three-dimensional Bessel process.

A Bessel process is a diffusion on [0, + oo) with the generator

For positive integer values of r the corresponding Bessel process is iden-
tical in law with the radial part of an r-dimensional Brownian motion.

We consider the three-dimensional case, i. e. r = 3, and denote the process
with R. The scale and speed measures for R are S(dx) = x-2dx and
m{dx) = 2x2dx, respectively. Further it is well known that R may be

described also as a Brownian motion killed when it hits 0 conditioned
never to hit 0. In other words R is an excessive transform of a killed Brownian

motion and the excessive function used is h(x) = x the scale function
of the killed Brownian motion. Therefore

and so (cf. (3 . 3))

The boundary point 0 is entrance for R and we have

By Chung [3 ] this is the Laplace transform of the function

where

is the probability density function having the distribution function

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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(see also Knight [9 ]). Using the observations above and (2.1) we may write
down the joint distribution of Mt, T and Xt. This is a result of Imhof [6].

Next we compute (cf. (2. 7), (2. 8)) 
-

This may also be found in an implicit form in Imhof [6], Theorem 4 i ).
By Itô-McKean [8 ], p. 214 (see also [l5 ]) we have

Using (3.6) we obtain

and, consequently,

Erdélyi [4 (36), p. 258 gives

It is obvious by (2 . 6 i ~~ that

For x > y we obtain

and, consequently,

Note that

Finally we consider a three-dimensional Bessel bridge of length from 0

Vol. 23, n° 2-1987.
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to 0. This is a three-dimensional Bessel process started from 0 and condi-

tioned to be at 0 at time L We refer to [15 ] for a discussion of diffusion

bridges. The law of our Bessel bridge is denoted with Poo, and we compute
the distribution of the maximum. To obtain this, note that (cf. (3.4))

where

is the transition density of R w. r. t. the speed measure. Consequently

This is (4 . 5 . f ) in [1 S ], where it is explained how (3 .10) is connected with
the excursion theory of Brownian motion.

4. DISTRIBUTION OF THE MAXIMUM

OF THE BROWNIAN LOCAL TIME

Let X, Xo = 0, be a standard Brownian motion and L(x, . ) its local time
at x i. e. the jointly continuous version of the density (w. r. t. the Lebesgue
measure) of the occupation measure. Borodin [2] ] shows that

where T ~ exp (~,) independently of X, and Io, I1 are modified Bessel func-
tions.

As an application of our formula (2.1) we rederive (4.1). Our proof
as well as Borodin’s-is based on the following result due to Ray [14]
(see also McGill [13 ]) : Let L(0,t) = x, X(T) = y > 0, and L(X(T), T)=z
be given. Then

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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where « ~ » means that the processes are identical in law and Rr, r = o, 2,
are diffusions having the generator

respectively. Now consider differential equations (r = 0, 2)

These equations can be transformed to Kummer’s equation (see [I ], p. 504),
and we find the unique strictly increasing and decreasing solutions c~r
and ~~r, r = 0, 2, respectively; these are

where M and U are the first and second Kummer’s function, respectively.
- Recall the joint distribution ofL(0, T) and X(T) :

where ~8 = ~/2A. For X(T) > 0 let

and denote by f (x, 1, k, m, s), x > 0, m > max (1, k), s > 0, the joint Po-den-
sity of the variables X(T), L(0, T), L(X(T), f), M(f), and H(f). Conditioning
on the values of L(0,t) and X(T), using ii) above, and (2.1) we obtain

Notice that

are the speed and the scale measure, respectively, for the R2 diffusion.
Given L(0, il) and L(X(T), T) the random variables supaa~0 L(a, T),
Vol. 23, n° 2-1987.
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L(a, T) and L(a, T) are independent. Further by i )
and ii ) above

where R° is the probability measure associated with the R°-diffusion.
Notice that the scale function of R° is S(x) = Using these facts we
obtain the desired distribution

where the integration is over the domain

To check (4.1) we have to perform a tedious integration. To do this inte-
grate first over x and s using (4. 2)

where

by [17 ] 2 .1.12 and 2.1.5. Denoting the integral in (4. 3) by S, using the

integration (4.4) once, and changing the order of integration in the remaining
double integral we obtain

Annales de l’Institut Henri Probabilités et Statistiques
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where

where

Finally using [17] 2.2.4 and 1. 8 . 3 we obtain

since f3 = we have (4.1).

Vol. 23, n° 2-1987.
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