
ANNALES DE L’I. H. P., SECTION B

CARL GRAHAM
Boundary processes : the calculus of processes
diffusing on the boundary
Annales de l’I. H. P., section B, tome 21, no 1 (1985), p. 73-102
<http://www.numdam.org/item?id=AIHPB_1985__21_1_73_0>

© Gauthier-Villars, 1985, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section B »
(http://www.elsevier.com/locate/anihpb) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPB_1985__21_1_73_0
http://www.elsevier.com/locate/anihpb
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Boundary processes:
the calculus of processes diffusing on the boundary

Carl GRAHAM

Ann. Inst. Henri Poincaré.

Vol. 21, n° 1, 1985, p. 73 -102. Probabilités et Statistiques

ABSTRACT. - We extend the study in [7] ] of the transition proba-
bilities of boundary processes to the case of a process which diffuses on
the boundary. By means of the Malliavin Calculus, regularity is related
to the degree of degeneracy at the boundary of the diffusion operators;
we show interaction between the one acting within the domain and the
one on the boundary.

RESUME. - Nous étendons 1’etude de [7 ] des probabilités de transition
de processus frontière au cas d’un processus qui diffuse sur la frontière
à l’aide du Calcul de Malliavin. La régularité est reliée au degre de dégéné-
rescence a la frontière des opérateurs de diffusion ; nous montrons l’inter-
action des deux opérateurs du domaine et de la frontière.

INTRODUCTION

In [1 ], J.-M. Bismut investigates the regularity of the semi-groups of
the boundary processes of a certain class of reflecting or two-sided diffu-
sion processes. By means of the stochastic calculus of variations, this is
linked to the invertibility of a certain quadratic form (related to the diffu-
sion operators generating the process) and to the integrability of its inverse.
Then sufficient conditions on the generator of the Hormander form are

given, providing for a certain degeneracy at the boundary.
Here we extend the results to the case of a process which diffuses on

the boundary. We first perform the calculus in our new framework and
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74 C. GRAHAM

exhibit a quadratic form taking into account the diffusion operator on
the boundary. Then we extend results in [3 ] and give sufficient conditions
for the invertibility. For the integrability, we establish some estimates
and use them so as to give theorems under assumptions of a new kind.
Then we give a result showing that the operator on the boundary can
by itself induce regularity, and an example showing that this cannot be
done purely locally; the problems arise from the non-integrability of the
(multiplicative) inverse of the Brownian local time. Then we use the excur-
sion decomposition for the two-sided process; after extending an estimate
on its characteristic measure in order to have results under weaker assump-
tions, we show interaction between the diffusion operators on the boundary
and within the domain.

I. THE CALCULUS OF VARIATIONS

We study either a reflecting or a two-sided process (x, z) in ~d x R.
We give some definitions :
o = (~m), 0’ == C(R+, R), the trajectory w E w’ is

written w~ = (w~ , ..., w~) (resp. zt), and are the usual filtra-

tions regularized and completed.
P is the Brownian measure on Q, such that P(wo = 0) = 1.
In the reflecting case, Pzo is the probability measure on 0’ such that z

is a reflecting brownian motion; in the two-sided case, Pzo is the regular
brownian measure. In both cases, = zo) = 1. We set P’ = Po .
L is the local time at 0 of z, so normalized as to have Lt = sup ( - B~)

. 

where Bt = ~ zj I 2014 ~ Zo - Lt is a Brownian motion. At = inf { A ~ 0, LA&#x3E; t ~.
Q = Q 0 Q’, P = P (8) P’, F, - Ft (8) F;, and the K’’s are continuous

(Ft)-martingales with ( K’ ~ = L, ~ K’, M ) = 0 if wi, z, Kk ( j # ~)}.
By theorem II. 7. 3 in [5] there exists a q-dimensional brownian motion
(C’) 1, J , q independent of (z, Wi) with K~ = CL .

All other notations are as in [1 ] ; we furthermore recall that the XI’s
and D/s are ~d valued vector fields, C~ with bounded derivatives of all
orders, that d denotes the Stratonovitch differential, 5 the Ito differential,
and that if Y is a vector field on a C~ diffeomorphism Rd ~ Rd,

then (h*-1Y)(x) = (2014 j Y(h(x)). The equations for the processes are

Annales de l’Instrtut Henri Poincaré - Probabilités et Statistiques



75THE CALCULUS OF PROCESSES DIFFUSING ON THE BOUNDARY

or

Providing we replace ( 1. 6) in [1 ] by

section 1 in [7 ] can be easily adapted to fit into our new framework, with
the possible exception of its subsection g) and the analytical and geo-
metrical interpretation it gives.

Thus, we can define in a proper way the reflecting process and its asso-
ciated flow, and then its boundary process. Naturally we can proceed in
a similar way for the two-sided process.
The purpose of [7 ] is to study the regularity of the semi-group of the

boundary process (At, the necessity to mind the component At appears
as soon as (1. 5) in [7 ] (which can be derived in our new framework thanks
to the Burkholder-Davis-Gundy inequalities) and is exemplified in [1 ]-(1.37).
Naturally the effect of (1. 5) in [7 ] is felt in the calculus of variations of
section 2 in [1 ]. This calculus brings forth the quadratic form (2 . 4) in [7 ],
and by means of the calculus of section 4 in [7 ] and of the results in har-
monic analysis recalled at the end of that section the regularity is linked
to the invertibility of this form and to the integrability of its inverse. We
shall now check that we can still perform the calculus of section 2 and
section 4 in [1 ], and exhibit a quadratic form in which the D/s, 1  j  q,
appear. We recall that more general reflecting (or two-sided) processes
may be reduced to (1.1) (or 1.2)). See section 1 in [7 ] and IV. 7, V. 6 in [5 ].
We shall follow [1 ], section 2, after having replaced its definition 2 .1 by

DEFINITION 1.1. - On Q, the process with values in the linear

mappings from into Txo(lRd) is defined by

Vol. 21, n° 1-1985.



76 C. GRAHAM

It is convenient to consider rt as a quadratic form: we have

Naturally, 03C6*s . = zS) and depends on (xo, zo)Naturally, = zs) and 0393t depends on (xo, zo)(~03C6s ~x)-1
without this being explicitly stated.

In the two-sided case, we have

We shall replace (2 . 9), (2 .11 ), (2 .15) in [7] ] respectively by

Using the properties of the Girsanov transformation [5] ] and the qua-
dratic variational processes [5 ] we see that the law of ..., 

Kl,l, ..., B) under Rl = 8&#x3E; does not depend on l E IR.

We can now follow [7], section 2, that is differentiate with respect
to 1 at 1 = 0. As LT is in all the L~, p  oo, we may differentiate under the

expectation sign, and all the rest of [1 ], section 2, follows with rt instead
of Ct, with the new choice

As in section 4 the calculus of variations is performed on the component z,
the presence of the K’’s does not matter. It suffices to make obvious changes,
as adding in [1 ]-(4. 9) K~’ = As the cj and z are independant, this
does not affect the calculus. Also as LT is in all the Lp there are no integra-
bility problems. We obtain the results of the end of section 4 in [7 ] with r
instead of C. We shall refer to our adapted theorems without changing
their denotations. We can summarize the results from [7 ] we use as follows : i

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



77THE CALCULUS OF PROCESSES DIFFUSING ON THE BOUNDARY

THEOREM 1.2. - If (xo, zo) E x R and t’ &#x3E; 0 are such that P Q9 Pzo
a. s. is invertible, then for t &#x3E; t’ the law under of (At, is given
by y)dady. If moreover for all T ~ 0, p &#x3E; I 1 IE P Q9 
then pt(a, y) E COO(IR x 

II THE EXISTENCE OF A DENSITY

We shall look into the existence of a density with respect to the Lebesgue
measure for the boundary semi-group. By [1 ], theorem 4.13, it suffices
that rt be invertible.
The main tool to prove this invertibility will be the action of qJ on vector

fields, as in [1 ], section 5. We shall use theorem 1.1, chapter IV, in [2],
with the fact that if K is a vector field then LXiK = [Xi, K ].
To gather the most information from this action we shall use [3 ], espe-

cially theorems 2.1 and 2. 3. The problem is to adapt them to our present
situation; that is, to the presence of the K’’s and to the two-sided process.
This will be done beforehand.

We notice here that as in [7 ] the vector fields of the half spaces z &#x3E; 0

and z  0 strongly interact; this shows nontrivial interactions of the

corresponding Levy kernels.
Let (Q, (Ft), P) be a filtered probability space, and (z, B, C) a (Ft)-Brownian

motion. L denotes the local time at 0 of z.

If Y is a process, then Y° is the random set yO = { t &#x3E; 0, Yt = 0 }, D, H, J,
K are continuous (Ft)-predictable processes, and

We now have : i

THEOREM II. 1. - Assume that an a. s. &#x3E; 0 stopping time S exists

such that z° n [0, S [ c ~°, a. s.
Then z° n [0, S ci H° n K°, a. s.

THEOREM 11.2. - Assume that H may be written

Vol. 21, n° 1-1985.



78 C. GRAHAM

where Ho is Fo-measurable, and D’, K’, H’, J’ are continuous predictable
processes. Then if an a. s. &#x3E; 0 stopping time S exists such that [0, S [ c ~°,
then [0, S ci 

Proof - We first apply theorem 2.1 in [3] ] to

/*t -t
As XS = 0 on [0,S[n z°, = 0 on [0,S[ [ and = 0

0 0

on [0, S [. We may apply [F ]-theorem 2 .1 and we get that Js = 0 on [0, S [.
t

This implies that = 0 on [0, S [, so that we may apply [3 ]-theo-
. 

rem 2.1 to X~ itself. Our first theorem follows. For the second theorem,
t

we subsequently apply theorem 2 .1 in [3 ] to Ht to get rid of the 
0

term as well ; then we may use theorem 2 . 3 in [3 ] to conclude.

Remark. 2014 If (z, Bi, C~) is a (Ft)-Brownian motion and if we replace
i

in (II.1) the local martingale terms by ~ + ~ Z-J 0 2-J 0
i j

then Theorem II . 7 , I’ in [5 ] enables us to use Theorem II . 1, for then we
N N W N ~

can find B, C with (z, B, C) an (Ft)-Brownian motion such that the local

martingale terms may be written ~t0 ~ (His)203B4Bs + ~t0 / / O 22014J .0 B 2-j

(in an enlarged space Q). ’ 

We can now give some results on the invertibility of F i

DEFINITION II . 3. 2014 For e El, El, Fl, F~ are the families of ~-valued
vector fields defined by

and E~ is defined as E~ after replacing Xi by Xi, i = 0, ..., m.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



79THE CALCULUS OF PROCESSES DIFFUSING ON THE BOUNDARY

Naturally if A, B are two families of vector fields, [A, B ] denotes the
family of the vector fields [a, b], a E A, b E B.
We state a theorem on the reflecting process :

THEOREM II. 4. - If xo E !Rd is such that the vector space spanned by
{ E~, Fi ; 1   + is L~d in full, then P (x) P’ a. s. for all t &#x3E; 0, Ff°
is invertible.

Moreover, if Xl, ... , Xm do not depend on z, then we may enlarge 
to = [(Do, ..., Dq), Ez] [(Do, ..., Dq, Xo, ... , Xm), Fl 3-
We now state a theorem on the two-sided process : i

THEOREM 11.5. - If xo is such that the vector space spanned by
{ Ez, El, 1 ~ l  + 00 } is in full, then P @ P’ a. s. for all t &#x3E; 0 is

invertible.

Moreover if X1, ..., Xm, X~, ..., X~ do not depend on z, may

be enlarged to

Proof - As in [1 ]-Theorem 5 . 2, [4 ]-Theorem 2 .14, we get by the 0-1 law
that as soon as is not invertible, there is a fixed fe f # 0, and
an a. s. &#x3E; 0 (Ft)-stopping time S such that ( f, = 0 on [0, S ].
For the reflecting process : if Vex, z) is a Rd-valued vector field, then by

Theorem 1.1, Chapter IV, in [2] (or just by looking at [1 ], (1.4), (1.12))
we have

By separating the local-martingale and the bounded variation terms and

by using the fact the support of dLs is { Zs = 0 } which is ds-negligible,
we get that : i

Vol. 21, n° 1-1985.



80 C. GRAHAM

 ~; c~S -1 V ] ) are equal to 0 for s  Sand ( g ~p* -1 V ] ) ,
.t: (,0; -1 [Do, V]) are. equal to 0 for s ~ S, z, = 0.

Now we notice that if W(x, z), V(x, z) are two Rd valued vector fields,
N N

and if we set V(x, z) = V(x, 0), then [W, V](x, 0) == [W, V](x, 0). Also if

~~r’V(~))=0 for s  S, z,=0, for

s  S, zs = 0, and we may use theorems II .1 and II . 2 now that no terms in

2014 5z are left. So we can state using theorem II. 1 that : i
If ~r’Y(~))=0 for s  S, 

 f,03C6*-1s [Dj, V]&#x3E;, f,03C6*-1s [Xi, V]&#x3E; = 0 for 
N

In order to use theorem 11.2 we must have that 03C6*-1s [Xi, V] is a semi-

martingale whose Ito decomposition contains no - 03B4z term. This happens

as soon as for 1  i  m [Xi, V ] ] = 0. The only simple assumption
we can give on the Xi’s to get that is that for 1  i  m the X’s do not

depend on z. In which case we also get that ( £ ~ps -1 [Xo, V ] ~ = 0 for

All this leads to theorem II.4 by a simple iteration.
For the two-sided process we follow the same proof after adapting

the results of [11] ] instead of [3 ]. We could also adapt the. tech-

niques of [1 ]-Theorem 6 . 6, [4]-Theorem 2.19 ; they use the time-change
-t

Kt = inf { y, Cy) t } where Ct is a reflecting brownian

motion, and i  m) are also independent brownian
0

motions independent of ZKt. This is followed by a quite intricate and tech-
nical proof, (see (6 . 37) to (6 . 54) in [7 ]).

Remark. Naturally we can try to enlarge E1, E’l, F1, F; knowing that
what really counts is the vector space they span. For example, it is easy
to prove by using the Jacobi identity that if B, 1 ) are
vector fields then [B, [Ap, [..., [A2, A1 ] ... ] belongs to the vector space
spanned by all the [ ... , B] ... ] ], for 03C3 belonging
to the set of permutations of { 1, ...,/?}. 0
We would also like to get rid of the restrictions on Xo and The

latter stems from the way we get back within reach of theorem 11.1, and
thus seems difficult to be disposed of. For the former, we used theorem II. 2.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



81THE CALCULUS OF PROCESSES DIFFUSING ON THE BOUNDARY

It is to no avail to use theorem 2 . 2 in [3 ] as it requires that S should be + oo,
or at least bounded below uniformely in w ; it is difficult to further localize
the theorem.

III. THE EXTENSION

OF THE EXISTING ESTIMATES

We shall now extend the estimates of [1 ], and in particular (5 . 37) and
(6.119). We get less interesting results, for K! behaves somewhat like 
(while Lt behaves only like t1/2) and so moves around a lot for small t’s.

We use estimates on S.D.E. and also some classical estimates on Brownian

motion, which we shall now recall, as we shall recall the estimate [I ]-(5 . 29)
in a slightly enhanced form.

First for a if w is a brownian motion, it is classical that

Then following [I ]-(5 . 42), (5 . 43), we have

As in [1 ], (5 . 23) to (5 : 29), we get from the proof of Theorem 8 . 31 in [10]
that for

there are D 1 &#x3E; 0, D 2 &#x3E; 0, D 3 &#x3E; 0, mz = 2ot -1 x 6, such that for any
XoC &#x3E; 0, we have

on

Vol. 21, n° 1-1985.
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Let’s put for Xo, Do, X~, having the same properties as Xo, Do, X~, D~

We then have 
’

PROPOSITION III .1. - If 0 &#x3E; 0, T &#x3E; 0 are such that 0 - E(T + T~ ’~ 0~’~) % 0,
then

PROPOSITION III. 2. - If for 1  j  q D~ = 0, and 8 &#x3E; 0, T &#x3E; 0, E &#x3E; 0 are

such that 8 - E(T + s0) ~ 0, then

Proof - Let

by (III, 1), knowing that L, = sup ( - If 0-E(T+T~~) ~ 0,
we have 

By a simple adaptation of the estimate (4.2.1) in [9 ], using that we are
on { T1~382~3 }, we get that 

-

and by using (III . 5), (III. 6), (III. 8). Proposition III. 1. is proved.
Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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If moreover Di == ... == Dq = 0, we may replace (111.6) and (III. 8)
respectively by

and we shall obtain Proposition 111.2.

REMARK 1. - When using Prop. III.2 we shall choose E &#x3E; 0 such

that 1 - EE &#x3E; 0. Then when 8 is large enough, 0 - E(T + E 8) &#x3E; 0 and
furthermore for 8 going to + oo we get an estimate of the exp { 2014 e82 ~ kind.

REMARK 2. - In our paper, either T goes to 0 as in [1 ]-(5 . 37), or 8
goes to infinity as in [1 ]-(6 .119). There exists To &#x3E; 0 depending, only on E,
d, 0, and 80 &#x3E; 0 depending only on E, d, T such that for T  To or 8 ~ 80
we have

We shall then set

REMARK 3. - Naturally to use all these estimates in our paper it

suffices to write the Stratonovitch equations in Ito form. We have ana-
logous estimates on the two-sided process, by modifying the proof in an
obvious way after having changed E and F so as to take into account the
vector fields in the half space z  0.

IV SMOOTHNESS: THE REFLECTING PROCESS

We shall now investigate the smoothness of the densities of the boundary
semi-group. This is linked to the integrability of by theorems 2.4, 2. 5,
4.9,4.10,4.11,4.12m [1 ].
The principle of the proofs is to estimate by the results of the previous

section the probability that the diffusion gets away from the boundary
without getting to far from the starting point, and then use the estimate
(III.3) inside the half-space. We cannot thus hope to get results involving
the D/s.
Vol. 21, n° 1-1985.



84 C. GRAHAM

As our estimates are not as good as those in [7 ], we get weaker results
on local conditions. This leads us to introduce new hypotheses and new
techniques in order to exploit better our estimates.
We use these new techniques to prove a result involving the D/s.
For the reflecting process, we have

DEFINITION IV . 1.

THEOREM IV. 2. - Let x0 ~Rd be such that for a given 0 &#x3E; 0,
one of the following hypotheses holds :

Then for any t &#x3E; 0, T &#x3E; | [0393xOAt]-1 | is in all the P @ P’).

Proof - We shall adapt the proof for [1 ]-Theorem 5 . 9. À is a &#x3E; 0 real,
which will tend to + oo. y is a &#x3E; 0 real number, depending on ~, which will
become arbitrarly small as ~ -~ + 00. We will determine y at the end
of the proof. We have

we know that

Let To be the stopping time

By Prop. III.1 we have for small enough y

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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and thus

Putting Ti2,3 - inf { t ~ 0, zt = }, we have the key estimate

Defining T03B322/3 = inf { t ~ T03B32/3 1, | Zt - = 03B32/3/2 }, we have

We shall choose y so that

Now we have

On Ti 2~3 c using (IV. 8), we have 16 ’° denoting transposition)

where

and so

Vol. 21, n° 1-1985.
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By [1 ]-theorem 1.1 e) we know that for any p ~ 1, there is A &#x3E; 0 with

When L does not increase on

and so using the Markov properties of the flow

(by the estimate (4 . 2 .1) in [9 ]). Using lemma V . 8 . 4 in [5 ], we get that

d- 1

where f1, ...,fN are unit vectors of Rd and N  C03BB2.
y2/3 

We must now choose y such that if | x 2014 x0 | ~ 0, 20142014 ~Z~ 03B32/3,
" ~ "3/Mt 2 2

then z) ~ 4D2 . Then on the set of w’s

we see that on the interval L does not increase,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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so that we may use the estimate (III. 3). So for a 03B2 &#x3E; 0, independent of A,

Under the hypothesis (i ), we know that for 03B4 &#x3E; 0 we can fmd ~03B4 &#x3E; 0

such that if z ~ r~a then for all x 2014 8, then

To have it is now enough that and

and so we take

For large ~ (IV. 8 ) will be true, and  2 y 2~3 ~  ~. Checking o u r estimates,
we see that we shall have for given 6 &#x3E; 0 and large enough A

and 6 being arbitrarly small, the theorem follows.
Let us now suppose that hypothesis (ii ) is fulfilled. We shall adapt the

proof for (i ). This time (as in [1 ]-Theorem 5 . 9) we shall take Ti instead
_ i _ 3, and shall change all y2/3 into y. We shall not introduce To ;

we want to choose

and the r. h. t. in (IV. 4) would be to large. Under the stronger hypothesis

Vol. 21, n° 1-1985.


