@article{AIHPB_1986__22_2_175_0,
author = {Roussignol, M.},
title = {Processus de saut avec interaction selon les plus proches particules},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {175--198},
year = {1986},
publisher = {Gauthier-Villars},
volume = {22},
number = {2},
mrnumber = {850755},
zbl = {0621.60115},
language = {fr},
url = {https://www.numdam.org/item/AIHPB_1986__22_2_175_0/}
}
TY - JOUR AU - Roussignol, M. TI - Processus de saut avec interaction selon les plus proches particules JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1986 SP - 175 EP - 198 VL - 22 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPB_1986__22_2_175_0/ LA - fr ID - AIHPB_1986__22_2_175_0 ER -
Roussignol, M. Processus de saut avec interaction selon les plus proches particules. Annales de l'I.H.P. Probabilités et statistiques, Tome 22 (1986) no. 2, pp. 175-198. https://www.numdam.org/item/AIHPB_1986__22_2_175_0/
[1] , , , Quelques compléments sur le processus des misanthropes et le processus « zero range ». Ann. Inst. H. Poincaré, t. 21, n° 4, 1985, p. 363-382. | Zbl | MR | Numdam
[2] , , Sur l'équation de convolution μ = μ*σ. C. R. A. S., t. 250, 1960, p. 799-801. | Zbl | MR
[3] , Processus des misanthropes. Z. f. W., t. 70, 1985, p. 509- 523. | Zbl | MR
[4] , Canonical Gibbs measures. Lecture Notes in Mathematics, n° 760.
[5] , Equilibria for particle motions; conditionnally balanced point random fields. G. Koch, F. Spizzichino (eds.). Exchangeability in probability and statistics. North Holland, Amsterdam, 1982. | Zbl | MR
[6] , Free energy in a Markovian model of a lattice spin system. Comm. Math. Phys., t. 23, 1971, p. 87-99. | Zbl | MR
[7] et , In one and two dimensions every stationary-measure for a stochastic Ising model is a Gibbs state. Comm. Math. Phys., t. 55, 1977, p. 37-45. | MR
[8] , The stochastic evolution of infinite systems for interacting particles. Lecture Notes in Mathematics, n° 598. | Zbl | MR
[9] , Interacting particle systems. Springer. | Zbl | MR
[10] , Attractive nearest particle systems. Annals of probability, t. 11, 1983, n° 1, p. 16-33. | Zbl | MR
[11] , Stochastic time evolution of one dimensional inimite particle system. B. A. M. S., t. 83, n° 5, 1977, p. 880-890. | Zbl | MR






